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Abstract. We provide the first interesting explicit lower bounds on
efficient approximability for two closely related optimization problems
in graphs, MINIMUM EDGE DOMINATING SET and MINIMUM MAXIMAL
MATCHING. We show that it is NP-hard to approximate the solution of
both problems to within any constant factor smaller than %. The result
extends with negligible loss to bounded degree graphs and to everywhere
dense graphs.

1 Introduction

We consider two NP-hard optimization problems MINIMUM EDGE DOMINATING
SET and MINIMUM MAXIMAL MATCHING. The problems are motivated by their
important applications in areas such as telephone switching networking.

An edge dominating set for a simple graph G = (V| F) is a subset D of F such
that for all e € E'\ D there is an edge f € D such that e and f are adjacent. The
MINIMUM EDGE DOMINATING SET problem (MIN-EDS) asks to find an edge
dominating set of minimum cardinality, eds(G) (resp. minimum total weight
in weighted case). The decision version of MIN-EDs was shown by Yannakakis
and Gavril to be NP-complete even on graphs which are planar (or bipartite) of
maximum degree 3 [14]. Later Horton and Kilakos extended their results showing
that NP-completeness holds also for planar bipartite graphs, line graphs, total
graphs, perfect claw-free graphs, and planar cubic graphs [10]. On the other
hand, the problem admits polynomial-time approximation scheme (PTAS) for
planar graphs [1] or A-precision unit disk graphs [11]. Some special classes of
graphs for which the problem is polynomially solvable have been discovered,
e.g. trees [12], claw-free chordal graphs, locally connected claw-free graphs, the
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line graphs of total graphs, the line graphs of chordal graphs [10], bipartite
permutation graphs, cotriangulated graphs [13].

An edge dominating set of minimum cardinality has close relationship with
minimum maximal matchings. A matching M C E in a graph G = (V, E) is
mazimal if no other matching in G properly contains it (or, equivalently, if
a matching is an edge dominating set). The MINIMUM MAXIMAL MATCHING
problem (MIN-MAXL-MATCH) asks to find a maximal matching of minimum
cardinality. The fact that in G there are much more edge dominating sets than
maximal matchings does not distinguish the optimization problems MIN-EDS
and MIN-MAXL-MATCH significantly. In fact, the minimum cardinality of edge
dominating sets in G is achieved also on maximal matchings in G. Even more
interestingly, there is a simple polynomial-time algorithm to transform any given
edge dominating set D in G to a maximal matching M in G with size |[M| < |D|
(see e.g. [14]). This fact makes MIN-EDS and MIN-MAXL-MATCH equivalent.
Any polynomial time p-approximation algorithm for MIN-EDS can be easily
transformed to the one for MIN-MAXL-MATCH with the same performance ratio;
the converse relation being trivial. It is easy to observe that no matching in a
graph G can be more than twice larger than any maximal matching. Therefore
constructing any maximal matching (which is possible in O(|E|) time) suffices
to approximate even the search version of MIN-EDS and MIN-MAXL-MATCH
problems to within a factor of 2. Recently, also weighted MIN-EDS was shown
to be approximable efficiently to within 2 ([8]).

It is quite straightforward via simple reduction (see [2]) that weighted MIN-
EDs is at least as hard to approximate as MINIMUM NODE COVER (MIN-NC),
hence any inapproximability result for MIN-NC applies directly to weighted
MIN-EDS. In particular, the result of Dinur and Safra [7] implies that it is NP-
hard to approximate weighted MIN-EDS to within any constant factor smaller
than 10v/5 — 21 ~ 1.36067.

In (unweighted) MIN-EDS, or equivalently, MIN-MAXL-MATCH, the gap be-
tween the upper bound 2 and the known lower bound on approximability, is
much wider. The transformation of Yannakakis and Gavril ([14]) showing NP-
completeness of MIN-MAXL-MATCH reducing 3-MIN-NC (the restriction of MIN-
NC to cubic graphs) to it, may be regarded as an L-reduction and hence gives
APX-completeness for problems we are interested in. This implies NP-hardness
to approximate MIN-MAXL-MATCH to within a factor 1+ for some § > 0. But
lower estimates on ¢ obtained from inapproximability results for 3-MIN-NC, and

from parameters of that L-reductions are only about ﬁ.

