1. Hilbert Polynomials

Let $X \subset \mathbb{P}^{n}$ be a projective variety. We define the Hilbert Polynomial of X to be

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}(m)\right)=\sum_{i \geq 0}(-1)^{i} h^{i}\left(\mathcal{O}_{X}(m)\right) \tag{1.1}
\end{equation*}
$$

where $\mathcal{O}_{\mathbb{P}^{n}}(1)$ is the hyperplane bundle on \mathbb{P}^{n} and $\mathcal{O}_{X}(1)=\mathcal{O}_{\mathbb{P}^{n}}(1) \otimes \mathcal{O}_{X}$ is its restriction to X.

We need a list of vanishing results:
Theorem 1.1 (Grothendieck). For a scheme X,

$$
\begin{equation*}
H^{i}(X, \mathcal{F})=0 \tag{1.2}
\end{equation*}
$$

for $i>\operatorname{dim} X$ and all coherent sheaves \mathcal{F} on X.
Note that this is not true for sheaves \mathcal{F} that are not coherent. For example, if X is a smooth complex variety of dimension n, then

$$
\begin{equation*}
H^{i}(X, \mathbb{Z})=H^{i}(X) \tag{1.3}
\end{equation*}
$$

for $\mathcal{F}=\mathbb{Z}$, where $H^{i}(X)$ is the i-th singular cohomology. When X is projective, $H^{2 n}(X, \mathbb{Z})=\mathbb{C}$.
Theorem 1.2 (Serre). For every projective scheme $X \subset \mathbb{P}^{n}$ and every coherent sheaf \mathcal{F}, there exists a number N, depending on X and \mathcal{F} such that

$$
\begin{equation*}
H^{i}(X, \mathcal{F}(m))=H^{i}\left(X, \mathcal{F} \otimes \mathcal{O}_{X}(m)\right)=0 \tag{1.4}
\end{equation*}
$$

for all $i>0$ and $m \geq N$.
Theorem 1.3 (Kodaira). For every projective complex manifold $X \subset \mathbb{P}^{n}$,

$$
\begin{equation*}
H^{i}\left(\mathcal{O}_{X}(-m)\right)=0 \tag{1.5}
\end{equation*}
$$

for all $0 \leq i<\operatorname{dim} X$ and $m>0$.
For $P=\mathbb{P}^{n}, H^{0}\left(\mathcal{O}_{P}(m)\right)$ can be identified with the space of homogeneous polynomials of degree m in $n+1$ variables

$$
\begin{align*}
H^{0}\left(\mathbb{P}^{n}, \mathcal{O}(m)\right) & =\left\{\sum_{d_{0}+d_{1}+\ldots+d_{n}=m} a_{d_{0} d_{1} \ldots d_{n}} X_{0}^{d_{0}} X_{1}^{d_{1}} \ldots X_{n}^{d_{n}}\right\} \tag{1.6}\\
& \cong \mathbb{C}^{\binom{m+n}{n}}
\end{align*}
$$

We have Kodiara-Serre duality
Theorem 1.4 (Kodiara-Serre). Let X be a smooth projective variety of dimension n. Then

$$
\begin{equation*}
H^{i}(E) \times H^{n-i}\left(E^{\vee} \otimes K_{X}\right) \longrightarrow H^{n}\left(K_{X}\right)=\mathbb{C} \tag{1.7}
\end{equation*}
$$

is a perfect pairing for all vector bundles E on X, where $K_{X}=\wedge^{n} \Omega_{X}$ is the canonical bundle of X. Therefore,

$$
\begin{equation*}
H^{i}(E)^{\vee} \cong H^{n-i}\left(E^{\vee} \otimes K_{X}\right) \tag{1.8}
\end{equation*}
$$

