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Abstract

We investigate the complexity of probabilistic inference from knowledge bases that encode
probability distributions on finite domain relational structures. Our interest here lies in the complexity
in terms of the domain under consideration in a specific application instance. We obtain the
result that assuming NETIME: ETIME this problem is not polynomial for reasonably expressive
representation systems. The main consequence of this result is that it is unlikely to find inference
techniques with a better worst-case behavior than the commonly employed strategy of constructing
standard Bayesian networks over ground atoms (knowledge based model constractZit)0
Elsevier Science B.V. All rights reserved.
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1. Introduction

A recent development in probabilistic reasoning in Al is the emergence of various
systems for the specification of probability distributions on relational structures, or, in the
terminology of Friedman et al. [5], the constructiorpobbabilistic relational modelgNgo
and Haddawy [17], Jaeger [9], Koller and Pfeffer [13]). These systems have evolved out of
earlier frameworks that were developed as specification languages for structurally uniform
classes of Bayesian networks (Poole [19], Breese [2], Saffiotti and Umkehrer [20]). Given
a particular probabilistic query, a specification in such a language would serve as the
blueprint for the automatic generation of a Bayesian network in which the probability of the
qguery then is computed. This method has been cahedviedge based model construction
(Wellman, Breese and Goldman [21]).
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Initially, only representation languages were considered that are based on some form of
probabilistic Horn clauses. Ignoring many particular features present in the representation
languages proposed by various authors, these probabilistic Horn clauses are essentially of
the form

0.3
(u, v) (u, v),
p(u,v) «<—qu,v (l)

PG v) <21 (), s (v),

wherep, g, r,s are relation symbols, ang, v logical variables. The intuitive meaning

of, e.g., the first clause is: for all, v, the conditional probability op («, v) given that

g(u, v) holds is 0.3. Given constants b for which we have evidencq(a, b) the rule
allows us to compute a posterior probability of 0.3dx, b) 2 (if (1) expresses statistical
knowledge, this computation would be an instancelicéct inference cf. Bacchus [1]).

This coincides with the interpretation of similar rules in certain probabilistic logics (Ng
and Subrahmanian [16], Lakshmanan and Sadri [14]). The difference between knowledge
based model construction and its outgrowths on the one hand, and probabilistic logics on
the other, emerges when we consider conditional probabilities that are not fully determined
by the rules. The conditional probability

p:=P(p(a,b)lq(a,b),r (a),s b)),

for instance, is not defined by either of the rules in (1). Moreover, only the trivial bounds
[0, 1] are strictly implied forp by instantiations of the rules (1) with, b. In most
probabilistic logics, therefore, one will be unable to derive from (1) any nontrivial bounds
for p.

In purely propositional settings, Bayesian networks have proven to be more useful in
practice than propositional probabilistic logics (Nilsson [18], Frisch and Haddawy [6])
because they define a unique probability distribution on the set of propositional models
(i.e., truth assignments), and therefore (at the cost of a greater specification effort)
allow us to derive a unigue probability value for every query. It is natural to extend
this approach to certain forms of first-order probabilistic information, and to develop
tools for defining probability distributions on models for first-order logic. In knowledge
based model construction this is done by interpreting the probabilistic rules (1) as
rules for the construction of standard Bayesian networks over ground atoms. Given
a ground queryP(p(a,b)|q(a,b),r (a),s(b)) =? the model construction will yield
a Bayesian network containing nodes for the atomis, b), q(a, b),r (a),s(b) (and
possibly a large number of additional nodes), and thereby determine a unique value for
P(p(a,b)|q(a, b),r (a),s(b)). As noted above, the intended semantics of the rules (1)
alone will not uniquely determine the desired probabilities, so that it is clear that at some
point additional information or assumptions—not directly expressed by (1)—must enter
the construction process. Essentially, these additional assumptions have to determine how

2ps long as no constant symbols appear in the rules, the same will be true for comstafts which we
have the same evidencgc, d). Most concrete representation systems provide for constants in the rules, so that
the probabilities entailed by the rules are not necessarily invariant under substituting different constants. For
the purpose of the present paper we may focus on rules without constants, because our main result is a lower
complexity bound, which, obviously, also is applicable to richer systems admitting constant symbols.
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the conditional probabilities in clauses with the same head are to be combined to obtain
the conditional probability of the head given the conjunction of the bodies of the various
clauses.