In Section 2 we prove that it is NP-hard to approximate the problem MIN-
EDs (and hence also MIN-MAXL-MATCH) to within any factor smaller than %.
We present two approaches how to achieve this lower bound. The first relates
the problem to parameters in PCP characterization of NP class, the second
one capitalizes on inapproximability result for linear equations systems. The
lower bound % — ¢ holds also for graphs with maximum degree B (reffered to as
B-instances in the table), where the value B depends on 4. We have slightly

better lower bounds for sparse bipartite graphs with all nodes but one of degree



Approximation Hardness of MIN-EDs and MIN-MAXL-MATCH 3

B (reffered to as B*-instances in the table); namely we prove NP-hardness factors
of 1+ ﬁ and 1+ ﬁ for B = 4 and B = 5 respectively. The following table
summarizes results from this contribution. The upper bound for all problems is

2, except MAXIMUM TOTAL MATCHING with upper bound of %

‘Problem ‘Lower bound
MIN-EDS or MIN-MAXL-MATCH L=
B-MIN-EDS or B-MIN-MaxL-MarcH| T — 2428
MIN-EDS or MIN-MAXL-MATCH =4

on everywhere #-dense graphs

3-MiIN-EDS 1+ 5=
4*-MIN-EDS 1+ 355
5*-MIN-EDS 1+ 55
MAXIMUM TOTAL MATCHING L4

Definitions. In a graph G = (V, E) a set C C V is a node cover, if every e € E
is incident to some node in C'. The MINIMUM NODE COVER problem asks to
find a node cover of minimum cardinality, nc(G). A matching in a graph G is a
set of edges with no shared endpoints. A matching in G is perfect if each node of
G is incident to an edge of this matching. For a constant 6 € (0,1), everywhere
0-dense graph is a graph G = (V, E) of minimum degree at least 6|V].

2 General, bounded and dense instances

Combinatorial analysis. It is easy to see that a set of edges F' C F is an edge
dominating set of G = (V, E) if and only if V(F), the set of end nodes of edges
in F, is a node cover of G. In particular, any maximal matching M of G (which
is also an edge dominating set) satisfies

2|M| = [V(M)| = ne(G). (1)

Consequently, nc(G) < 2eds(G) holds for every graph G. Those graphs G, for
which the theoretical bound ne(G) = 2eds(G) is achieved, will be of our main
interest in what follows.

Let us denote by G the class of graphs G = (V| E) for which a minimum
cardinality node cover C' C V of G exists such that the subgraph induced by
C has a perfect matching. Clearly, any perfect matching M’ in that subgraph
is a maximal matching of G (as its node set V(M’) = C is a node cover of
G). Moreover, as 2|M'| = |[V(M")| = |C| = ne(G), M’ is a minimum maximal
matching of G (due to (1)). Hence, we have just verified that nc(G) = 2eds(G)
for every G € G.
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Due to this simple relation between eds(G) and ne(G) in the class G, our
goal is to prove suitable NP-hard gap results for MIN-NC problem restricted
to G. For this purpose we have to show first that G is rich enough. In fact, we
will deal with even more restricted class Gy C G of graphs G = (V, E) for which
every minimal (on inclusion) node cover C' C V of G induces a subgraph with a
perfect matching.

We start with some combinatorial notions:

Definition 1. A graph G[s] = (V[s], E[s]) is an s-padding (s being a positive
integer) of a graph G = (V, E), if G[s] is obtained from G by replacing every
node v € V by a set v[s| of distinct nodes, v[s] = {v1,v2,...,vs} and E[s] :=
{H{uwi,vj} - {u, v} e B i, j € {1,2,...,s}}.