The canonical bundle of $P=\mathbb{P}^{n}$ can be computed from the Euler sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{P} \longrightarrow \mathcal{O}_{P}(1)^{\oplus(n+1)} \longrightarrow T_{P} \longrightarrow 0 \tag{1.9}
\end{equation*}
$$

by which we have

$$
\begin{equation*}
\left(\wedge^{n} \Omega_{P}\right)^{\vee}=\wedge^{n} T_{P}=\mathcal{O}_{P} \otimes \wedge^{n} T_{P} \cong \wedge^{n+1} \mathcal{O}_{P}(1)^{\oplus(n+1)}=\mathcal{O}_{P}(n+1) \tag{1.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
K_{P}=\mathcal{O}_{P}(-n-1) . \tag{1.11}
\end{equation*}
$$

Combining Kodaira-Serre duality and Kodaira vanishing, we can compute $h^{i}\left(\mathcal{O}_{P}(m)\right)$ as follows:

$$
h^{i}\left(\mathcal{O}_{P}(m)\right)= \begin{cases}0 & \text { if } i \neq 0, n \tag{1.12}\\ \binom{m+n}{m} & \text { if } i=0 \\ h^{0}\left(\mathcal{O}_{P}(-n-1-m)\right) & \text { if } i=n\end{cases}
$$

By Serre's vanishing theorem,

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}(m)\right)=h^{0}\left(\mathcal{O}_{X}(m)\right) \tag{1.13}
\end{equation*}
$$

for m sufficiently large. So we may use the right hand side (RHS) of (1.13) as the definition of Hilbert polynomial since the left hand side (LHS) of (1.13) is indeed a polynomial of m :

Theorem 1.5. Let $X \subset \mathbb{P}^{n}$ be a projective scheme. Then

$$
\begin{align*}
\chi\left(\mathcal{O}_{X}(m)\right)= & d\binom{m+r}{r}+c_{r-1}\binom{m+r-1}{r-1} \tag{1.14}\\
& +c_{r-2}\binom{m+r-2}{r-2}+\ldots+c_{0}
\end{align*}
$$

for some constants $c_{i} \in \mathbb{Z}$, where $r=\operatorname{dim} X$ and $d=\operatorname{deg} X$.
Proof. We prove by induction on r. When $r=0, X$ is a 0 -dimensional scheme of degree d. Namely, \mathcal{O}_{X} is an artin ring of $\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{X}=d$ over \mathbb{C} as a vector space. So $h^{0}\left(\mathcal{O}_{X}(m)\right)=h^{0}\left(\mathcal{O}_{X}\right)$ and $\chi\left(\mathcal{O}_{X}(m)\right)=d$.

For $r>0$, let Λ be a general hyperplane. Then $Y=X \cap \Lambda$ is a scheme of dimension $r-1$ of degree d. We have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X}(-1) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0 \tag{1.15}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\chi\left(\mathcal{O}_{X}(m)\right)-\chi\left(\mathcal{O}_{X}(m-1)\right) & =\chi\left(\mathcal{O}_{Y}(m)\right) \\
& =d\binom{m+r-1}{r-1}+\sum_{i=0}^{r-2} b_{i}\binom{m+i}{i} \tag{1.16}
\end{align*}
$$

by induction hypothesis for some $b_{i} \in \mathbb{Z}$. Then

$$
\begin{align*}
\chi\left(\mathcal{O}_{X}(m)\right) & =\chi\left(\mathcal{O}_{X}(0)\right)+\sum_{k=0}^{m} \chi\left(\mathcal{O}_{Y}(k)\right) \\
& =d \sum_{k=0}^{m}\binom{k+r-1}{r-1}+\sum_{i=0}^{r-2} b_{i}\left(\sum_{k=0}^{m}\binom{k+i}{i}\right)+c_{0} \tag{1.17}\\
& =d\binom{m+r}{r}+\sum_{i=0}^{r-2} b_{i}\binom{m+i+1}{i+1}+c_{0}
\end{align*}
$$

and (1.14) follows.
For a projective scheme $X \subset \mathbb{P}^{n}$, if we have a free resolution of \mathcal{O}_{X}

$$
\begin{equation*}
0 \rightarrow E_{l} \rightarrow E_{l-1} \rightarrow \ldots \rightarrow E_{0}=\mathcal{O}_{P} \rightarrow \mathcal{O}_{X} \rightarrow 0 \tag{1.18}
\end{equation*}
$$

with each E_{i} being a direct sum $\oplus \mathcal{O}_{P}\left(e_{i j}\right)$, then the Hilbert polynomial of X can be easily computed by

