1. HILBERT POLYNOMIALS

Let $X \subset \mathbb{P}^n$ be a projective variety. We define the Hilbert Polynomial of X to be

(1.1)
$$\chi(\mathcal{O}_X(m)) = \sum_{i \ge 0} (-1)^i h^i(\mathcal{O}_X(m))$$

where $\mathcal{O}_{\mathbb{P}^n}(1)$ is the hyperplane bundle on \mathbb{P}^n and $\mathcal{O}_X(1) = \mathcal{O}_{\mathbb{P}^n}(1) \otimes \mathcal{O}_X$ is its restriction to X.

We need a list of vanishing results:

Theorem 1.1 (Grothendieck). For a scheme X,

(1.2)
$$H^{i}(X,\mathcal{F}) = 0$$

for $i > \dim X$ and all coherent sheaves \mathcal{F} on X.

Note that this is not true for sheaves \mathcal{F} that are not coherent. For example, if X is a smooth complex variety of dimension n, then

(1.3)
$$H^{i}(X,\mathbb{Z}) = H^{i}(X)$$

for $\mathcal{F} = \mathbb{Z}$, where $H^i(X)$ is the *i*-th singular cohomology. When X is projective, $H^{2n}(X,\mathbb{Z}) = \mathbb{C}$.

Theorem 1.2 (Serre). For every projective scheme $X \subset \mathbb{P}^n$ and every coherent sheaf \mathcal{F} , there exists a number N, depending on X and \mathcal{F} such that

(1.4)
$$H^{i}(X, \mathcal{F}(m)) = H^{i}(X, \mathcal{F} \otimes \mathcal{O}_{X}(m)) = 0$$

for all i > 0 and $m \ge N$.

Theorem 1.3 (Kodaira). For every projective complex manifold $X \subset \mathbb{P}^n$,

(1.5)
$$H^i(\mathcal{O}_X(-m)) = 0$$

for all $0 \leq i < \dim X$ and m > 0.

For $P = \mathbb{P}^n$, $H^0(\mathcal{O}_P(m))$ can be identified with the space of homogeneous polynomials of degree m in n + 1 variables

(1.6)
$$H^{0}(\mathbb{P}^{n}, \mathcal{O}(m)) = \left\{ \sum_{d_{0}+d_{1}+\ldots+d_{n}=m} a_{d_{0}d_{1}\ldots d_{n}} X_{0}^{d_{0}} X_{1}^{d_{1}} \ldots X_{n}^{d_{n}} \right\}$$
$$\cong \mathbb{C}^{\binom{m+n}{n}}.$$

We have Kodiara-Serre duality

Theorem 1.4 (Kodiara-Serre). Let X be a smooth projective variety of dimension n. Then

(1.7)
$$H^{i}(E) \times H^{n-i}(E^{\vee} \otimes K_{X}) \longrightarrow H^{n}(K_{X}) = \mathbb{C}$$

is a perfect pairing for all vector bundles E on X, where $K_X = \wedge^n \Omega_X$ is the canonical bundle of X. Therefore,

(1.8)
$$H^{i}(E)^{\vee} \cong H^{n-i}(E^{\vee} \otimes K_X).$$

The canonical bundle of $P = \mathbb{P}^n$ can be computed from the Euler sequence

(1.9)
$$0 \longrightarrow \mathcal{O}_P \longrightarrow \mathcal{O}_P(1)^{\oplus (n+1)} \longrightarrow T_P \longrightarrow 0$$

by which we have

(1.10) $(\wedge^n \Omega_P)^{\vee} = \wedge^n T_P = \mathcal{O}_P \otimes \wedge^n T_P \cong \wedge^{n+1} \mathcal{O}_P(1)^{\oplus (n+1)} = \mathcal{O}_P(n+1)$ and hence

(1.11)
$$K_P = \mathcal{O}_P(-n-1).$$

Combining Kodaira-Serre duality and Kodaira vanishing, we can compute $h^i(\mathcal{O}_P(m))$ as follows:

(1.12)
$$h^{i}(\mathcal{O}_{P}(m)) = \begin{cases} 0 & \text{if } i \neq 0, n \\ \binom{m+n}{m} & \text{if } i = 0 \\ h^{0}(\mathcal{O}_{P}(-n-1-m)) & \text{if } i = n. \end{cases}$$

