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Specification Enforcing Refinement for
Convertibility Verification

Partha S Roop, Alain Girault, Roopak Sinha, and Gregor Goessler

Abstract—Protocol conversion deals with the automatic syn-
thesis of an additional component or glue logic, often referred
to as an adaptor or an interface, to bridge mismatches between
interacting components, often referred to as protocols. A formal
solution, called convertibility verification, has been recently
proposed, which produces such a glue logic, termed as a converter,
so that the parallel composition of the protocols and the converter
also satisfies some desired specification. A converter is responsible
for bridging different kinds of mismatches such as control, data,
and clock mismatches. Mismatches are usually removed by the
converter (similar to controllers in supervisory control of Discrete
Event Systems (DES)) by disabling undesirable paths in the
protocol composition.

This paper formulates a generalization of this convertibility
verification problem, by using a new refinement called specifica-
tion enforcing refinement (SER) between a protocol composition
and a desired specification. The existence of such a refinement
is shown to be a necessary and sufficient condition for the
existence of suitable a converter. We also propose an approach to
automatically synthesize a converter if a SER refinement relation
exists. The proposed converter is capable of the usual disabling
actions to remove undesirable paths in the protocol composition.
In addition, the converter can perform forcing actions when
disabling alone fails to find a converter to satisfy the desired
specification. Forcing allows the generation of control inputs in
one protocol that are not provided by the other protocol. Forcing
induces state-based hiding, an operation not achievable using DES
control theory.

Index Terms—protocol conversion, forced simulation.

I. Introduction
System-on-Chip (SoC) [2] design involves the interconnection
of many pre-designed components, called IPs. While, a set of
selected IPs may meet the functional requirements, their protocols
may not be consistent, leading to several kinds of mismatches.
The most common types of such mismatches are control, data,
and clock mismatches. Control mismatches happen when the
sequencing of control signals between protocols is inconsistent.
Data mismatches happen when the data-widths of the two proto-
cols differ and additional buffers are needed to manage loss-less
data communication. Clock mismatches are common between IPs
having different clock frequencies. The first approach to demon-
strate the problem and some informal steps for a solution was
proposed in [4]. Many techniques have been proposed since then
to solve one or more of these incompatibilities using automated
algorithmic techniques [1], [7], [9]. Their goal is to synthesize
some additional glue logic, termed as a converter/interface/adaptor
(from now on termed converter) to bridge these mismatches.
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While these techniques were automated, they failed to address
several questions. These include how to formally model protocols
and their interaction, and when such models are available, how
to determine if a converter exists for a given set of protocols?
Moreover, once the existence of a converter is determined, how
to synthesize it? More recently, a set of formal techniques
have been proposed [3], [6], [10], [14], [15] to address these
questions. Table I compares these approaches over a range of
features. The features listed as columns of Table I are: the
modelling language for protocols, the language for describing
desired specifications, multiple protocols (two and more than
two), type of conversion algorithm, whether the approach can
handle uncontrollable events, event buffering, whether data-width
mismatches are handled, whether clock mismatches are handled,
and finally the type of control action used. Among the proposed
techniques, most approaches use Labeled Transition Systems
(LTS) to describe both protocols and specifications, except [14]
where CTL temporal logic is used for the specification part. Also,
except the approach of [3], [15] which use oversampling [5]
to bridge clock mismatches, all other techniques ignore clock
mismatches.
Central to protocol conversion is the use of a suitable con-

troller that is used to remove undesirable paths in the protocol
composition. This is done using the well known idea of disabling
from Discrete Event Systems (DES) control theory [11]. Here, a
supervisor or controller is synthesized to control a plant so that
the controlled system (composition of the controller and the plant)
satisfies the desired specification. The role of the controller is to
disable all controllable paths that violate the specification while
leaving uncontrollable transitions untouched. In this domain, the
plant and the specification are described as labelled transition
systems (LTS) over an alphabet partitioned into controllable and
uncontrollable events. While a converter is like a DES controller,
the convertibility verification problem is not identical to DES
supervisory control. Firstly, in convertibility verification there is a
need to buffer events as an event generated by one protocol may
be needed by another protocol at a later time. Secondly, there
may be data and clock mismatches between protocols that are
specific problems not addressed by DES supervisory control. Yet,
both domains need to deal with controllable and uncontrollable
events.
Kumar and Nelvagal proposed a formulation mapping the

