1. HILBERT POLYNOMIALS

Let X C P™ be a projective variety. We define the Hilbert Polynomial of
X to be

(L.1) X(Ox(m)) =Y (=1)'h(Ox(m))

>0

where Opn (1) is the hyperplane bundle on P" and Ox (1) = Opn(1) ® Ox is
its restriction to X.
We need a list of vanishing results:

Theorem 1.1 (Grothendieck). For a scheme X,
(1.2) HY(X,F)=0
fori>dim X and all coherent sheaves F on X.

Note that this is not true for sheaves F that are not coherent. For exam-
ple, if X is a smooth complex variety of dimension n, then

(1.3) HY(X,Z) = H(X)

for F = Z, where H'(X) is the i-th singular cohomology. When X is
projective, H>"(X,7Z) = C.

Theorem 1.2 (Serre). For every projective scheme X C P"™ and every
coherent sheaf F, there exists a number N, depending on X and F such
that

(1.4) HY(X,F(m)) = H(X,F®Ox(m)) =0

for alli>0 and m > N.

Theorem 1.3 (Kodaira). For every projective complex manifold X C P",
(1.5) H{ (Ox(—m)) =0

for all0 <i < dimX and m > 0.

For P =P", H*(Op(m)) can be identified with the space of homogeneous
polynomials of degree m in n + 1 variables

HOE,0m) =4 3 a0, XXX
(16) do+di+...+dn=m
~ (™).
We have Kodiara-Serre duality

Theorem 1.4 (Kodiara-Serre). Let X be a smooth projective variety of
dimension n. Then
(1.7) HY(E)x H"{(EY ® Kx) — H"(Kx) =C
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2
is a perfect pairing for all vector bundles E on X, where Kx = N"Qx is the
canonical bundle of X. Therefore,
(1.8) HY(E)Y =2 H"(EY @ Kx).
The canonical bundle of P = P™ can be computed from the Euler sequence
(1.9) 0—=O0p—=0p(1)®+) — = Tp — >0
by which we have
(1.10) (/\nQp)v =AN"Tp=0pR@N"Tp = /\n+10p(1)®(n+1) =0p(n+1)
and hence
(1.11) Kp :Op(—n— 1).
Combining Kodaira-Serre duality and Kodaira vanishing, we can compute
h*(Op(m)) as follows:
0 ifi#£0,n
(1.12) K (Op(m)) =< (™) ifi =0
RO(Op(—n —1—m)) ifi=n.
By Serre’s vanishing theorem,
(1.13) X(Ox(m)) = h*(Ox (m))

for m sufficiently large. So we may use the right hand side (RHS) of (1.13))
as the definition of Hilbert polynomial since the left hand side (LHS) of

(1.13)) is indeed a polynomial of m:
Theorem 1.5. Let X C P" be a projective scheme. Then

xOxtm) =a(" ) e (MY

r—1

m-+r—2
—+ Ccpr_9o + ...+
r—2

for some constants ¢; € Z, where r = dim X and d = deg X .

(1.14)

Proof. We prove by induction on r. When r = 0, X is a 0-dimensional
scheme of degree d. Namely, Ox is an artin ring of dim¢c Ox = d over C as
a vector space. So h’(Ox(m)) = h%(Ox) and x(Ox(m)) = d.

For r > 0, let A be a general hyperplane. Then Y = X NA is a scheme of
dimension r — 1 of degree d. We have the exact sequence

(1.15) 00— Ox(-1) Ox Oy 0.

It follows that
x(Ox(m)) — x(Ox(m — 1)) = x(Oy (m))

(1.16) m4r—1\ < [m+i
d b; .
("))




by induction hypothesis for some b; € Z. Then

X(Ox(m)) = x(Ox(0) + Y x(Oy (k)
k=0

<kji11) +§b (i <k;”>) +eo

1=0 k=0

k
m4r\ = (m4i+1
d + b; . + ¢o
r — 1+ 1

1=

(1.17)
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0

and (1.14]) follows. O

For a projective scheme X C P", if we have a free resolution of Ox
(1.18) O—-FE—>E_1—..oFE=0p—0x—0

with each E; being a direct sum @Op(e;;), then the Hilbert polynomial of
X can be easily computed by

l

(1.19) X(Ox(m)) =Y _(=1)'x(Ei(m)).

i=0
Such resolution always exists, which is the consequence of the famous Hilbert’s

Syzygy Theorem:

Theorem 1.6 (Hilbert’s Syzygy). Fvery coherent sheaf F on P™ has a free
resolution, i.e., a long exact sequence

(1.20) 0O—-FE —>E_1—..>FE—0x—0
with each E; being a direct sum ®Opn(e5) and | < n.

In particular, a complete intersection X C P™ has a well-known free res-
olution, called Koszul Complex. A complete intersection X C P™ of type
(di1,dg,...,d;) is a scheme X = X; N X2 N...N X, cut out by hypersurfaces
X; C P" of degree d; with dim X = n — r. For such X, we have a free
resolution

(121) 0—=A"E—-=A""1E — . E Op —0x —0
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of Ox, called the Koszul complex induced by the map

©

(1.22) E Op

r

P or(-d)

i=1
sending (g1, 92, .-, gr) t0 g1 F1+gaFa+ ...+ g, F, with F; the defining equation
of X;. Then the Hilbert polynomial of X is very easy to compute:

T

X(Ox(m)) =Y (=1)'X(A'E @ Op(m))
=0

= X (e

1c{1,2,....,r}

(1.23)

where we use the notations |I| =i and dj = dg, + dg, + ... + dg, for an index
set I = {(Ll,ag, ...,ai}.