In early approaches (Breese [2]) this information was supplied implicitly by certain im-
plementation details of the construction algorithm, and consequently the primary repre-
sentation language did not possess a declarative semantics independent from the network
construction process. Haddawy [7] and Ngo and Haddawy [17] have argued that this is un-
satisfactory, and have proposed representation systems with additional syntactic constructs
that in the knowledge base declare how several applicable clauses are to be combined.

Relational Bayesian networks (Jaeger [9,10]) can be understood as a representation
formalism that goes one step further by compiling sets of clauses (1), and the necessary
additional conventions for their combination, into a single functional expregsiso that
the knowledge base now consists of exactly one declaration of the form

r(v):=F(S1,...,Sk V), (2

for each relation symbal (we use boldface letters, a, ... as abbreviations for tuples
(v1,...,w), (a1, ...,a;), ... of variables or constants). Formal semantics for this set of
declarations then can be defined in a straightforward manner. Another related framework
that uses a representation language different from probabilistic Horn clauses are the
probabilistic frame-based systems of Koller and Pfeffer [13].

Once one has taken the step to supply the primary representation formalism with
descriptive semantics independent from any construction algorithm for standard Bayesian
networks, the question arises whether standard Bayesian networks are still needed at all.
Their role now has changed from being the subject of our primary representation to being
merely a tool of inference: if there were more efficient ways to compute the answer to
a probabilistic query than by constructing a Bayesian network over ground atoms, we
would be happy to dispense with Bayesian networks altogether. To emphasize this shift
of perspective, we refer auxiliary network constructiomo the process of constructing
standard Bayesian networks as an inference technique for representation languages with
independent semantics.

It does not seem to be unreasonable to expect more efficient inference technigues than
auxiliary network construction to exist, because this approach amounts to a complete
“propositionalization” of first-order information. For logic inference problems from
(deterministic) Horn-clauses we know that we can avoid this, and, for example, by
unification and resolution deduce from

p() < q(v, w)
qla,u) <

that p(a) holds, without first constructing all the ground atop&), q(c, ), ... for all
constantg, ¢/, ... in the language.

It is natural to look for corresponding techniques for probabilistic inference from
first-order probabilistic rules like (1) or (2)—techniques that compute probabilities by
manipulating more abstract logical expressions than ground atoms. In this paper we show
that it is very unlikely that with such algorithms we can obtain inference techniques that
are more efficient than auxiliary network construction.
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2. Model representation systems

It is our aim to derive our complexity results in as general terms as possible, showing
their applicability to a great variety of different representation systems. In order to do this,
we have to abstract from the concrete syntactical constructs used in various systems, and
analyze these systems in terms of their semantic expressiveness.

To achieve this goal we develop in this section the general conceppugftabilistic
model representation systemhich (very loosely) can be seen as specialized counterpart
of the general concept of a logic. Just as different logics can be compared, and their
complexity be analyzed, by considering the classes of models they can define, we derive
results for model representation systems in terms of the class of models they can describe,
where models now are probability distributions.

First, we have to describe the structure of the models that are defined by the
representation systems we deal with. To motivate the following definition, consider again
the case of probabilistic Horn clauses as the representation language. It is clear that, e.g.,
the semantics of knowledge base (1) will be used to assign probability values to sentences
such a(a, b) A s(b). However, it is not enough to say that the semantics of a knowledge
base is given by a probability distribution over sentences: to see why, consider the two
rules

p) < q.u)

qv, u) 28

where the second clause means that the marginal probabitityvofi) is 0.8. Also assume

that the semantical conventions adopted (perhaps via some additional declarations in the
knowledge base) make the conditional probabilitp¢d) increase in the number of valid
instantiations fow in q(a, u). In particular, we would have

P(p(a)lq(a, b)) < P(p(a)ld(a,b),q(a, c)).

But more than that, since each possible instantiationt dh q(a,u) has a positive
probability of 0.8 of being valid, the probability pfia) should also increase in the number
of possible instantiations, whether or not they appear in the evidence. Thus, the probability
of p(a) as defined by the given rules, can only be determined with respect to a certain
(finite) domainD of elements that we can substitute foandu.

Consequently, the semantics of a knowledge base does not consist of a single probability
distribution over sentences, but of one distribution for each (finite) domaiRormally,
a probability distribution on sentences containing relation symbols from a vocalfulary
and constants fronb is most conveniently represented by a distribution on the set of all
structures (or models) that interpret the symbolsiaver D. We denote the set of these
structures by Mog(S). As the particular names of the elementdoghould be irrelevant,
we may restrict attention to the case whére=n = {0, 1, ...,n — 1} for somen € N (we
here avail ourselves of the set-theoretic convention to identify the nuimb&¥ with the
set{0,...,n —1}).
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Definition 1. A finite domain probabilistic relational model representation systeém
consists of
e A syntax that defines for every relational vocabuldrg {r 1, ...,r;} a setM(S) of
well-formedmodel representations
e A semantics that assigns to evebye M (S) and every: € N a probability measure
P% on Mod,(S).