This graph operation has been frequently used and many of its basic prop-
erties are well known. Clearly, whenever C' C V is a node cover of G, then
C[s] := Uyecv[s] is a node cover of G[s]. Moreover, every minimal (on inclusion)
node cover of G[s] is of the form C[s] for some (necessarily minimal) node cover
C of G. In particular, nc(G]s]) = s - nc(G).

A graph whose s-padding has a perfect matching will be called s-matchable.
Notice that any graph that admits covering of its node set by (pairwise) node
disjoint subgraphs that are either copies of Ky or (odd) cycles, is 2-matchable.
A (nonempty) graph G = (V, E) is said to be s-safe in what follows if for every
node cover C' of G the subgraph induced by C'is s-matchable. Clearly, this makes
sense only for even positive integer s; for s odd either V', or V' without any node,
is a node cover with odd number of nodes, and it cannot induce s-matchable
subgraph. Example of 2-safe graphs trivially are cliques K, with r > 3, and K,
without any edge with r > 5 as well.

Theorem 1. Let s be an even positive integer, and G = (V, E) be a graph with
the following property: there is a partition Vi U Vo U --- UV, of the node set V
such that for each i € {1,2,...,p} the induced subgraph G; = (V;, E;) of G is
s-safe. Then the s-padding of G, the graph G|[s], has the following property: every
minimal node cover of G[s] induces a subgraph in G[s| with a perfect matching.
Hence G[s] € Go C G, and eds(G[s]) = 3nc(G[s]) = 5nc(G).

The special case of Theorem 1, when s = 2 and all those graphs G; (i =
1,2,...,p) are cliques of size at least 3, is enough to consider to prove the main
Theorem 3 of this paper. Such graphs naturally appear in a general reduction
(so called FGLSS-reduction) from languages having efficient PCP (Probabilistic
Checking of Proof) systems to approximation versions of MAXIMUM INDEPEN-
DENT SET (or MAXIMUM CLIQUE) and MINIMUM NODE COVER.

PCP based proof

We will show that the problem MIN-EDS relates in a straightforward way to
parameters of PCP systems. We assume that the reader is familiar with the
standard PCP terminology. Recall some notation for verifiers and the parametric
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complexity classes: Verifier V' is called (r, ¢)-restricted if on input z it generates
a random string R tossing r(]z|) coins and queries to an alleged membership
proof 7 via oracle access ¢(|z|) times. Then it outputs V7 (x, R) € {accept =1,
reject = 0}.

A language L belongs to the class PCP. s[r, q], where ¢, s are completeness
and soundness probabilities, if there exists an (r,q)-restricted verifier V' that
given an input x and oracle access to 7 has the following properties: for z € L
there is a membership proof 7 such that the verifier accepts = with probability
> ¢ (over all random strings R € {0,1}7(2D); for 2 ¢ L and each membership
proof 7 the probability that the verifier V' accepts 7 is < s.

For a verifier V' and an input z the graph G, (more precisely Gy ), the
FGLSS graph corresponding to V' and z, is defined as follows: Every node in
G, corresponds to an accepting configuration (R,Q) € {0,1}7(=D) x {0,1}7 of
V’s computation. That means, for each random string R we enumerate the 2¢
possible binary sequences that represent possible sequence of answers to V'’s
oracle queries. For each such sequence @), we include the pair (R, @) as a node of
G, if V accepts the sequence @) on random string R. The edges of GG, correspond
to inconsistencies among these configurations. That is, there is an edge between
(R,Q) and (R, Q") if there is a query 7[¢] that will be asked by V on both (z, R)
and (z, R'), and it has different responses in @ and Q'.

The accepting configurations of the form (R,-) for a fixed random string R
form a layer. Each layer clearly induces a clique in G,. A verifier has average
free bit complexity fa, := fao(|z|) if the sum of sizes of layers is 2"(IzD+/fav (=),
Notice, that this is the number of nodes of the graph G,.