convertibility verification problem to the DES supervisory control
problem [6] in a simplistic setting. Passerone et al. [10] developed
a game theoretic formulation to solve the convertibility verifica-
tion problem. Subsequently, in D’Silva et al. [3] a refinement
based solution is developed for checking protocol compatibility.
Recently, Sinha et al. [14] proposed a module checking based
solution to the convertibility verification problem. Unlike earlier
approaches, this approach bridges both control and data-width
mismatches. Finally, Tivoli et al. [15] proposed a contrasting
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Kumar et al. [6] LTS LTS ! supervisory control ! × × × disabling
Passerone et al. [10] LTS LTS × game-theoretic × ! × × disabling
D’Silva et al. [3] SPA × ! refinement × ! ! ! disabling
Tivoli et al. [15] LTS × ! controlled coverability ! ! × implicit disabling
Sinha et al. [14] LTS CTL × model-checking × ! ! × disabling
SER Refinement LTS LTS ! refinement ! ! × × disabling, forcing

TABLE I
FEATURES OF VARIOUS PROTOCOL CONVERSION APPROACHES

solution to the same problem that they termed as adaptor syn-
thesis. This formulation ensures that timing constraints are met,
events between protocols are adequately buffered, and that the
composition is deadlock free.
Table I summarizes the features of all these formal approaches

to convertibility verification. A key feature of the existing formal
solutions (rows 1 to 5) is that they are based on disabling-
based controllers. The last row of the table compares the existing
solutions to the solution proposed in this paper. We extend the
capability of the controller to allow, not only disabling actions, but
also forcing actions [12]. Forcing actions are introduced to solve
specific needs of the problem domain, namely the need for state
based hiding, which is not possible using conventional disabling-
only controllers. We will elaborate on this aspect through a
motivating example in the next section.

II. Example and method overview
Figure 1 shows an overview of the convertibility verification
problem. The actual protocols and their composition is shown
in Fig. 2. We use CCS [8] style primed and unprimed symbols
to indicate outputs and inputs respectively. E.g., in Figure 1, a
is produced by the handshake protocol and read by the serial
protocol. Event T models an internal tick, and is therefore neither
an input nor an output.

T

Specification

Converter

a′

Protocol

Handshake Serial

Protocol

a

b′ b

aa′

b′b

b′ b

TT

T

Fig. 1. Overview of convertibility verification

Compared to the example in [10], the handshake protocol
P1 has an additional initialization step through an input b that
is needed prior to establishing a handshake. Once initialized,
P1 outputs the signal a in the next instant. It then outputs the
signal b after some random number of clock ticks, modelled using
self loops labelled by T . On the other hand, the serial protocol
P2 expects to read input b immediately in the instant following
the reception of a. The synchronous parallel composition of P1

and P2, noted P1‖P2, is also depicted in the same figure. We used
synchronous parallel composition along with T -actions to indicate
that a given protocol just delays. Other kinds of products, such as

the interleaved parallel of CCS [8], were not considered to avoid
non-determinism.
We provide a desired specification as shown in Fig. 3. This

specification has a notion of completed transactions through the
introduction of marked states (depicted by a double circle). This
specification enforces that every input must be preceded by its
corresponding output (either in the same or a previous step).
Moreover, the transmission and reception of a must precede that
of b.
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Fig. 2. Handshake and serial protocols and their synchronous parallel
composition
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Fig. 3. A desired specification with a marked state

Overview of the proposed methodology: The handshake-serial
protocol pair is a mismatched protocol because of the following
reasons:

• Initialization input b required by P1 is not provided by P2

at all.
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• After an a is output by P1, P2 expects a b immediately while
P1 may produce b after producing any number of T outputs.