Note that a probabilistic model representation system differs frgmolabilistic logic
in that it is required that every model representat®ndefines for every: a unique
measure on Mad.S), whereas a theorg in a probabilistic logic will usually define a
(possibly empty) set of such measures. It should also be noted that most existing systems
are somewhat more general than described in Definition 1 in that they allow foRacget
predefined, deterministic relations on the domain, so that the semanticsRysipstures
overn to probability measures oveérexpansions of th&-structure.

In the sequel we simply write “model representation system” and “vocabulary” for
“finite domain probabilistic relational model representation system” and “relational
vocabulary”, respectively.

Next we describe minimal requirements for the expressiveness of model representation
systems. Our complexity results will hold for those systems that satisfy these requirements.
The first requirement is very simple: we should be able to represent the uniform

distribution on Modg (S). The second requirement is to have the ability to condition the
probability thatv belongs to some relatianon certain logical properties efwith respect

to other relations 1, So, .... In a clause based representation language, for instance, this
requirement will demand the availability of rules of the form

r(v)La(v,Sl,...,Sk), 3)

wherea (v, S1,...,Sk) IS some logical expression in the variablesand the relation
symbolssy, ..., Sx. Our minimal requirement will be that rules of this form are available

for o« being an equality constraint = v;, a conjunctiors1(v') A s2(v”), a negated atom
—s(v), and an existentially quantified atoBws (v, w). Of these types of rules only the
case ofx being a conjunction is readily recognized as being provided by existing systems
for knowledge based model construction. Existential quantification, on the other hand,
might look like a rather strong assumption about a system’s expressiveness. It should be
noted, however, that a rule like

r(v) <i s(v, w)

together with the common convention that multiple instantiations of the right hand side of
arule are to be combined Impisy-or, just amounts to existential quantification.

The following definition formulates the availability of rules like (3) in syntax-
independent, general semantic terms. In this definition, and in the remainder of the paper,
we need some notation for restrictions of structures to sub-vocabularies, and restrictions
of measures to sub-algebras: whefi € Mod, (S") and S C §’, thenM’ | § denotes the
S-structure over domain that has the same interpretations of the symbolS as M.
Conversely, a structuréd € Mod, (S) can be identified with the subsém’| M’ | § =
M} € Mod, (S"). When P’ is a probability measure on Mp€s’), then P’ | Mod, (S)
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denotes the probability measufe on Mod, (S) defined byP(M) = P/ {M'|M' | S =
M}), and P’ (-|-M) denotes the conditional distribution on M@d’) given{M'|M' | S =
M}. We use the notation’ C v to express that all variables in the tupleare variables
that also appear in.

Definition 2. A model representation systdvh allows first-order conditioningf

e For every vocabularyS there exists® € M(S) such thatP,?’ is the uniform
distribution on Mog(S) for all n € N.

e For every vocabulang, every® € M(S), everyk-aryr ¢ S, for v := (v1, ..., v),
and for every expressian(v) of one of the four forms
—v=v; (1<i,j<kh),
- s51(0') As2(v”) (S1,82€ 8;0',v" Cv),
- =s@)(ses, v Cv),
— Jws@,w) (s €S, vCv),
there existsd® € M (S U {r}), such thawn € N:

P®" [ Mod,(S) = P?, (4)
and for alln € N, all M € Mod,(S), and allm € n*:
. 1 if M= a(m),
® _
Py (r (m)| M) = {o if M B o (m). ®)

The conditions of Definition 2 demand that the probability ¢§) can be conditioned on
very simple logical properties af. For relational Bayesian networks it is straightforward
to show that, in fact; (v) can be conditioned on arbitrary first-order expressible properties
of v [9]. For systems based on probabilistic Horn rules, on the other hand, it is not so
obvious that with rules (3) for simple formulaswe can also encode more complicated
conditions like

r (v) & =Jw(s1(v', w)) vsa2(v”). (6)

The following lemma, which is instrumental to the proof of Theorem 4 in the next section,
shows that the elementary requirements of Definition 2 are sufficient to guarantee that rules
like (6) can be encoded.