By Serre's vanishing theorem,

(1.13)
$$\chi(\mathcal{O}_X(m)) = h^0(\mathcal{O}_X(m))$$

for m sufficiently large. So we may use the right hand side (RHS) of (1.13) as the definition of Hilbert polynomial since the left hand side (LHS) of (1.13) is indeed a polynomial of m:

Theorem 1.5. Let $X \subset \mathbb{P}^n$ be a projective scheme. Then

(1.14)
$$\chi(\mathcal{O}_X(m)) = d\binom{m+r}{r} + c_{r-1}\binom{m+r-1}{r-1} + c_{r-2}\binom{m+r-2}{r-2} + \dots + c_0$$

for some constants $c_i \in \mathbb{Z}$, where $r = \dim X$ and $d = \deg X$.

Proof. We prove by induction on r. When r = 0, X is a 0-dimensional scheme of degree d. Namely, \mathcal{O}_X is an artin ring of dim_{\mathbb{C}} $\mathcal{O}_X = d$ over \mathbb{C} as a vector space. So $h^0(\mathcal{O}_X(m)) = h^0(\mathcal{O}_X)$ and $\chi(\mathcal{O}_X(m)) = d$.

For r > 0, let Λ be a general hyperplane. Then $Y = X \cap \Lambda$ is a scheme of dimension r - 1 of degree d. We have the exact sequence

$$(1.15) \qquad 0 \longrightarrow \mathcal{O}_X(-1) \longrightarrow \mathcal{O}_X \longrightarrow \mathcal{O}_Y \longrightarrow 0.$$

It follows that

$$\chi(\mathcal{O}_X(m)) - \chi(\mathcal{O}_X(m-1)) = \chi(\mathcal{O}_Y(m))$$

(1.16)
$$= d\binom{m+r-1}{r-1} + \sum_{i=0}^{r-2} b_i \binom{m+i}{i}$$

by induction hypothesis for some $b_i \in \mathbb{Z}$. Then

(1.17)
$$\chi(\mathcal{O}_X(m)) = \chi(\mathcal{O}_X(0)) + \sum_{k=0}^m \chi(\mathcal{O}_Y(k))$$
$$= d \sum_{k=0}^m \binom{k+r-1}{r-1} + \sum_{i=0}^{r-2} b_i \left(\sum_{k=0}^m \binom{k+i}{i}\right) + c_0$$
$$= d \binom{m+r}{r} + \sum_{i=0}^{r-2} b_i \binom{m+i+1}{i+1} + c_0$$

and (1.14) follows.

For a projective scheme $X \subset \mathbb{P}^n$, if we have a free resolution of \mathcal{O}_X

(1.18)
$$0 \to E_l \to E_{l-1} \to \dots \to E_0 = \mathcal{O}_P \to \mathcal{O}_X \to 0$$

with each E_i being a direct sum $\oplus \mathcal{O}_P(e_{ij})$, then the Hilbert polynomial of X can be easily computed by

(1.19)
$$\chi(\mathcal{O}_X(m)) = \sum_{i=0}^l (-1)^i \chi(E_i(m)).$$

Such resolution always exists, which is the consequence of the famous Hilbert's Syzygy Theorem:

Theorem 1.6 (Hilbert's Syzygy). Every coherent sheaf \mathcal{F} on \mathbb{P}^n has a free resolution, i.e., a long exact sequence

$$(1.20) 0 \to E_l \to E_{l-1} \to \dots \to E_0 \to \mathcal{O}_X \to 0$$

with each E_i being a direct sum $\oplus \mathcal{O}_{\mathbb{P}^n}(e_{ij})$ and $l \leq n$.

In particular, a complete intersection $X \subset \mathbb{P}^n$ has a well-known free resolution, called *Koszul Complex*. A complete intersection $X \subset \mathbb{P}^n$ of type $(d_1, d_2, ..., d_r)$ is a scheme $X = X_1 \cap X_2 \cap ... \cap X_r$ cut out by hypersurfaces $X_i \subset \mathbb{P}^n$ of degree d_i with dim X = n - r. For such X, we have a free resolution

of \mathcal{O}_X , called the *Koszul complex* induced by the map

(1.22)
$$E \xrightarrow{\varphi} \mathcal{O}_F$$
$$\|$$
$$\bigoplus_{i=1}^r \mathcal{O}_P(-d_i)$$

sending $(g_1, g_2, ..., g_r)$ to $g_1F_1 + g_2F_2 + ... + g_rF_r$ with F_i the defining equation of X_i . Then the Hilbert polynomial of X is very easy to compute:

(1.23)
$$\chi(\mathcal{O}_X(m)) = \sum_{i=0}^r (-1)^i \chi(\wedge^i E \otimes \mathcal{O}_P(m))$$
$$= \sum_{I \subset \{1,2,\dots,r\}} (-1)^{|I|} \binom{m - d_I + n}{n}$$

where we use the notations |I| = i and $d_I = d_{a_1} + d_{a_2} + ... + d_{a_i}$ for an index set $I = \{a_1, a_2, ..., a_i\}$.

Of particular interest to us is the Hilbert polynomial of a plane curve $C \subset \mathbb{P}^2$ of degree d. By (1.23), it is given by

(1.24)
$$\chi(\mathcal{O}_C(m)) = \binom{m+2}{2} - \binom{m-d+2}{2} = md - \binom{d-1}{2} + 1.$$

As another example, let us consider the Hilbert polynomial of a rational normal curve. A rational normal curve C in \mathbb{P}^n is the image of the embedding $f: \mathbb{P}^1 \to \mathbb{P}^n$ given by $H^0(\mathcal{O}_{\mathbb{P}^1}(n))$:

(1.25)
$$f(Z_0, Z_1) = \sigma(Z_0^n, Z_0^{n-1}Z_1, ..., Z_0Z_1^{n-1}, Z_1^n)$$

where σ is an automorphism of \mathbb{P}^n , i.e., a $\mathbb{P}GL(n+1)$ action. When n = 2, it is a conic and when n = 3, it is a *twisted cubic*.

A rational normal curve is not linear degenerated, i.e., it is not contained in a hyperplane of \mathbb{P}^n ; otherwise,

(1.26)
$$c_0 Z_0^n + c_1 Z_0^{n-1} Z_1 + \dots + c_{n-1} Z_0 Z_1^{n-1} + c_n Z_1^n = 0$$

for all (Z_0, Z_1) and some constants $c_0, c_1, ..., c_n$, not all zero, which is impossible. It has degree n since (1.26) has n solutions in \mathbb{P}^1 . When $n \ge 3$, it is NOT a complete intersection; otherwise, $C = X_1 \cap X_2 \cap ... \cap X_{n-1}$ for some hypersurfaces X_i of degree d_i ; since C is linear non-degenerate, $d_i \ge 2$ and then deg $C = n \ge 2^{n-1}$, which is impossible. The Hilbert polynomial of C is very easy to compute since $f^* \mathcal{O}_P(m) = \mathcal{O}_{\mathbb{P}^1}(mn)$ and hence

(1.27)
$$\chi(\mathcal{O}_C(m)) = \chi(\mathcal{O}_{\mathbb{P}^1}(mn)) = mn + 1.$$

Hilbert polynomials are deformational invariants.

Theorem 1.7. Let $X \subset \mathbb{P}^n \times B$ be a flat family of closed subschemes of \mathbb{P}^n over a variety B. Then there exists a polynomial $\phi(m)$ such that

(1.28)
$$\chi(\mathcal{O}_{X_b}(m)) \equiv \phi(m)$$

for all $b \in B$, where X_b is the fiber of X over $b \in B$.

Question 1.8 (Flattened Twisted Cubics' Puzzle). Let

(1.29)
$$\varphi: \mathbb{A}^2 \to \mathbb{P}^3 \times \mathbb{A}^1$$

be the map given by

(1.30)
$$\varphi(s,t) = (1, st, s^2, s^3) \times (t).$$

Let X be the closure of $\varphi(\mathbb{A}^2)$ in $\mathbb{P}^3 \times \mathbb{A}^1$. Then X is irreducible and dominates \mathbb{A}^1 so it is flat over \mathbb{A}^1 . The fiber X_1 of X over t = 1 is