For application to problems like MIN-NC it is important that f,, is bounded
above by small constant, f., independent of |z|. For our application to MIN-
EDs it is further important that we can work with verifiers for which all layers
have size at least 3. Then clearly 2-padding of G, satisfies, due to Theorem 1,
eds(Gy[2]) = ne(Gy).

An independent set in GG, corresponds to a proof for z and the size of this set
is 2" times the probability that V' accepts this proof. Thus if € L there is an
independent set of size c2" (hence nc(G,) < 27(2fav — ¢)), whereas if x ¢ L the
size of any independent set in G is less than 52" (and hence nc(G,) > 27 (2fa —

s)). As gfc(:ﬁ =1+ 57%7 > 1+ 55, any algorithm that approximates eds

(on graphs G[2]) to within 1 + 57=*- would be sufficient to decide if x € L.

C

The reduction above has polynomial time complexity if r(z) = O(log |z|) and
q is a constant. Hence if for some NP-complete language L there is a proof that
L € PCP,.s[O(log|z|), q] using verifier V with average free bit complexity < f.
(f« being constant) and with at least 3 accepting configurations for any random
string R, then approximation of eds to within 1 + 557> is NP-hard. Applying
Hastad’s result [9] that for every ¢ € (0,%1) NP C PCPi_. 5:[O(logz), 3]
using verifier with ¢ = 3 queries, and exactly 4 accepting configurations for any
random string R (hence f,, = f« = 2), we obtain inapproximability of MIN-EDs
to within any constant smaller than
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Reduction from linear equation systems

Definition 2. MAX-E3-LIN-2 is the following optimization problem: Given a
system I of linear equations over Zs, with exactly 3 (distinct) variables in each
equation. The goal is to mazximize, over all assignments ¢ to the wvariables,
the ratio Saltl(lip), where sat(p) is the number of equations of I satisfied by .
Ek-MAX-E3-LIN-2 denote the same maximization problem, where each vari-
able occurs exactly k times.

Let Q(e, k) be the following partial decision subproblem of MAX-E3-LIN-2:
for given instance of Ek-MAX-E3-LIN-2 the problem is to decide if the fraction
of more than (1—¢) or less than (5 +¢) of all equations is satisfied by the optimal
(i.e. maximizing) assignment. The following result follows from Hastad results
[9] and the proof can be found in [4]

Theorem 2. For every ¢ € (0, 4) there is a constant k() such that for every
k > k(e) the partial decision subproblem Q(e, k) of MAX-E3-LIN-2 is NP-hard.

Notation. Denote F(z) := —zlogz — (1 — z)log(l — z), = € (0,1), where
log means the natural logarithm. Further, G(c,t) = (F (t) + F(ct))/(F(t) -
caF(L)) for 0 <t <1 <1, g(t) == G(L,t) for t € (0,3). More explicitly,
g(t) = 2[-tlogt — (1 —t)log(1l —t)]/[—2(1 — t) log(1l — t) 4+ (1 — 2t) log(1 — 2t)].

Using Taylor series of the logarithm near 1 we see that the denominator here is
k+2
2300 gyt > 7 and —(1—t)log(1—t) = t—t* 372 eyt <t

consequently g(t) < 2(1+1log1).

For large enough B we look for § € (0, %) such that 6Lg(g)j +12 < B. As
g(%) ~ 75.62 and g is decreasing in (0, 1—12>, we can see that for B > 462 any
§ > 6(B):=29"1(|2] - 1) will do. Trivial estimates on §(B) (using g(t) <
2(1+1log1)) are 6(B) < 5225 (log(B — 12) +1 —log 12) < %.

We will need the following lemma (based on Theorem 6.6 in [3]) about regular
bipartite expanders to prove the main Theorem 3.

Lemma 1. Let t € (0,1) and d be an integer for which d > g(t). For every
sufficiently large positive integer n there is a d-reqular n by n bipartite graph
H with bipartition (Vy, V1), such that for each independent set J in H either
[T NV <tn, or |[JTNVL| < tn.