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}(m)\right)=\sum_{i=0}^{l}(-1)^{i} \chi\left(E_{i}(m)\right) \tag{1.19}
\end{equation*}
$$

Such resolution always exists, which is the consequence of the famous Hilbert's Syzygy Theorem:

Theorem 1.6 (Hilbert's Syzygy). Every coherent sheaf \mathcal{F} on \mathbb{P}^{n} has a free resolution, i.e., a long exact sequence

$$
\begin{equation*}
0 \rightarrow E_{l} \rightarrow E_{l-1} \rightarrow \ldots \rightarrow E_{0} \rightarrow \mathcal{O}_{X} \rightarrow 0 \tag{1.20}
\end{equation*}
$$

with each E_{i} being a direct sum $\oplus \mathcal{O}_{\mathbb{P}^{n}}\left(e_{i j}\right)$ and $l \leq n$.
In particular, a complete intersection $X \subset \mathbb{P}^{n}$ has a well-known free resolution, called Koszul Complex. A complete intersection $X \subset \mathbb{P}^{n}$ of type ($d_{1}, d_{2}, \ldots, d_{r}$) is a scheme $X=X_{1} \cap X_{2} \cap \ldots \cap X_{r}$ cut out by hypersurfaces $X_{i} \subset \mathbb{P}^{n}$ of degree d_{i} with $\operatorname{dim} X=n-r$. For such X, we have a free resolution

of \mathcal{O}_{X}, called the Koszul complex induced by the map

sending $\left(g_{1}, g_{2}, \ldots, g_{r}\right)$ to $g_{1} F_{1}+g_{2} F_{2}+\ldots+g_{r} F_{r}$ with F_{i} the defining equation of X_{i}. Then the Hilbert polynomial of X is very easy to compute:

$$
\begin{align*}
\chi\left(\mathcal{O}_{X}(m)\right) & =\sum_{i=0}^{r}(-1)^{i} \chi\left(\wedge^{i} E \otimes \mathcal{O}_{P}(m)\right) \\
& =\sum_{I \subset\{1,2, \ldots, r\}}(-1)^{|I|}\binom{m-d_{I}+n}{n} \tag{1.23}
\end{align*}
$$

where we use the notations $|I|=i$ and $d_{I}=d_{a_{1}}+d_{a_{2}}+\ldots+d_{a_{i}}$ for an index set $I=\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$.

Of particular interest to us is the Hilbert polynomial of a plane curve $C \subset \mathbb{P}^{2}$ of degree d. By 1.23 , it is given by

$$
\begin{equation*}
\chi\left(\mathcal{O}_{C}(m)\right)=\binom{m+2}{2}-\binom{m-d+2}{2}=m d-\binom{d-1}{2}+1 . \tag{1.24}
\end{equation*}
$$

As another example, let us consider the Hilbert polynomial of a rational normal curve. A rational normal curve C in \mathbb{P}^{n} is the image of the embedding $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ given by $H^{0}\left(\mathcal{O}_{\mathbb{P}^{1}}(n)\right)$:

$$
\begin{equation*}
f\left(Z_{0}, Z_{1}\right)=\sigma\left(Z_{0}^{n}, Z_{0}^{n-1} Z_{1}, \ldots, Z_{0} Z_{1}^{n-1}, Z_{1}^{n}\right) \tag{1.25}
\end{equation*}
$$

where σ is an automorphism of \mathbb{P}^{n}, i.e., a $\mathbb{P} G L(n+1)$ action. When $n=2$, it is a conic and when $n=3$, it is a twisted cubic.

