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Abstract

We investigate the complexity of probabilistic inference from knowledge bases that encode
probability distributions on finite domain relational structures. Our interest here lies in the complexity
in terms of the domain under consideration in a specific application instance. We obtain the
result that assuming NETIME6= ETIME this problem is not polynomial for reasonably expressive
representation systems. The main consequence of this result is that it is unlikely to find inference
techniques with a better worst-case behavior than the commonly employed strategy of constructing
standard Bayesian networks over ground atoms (knowledge based model construction). 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

A recent development in probabilistic reasoning in AI is the emergence of various
systems for the specification of probability distributions on relational structures, or, in the
terminology of Friedman et al. [5], the construction ofprobabilistic relational models(Ngo
and Haddawy [17], Jaeger [9], Koller and Pfeffer [13]). These systems have evolved out of
earlier frameworks that were developed as specification languages for structurally uniform
classes of Bayesian networks (Poole [19], Breese [2], Saffiotti and Umkehrer [20]). Given
a particular probabilistic query, a specification in such a language would serve as the
blueprint for the automatic generation of a Bayesian network in which the probability of the
query then is computed. This method has been calledknowledge based model construction
(Wellman, Breese and Goldman [21]).
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Initially, only representation languages were considered that are based on some form of
probabilistic Horn clauses. Ignoring many particular features present in the representation
languages proposed by various authors, these probabilistic Horn clauses are essentially of
the form

p(u, v)
0.3←− q(u, v),

p(u, v)
0.5←− r (u),s(v),

(1)

wherep,q, r ,s are relation symbols, andu,v logical variables. The intuitive meaning
of, e.g., the first clause is: for allu,v, the conditional probability ofp(u, v) given that
q(u, v) holds is 0.3. Given constantsa, b for which we have evidenceq(a, b) the rule
allows us to compute a posterior probability of 0.3 forp(a, b) 2 (if (1) expresses statistical
knowledge, this computation would be an instance ofdirect inference, cf. Bacchus [1]).
This coincides with the interpretation of similar rules in certain probabilistic logics (Ng
and Subrahmanian [16], Lakshmanan and Sadri [14]). The difference between knowledge
based model construction and its outgrowths on the one hand, and probabilistic logics on
the other, emerges when we consider conditional probabilities that are not fully determined
by the rules. The conditional probability

ρ := P (p(a, b)|q(a, b), r (a),s(b)),
for instance, is not defined by either of the rules in (1). Moreover, only the trivial bounds
[0,1] are strictly implied forρ by instantiations of the rules (1) witha, b. In most
probabilistic logics, therefore, one will be unable to derive from (1) any nontrivial bounds
for ρ.

In purely propositional settings, Bayesian networks have proven to be more useful in
practice than propositional probabilistic logics (Nilsson [18], Frisch and Haddawy [6])
because they define a unique probability distribution on the set of propositional models
(i.e., truth assignments), and therefore (at the cost of a greater specification effort)
allow us to derive a unique probability value for every query. It is natural to extend
this approach to certain forms of first-order probabilistic information, and to develop
tools for defining probability distributions on models for first-order logic. In knowledge
based model construction this is done by interpreting the probabilistic rules (1) as
rules for the construction of standard Bayesian networks over ground atoms. Given
a ground queryP(p(a, b)|q(a, b), r (a),s(b)) =? the model construction will yield
a Bayesian network containing nodes for the atomsp(a, b),q(a, b), r (a),s(b) (and
possibly a large number of additional nodes), and thereby determine a unique value for
P(p(a, b)|q(a, b), r (a),s(b)). As noted above, the intended semantics of the rules (1)
alone will not uniquely determine the desired probabilities, so that it is clear that at some
point additional information or assumptions—not directly expressed by (1)—must enter
the construction process. Essentially, these additional assumptions have to determine how

2 As long as no constant symbols appear in the rules, the same will be true for constantsc, d for which we
have the same evidenceq(c, d). Most concrete representation systems provide for constants in the rules, so that
the probabilities entailed by the rules are not necessarily invariant under substituting different constants. For
the purpose of the present paper we may focus on rules without constants, because our main result is a lower
complexity bound, which, obviously, also is applicable to richer systems admitting constant symbols.
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the conditional probabilities in clauses with the same head are to be combined to obtain
the conditional probability of the head given the conjunction of the bodies of the various
clauses.