Theorem 3. For every § € (0, §) it is NP-hard to approzimate MIN-EDS (MIN-
MAXL-MATCH) to within & — 6, even in graphs of degree at most 6lg(2)]+12<
6[ (1+1log 5)] +6. Consequently, for any B > 462 it is NP-hard to appro:cimate
B- MIN EDS (B-MIN-MAXL-MATCH) to wzthm any constant smaller than T —
8(B), where §(B) :=2g7 (| 2] — 1) < 525 (log(B —12) +1—log12) < 24l
Further, for any 6 € (0,1), it is NP-hard to approzimate MIN-EDS ( MIN-MAXL-

MATCH) on everywhere 0-dense graphs to within any constant smaller than 67j290
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Sketch of the proof. (a) We first prove the result for graphs without restric-
tion on degrees. Fix § € (0, 3), choose ¢ € (0,%) such that £ —§ < g;gz,
and then k for which Q(e, k) is NP-hard. We describe simple reduction f from
Ek-Max-E3-LIN-2 to graphs and check how the NP-hard gap of Q(e, k) is pre-
served for the value of eds or nc.

Let I be an instance of EA-MAX-E3-LIN-2, V(I) be the set of variables of
I, and m := [V(I)|. Clearly the system I has £ equations. For each equa-
tion we take simple gadget, a 4-clique. More precisely, if the equation reads as

x+y+z=7(j €{0,1}) we take a 4-clique whose nodes has labels ,

‘xyz =01(1 —j) |, |zyz = 10(1 — j) ‘ and | zyz = 115 |. Notice, that nodes corre-
spond to partial assignments to variables making the equation satisfied. Now
we add an edge for each pair of inconsistently labeled nodes. The pair of nodes
is inconsistent if a variable u € V(I) exists that is assigned differently in their
labels. Let us denote the graph we obtained by Gy, f(I) := G;[2] its 2-padding.

Clearly G has 3mk nodes. By Theorem 1, G;[2] € G, hence eds(G[2]) =
snc(G1[2]) = ne(Gr). Denote by a(Gy) cardinality of the maximum independent
set in G;. We show that a(Gy) = £ . OPT(I), where OPT(I) is the fraction of
maximum cardinality of satisfiable equations over all assignment.

Given any assignment ¢ : V(I) — {0,1}, let J, consists of all nodes whose
partial assignment is the restriction of ¢. J, is an independent set and |.J,,| is just
the number of equations from I that are satisfied by ¢. Hence |J,,| < %OPT(I )
for each assignment, and there is an assignment for which the equality holds.
Moreover, for any independent set J in G there is an assignment ¢ such that
J C J,. Hence the union of those partial assignments is the restriction of some
assignment ¢ : V(I) — {0,1}. Now a(Gy) = mTkOPT(I) easily follows. Further,
ne(Gr) = 4mk — a(Gy) = ™5 (4 — OPT(I)). Hence the NP-hard question of
whether OPT(I) is greater than (1—¢), or in the interval (1, 1 +¢) is transformed
to NP-hard partial decision problem of whether nc(Gr) = eds(Gr[2]) is less than
mk (3 +¢), or it is in the interval (ZE(Z —¢), 2k . T),

(b) To prove inapproximability within % — 6 for bounded degree graphs one
can use the idea already used in [6]: to replace graph G of all inconsistencies
by its lower degree subgraph with suitable expanding properties.

Let § € (0, %) be given, put d := [g(2)]+1 (< [4(1+log 2)]). Then we choose
te (0,73), close enough to 2, so that d > g(t). Further we choose ¢ € (0, ) such
that (£ —e —6t)/(3+¢) > £ — 6. Then a positive integer k is chosen so that
(i) Q(e, k) is NP-hard (see Theorem 2), and (ii) there is a d-regular 2k by 2k
bipartite graph H with bipartition (Vp, V}), such that for each independent set
J in H either |JNVy| < 2kt, or |JNV;| < 2kt (see Lemma 1). Keep one such H
fixed from now on.