(1.31)
$$X_1 = \overline{\{(1, s, s^2, s^3)\}}$$

which is a twisted cubic in \mathbb{P}^3 . So its Hilbert polynomial is

(1.32)
$$\chi(\mathcal{O}_{X_1}(m)) = 3m + 1$$

The fiber X_0 of X over t = 0 seems to be

(1.33)
$$X_0 = \overline{\{(1,0,s^2,s^3)\}} = \Lambda \cap W$$

where Λ is the hyperplane $\{Z_1 = 0\}$ and W is the cubic surface $\{Z_2^3 = Z_3^2\}$. So its Hilbert polynomial is

(1.34)
$$\chi(\mathcal{O}_{X_0}(m)) = \binom{m+3}{3} - \binom{m+2}{3} - \binom{m}{3} + \binom{m-1}{3} = 3m.$$

So $\chi(\mathcal{O}_{X_1}(m)) \neq \chi(\mathcal{O}_{X_0}(m))!$ What went wrong?

2. A NOTE ON KOSZUL COMPLEX

The idea of Koszul complex comes from a very simple observation in linear algebra. Let V be a vector space over a field k and $\phi: V \to k$ be a linear functional. We have a map $\partial_m: \wedge^m V \to \wedge^{m-1} V$ defined by

(2.1)
$$\partial_m(v_1 \wedge v_2 \wedge \dots \wedge v_m) = \sum_{i=1}^m (-1)^i \phi(v_i) v_1 \wedge v_2 \wedge \dots \wedge \hat{v}_i \wedge \dots \wedge v_m$$

It is easy to check that $\partial_{m-1} \circ \partial m = 0$. Therefore, we have a complex

(2.2)
$$\dots \to \wedge^m V \xrightarrow{\partial_m} \wedge^{m-1} V \xrightarrow{\partial_{m-1}} \wedge^{m-2} V \to \dots \to V \xrightarrow{f} k \to 0$$

which is called the Koszul complex associated to (or induced by) $\phi: V \to k$.

It is easy to check that (2.2) is actually exact as long as ϕ is surjective, i.e., $\phi \neq 0$. If dim V = r, this sequence has length r + 2.

More generally, let R be a commutative ring, M be a module over R and $\phi: M \to R$ be a homomorphism of R-module. Then we can form a Koszul complex $\wedge^m M \to \wedge^{m-1} M$ just as in the case of vector spaces.

When $M = R^{\oplus r}$, we assume that $\phi : M \to R$ is given by

(2.3)
$$\phi(a_1, a_2, \dots, a_r) = a_1 f_1 + a_2 f_2 + \dots + a_r f_r.$$

We say that $f_1, f_2, ..., f_r$ is a regular sequence of R if f_i is not a zero divisor of $R/(f_1, f_2, ..., f_{i-1})$ for i = 1, 2, ..., r.

Then the Koszul complex $\wedge^{\bullet} M$ is exact if $f_1, f_2, ..., f_r$ is a regular sequence of R. This can be proved by induction on r and the observation that the sequence

(2.4)
$$0 \to R/(f_1, f_2, ..., f_{i-1}) \xrightarrow{\times f_i} R/(f_1, f_2, ..., f_{i-1}) \\ \to R/(f_1, f_2, ..., f_{i-1}, f_i) \to 0$$

is exact.

Translating this geometrically, $f_1, f_2, ..., f_r$ being a regular sequence means Spec $R/(f_1, f_2, ..., f_r)$ is a complete intersection in Spec R. Hence the Koszul complex $\wedge^{\bullet} M$ gives a free resolution of $R/(f_1, f_2, ..., f_r)$. This explains (1.21).

One special case is that $R = (f_1, f_2, ..., f_r)$, where ϕ is surjective and $\wedge^{\bullet} M$ is exact. It follows that if we have a surjective map $E \to \mathcal{O}_X$ between vector bundles on X, then the corresponding Koszul complex $\wedge^{\bullet} E$ is exact.

Koszul complex has several generalizations. One generalization is that $\phi: M \to R$ is replaced by $\phi: M \to N$ for two *R*-modules *M* and *N*. In this case, we have a complex

(2.5)
$$\wedge^{l} M \to \wedge^{l-1} M \otimes N \to \wedge^{l-2} M \otimes \operatorname{Sym}^{2} N \\ \to \dots \to M \otimes \operatorname{Sym}^{l-1} N \to \operatorname{Sym}^{l} N \to 0$$

where the differential maps are defined in the obvious way.

632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, CANADA

E-mail address: xichen@math.ualberta.ca

 $\mathbf{6}$