In early approaches (Breese [2]) this information was supplied implicitly by certain im-
plementation details of the construction algorithm, and consequently the primary repre-
sentation language did not possess a declarative semantics independent from the network
construction process. Haddawy [7] and Ngo and Haddawy [17] have argued that this is un-
satisfactory, and have proposed representation systems with additional syntactic constructs
that in the knowledge base declare how several applicable clauses are to be combined.

Relational Bayesian networks (Jaeger [9,10]) can be understood as a representation
formalism that goes one step further by compiling sets of clauses (1), and the necessary
additional conventions for their combination, into a single functional expressionF , so that
the knowledge base now consists of exactly one declaration of the form

r (v) := F(s1, . . . ,sk,v), (2)

for each relation symbolr (we use boldface lettersv,a, . . . as abbreviations for tuples
(v1, . . . , vk), (a1, . . . , al), . . . of variables or constants). Formal semantics for this set of
declarations then can be defined in a straightforward manner. Another related framework
that uses a representation language different from probabilistic Horn clauses are the
probabilistic frame-based systems of Koller and Pfeffer [13].

Once one has taken the step to supply the primary representation formalism with
descriptive semantics independent from any construction algorithm for standard Bayesian
networks, the question arises whether standard Bayesian networks are still needed at all.
Their role now has changed from being the subject of our primary representation to being
merely a tool of inference: if there were more efficient ways to compute the answer to
a probabilistic query than by constructing a Bayesian network over ground atoms, we
would be happy to dispense with Bayesian networks altogether. To emphasize this shift
of perspective, we refer asauxiliary network constructionto the process of constructing
standard Bayesian networks as an inference technique for representation languages with
independent semantics.

It does not seem to be unreasonable to expect more efficient inference techniques than
auxiliary network construction to exist, because this approach amounts to a complete
“propositionalization” of first-order information. For logic inference problems from
(deterministic) Horn-clauses we know that we can avoid this, and, for example, by
unification and resolution deduce from

p(v)← q(v,w)

q(a,u)←
that p(a) holds, without first constructing all the ground atomsp(c),q(c, c′), . . . for all
constantsc, c′, . . . in the language.

It is natural to look for corresponding techniques for probabilistic inference from
first-order probabilistic rules like (1) or (2)—techniques that compute probabilities by
manipulating more abstract logical expressions than ground atoms. In this paper we show
that it is very unlikely that with such algorithms we can obtain inference techniques that
are more efficient than auxiliary network construction.



300 M. Jaeger / Artificial Intelligence 117 (2000) 297–308

2. Model representation systems

It is our aim to derive our complexity results in as general terms as possible, showing
their applicability to a great variety of different representation systems. In order to do this,
we have to abstract from the concrete syntactical constructs used in various systems, and
analyze these systems in terms of their semantic expressiveness.

To achieve this goal we develop in this section the general concept of aprobabilistic
model representation system, which (very loosely) can be seen as specialized counterpart
of the general concept of a logic. Just as different logics can be compared, and their
complexity be analyzed, by considering the classes of models they can define, we derive
results for model representation systems in terms of the class of models they can describe,
where models now are probability distributions.

First, we have to describe the structure of the models that are defined by the
representation systems we deal with. To motivate the following definition, consider again
the case of probabilistic Horn clauses as the representation language. It is clear that, e.g.,
the semantics of knowledge base (1) will be used to assign probability values to sentences
such asp(a, b)∧ s(b). However, it is not enough to say that the semantics of a knowledge
base is given by a probability distribution over sentences: to see why, consider the two
rules

p(v)
0.5←− q(v,u)

q(v,u)
0.8←−

where the second clause means that the marginal probability ofq(v,u) is 0.8. Also assume
that the semantical conventions adopted (perhaps via some additional declarations in the
knowledge base) make the conditional probability ofp(a) increase in the number of valid
instantiations foru in q(a,u). In particular, we would have

P
(
p(a)|q(a, b))<P (p(a)|q(a, b),q(a, c)).