Lemma 3. Let M be a model representation system that allows first-order conditioning.
Let @ be a model representation for a vocabuldtyr ¢ S a k-ary relation symbol, and

¢ (v) a first-orderS-formula whose free variables are among-= (v1, ..., v¢). Then there
exists a model representati@r® for a vocabularyS? > S U {r }, such that for allz

P,fb¢ | Mod, (S) = P2, @)
and for alln € N, all M € Mod, (S), and allm € n*:

1 if ME=o@m),
0 if M p(m).
k.

PP? (¢ (m)| M) = { (8)

In particular, for allm € n

PP’ (r (m)) = P2 (¢(m)). (9)
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Proof. First note that (7) and (8) directly imply (9). We prove the existencg ofvith (7)
and (8) by induction on the structure ¢f

First, assume that is of the forms (v) for somes € S, v’ € v. Then the lemma follows
from the caser(v) = s(v') A s(v') in Definition 2. The case fop of the formv; = v; is
similar.

Now considerp (v) of the form(v) A x(v). According to the induction hypothesis,
the lemma holds fory and x. Applying the induction hypothesis first tp, letr ; be
a newk-ary relation symbol, and le®¥ be a model representation for a vocabulary
S¥ > SU{ry}, such that

P2 | Mod,(S) = P2,
and for allmM € Mod, (S), m € n*:

1 fMEy@m),

34 _
En (r,/,(m)|=M)_{O else.

Now we apply the induction hypothesis foand the already constructae’ . This gives
us a model representatiahX for a vocabularys* D S¥ containing another new-ary
relation symbot ,, such that
P?" [ Mod,(S) = (P2* [ Mod, (5¥)) | Mod, (S)
=P | Mod,(S)
= P2,

and for allmM € Mod, (S¥), m € n*:
1 if M= x(m),
0 else.

_{1 if M| SE x(m),
“lo else.

PP (1 (m)| M) = {

Given@X we now can use the caae=r y (v) AT , (v) of Definition 2 to find a final model
representatio@? for the vocabularys? = % U {r }, such that
P2’ [ Mod, (S) = (P2’ | Mod, (5%)) | Mod, (S)
= P2" [ Mod,(S)
=Pp?
and for allM € Mod, (SX), m € n*:
1 if MEry@m) Aty (m),
0 else.
_{1 if M [SEy@m)A x(m),
0 else.

The last identity establishes (8) fat € Mod, (S).
The case fop (v) of the form—y (v) is dealt with in a similar manner.

P’ (r (m)| M) = {
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Finally, considew (v) of the form3wy (v, w). We apply the induction hypothesis to a
relation symbotr , of arity k + 1 and the formula) (v, w) to obtain a model representation
@V, We then obtaind? by applying Definition 2 for the case(v) = Jwr 4 (v, w) tor
and®?. O

3. Complexity: Deterministic, exact inference

Given a model representation systéiwe now are interested in the complexity of
answering probabilistic queries, i.e., of computiﬁ,@ (¢ (m)) for a model representation
@, a domainsize:, and a propositio (m). Obviously, with the assumptions we have
made we cannot derive exact bounds for the complexity of this computation, because these
would depend on many specific features of the systethat we have left unspecified. Our
aim here, therefore, only is to investigate one specific aspect of the overall computational
complexity, namely its dependence on the domainsiZéne dependency on this parameter
is of particular interest, because it is with regard to this parameter that we would expect
to obtain a gain in efficiency by replacing auxiliary network construction with more
sophisticated inference techniques: wiieand¢ (m) are fixed, then the number of nodes
in an auxiliary network constructed to compw®& (¢ (m)) will usually be polynomial in
n, and the complexity of inference exponentiahifbecause, in general, we will also have
in the auxiliary network a polynomial growth of the maximal number of parents of single
nodes). It is not obvious that this exponential blowugiis inherent in the problem, and
cannot be avoided by other inference techniques. Note, in particular, that the well-known
complexity results for inference in Bayesian networks [3] are not applicable here, because
we cannot represent a suitable class of Bayesian networks that shows that inference is NP-
hard in the network size as the set of auxiliary networks constructed for a set of queries
P2 (¢p(m)) (n e N; &, ¢ fixed).