Given such mismatching protocols and a desired specification,
the goal of convertibility verification is to determine the existence
of a converter that can bridge the mismatches, so that the overall
system with the converter satisfies the desired specification. The
converter can buffer inputs and forward them when necessary;
it can also disable controllable paths in the composition. In the
example of Fig. 2, P2 requires a b immediately after having read
the input a. Hence, when the protocol composition is in state
(s1, t0), the converter reads the a produced by P1, and forces P2

to make a T transition during this step. During the next transition,
the converter transmits this a to P2, while P1 does a T transition.
We therefore say that the converter buffers the event a. In addition
to buffering a, the converter also disables all other transitions of
(s1, t0).
Note that by relying only on the usual converter actions

(buffering and disabling), we would not be able to generate a
converter for the handshake-serial protocol pair. This is because
this protocol pair requires a (b, T ) input in its initial state, while
the specification allows the input of b only after the generation
and consumption of a has been completed. Also note that the
input (b, T ) is not present in the converter’s buffers initially. Thus,
using conventional techniques based on DES supervisory control,
we would fail to produce a correct converter. Hence, we propose a
new way to control the protocol composition using a converter, as
shown in Figure 4(a). The converter first forces the transition from
(s0, t0) to (s1, t0) by generating the (b, T ) input. These are inputs
required by the protocols and are not present in the buffers. Forced
inputs are marked within square brackets “[ ]” in the converter
to distinguish them from other inputs that are either read from
the converters buffers (events generated by the protocols in the
past and not been consumed yet), or are directly read from the
other protocol in the current instant. Since forced inputs are not
produced by any of the protocols and have not been consumed
from the buffers, they can be hidden by the composition of the
protocols and the converter, thus satisfying the specification.
The composition of the converter with the protocols is shown in

Fig. 4(b). Note that the forced transition from (s0, t0) to (s1, t0) is
hidden in the composition (hence labelled by τ ). Forcing enables
state based hiding, different from global hiding achieved by DES
supervisory control (based on the hiding operator of CCS [8]).
For instance, in the composed system of Fig. 4(b), the event b
is hidden in the initial state cs0, while it is visible later in the
state cs3. This is not directly achievable using DES controllers.
Forcing guides a controlled system to a successor state when-

ever the current state fails to satisfy the requirements of the speci-
fication. Like in DES supervisory control, where only controllable
transitions may be disabled, only forceable transitions can be
forced, and the user must specify a subset of inputs that can
be forced. We elaborate on details of forcing in the next section.
We solve the convertibility verification problem as follows. A

protocol pair (P1, P2) is said to satisfy a specification S when the
language accepted by the synchronous parallel composition of the
protocols, L(P1, P2) is a subset the specification’s one, L(S). We
only look at visible traces when checking this, because of forcing
actions. Otherwise, the protocols are mismatching. In this case, we
propose a new refinement relation from the composite protocols
P1 ‖P2 to the specification S. We also show that the existence of
such a refinement relation is a necessary and sufficient condition
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(a) Converter for handshake-
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Fig. 4. A sample converter and its composition with the protocols

for the existence of the converter. Finally, we provide an algorithm
to synthesize the converter given such a relation. Our method for
protocol conversion is based on DES supervisory control [11] and
forced simulation [12]. While we have motivated the proposed
method using the case of two protocols, the proposed approach
generalizes straightforwardly to an arbitrary number of protocols.

III. Convertibility verification using specification
enforcing refinement
A. Preliminaries
Error-free communication between protocols implies that traces
in the protocol composition always respect the event sequencing
described in the specification. In this section, we define the
refinement that enforces a desired specification over a protocol
composition to ensure error free communication of the two
components. We start by introducing the models of the protocols
and of the specification.
We component protocols by using labelled transition systems

(LTS).
Definition 1: An LTS is a tuple P = 〈Σ, Q,→ , q◦〉, where Σ is

the alphabet of actions, which is partitioned into the set of input
actions and the set of output actions (Σ = ΣI %ΣO % {T}), Q is
the set of states, → ⊆ Q × Σ × Q is the transition relation, and
q◦ ∈ Q is the initial state. The transition relation is also written
as q

a
→ q′ if and only if (q, a, q′) ∈ →. The language L(P ) is

the set of all finite and infinite words generated by the LTS P .
Output events are emitted by the components while input events

are received. We use primed symbols to represent output events
and unprimed symbols to represent input events. Fig. 2 depicts
the LTS of the handshake protocol to the left and that of the
serial protocol at the top. The handshake protocol awaits for event
b in state s0 and outputs event a in state s1. We term all the
events labeling the outgoing transitions from a given state q as
Label(q) = {a|∃q′ s.t. q

a
→ q′}.