But more than that, since each possible instantiation ofu in q(a,u) has a positive
probability of 0.8 of being valid, the probability ofp(a) should also increase in the number
of possible instantiations, whether or not they appear in the evidence. Thus, the probability
of p(a) as defined by the given rules, can only be determined with respect to a certain
(finite) domainD of elements that we can substitute forv andu.

Consequently, the semantics of a knowledge base does not consist of a single probability
distribution over sentences, but of one distribution for each (finite) domainD. Formally,
a probability distribution on sentences containing relation symbols from a vocabularyS

and constants fromD is most conveniently represented by a distribution on the set of all
structures (or models) that interpret the symbols inS overD. We denote the set of these
structures by ModD(S). As the particular names of the elements ofD should be irrelevant,
we may restrict attention to the case whereD = n= {0,1, . . . , n− 1} for somen ∈N (we
here avail ourselves of the set-theoretic convention to identify the numbern ∈ N with the
set{0, . . . , n− 1}).
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Definition 1. A finite domain probabilistic relational model representation systemM
consists of
• A syntax that defines for every relational vocabularyS = {r 1, . . . , r k} a setM(S) of

well-formedmodel representations.
• A semantics that assigns to everyΦ ∈M(S) and everyn ∈ N a probability measure
PΦn on Modn(S).

Note that a probabilistic model representation system differs from aprobabilistic logic
in that it is required that every model representationΦ defines for everyn a unique
measure on Modn(S), whereas a theoryΦ in a probabilistic logic will usually define a
(possibly empty) set of such measures. It should also be noted that most existing systems
are somewhat more general than described in Definition 1 in that they allow for a setR of
predefined, deterministic relations on the domain, so that the semantics mapsR-structures
overn to probability measures overS-expansions of theR-structure.

In the sequel we simply write “model representation system” and “vocabulary” for
“finite domain probabilistic relational model representation system” and “relational
vocabulary”, respectively.

Next we describe minimal requirements for the expressiveness of model representation
systems. Our complexity results will hold for those systems that satisfy these requirements.

The first requirement is very simple: we should be able to represent the uniform
distribution on Modn(S). The second requirement is to have the ability to condition the
probability thatv belongs to some relationr on certain logical properties ofv with respect
to other relationss1,s2, . . . . In a clause based representation language, for instance, this
requirement will demand the availability of rules of the form

r (v)
p←− α(v,s1, . . . ,sk), (3)

whereα(v,s1, . . . ,sk) is some logical expression in the variablesv and the relation
symbolss1, . . . ,sk . Our minimal requirement will be that rules of this form are available
for α being an equality constraintvi = vj , a conjunctions1(v

′)∧ s2(v
′′), a negated atom

¬s(v), and an existentially quantified atom∃ws(v,w). Of these types of rules only the
case ofα being a conjunction is readily recognized as being provided by existing systems
for knowledge based model construction. Existential quantification, on the other hand,
might look like a rather strong assumption about a system’s expressiveness. It should be
noted, however, that a rule like

r (v)
1←− s(v,w)

together with the common convention that multiple instantiations of the right hand side of
a rule are to be combined bynoisy-or, just amounts to existential quantification.

The following definition formulates the availability of rules like (3) in syntax-
independent, general semantic terms. In this definition, and in the remainder of the paper,
we need some notation for restrictions of structures to sub-vocabularies, and restrictions
of measures to sub-algebras: whenM′ ∈Modn(S′) andS ⊆ S′, thenM′ � S denotes the
S-structure over domainn that has the same interpretations of the symbols inS asM′.
Conversely, a structureM ∈ Modn(S) can be identified with the subset{M′|M′ � S =
M} ⊆ Modn(S′). WhenP ′ is a probability measure on Modn(S′), thenP ′ � Modn(S)
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denotes the probability measureP on Modn(S) defined byP(M) = P ′({M′|M′ � S =
M}), andP ′(·|M) denotes the conditional distribution on Modn(S

′) given {M′|M′ � S =
M}. We use the notationv′ ⊆ v to express that all variables in the tuplev′ are variables
that also appear inv.