A rational normal curve is not linear degenerated, i.e., it is not contained in a hyperplane of \mathbb{P}^{n}; otherwise,

$$
\begin{equation*}
c_{0} Z_{0}^{n}+c_{1} Z_{0}^{n-1} Z_{1}+\ldots+c_{n-1} Z_{0} Z_{1}^{n-1}+c_{n} Z_{1}^{n}=0 \tag{1.26}
\end{equation*}
$$

for all $\left(Z_{0}, Z_{1}\right)$ and some constants $c_{0}, c_{1}, \ldots, c_{n}$, not all zero, which is impossible. It has degree n since 1.26 has n solutions in \mathbb{P}^{1}. When $n \geq 3$, it is NOT a complete intersection; otherwise, $C=X_{1} \cap X_{2} \cap \ldots \cap X_{n-1}$ for some hypersurfaces X_{i} of degree d_{i}; since C is linear non-degenerate, $d_{i} \geq 2$ and then $\operatorname{deg} C=n \geq 2^{n-1}$, which is impossible. The Hilbert polynomial of C is very easy to compute since $f^{*} \mathcal{O}_{P}(m)=\mathcal{O}_{\mathbb{P}^{1}}(m n)$ and hence

$$
\begin{equation*}
\chi\left(\mathcal{O}_{C}(m)\right)=\chi\left(\mathcal{O}_{\mathbb{P}^{1}}(m n)\right)=m n+1 . \tag{1.27}
\end{equation*}
$$

Hilbert polynomials are deformational invariants.

Theorem 1.7. Let $X \subset \mathbb{P}^{n} \times B$ be a flat family of closed subschemes of \mathbb{P}^{n} over a variety B. Then there exists a polynomial $\phi(m)$ such that

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X_{b}}(m)\right) \equiv \phi(m) \tag{1.28}
\end{equation*}
$$

for all $b \in B$, where X_{b} is the fiber of X over $b \in B$.
Question 1.8 (Flattened Twisted Cubics' Puzzle). Let

$$
\begin{equation*}
\varphi: \mathbb{A}^{2} \rightarrow \mathbb{P}^{3} \times \mathbb{A}^{1} \tag{1.29}
\end{equation*}
$$

be the map given by

$$
\begin{equation*}
\varphi(s, t)=\left(1, s t, s^{2}, s^{3}\right) \times(t) . \tag{1.30}
\end{equation*}
$$

Let X be the closure of $\varphi\left(\mathbb{A}^{2}\right)$ in $\mathbb{P}^{3} \times \mathbb{A}^{1}$. Then X is irreducible and dominates \mathbb{A}^{1} so it is flat over \mathbb{A}^{1}. The fiber X_{1} of X over $t=1$ is

$$
\begin{equation*}
X_{1}=\overline{\left\{\left(1, s, s^{2}, s^{3}\right)\right\}} \tag{1.31}
\end{equation*}
$$

which is a twisted cubic in \mathbb{P}^{3}. So its Hilbert polynomial is

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X_{1}}(m)\right)=3 m+1 \tag{1.32}
\end{equation*}
$$

The fiber X_{0} of X over $t=0$ seems to be

$$
\begin{equation*}
X_{0}=\overline{\left\{\left(1,0, s^{2}, s^{3}\right)\right\}}=\Lambda \cap W \tag{1.33}
\end{equation*}
$$

where Λ is the hyperplane $\left\{Z_{1}=0\right\}$ and W is the cubic surface $\left\{Z_{2}^{3}=Z_{3}^{2}\right\}$. So its Hilbert polynomial is

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X_{0}}(m)\right)=\binom{m+3}{3}-\binom{m+2}{3}-\binom{m}{3}+\binom{m-1}{3}=3 m . \tag{1.34}
\end{equation*}
$$

So $\chi\left(\mathcal{O}_{X_{1}}(m)\right) \neq \chi\left(\mathcal{O}_{X_{0}}(m)\right)$! What went wrong?