Protocol interaction is defined using their synchronous parallel
composition. The parallel composition of handshake and serial
protocols is depicted in Fig. 2.
Definition 2: Let P1 = 〈Σ1, Q1,→1 , q◦1〉 and P2 =

〈Σ2, Q2,→2 , q◦2〉 be two protocols. The synchronous product of
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P1 and P2, noted P1 ‖ P2, is defined as

P1 ‖ P2
def
= 〈Σ1 × Σ2, Q1 × Q2,→ , (q◦1 , q◦2)〉

where (q1, q2)
(a,b)
→ (q′1, q′2) if and only if q1

a
→1 q′1 and q2

b
→2 q′2.

A specification describes the desirable interaction between
protocols; it is represented as an LTS with a set of marked
states [11]. Marked states specify completed transactions between
protocols. A specification of the desired behaviour between the
handshake and serial protocols is shown in Fig. 3; q0 is its initial
state and q1 is its sole marked state.
Definition 3: Let P1 = 〈Σ1, Q1,→1 , q◦1〉 and P2 =

〈Σ2, Q2,→2 , q◦2〉 be two protocols. A specification over the pair
P1, P2 is a tuple S = 〈Σ1 × Σ2, QS,→S , q◦s , Qm

S 〉 such that
〈Σ1 × Σ2, QS ,→S , q◦s 〉 is an LTS. The subset Qm

S ⊆ QS is the
set of the marked states. The language L(S) is the set of all finite
words that terminate in Qm

S or infinite words that pass through
states of Qm

S infinitely often.
Thanks to the associativity of the synchronous product, our

formalization generalizes straightforwardly to an arbitrary number
of protocols. The only restriction is that communications between
the protocols are point-to-point; formally, for each LTS protocol
Pi = 〈Σi, Qi,→i , q◦i 〉 such that Σi = ΣIi % ΣOi % {T}, and for
each e ∈ ΣIi, there exists a unique protocol Pj such that j *= i
and e ∈ ΣOj (and vice-versa).

B. Refinement Relation
We now provide a solution for convertibility verification using
a new refinement relation. We start by defining the notion of
satisfaction of a specification for a given protocol composition
model.
Definition 4: A model of two interacting protocols, M =

P1 ‖ P2, satisfies a specification, denoted M |= S, if and only
if L(M) ⊆ L(S).
Since forcing leads to some actions being hidden in the result-

ing system, we weaken the classical definition of specification
satisfaction of [11] to deal with these hidden transitions in the
composition.
Definition 5: An LTS M = (Σ, Q,→, q0) weakly satisfies a

specification S, denoted M |=w S if and only if L([M ]) ⊆ L(S)
where L([M ]) = {α̂|α ∈ L(M)}, and α̂ is the word obtained by
deleting all τ actions from the word α.
Now, we introduce a new refinement relation, called specifica-

tion enforcing refinement (SER), from P1‖P2 to a specification S.
We will subsequently show that this refinement guarantees the
existence of a converter. For notational clarity, we represent
P1 ‖ P2 as an LTS M that is equal to the composition of the
two protocols: M = 〈Σ1 × Σ2, Q1 × Q2,→M , (q◦1 , q◦2)〉 with
qM

σ
→ q′M iff (q1, q2)

(a,b)
→ (q′1, q′2) and σ is a shorthand for

(a, b).
Exactly like in the framework of DES supervisory control,

we partition the set ΣM into two subsets: the subset ΣMc of
controllable events and the subset ΣMu of uncontrollable events.
We introduce two additional subsets: the subset ΣMb of buffered
events and the subset ΣMf of forceable events. While ΣMc and
ΣMu are static sets (i.e., they don’t change over time), ΣMb is
a dynamic set since it depends on the current set of inputs in
the converter’s buffers. The set ΣMf is obtained by removing
all current buffered inputs from the set of controllable inputs
ΣMc, i.e., ΣMf = ΣMc − ΣMb. This is because buffered inputs
have been produced in the environment; hence, they are visible

and can’t be hidden through forcing by the converter. Like ΣMb,
ΣMf is also a dynamic set (i.e., its contents change over time).
In the current setting, only outputs are uncontrollable, because
the converter can not exert any influence on their generation. We
now formally define these sets. We introduce a predicate inBuff