Definition 2. A model representation systemM allows first-order conditioningif
• For every vocabularyS there existsΦ ∈ M(S) such thatPΦn is the uniform

distribution on Modn(S) for all n ∈N.
• For every vocabularyS, everyΦ ∈M(S), everyk-ary r /∈ S, for v := (v1, . . . , vk),

and for every expressionα(v) of one of the four forms
– vi = vj (16 i, j 6 k),
– s1(v

′)∧ s2(v
′′) (s1,s2 ∈ S; v′,v′′ ⊆ v),

– ¬s(v′) (s ∈ S, v′ ⊆ v),
– ∃ws(v′,w) (s ∈ S, v′ ⊆ v),
there existsΦα ∈M(S ∪ {r }), such that∀n ∈N:

PΦ
α

n �Modn(S)= PΦn , (4)

and for alln ∈N, all M ∈Modn(S), and allm ∈ nk :
PΦ

α

n

(
r (m)|M)= {1 if M |= α(m),

0 if M 6|= α(m). (5)

The conditions of Definition 2 demand that the probability ofr (v) can be conditioned on
very simple logical properties ofv. For relational Bayesian networks it is straightforward
to show that, in fact,r (v) can be conditioned on arbitrary first-order expressible properties
of v [9]. For systems based on probabilistic Horn rules, on the other hand, it is not so
obvious that with rules (3) for simple formulasα we can also encode more complicated
conditions like

r (v)
1←−¬∃w(s1(v

′,w)
)∨ s2(v

′′). (6)

The following lemma, which is instrumental to the proof of Theorem 4 in the next section,
shows that the elementary requirements of Definition 2 are sufficient to guarantee that rules
like (6) can be encoded.

Lemma 3. Let M be a model representation system that allows first-order conditioning.
LetΦ be a model representation for a vocabularyS, r /∈ S a k-ary relation symbol, and
φ(v) a first-orderS-formula whose free variables are amongv = (v1, . . . , vk). Then there
exists a model representationΦφ for a vocabularySφ ⊇ S ∪ {r }, such that for alln

PΦ
φ

n �Modn(S)= PΦn , (7)

and for alln ∈N, all M ∈Modn(S), and allm ∈ nk :
PΦ

φ

n

(
r (m)|M)= {1 if M |= φ(m),

0 if M 6|= φ(m). (8)

In particular, for allm ∈ nk :
PΦ

φ

n

(
r (m)

)= PΦn (φ(m)). (9)
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Proof. First note that (7) and (8) directly imply (9). We prove the existence ofΦφ with (7)
and (8) by induction on the structure ofφ.

First, assume thatφ is of the forms(v′) for somes ∈ S,v′ ⊆ v. Then the lemma follows
from the caseα(v)≡ s(v′) ∧ s(v′) in Definition 2. The case forφ of the formvi = vj is
similar.

Now considerφ(v) of the formψ(v) ∧ χ(v). According to the induction hypothesis,
the lemma holds forψ andχ . Applying the induction hypothesis first toψ , let r ψ be
a new k-ary relation symbol, and letΦψ be a model representation for a vocabulary
Sψ ⊇ S ∪ {r ψ }, such that

PΦ
ψ

n �Modn(S)= PΦn ,
and for allM ∈Modn(S),m ∈ nk :

PΦ
ψ

n

(
r ψ(m)|M

)= {1 if M |=ψ(m),
0 else.

Now we apply the induction hypothesis toχ and the already constructedΦψ . This gives
us a model representationΦχ for a vocabularySχ ⊇ Sψ containing another newk-ary
relation symbolr χ , such that

PΦ
χ

n �Modn(S)=
(
PΦ

χ

n �Modn(Sψ)
)
�Modn(S)

= PΦψn �Modn(S)

= PΦn ,
and for allM ∈Modn(Sψ ),m ∈ nk :

PΦ
χ

n

(
r χ (m)|M

)= {1 if M |= χ(m),
0 else.

=
{

1 if M � S |= χ(m),
0 else.