2. A Note On Koszul Complex

The idea of Koszul complex comes from a very simple observation in linear algebra. Let V be a vector space over a field k and $\phi: V \rightarrow k$ be a linear functional. We have a map $\partial_{m}: \wedge^{m} V \rightarrow \wedge^{m-1} V$ defined by

$$
\begin{equation*}
\partial_{m}\left(v_{1} \wedge v_{2} \wedge \ldots \wedge v_{m}\right)=\sum_{i=1}^{m}(-1)^{i} \phi\left(v_{i}\right) v_{1} \wedge v_{2} \wedge \ldots \wedge \widehat{v}_{i} \wedge \ldots \wedge v_{m} \tag{2.1}
\end{equation*}
$$

It is easy to check that $\partial_{m-1} \circ \partial m=0$. Therefore, we have a complex

$$
\begin{equation*}
\ldots \rightarrow \wedge^{m} V \xrightarrow{\partial_{m}} \wedge^{m-1} V \xrightarrow{\partial_{m-1}} \wedge^{m-2} V \rightarrow \ldots \rightarrow V \xrightarrow{f} k \rightarrow 0 \tag{2.2}
\end{equation*}
$$

which is called the Koszul complex associated to (or induced by) $\phi: V \rightarrow k$.
It is easy to check that (2.2) is actually exact as long as ϕ is surjective, i.e., $\phi \neq 0$. If $\operatorname{dim} V=r$, this sequence has length $r+2$.

More generally, let R be a commutative ring, M be a module over R and $\phi: M \rightarrow R$ be a homomorphism of R-module. Then we can form a Koszul complex $\wedge^{m} M \rightarrow \wedge^{m-1} M$ just as in the case of vector spaces.

When $M=R^{\oplus r}$, we assume that $\phi: M \rightarrow R$ is given by

$$
\begin{equation*}
\phi\left(a_{1}, a_{2}, \ldots, a_{r}\right)=a_{1} f_{1}+a_{2} f_{2}+\ldots+a_{r} f_{r} . \tag{2.3}
\end{equation*}
$$

We say that $f_{1}, f_{2}, \ldots, f_{r}$ is a regular sequence of R if f_{i} is not a zero divisor of $R /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right)$ for $i=1,2, \ldots, r$.

Then the Koszul complex $\wedge^{\bullet} M$ is exact if $f_{1}, f_{2}, \ldots, f_{r}$ is a regular sequence of R. This can be proved by induction on r and the observation that the sequence

$$
\begin{align*}
0 \rightarrow R /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right) & \xrightarrow{x f_{i}} R /\left(f_{1}, f_{2}, \ldots, f_{i-1}\right) \tag{2.4}\\
& \rightarrow R /\left(f_{1}, f_{2}, \ldots, f_{i-1}, f_{i}\right) \rightarrow 0
\end{align*}
$$

is exact.
Translating this geometrically, $f_{1}, f_{2}, \ldots, f_{r}$ being a regular sequence means $\operatorname{Spec} R /\left(f_{1}, f_{2}, \ldots, f_{r}\right)$ is a complete intersection in Spec R. Hence the Koszul complex $\wedge^{\bullet} M$ gives a free resolution of $R /\left(f_{1}, f_{2}, \ldots, f_{r}\right)$. This explains (1.21).

One special case is that $R=\left(f_{1}, f_{2}, \ldots, f_{r}\right)$, where ϕ is surjective and $\wedge^{\bullet} M$ is exact. It follows that if we have a surjective map $E \rightarrow \mathcal{O}_{X}$ between vector bundles on X, then the corresponding Koszul complex $\wedge^{\bullet} E$ is exact.

Koszul complex has several generalizations. One generalization is that $\phi: M \rightarrow R$ is replaced by $\phi: M \rightarrow N$ for two R-modules M and N. In this case, we have a complex

$$
\begin{align*}
\wedge^{l} M & \rightarrow \wedge^{l-1} M \otimes N \rightarrow \wedge^{l-2} M \otimes \operatorname{Sym}^{2} N \\
& \rightarrow \ldots \rightarrow M \otimes \operatorname{Sym}^{l-1} N \rightarrow \operatorname{Sym}^{l} N \rightarrow 0 \tag{2.5}
\end{align*}
$$

where the differential maps are defined in the obvious way.
632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA

E-mail address: xichen@math.ualberta.ca