that returns true when a given input event is in the converter’s
buffers.
Definition 6: Given an LTS M = P1 ‖ P2, the subset ΣMc of

the controllable events of M is ΣMc = {σ|σ = (a, b)∧a ∈ Σ1I ∧
b ∈ Σ2I}, the subset ΣMu of uncontrollable events is ΣMu = Σ−
ΣMc, the subset ΣMb of buffered events is ΣMb = {σ|σ ∈ ΣMc∧
inBuff (σ)}, and finally, the subset ΣMf of forceable events is
ΣMc − ΣMb.
We now define the new refinement relation.
Definition 7: Let M = 〈ΣM , QM ,→M , q◦M 〉 and S =

〈ΣS , QS ,→S , q◦S〉 be the LTS of the protocol composition and
the specification respectively. A relation R ⊆ QM × QS × Σ∗

Mc

is called a specification enforcing refinement (SER) from M to
S, if the three conditions below hold. The notation qM Rs qS is
used as a shorthand for (qM , qS , s) ∈ R, where s is any word
over ΣMc whose maximum length is bounded by |QM |.

• [Matched-state]: If qM Rε qS , then there exists σ ∈
Label(qM ) ∩ Label(qS), q′M ∈ QM , q′S ∈ QS , and s ∈ Σ∗

Mc

such that qM
σ
→ q′M and qS

σ
→ q′S , and q′M Rs q′S .

• [Forced-state]: If qM Rσs qS for σs ∈ Σ+
Mc, then σ ∈

ΣMf and there exists q′M ∈ QM such that qM
σ
→ q′M and

q′M Rs qS .
• [Init-state]: q◦M Rs q◦S for some s ∈ Σ∗

Mc.
According to Definition 7 above, there are two ways how

states qM ∈ QM and qS ∈ QS can be related via an SER R:

1. qM and qS are directly related if qM has
at least one transition having the same label
as a transition from qS (a matching transition
pair). Moreover, for the matching transition
pair qM

σ
→ q′M in M and qS

σ
→ q′S in S, the

successor states q′M and q′S are also related
via some forcing sequence s ∈ Σ∗

Mc. In this
case, qM Rε qS .

qM

q′
M

qS

q′
S

σσ

Rs

Rε

2. qM and qS are related via some forcing
sequence σ.s if there exists a successor state
q′M in M such that q′M is reachable from qM

via a forceable event σ where q′M and qS are
related via R. In this case, qM Rσ.s qS .

qM

q′
M

qS

Rσ.s

Rsσ

These possibilities are formalized in the first two conditions
of Definition 7. In addition, the start states are required to be
related via some forcing sequence s, which corresponds to the
third condition.
Between the handshake-serial example in Fig. 2 (M) and the

specification shown in Fig.3 (S), an SER exists as follows:

R = {((s0, t0), q0, [b, T ]), ((s1, t0), q0, ε), ((s2, t0), q2, ε),

((s2, t1), q3, ε), ((s0, t0), q1, ε)}

In general, there may be many SER relations betweenM and S.
For example, R′ = {((s0, t0), p0, ε, )} is also a valid SER relation
between M and S.
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C. Marked compatibility
The goal of convertibility verification is to determine the condi-
tions under which a suitable converter between M and S exists.
Note that an SER refinement between M and S alone doesn’t
guarantee the existence of such a converter. For example, consider
the model M of the composite protocols as shown in Fig. 2
and the specification as shown in Fig. 3. We can define an
SER R′ = {((s0, t0), p0, ε)}. The corresponding trivial converter
will just enable the self-loop transition in the initial states of
the two protocols. However, such a converter doesn’t ensure
completed transactions in the protocols. Marked states (e.g., state
q1 in Fig. 3) in the specification are used to represent completed
transactions.
To prevent synthesis of trivial converters, we define marked

compatible SERs.
Definition 8: Let R be an SER relation between M and S. A

path qM → qM1
→ qM2

... → qMn
in M is a compatible path to

a path qS → qS1
→ qS2

... → qSn
in S if (qM , qS , s) ∈ R for

some s ∈ Σ∗
Mc and for all i ∈ [1..n]: (qMi

, qSi
, si) ∈ R for some

si ∈ Σ∗
Mc.