Thus, we here will be concerned with the complexity of computhft(s (m)) as a
function of n with @ and ¢ (m) being fixed. Moreover, following a common strategy,
we will first concentrate on the simpler problem of deciding whetﬁ,é’r@(m)) > 0.
Formally, our problem then becomes that of deciding predicates of the form

NONZERQ(®, ¢(m)) := {n e N| P2 (¢(m)) > 0}

defined by model representatioss (in some representation systdvh), and a formula
¢ (m) containing constantay, ..., m; € N (use the convention thdtf’ (¢ (m)) =0 when
m; > n for somei < k, and therefore (m) cannot not be interpreted over the domajn
For arbitrary subsetd € N we useAU" and A”" to denote the sets of unary and binary
encodings, respectively, of the memberstofSince we are interested in the complexity in
terms ofn of deciding NONZERQ@®, ¢ (m)), not in terms of logr), we really are talking
about the complexity of deciding NONZER®, ¢ (m))"", when complexity is measured
in input size.

Adopting the notation of Johnson [11], we denote by (N)ETIME the class of subsets
of {0, 1}* that can be decided in (nondeterministic) timg&®) for somec > 0. Note that
this class is distinct from (N)EXPTIME, which is characterized by time bounds of the form
0(2") (¢ > 0). We can now formulate our main theorem.
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Theorem 4. LetM be a model construction system that allows first-order conditioning.
If NETIME #£ ETIME, then there exist a§-model representatio in M, and a ground
S-atomr (m) such thaNONZERQ(®, r (m))"" ¢ P.

The proof of Theorem 4 is quite straightforward using Lemma 3 and established results
due to Jones and Selman [12] on the connection between the class NETIME and spectra of
first-order sentences. We briefly review the relevant definitions and results here.

The spectrumof a first-order sentenag in the vocabulanys is the setfn e N | IM €
Mod, (S): M = ¢}, i.e., the set of all finite cardinalities for whighhas a model. A subset
of N is called a spectrum if it is the spectrum of some first-order sentén@@er an
arbitrary vocabulary—nbut note that without loss of generality we can assume a relational
vocabulary). The result of Jones and Selman [12] that we shall use is: a gubEBtis a
spectrum iffAP" € NETIME.

Proof of Theorem 4. LetM be as stated in the theorem, and assume4f8te NETIME \
ETIME. By Jones and Selman’s [12] theorem there exists a first-order senfenca
relational vocabulang, such thatA is the spectrum of. Let @ be a model representation
for S such thatP? is the uniform distribution on Mod ) for all » € N. By Lemma 3
there exists a model representatibfi for S O §, such thatS® contains a unary relation
symbolr , and (7) and (9) hold. Since the right hand side of (9) is nonzeroidfin the
spectrum ofp, we obtain

NONZERQ(®?, (m)) = A.
By the assumptiomP" ¢ ETIME it follows that
AY"=NONZERQ(®?,r (m))"¢P. O

Our proof of Theorem 4 relies crucially on the requirement of Definition 2 that
we can condition on equality constraints. If we deleted the ease v; = v; from
Definition 2 then our arguments would only show that we can encode as sets of the form
NONZERQ®, r (m)) spectra of first-order sentences without equality. These, however,
are simply sets of the foriN \ {1, 2, ...,k — 1, k}, which can be decided in constant time.

Theorem 4 gives us a lower complexity bound for some NONZER® (m)). For
most concrete model construction systems proposed so far, on the other hand, we have the
upper bound NONZERQ@P, r (m)) € NP for all @, r (m). This suggests to check whether
NONZERQ(@, r (m)) might be an NP-complete problem for some representation system
M, and suitabled, r (m). A general result in complexity theory, however, says that this is
unlikely to be the case.

Theorem 5. If P # NP then NONZERQ®, r (m))"" is not NP-complete for any
representation systeM, model representatio®, and queryr (m).

Proof. This follows immediately from results of Mahaney [15] that so-calipdrsesets
cannot be NP-complete if £ NP. All sets in unary encoding (also called tally languages)
are examples of sparse setsa
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While it is customary to simplify questions about the complexity of computing a
function to a simpler decision problem, it is of course the complexity of computing the
value ofP,?l5 (r (m)) that we are ultimately interested in. In practice, one will usually not
need to compute the precise probability value, but only an approximation with a certain
given precision. This leads us to the subject of approximate inference, which we deal with
in the following section.

4. Approximate inference

Following Dagum and Luby [4], we may distinguish between four principal variants of
approximate inference: the approximation may be within a spedifesdluteor relative
error, and the approximation algorithm may be eitldeterministicor randomized

When lower complexity bounds for the computation of exact probabilifiés are
derived by a reduction to a decision problem of the faPify) > 0? (as we did here, and
as did Cooper [3] for standard Bayesian network inference), then we cannot gain much
by turning from exact inference to approximate inference with a bounded relative error,
because an approximation &f(-) with a bounded relative error will still show whether
P(-) > 0or P(-) =0. For this reason we here concentrate on computing approximations
for P,f’ (r (m)) with a bounde on the absolute error, i.e., a numhdhat satisfies

ze[P2(r(m)) —e, PP (r (m)) +¢].