Of particular interest to us is the Hilbert polynomial of a plane curve
C C P? of degree d. By , it is given by

(1.24)  x(Op(m)) = <m;2> _ <m _2d+2> — md— <d; 1) 1

As another example, let us consider the Hilbert polynomial of a rational
normal curve. A rational normal curve C' in P™ is the image of the embedding
f: Pt — P given by H°(Op1(n)):

(1.25) f(Zo, Z10) = 0(Z8, 281 24, .., ZoZ01 27

where ¢ is an automorphism of P", i.e., a PGL(n + 1) action. When n = 2,
it is a conic and when n = 3, it is a twisted cubic.

A rational normal curve is not linear degenerated, i.e., it is not contained
in a hyperplane of P"; otherwise,

(1.26) coZy +aZy T+ ot en1 2070 + e 27 =0

for all (Zy, Z1) and some constants cg, 1, ..., ¢, not all zero, which is impos-
sible. It has degree n since has n solutions in P'. When n > 3, it is
NOT a complete intersection; otherwise, C = X1 N XoN...N X,,_1 for some
hypersurfaces X; of degree d;; since C' is linear non-degenerate, d; > 2 and
then degC' = n > 2"~!, which is impossible. The Hilbert polynomial of C
is very easy to compute since f*Op(m) = Opi(mn) and hence

(1.27) X(Oc(m)) = x(Op1(mn)) = mn + 1.

Hilbert polynomials are deformational invariants.
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Theorem 1.7. Let X C P" x B be a flat family of closed subschemes of P"
over a variety B. Then there exists a polynomial ¢p(m) such that

(1.28) X(Ox,(m)) = ¢(m)
for all b € B, where Xy is the fiber of X over b € B.

Question 1.8 (Flattened Twisted Cubics’ Puzzle). Let

(1.29) 0:A? 5 P3 x Al
be the map given by
(1.30) o(s,t) = (1,st,5%, 5%) x (t).

Let X be the closure of o(A?) in P3 x A'. Then X is irreducible and domi-
nates A so it is flat over A'. The fiber X1 of X overt =1 is

(1.31) X1 ={(1,5,5%,5%)}

which is a twisted cubic in P3. So its Hilbert polynomial is
(1.32) X(Ox,(m)) =3m + 1.

The fiber Xg of X overt =0 seems to be

(1.33) Xo=1{(1,0,s2,s)} = ANW

where A is the hyperplane {Z1 = 0} and W is the cubic surface {Z3 = Z3}.
So its Hilbert polynomial s

a0 ot~ (1) (") -(3)+ (*5") o

So x(Ox,(m)) # x(Ox,(m))! What went wrong?

2. A NoTE ON Ko0szuL COMPLEX

The idea of Koszul complex comes from a very simple observation in linear
algebra. Let V be a vector space over a field k and ¢ : V — k be a linear
functional. We have a map 0, : A™V — A"~V defined by

m
(21) O Av2 A Avm) =D (=1 p(vi)vr Avg A e AT A oo A oy
i=1
It is easy to check that 0,,—1 o Om = 0. Therefore, we have a complex
Om— _
(2.2) o A Dy pmetyy et me2y oy g0

which is called the Koszul complex associated to (or induced by) ¢ : V — k.

It is easy to check that is actually exact as long as ¢ is surjective,
ie, ¢ #0. If dimV = r, this sequence has length r + 2.

More generally, let R be a commutative ring, M be a module over R and
¢ : M — R be a homomorphism of R-module. Then we can form a Koszul
complex A™M — A™ 1M just as in the case of vector spaces.

When M = R¥", we assume that ¢ : M — R is given by

(2.3) Plai,az,...,a;) = a1 f1 +azfo+ ... + ar fr.
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We say that f1, fo, ..., f is a reqular sequence of R if f; is not a zero divisor
of R/(fl, fg, ceey fifl) for ¢ = 1, 2, ey T

Then the Koszul complex A®M is exact if f1, fo, ..., fr is a regular sequence
of R. This can be proved by induction on r and the observation that the
sequence

(24) 0— R/(f17f27 "‘7fi—1) X—fl> R/(fl,fz, ceey fi—l)
= R/(f1, f2y - fi-1, fi) = 0

is exact.

Translating this geometrically, f1, fo, ..., fr being a regular sequence means
Spec R/(f1, fa, ..., fr) is a complete intersection in Spec R. Hence the Koszul
complex A®*M gives a free resolution of R/(f1, fa,..., fr). This explains
([T.21).

One special case is that R = (f1, fo, ..., fr), where ¢ is surjective and A®* M
is exact. It follows that if we have a surjective map E — Ox between vector
bundles on X, then the corresponding Koszul complex A®*FE is exact.

Koszul complex has several generalizations. One generalization is that
¢: M — Risreplaced by ¢ : M — N for two R-modules M and N. In this
case, we have a complex
25) NM — ANTTM @ N — A'2M © Sym® N

' — .. > M®Sym"™'N - Sym' N - 0
where the differential maps are defined in the obvious way.
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