Definition 9: An SER relation R between M and S is marked
compatible if for every (qM , qS , s) ∈ R there exists (q′M , q′S , s′) ∈
R such that there exists a path from qM to q′M and a compatible
path from qS to q′S ∈ Qm

S , i.e., q′S is a marked state of S.
Definition 10: Let M and S be a model of protocol composi-

tion and a specification, respectively. M !SER S if there exists a
specification enforcing refinement from M and S that is marked
compatible.

D. Converters
We now synthesize converters between protocols. A converter
is an LTS whose role is to appropriately guide the protocols
so that the composite system satisfies the desired specification.
The role of the converter is to act as an intermediary so that all
protocol communications are consistent with the specification. In
our framework, a converter can perform the following actions:
1) Disabling a transition of the protocols: Remove undesirable
communication paths that violate the specification. This
operation is identical to the controllers in DES [11]. The
disabled transitions must be controllable.

2) Forcing a transition of the protocols: Automatically guide
the protocols to a successor state from its current state so
that the future state is consistent with a specification state.
This is done by generating the suitable forceable inputs on
a path.

3) Buffering a communication between the protocols: If a
given input generated by one of the protocols cannot be
consumed by the receiving protocol, a converter can buffer
this event so that it can be forwarded in the future.

E. Converter Synthesis from an SER Relation
Converters can be derived automatically once an SER is estab-
lished between M and S. Given an SER R, the states of the
converter QC are exactly the elements of R. We now formalize
the relationship between an SER relation and a corresponding
converter. We start by defining precisely-forced SERs so as to
ensure that forcing is always performed in a unique fashion from
any forced state.
Definition 11: An SER relation R is precisely-forced iff

(qM , qS , s1) ∈ R and (qM , qS , s2) ∈ R implies that s1 = s2.

Given an SER R, a precisely-forced SER R′ can be automati-
cally derived from R and always exists. From a precisely-forced
SER, we now build a converter that derives from it:
Definition 12: Let R be a precisely-forced SER between a

model M and a specification S. The converter derived from R
is the LTS CR = 〈ΣM∪ [ΣMc], R, →C , ((q◦M , q◦S), s)〉, where
[ΣMc] = { [σ] | σ ∈ ΣMc } and [σ] denotes the forced action over
event σ, and →C is defined by the following two rules:

• [Matched-event]: If (qM , qS , ε) ∈ R ∧ (q′M , q′S , s′) ∈ R ∧
qM

σ
→ q′M ∧ qS

σ
→ q′S , then (qM , qS , ε)

σ
→ (q′M , q′S , s′).

• [Forced-event]: If (qM , qS , α.s) ∈ R ∧ qM
α
→ q′M , then

(qM , qS , α.s)
[α]
→ (q′M , qS , s).

For the handshake-serial protocol pair shown in Fig. 2 and the
specification S shown in Fig. 3, a converter generated by our
approach is shown in Fig. 4(a). It first forces the transition from
(s0, t0) to (s1, t0) by generating the events [b, T ]. Subsequently,
it reads the a produced by P1 and buffers it while allowing P2 to
remain in its initial state through a T transition. It then forwards
the buffered a to the P2 while allowing P1 to remain in its current
state through a T transition. Note that there is also the choice of
directly allowing the (a′, a) transition in the state cs1 instead of
first buffering a and later forwarding a. Hence, the generated
converter keeps all possibilities.
Having established the relationship between a given SER and

the associated converter, we now define well-formed converters.
Well-formed converters ensure that protocols always complete
their transactions.
Definition 13: Let R be a SER between a model M and a

specification S. A converter C = 〈ΣC , QC ,→C , q◦C〉 derived
from R is said to be well-formed if the two following conditions
hold:

• [Forced-alone]: For all q, q′ ∈ QC and α ∈ ΣC such that
q

[α]
→C q′, if q

σ
→C q′′ and q

[β]
→C q′′′ for some q′′, q′′′ ∈ QC

and some σ, β ∈ ΣC , then σ = [α], q′ = q′′, β = α, and
q′ = q′′′ .