GivenΦχ we now can use the caseα ≡ r ψ(v)∧ r χ (v) of Definition 2 to find a final model
representationΦφ for the vocabularySφ = Sχ ∪ {r }, such that

PΦ
φ

n �Modn(S)=
(
PΦ

φ

n �Modn(Sχ )
)
�Modn(S)

= PΦχn �Modn(S)

= PΦn ,
and for allM ∈Modn(Sχ ),m ∈ nk :

PΦ
φ

n

(
r (m)|M)= {1 if M |= r ψ(m)∧ r χ(m),

0 else.

=
{

1 if M � S |=ψ(m)∧ χ(m),
0 else.

The last identity establishes (8) forM ∈Modn(S).
The case forφ(v) of the form¬ψ(v) is dealt with in a similar manner.
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Finally, considerφ(v) of the form∃wψ(v,w). We apply the induction hypothesis to a
relation symbolr ψ of arity k+1 and the formulaψ(v,w) to obtain a model representation
Φψ . We then obtainΦφ by applying Definition 2 for the caseα(v) ≡ ∃wr ψ(v,w) to r
andΦψ . 2

3. Complexity: Deterministic, exact inference

Given a model representation systemM we now are interested in the complexity of
answering probabilistic queries, i.e., of computingPΦn (φ(m)) for a model representation
Φ, a domainsizen, and a propositionφ(m). Obviously, with the assumptions we have
made we cannot derive exact bounds for the complexity of this computation, because these
would depend on many specific features of the systemM that we have left unspecified. Our
aim here, therefore, only is to investigate one specific aspect of the overall computational
complexity, namely its dependence on the domainsizen. The dependency on this parameter
is of particular interest, because it is with regard to this parameter that we would expect
to obtain a gain in efficiency by replacing auxiliary network construction with more
sophisticated inference techniques: whenΦ andφ(m) are fixed, then the number of nodes
in an auxiliary network constructed to computePΦn (φ(m)) will usually be polynomial in
n, and the complexity of inference exponential inn (because, in general, we will also have
in the auxiliary network a polynomial growth of the maximal number of parents of single
nodes). It is not obvious that this exponential blowup inn is inherent in the problem, and
cannot be avoided by other inference techniques. Note, in particular, that the well-known
complexity results for inference in Bayesian networks [3] are not applicable here, because
we cannot represent a suitable class of Bayesian networks that shows that inference is NP-
hard in the network size as the set of auxiliary networks constructed for a set of queries
PΦn (φ(m)) (n ∈N; Φ,φ fixed).

Thus, we here will be concerned with the complexity of computingPΦn (φ(m)) as a
function of n with Φ and φ(m) being fixed. Moreover, following a common strategy,
we will first concentrate on the simpler problem of deciding whetherPΦn (φ(m)) > 0.
Formally, our problem then becomes that of deciding predicates of the form

NONZERO
(
Φ,φ(m)

) := {n ∈N | PΦn (φ(m))> 0
}

defined by model representationsΦ (in some representation systemM ), and a formula
φ(m) containing constantsm1, . . . ,mk ∈N (use the convention thatPΦn (φ(m))= 0 when
mi > n for somei 6 k, and thereforeφ(m) cannot not be interpreted over the domainn).
For arbitrary subsetsA ⊆ N we useAun andAbin to denote the sets of unary and binary
encodings, respectively, of the members ofA. Since we are interested in the complexity in
terms ofn of deciding NONZERO(Φ,φ(m)), not in terms of log(n), we really are talking
about the complexity of deciding NONZERO(Φ,φ(m))un, when complexity is measured
in input size.

Adopting the notation of Johnson [11], we denote by (N)ETIME the class of subsets
of {0,1}∗ that can be decided in (nondeterministic) time O(2cn) for somec > 0. Note that
this class is distinct from (N)EXPTIME, which is characterized by time bounds of the form
O(2n

c
) (c > 0). We can now formulate our main theorem.
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Theorem 4. Let M be a model construction system that allows first-order conditioning.
If NETIME 6= ETIME, then there exist anS-model representationΦ in M , and a ground
S-atomr (m) such thatNONZERO(Φ, r (m))un /∈ P.