We first turn to deterministic approximations. It turns out that now the complexity of
computingP? (r (m)) can be as well-behaved as one might hope—at least in theory.

Theorem 6. There exist model construction systems that allow first-order conditioning
such that for every model representatién every ground atom (m), and every > 0 the
complexity(in ) of computing an approximation & (r (m)) with absolute error at most
£is O(1).

Proof. In Jaeger [10] it is shown that for a certain subclass of relational Bayesian networks
the probabilitiesP,f’ (r (m)) converge to some limit as— oo for every network® in that
subclass, and every querym). The subclass identified in Jaeger [10] is rich enough to
allow first-order conditioning.

Now assume tha® andr (m) are such thaP,f’(r (m)) — p €[0,1] asn — oo, and
let ¢ > 0 be given. Then there existg € N, such thatPn‘p (r(m))e[p—e¢,p+e]for
all n > ng. Thus, we obtain an algorithm for computing éapproximation ofP,? (r (m))
by exact computation oP? (r (m)) (using any available algorithm) when< no, and by
simply outputtingp whenn > ng. The time requirement of this procedure is asymptotically
constantim. O

Clearly this result is of theoretical rather than practical interest, because neither does
it tell us how to compute the numbeg, nor does it provide any bound on the constant
characterizing the time requirement. Furthermore, the theorem is not applicable for
representation systems in whiéf (r (m)) need not converge.
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In practice, randomized approximation algorithms can be particularly well-suited for
computing probabilitiesP? (r (m)). To see why, consider an algorithm that produces
random samples(; € Mod, (S) according to the distributioﬂPnd’. As in logic sampling
for standard Bayesian networks [8] we could use the fraction of structitesvith
M; =1 (m) inarandomsample(,, ..., M, as an estimate fo?n‘p (r (m)). Thisis usually
not the best use we can make of the samfalg . .., M,, though: when the distribution
P? is invariant under renaming (as we have always assumed), then we have

PP (r (m)) = E7 (IIr 1), (10)
where by||r (v)|| we denote the fraction of tuples that satisfyr m) in a structure
M € Mod,(S), and byE? the expected value under the distributiBff . Therefore, we
also gain an estimate foP,? (r (m)) by averaging over the structurei,, ..., M, the
values of||r (v)|. The variance of the random varialjle(v)|| is at most as large as that
of the indicator variable for (m), and usually decreasing i Depending on how fast
the variance of|r (v)|| decreases the reduction of the size of a random sample needed
to estimateP,fl5 (r (m)) with given error and confidence bounds can offset the increased
complexity of sampling a single structusé; . In the best case we will really obtain a time
requirement that is constantin

5. Conclusion

The purpose of this paper was twofold: first, we wanted to develop a conceptual
framework that permits us to treat in a unified way a number of systems that have
been proposed in the literature for integrating some first-order reasoning capabilities into
Bayesian networks. We here have obtained this unified view by characterizing such systems
entirely in terms of their semantics, without imposing any restrictions on the specific syntax
used.

Our main objective then was to derive within this general setting results on the
complexity of probabilistic inference as a function of the size of the specific domain
to which the generic knowledge is applied. This is a new complexity problem that is
distinctive of the emergent class of probabilistic relational model representation systems.
It does not appear in probabilistic logics, because there entailment always is with regard to
all models of a knowledge base, not the models over a specific domain. It also is distinct
from complexity questions about inference in standard Bayesian networks, because there
a change of the domain (by way of a different set of nodes in the network) always is
accompanied by a new model representation (i.e., a new network).

Our complexity problem is of particular interest, because polynomial bounds here would
have shown that there are more efficient ways for probabilistic inference than auxiliary
network construction—an inference technique that a priori looks rather wasteful, because
it involves a complete propositionalization of originally first-order knowledge. However,
Theorem 4 shows that for reasonably expressive representation systems we are unlikely
to find inference techniques that have a better worst-case behavior than auxiliary network
construction. The proof of the theorem points to reasoning about equality as the main cause
for the complexity bounds we obtained. Investigations of weaker systems with potentially
lower complexity should therefore be directed towards systems without equality reasoning.
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