• [Marked-path]: For any state q ∈ QC , there always exists
a path to a state q′ ∈ QC such that q′ = (qM , qS , s) and
qS ∈ Qm

S .
The state graph of a well-formed converter has only one

successor for states where forcing is performed. Other states may
have more than one successor. Moreover, from every state of a
well formed converter, a marked state can always be reached. A
state in the converter is called a marked state if the corresponding
component of R is of the form (qM , qS , s) such that qS is a
marked state. It is easy to note that any converter C derived from a
deterministic and marked compatible SER is always well-formed.
In our framework, event buffering is achieved thanks to the

state space of the converter. This is the case of the event a in the
converter of Figure 4.
Lemma 1: Let R be a precisely-forced SER between a model

M and a specification S, and let CR be the converter derived
from R. If R is marked compatible, then CR is well-formed.

Proof: Let CR = 〈ΣC , QC ,→C , q◦C〉 be the converter
derived from R.
Proof of Condition [Forced-alone]. Let q, q′ ∈ QC and α ∈ ΣC

such that q
[α]
→C q′. We prove by contradiction that ! q′′ *= q′ ∈

QC and σ *= α ∈ ΣC such that q
σ
→C q′′. Since [α] is a forced

action, Rule [Forced-event] implies that q = (qM , qS , α.s) ∈ R.
Furthermore, since q

σ
→C q′′, Rule [Matched-event] implies that
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(qM , qS , ε) ∈ R. Hence, according to Definition 11, we conclude
α.s = ε, which is a contradiction.
Similarly, it can be show by contradiction that ! q′′′ *= q′ ∈ QC

and β *= α ∈ ΣC such that q
[β]
→C q′′′. This follows directly from

the fact that R is precisely-forced.
Proof of Condition [Marked-path]: Direct consequence of

Definition 9.
We now define the product operation for composing a converter

C with a pair of protocols represented as an LTS M .
Definition 14: Let C = 〈ΣC , QC ,→C , q◦C 〉 and M =

〈ΣM , QM ,→M , q◦M 〉 be a converter and a model respectively.
The forced composition C // M of C and M is C // M

def
=

〈ΣM ∪{τ}, QC ×QM ,→ , (q◦C , q◦M )〉, where → is defined by the
following two rules:

• [Tau-trans]: (qC , qM )
τ
→ (q′C , q′M ) if qC

[α]
→C q′C and

qM
α
→M q′M for some α ∈ ΣMf .

• [Event-trans]: (qC , qM )
σ
→ (q′C , q′M ) if qC

σ
→C q′C and

qM
σ
→M q′M for all σ ∈ ΣM .

Lemma 2: The forced composition C // M is deterministic if
both C and M are deterministic and if the converter C is well-
formed.

Proof: The proof follows directly from the fact that both
C and M are deterministic and from the Rules [Tau-trans] and
[Event-trans].

The next result states that a marked compatible SER relation
between M and S is a necessary and sufficient condition for the
existence of a correct converter.
Theorem 1: Let M and S be deterministic LTSs of the model

and the specification respectively. There exists a well-formed and
deterministic converter C such that C // M |=w S if and only if
M !SER S.

Proof: Sufficient Condition: The proof is constructive.
Given M !SER S, there exists a precisely-forced and marked
compatible SER R. We can construct a converter C using
Definition 12. Since R is marked compatible C is well formed
(Lemma 1). Also, C is deterministic since both M and S are
deterministic. Thus, C // M is also deterministic. Now it is easy
to see that all τ -projected traces of C // M are contained in the
trace set of S.
Necessary Condition: Given a well-formed converter C such

that C // M |=w S, we need to prove that M !SER S. Since
L([C // M ]) ⊆ L(S) and as C is well-formed and C, M and S
are deterministic, this result follows.

IV. Prototype tool and results
A local, on-the-fly tableau construction algorithm, similar to
[13], is used for converter synthesis. The algorithm employs
two tableau rules, for disabling and forcing, and some termina-
tion conditions. The worst-case complexity of the algorithm is
O(|QM |2 × |QS |