The proof of Theorem 4 is quite straightforward using Lemma 3 and established results
due to Jones and Selman [12] on the connection between the class NETIME and spectra of
first-order sentences. We briefly review the relevant definitions and results here.

Thespectrumof a first-order sentenceφ in the vocabularyS is the set{n ∈ N | ∃M ∈
Modn(S): M |= φ}, i.e., the set of all finite cardinalities for whichφ has a model. A subset
of N is called a spectrum if it is the spectrum of some first-order sentenceφ (over an
arbitrary vocabulary—but note that without loss of generality we can assume a relational
vocabulary). The result of Jones and Selman [12] that we shall use is: a subsetA of N is a
spectrum iffAbin ∈NETIME.

Proof of Theorem 4. LetM be as stated in the theorem, and assume thatAbin ∈NETIME\
ETIME. By Jones and Selman’s [12] theorem there exists a first-order sentenceψ in a
relational vocabularyS, such thatA is the spectrum ofψ . LetΦ be a model representation
for S such thatPΦn is the uniform distribution on Modn(S) for all n ∈ N. By Lemma 3
there exists a model representationΦφ for Sφ ⊇ S, such thatSφ contains a unary relation
symbolr , and (7) and (9) hold. Since the right hand side of (9) is nonzero iffn is in the
spectrum ofφ, we obtain

NONZERO
(
Φφ, r (m)

)=A.
By the assumptionAbin /∈ ETIME it follows that

Aun=NONZERO
(
Φφ, r (m)

)un
/∈ P. 2

Our proof of Theorem 4 relies crucially on the requirement of Definition 2 that
we can condition on equality constraints. If we deleted the caseα ≡ vi = vj from
Definition 2 then our arguments would only show that we can encode as sets of the form
NONZERO(Φ, r (m)) spectra of first-order sentences without equality. These, however,
are simply sets of the formN \ {1,2, . . . , k − 1, k}, which can be decided in constant time.

Theorem 4 gives us a lower complexity bound for some NONZERO(Φ, r (m)). For
most concrete model construction systems proposed so far, on the other hand, we have the
upper bound NONZERO(Φ, r (m)) ∈NP for allΦ, r (m). This suggests to check whether
NONZERO(Φ, r (m)) might be an NP-complete problem for some representation system
M , and suitableΦ, r (m). A general result in complexity theory, however, says that this is
unlikely to be the case.

Theorem 5. If P 6= NP then NONZERO(Φ, r (m))un is not NP-complete for any
representation systemM , model representationΦ, and queryr (m).

Proof. This follows immediately from results of Mahaney [15] that so-calledsparsesets
cannot be NP-complete if P6=NP. All sets in unary encoding (also called tally languages)
are examples of sparse sets.2
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While it is customary to simplify questions about the complexity of computing a
function to a simpler decision problem, it is of course the complexity of computing the
value ofPΦn (r (m)) that we are ultimately interested in. In practice, one will usually not
need to compute the precise probability value, but only an approximation with a certain
given precision. This leads us to the subject of approximate inference, which we deal with
in the following section.

4. Approximate inference

Following Dagum and Luby [4], we may distinguish between four principal variants of
approximate inference: the approximation may be within a specifiedabsoluteor relative
error, and the approximation algorithm may be eitherdeterministicor randomized.

When lower complexity bounds for the computation of exact probabilitiesP(·) are
derived by a reduction to a decision problem of the formP(·) > 0? (as we did here, and
as did Cooper [3] for standard Bayesian network inference), then we cannot gain much
by turning from exact inference to approximate inference with a bounded relative error,
because an approximation ofP(·) with a bounded relative error will still show whether
P(·) > 0 orP(·)= 0. For this reason we here concentrate on computing approximationsz

for PΦn (r (m)) with a boundε on the absolute error, i.e., a numberz that satisfies

z ∈ [PΦn (r (m))− ε,PΦn (r (m))+ ε].
We first turn to deterministic approximations. It turns out that now the complexity of

computingPΦn (r (m)) can be as well-behaved as one might hope—at least in theory.