Now we start with an instance I of Ek-MAX-E3-LIN-2, with m := |V(I)].
We take the same equation gadget as in part (a). Consider a variable u € V(I).
Let Vj(u) (j € {0,1}) be the set of all 2k nodes in which u has assigned bit j.
Now we create a graph G¥ on the same set of nodes as G (from the part (a))
but with maximum degree at most 3d + 3, as follows: For each u € V(I) we take
edges between Vy(u) and Vi (u) exactly as prescribed by our fixed expander H.

)
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Having this done, one after another, for each u € V(I), we get the graph G.
Let h(I) := GH[2] be its 2-padding.

Clearly, the transformation h is polynomial, G¥ is of degree at most 3d + 3,
and h(I) is of degree at most 6d + 6. Again, by Theorem 1, G¥[2] € G, hence
eds(GH[2]) = inc(GH[2]) = nc(GY). Clearly, any independent set in Gy is also
an independent set in G, hence a(G¥) > a(G;) = mTkOPT(I) and nc(GH) <
ne(Gr) = 2E(4 — OPT(I)).

On the other hand, we can show that a(GY) < a(G)+2kmt = 2= (OPT(I)+
6t) and nc(G4) > k(4 — OPT(I) — 6t). Hence NP-hard question of whether
OPT(I) is greater than (1 — ), or less than § + ¢, is transformed to NP-hard
partial decision problem of whether eds(G¥[2]) = nc(GY) is less than £ (3+¢),
or greater than 2% (Z — — 6t).

(c) Let 0 € (0,1) be fixed and r € (1, 61%99). To prove inapproximability to

within 7 on everywhere 6-dense graphs, we choose € > 0 and w > % such that
(7 —2e+48w)/(6 + 2 + 8w) > r.

Now, as in part (a) starting from an instance I create graph Gj. Consider
the graph G’ obtained from G; by adding a clique with L%mkw] nodes and
connecting any node of the clique to any node of G;. It is easy to check that G’
and G [2] are everywhere 6-dense (assuming mk is large enough). By Theorem 1,
G[2] € G, hence eds(G7[2]) = ne(GY). Moreover, ne(Gh) = ne(Gp) + | gmkw] =
mk (4—OPT(I))+ | 4mkw). Hence, OPT(I) > 1—¢ implies eds(G[2]) < 2k (6+
2 + 8w), and OPT(I) <  + ¢ implies eds(G}[2]) > k(7 — 2e 4+ 8w) — 1.

3 Sparse and small degree instances

One of reductions of [14] starts with a cubic graph G with n nodes and produces
a graph f(G) with 10n nodes and 217" edges that is of maximal degree 3 and for
which eds(f(G)) = 2n+nc(G). Using our (currently the best) inapproximability
results for MIN-NC problem on cubic graphs ([5]) one easily finds that it is NP-
hard to distinguish the case of eds(f(G)) being larger than 2.51549586n from
that of being smaller than 2.5103305n. Hence inapproximability to within 1+ ﬁ
follows, even on instances produced by f.

Slightly better results can be obtained for sparse graphs for which one node is
allowed to be of large degree and all the others have small degree. The following
simple transformation g from MIN-NC problem is universal. Given a graph G =
(V, E) with n nodes and m edges, add one new special node 0, connect 0 with
every u € V by an edge, and replace every e = {u,v} € E by a simple gadget
G, depicted on the following figure:

€0

e1(u) ea(u)
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The bipartite graph ¢g(G) constructed in this way has (n+4m+ 1) nodes and
n + 5m edges. The important fact is that eds(g(G)) is easily related to nc(G).
It can be proved that eds(g(G)) = m + nc(G).