2 × 2|ΣM |) where |QM | and |QS | are the sizes
of the state sets of M and S, and |ΣM | is the size of the event
set of M .
The algorithm is intuitively described by using the tableau

shown in Fig. 5 (generated for the handshake-serial example).
The inputs to the algorithm are the initial states (s0, t0) and
q0 of the model and the specification, and an empty set of
buffered events. These inputs form the initial assertion A1 of
the tableau, which is recursively broken down into sub-assertions

using tableau rules. An assertion returns success if its sub-
assertions return success. An infinite resolution of assertions into
sub-assertions is prevented by termination condition that check
if there is an existing assertion (ancestor) which is identical to a
newly created assertion (current assertion). If such is a case, the
current assertion is not resolved into further sub-assertions (the
assertion is completed). For example, in Fig. 5, the assertions A2,
A5 and A8 are not resolved further because they are identical to
previously processed assertions A1, A6 and A1 respectively. A2
returns failure because the path from A1 to A2 does not contain
any assertion corresponding to the marked state q1, whereas A8
returns success because the path from A1 to A8 contains an
assertion (A7) that corresponds to q1. A5 returns success because
an identical assertion (A6) has already returned success.
The algorithm exits when the initial assertion (A1) returns

success (or failure) to indicate that a successful (or failed)
tableau has been generated. Each (non-completed) assertion in a
successful tableau corresponds to a unique state in the converter.
For example, each (non-completed) assertion in the tableau shown
in Fig. 5 corresponds to a unique state in the converter shown in
Fig. 4(a), (and the initial assertion A1 corresponds to the initial
state of the converter).

Fig. 5. Tableau for the handshake-serial example

Implementation Results
Tab. II shows a set of results obtained by executing the SER

algorithm over some well-known conversion problems described
in literature [3], [6], [7], [10], [13]. Each entry in the table
describes the protocols and specification involved and the types
converters obtained by using classical approaches and the SER
conversion algorithm (D=disabling, DF=disabling and forcing).
Problem 1 is the handshake-serial problem presented in [10] while
problem 1A is an extension of problem 1 that involves an extra
input transition in the handshake protocol (see Fig. 2). Problems
2, 3, 4 and 5, that are taken from other articles on protocol
conversion, are extended in similar fashion to problems 2A, 3A,
4A and 5A. While classical techniques can handle problems 1, 2,
3, 4 and 5 only, we could generate converters for these problems
as well as their variants 1A, 2A, 3A, 4A and 5A. Although the
implementation does not address the question of finding optimal
converters (those with minimum number of forcing steps), it can
generate all possible converters. The algorithm not only finds
converters where previous approaches fail, it also preserves the
full design space by finding all possible solutions.

V. Conclusions
Protocol conversion is required while creating a complex sys-
tem (such as a System-on-Chip) from pre-designed components
(called IPs) which have mismatching communication protocols.
Convertibility verification automatically determines if a suitable
glue-logic, called a converter, exists to bridge such mismatches.
Converters are inspired by controllers from DES supervisory
control theory and hence bridge mismatches through disabling
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Problem Specification/ Classical SER
Properties converter converter

types types
1. Handshake-serial [10] I/O sequencing D D
1A. Adapted handshake-serial I/O sequencing - DF
2. ABP receiver, NS sender [7] No packet loss D D, DF
2A. Adapted ABP receiver, NS sender No packet loss - D, DF
3. ABP sender, NS receiver [6] No packet loss D D, DF
3A. Adapted ABP sender, NS receiver No packet loss - D, DF
4. Handshake-Pipeline [3] Correct data exchange D D, DF
4A. Adapted Handshake-Pipeline Correct data exchange - D, DF
4. Producer-Consumer [13] No over/under flows D D, DF
4A. Adapted Producer-Consumer No over/under flows - D, DF

TABLE II
IMPLEMENTATION RESULTS

of undesirable communication paths while also performing addi-
tional control actions such as event buffering. This paper presents
a more generalized converter synthesis technique that performs
forcing of actions in addition to the conventional disabling.
Forcing actions are used to hide extra control sequences that are
required by the protocols but not by the desired specification.
Forcing induces state-based hiding that is not possible using
standard hiding operators in DES supervisory control.
We have proposed a new refinement relation, called speci-

fication enforcing refinement (SER), between a given protocol
composition and a desired specification. We have also shown
that the existence of this relation is a necessary and sufficient
condition for the existence of a suitable converter that enforces the
desired specification over the protocols. The proposed approach
generalizes existing approaches to convertibility verification, and
we have demonstrated it by finding converters for many protocol
mismatches that can’t be bridged using existing techniques. Future
work will involve extending the formulation to handle data-width
and clock mismatches, and finding optimal converters.
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