Theorem 6. There exist model construction systems that allow first-order conditioning
such that for every model representationΦ, every ground atomr (m), and everyε > 0 the
complexity(in n) of computing an approximation ofPΦn (r (m)) with absolute error at most
ε is O(1).

Proof. In Jaeger [10] it is shown that for a certain subclass of relational Bayesian networks
the probabilitiesPΦn (r (m)) converge to some limit asn→∞ for every networkΦ in that
subclass, and every queryr (m). The subclass identified in Jaeger [10] is rich enough to
allow first-order conditioning.

Now assume thatΦ and r (m) are such thatPΦn (r (m))→ p ∈ [0,1] asn→∞, and
let ε > 0 be given. Then there existsn0 ∈ N, such thatPΦn (r (m)) ∈ [p − ε,p + ε] for
all n> n0. Thus, we obtain an algorithm for computing anε-approximation ofPΦn (r (m))
by exact computation ofPΦn (r (m)) (using any available algorithm) whenn < n0, and by
simply outputtingp whenn> n0. The time requirement of this procedure is asymptotically
constant inn. 2

Clearly this result is of theoretical rather than practical interest, because neither does
it tell us how to compute the numbern0, nor does it provide any bound on the constant
characterizing the time requirement. Furthermore, the theorem is not applicable for
representation systems in whichPΦn (r (m)) need not converge.
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In practice, randomized approximation algorithms can be particularly well-suited for
computing probabilitiesPΦn (r (m)). To see why, consider an algorithm that produces
random samplesMi ∈ Modn(S) according to the distributionPΦn . As in logic sampling
for standard Bayesian networks [8] we could use the fraction of structuresMi with
Mi |= r (m) in a random sampleM1, . . . ,Mn as an estimate forPΦn (r (m)). This is usually
not the best use we can make of the sampleM1, . . . ,Mn, though: when the distribution
PΦn is invariant under renaming (as we have always assumed), then we have

PΦn
(
r (m)

)=EΦn (‖r (v)‖), (10)

where by‖r (v)‖ we denote the fraction of tuplesm that satisfyr (m) in a structure
M ∈ Modn(S), and byEΦn the expected value under the distributionPΦn . Therefore, we
also gain an estimate forPΦn (r (m)) by averaging over the structuresM1, . . . ,Mn the
values of‖r (v)‖. The variance of the random variable‖r (v)‖ is at most as large as that
of the indicator variable forr (m), and usually decreasing inn. Depending on how fast
the variance of‖r (v)‖ decreases the reduction of the size of a random sample needed
to estimatePΦn (r (m)) with given error and confidence bounds can offset the increased
complexity of sampling a single structureMi . In the best case we will really obtain a time
requirement that is constant inn.

5. Conclusion

The purpose of this paper was twofold: first, we wanted to develop a conceptual
framework that permits us to treat in a unified way a number of systems that have
been proposed in the literature for integrating some first-order reasoning capabilities into
Bayesian networks. We here have obtained this unified view by characterizing such systems
entirely in terms of their semantics, without imposing any restrictions on the specific syntax
used.

Our main objective then was to derive within this general setting results on the
complexity of probabilistic inference as a function of the size of the specific domain
to which the generic knowledge is applied. This is a new complexity problem that is
distinctive of the emergent class of probabilistic relational model representation systems.
It does not appear in probabilistic logics, because there entailment always is with regard to
all models of a knowledge base, not the models over a specific domain. It also is distinct
from complexity questions about inference in standard Bayesian networks, because there
a change of the domain (by way of a different set of nodes in the network) always is
accompanied by a new model representation (i.e., a new network).

Our complexity problem is of particular interest, because polynomial bounds here would
have shown that there are more efficient ways for probabilistic inference than auxiliary
network construction—an inference technique that a priori looks rather wasteful, because
it involves a complete propositionalization of originally first-order knowledge. However,
Theorem 4 shows that for reasonably expressive representation systems we are unlikely
to find inference techniques that have a better worst-case behavior than auxiliary network
construction. The proof of the theorem points to reasoning about equality as the main cause
for the complexity bounds we obtained. Investigations of weaker systems with potentially
lower complexity should therefore be directed towards systems without equality reasoning.
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