Applying the reduction above to a cubic graph G with n nodes produces the
bipartite graph ¢g(G) with 7n 4+ 1 nodes, 17771 edges, and all nodes but one of
degree < 4. On those instances the corresponding NP-hard question is to decide
of whether eds(g(G)) is larger than 2.01549586n, or smaller than 2.0103305n,

hence to approximate eds on such instances to within 1 + glo is NP-hard.

The results are slightly better starting with 4-regular graphs and using our
NP-hard gap results [5] for them. For generic 4-regular graph G with n nodes
the bipartite graph ¢g(G) has 9n + 1 nodes, 11n edges, and all nodes but one
of degree < 5. Now it is NP-hard to decide of whether eds(g(G)) is larger than
2.53036437246n, or smaller than 2.52024291497n, hence to approximate eds on
such instances to within 1 + ﬁ is NP-hard.

Remarks. 1. MIN-EDs is equivalent to the MINIMUM (NODE) DOMINATING
SET problem (MIN-DS) restricted to line graphs. Hence this restricted version
of MIN-DS is APX-complete, has simple 2-approximation algorithm, but it is
NP-hard to approximate to within % — 0 for any § > 0. Let us mention that for
general graphs MIN-DS is not in APX; it is as hard to approximate as the set
cover problem.

2. Recall that if G = (V, E) then the total graph of G, denoted by T(G), is
defined as T(G) = (VUE,EUE"UE"), where E' = {(e,v): e € E, v € V and
v is incident with e}, and E” = {(e, f): e, f € E are adjacent edges}. One can
prove that a(T(G)) = |V(G)| — eds(G) (see e.g. [14]). In the proof of Theorem 3
we produced instances G = (V, E) with n := %mk nodes for which it was NP-
hard to distinguish between the case of eds(G) < {5(6 + 2¢) and the one of
eds(G) > 15(7 — 2¢). For the problem MAX-IS in total graphs they translate as
a(T(G)) > 15(10 = 2¢) and a(T(G)) < {5(9 + 2¢), respectively. Hence it is NP-
hard to approximate MAXIMUM INDEPENDENT SET (MAX-IS) in total graphs
(MAXIMUM TOTAL MATCHING problem for G) to within any constant smaller
than 19—0. On the other hand, it is easy to design %—approximation algorithm for
MAX-IS in T(G), assuming the graph G = (V, E) is given as an input. It suffices
to find any maximal matching M of G and return M U (V \ V/(M)); it is an
independent set in T'(G) of size at least 2a(T(G)).

3. Passing to the complementary problem MIN-NC in Remark 2 one gets
ne(T(G)) = |E(G)| + eds(G). To obtain an interesting explicit lower bound
on approximability of MIN-NC in total graphs, one can use our NP-hard gap
result for MIN-EDS in sparse graphs. For example, NP-hard gap of 5*-MIN-EDS
transforms to the one showing that to approximate MIN-NC in total graphs
within 1 4 ﬁ is NP-hard. The NP-hard gap with the same inapproximability
applies to MIN-EDS (MIN-MAXL-MATCH) in total graphs as well. This is due
to the fact that in T(G) any node cover with even number of nodes induces the
graph with a perfect matching, assuming that G was connected (see e.g. [10]).

It implies that for a connected graph G, eds(T(G)) = [%(G))}
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We can go even further. Having NP-hard gap result for MIN-EDS in total
graphs, we can use Remark 2 for the graph T(G) in place of G to show the
NP-hard gap result for MAX-IS of 2-iterated total graph of G, T(T(G)).

Using mathematical induction, for any positive integer r we can derive ex-
plicit NP-hard gap result for each of problems MAX-IS, MIN-NC, MIN-EDS,
MIN-MAXL-MATCH restricted to the r-iterated total graphs.

The fact, that the lower bounds for polynomial time approximability of these
problems converge very rapidly to 1 with increasing r, does not necessarily mean
that those results are weak. In fact, one can show the upper bounds of the form
1+ 6T2, for some constant 6 € (0,1), for these problems on the r-iterated total
graphs.
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