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Abstract ister is used. However, few papers included a detailed study
of the selection of the landmarks [3, 16]. Moreover, most
This paper deals with the problem of non-linear registration methods are based on image information, and
landmark-based registration of CT (at two differentingsan  do not take into account the physiology of the human body.
of the breathing cycle, intermediate expirations) and PET However, physiological information can be useful in order
images of thoracic regions. We propose a general methodto ensure realistic deformations and to guide the registra-
to introduce a breathing model in a registration procedure tion process. While several papers present breathing model
in order to simulate the instant in the breathing cycle most built for medical visualization [27], no paper exploits S
similar to the PET image and guarantee physiologically modelin a registration process. Consequently, in this pape
plausible deformations. Initial results are very promigin we propose an approach in which we integrate a physio-
and demonstrate the interest of this method to improve thelogically driven breathing model in a non-linear registat
combination of anatomical and functional images for diag- procedure based on lung surface landmark points in order
nosis and oncology applications. to guarantee physiologically plausible deformations.
. In Section 2, we summarize existing works which use
1. Introduction breathing models combined (or not) with registration al-
Registration of multimodal medical images is a widely 90rithms and then we provide an overview of the selected
addressed topic and is important in many different domains,M0del. The proposed model-based non-linear registration
in particular for oncology and radiotherapy applications. @/gorithm is detailed in Section 3. Then, the application of
We consider Computed Tomography (CT) and Positron & landmark-based registration method adapted to patholog-
Emission Tomography (PET) of thoracic regions, which ical cases combined with the breathing model is described
provide complementary information about the anatomy and iN Section 4. Section 5 discusses some results.

the metabolism of the human body (see Figure 1). Their ’ ]
registration has a significant impact on improving medical ﬂ m ‘
¢ &

decisions for diagnosis and therapy [7, 14, 23]. Linearsegi
tration is not sufficient to cope with the local deformations
produced by cardiac and respiratory motions. Therefore,

) o : : (a) (b) (€)
non-linear registration methods are required to registdr m
timodality images of thoracic and abdominal regions, even
with combined PET/CT scanners [21].

Most of the existing non-linear registration methods use 2 Breathing Models
intensity inf_ormation or featl_Jres in order to calculate the 9 1 Thoracic Imaging Registration
transformation between the images [8, 13, 26]. Thus they I .
have to either find the transformation that maximizes the . A recent _stgdy h|_gh||ghted the effects of bregthmg dur-
similarity between the registered image and the targetémag ng a_non—r|g|d _reg|strat|on process and the mportance
(iconic methods) or compute a transformation that matchesmc ta_kln_g these into gccount [22]. Three techniques f_or
some particular features (landmarks) in both images (geo_resplranon-g_aFed radiotherapy are be!ng deyeloped to im-
metrical methods). In the case of landmark-based meth-PrOve the efficiency of lung tumors radiations:
ods, the selection of these particular features is anirmpbrt (1) active controling the patient’s breathing via airflow
task. In many methods, the curvature of the surfaces to reg- blockage;

Figure 1. Corresponding views of the same patient in CT
(a)—(b) for two instants of the breathing cycle, and PET (c).



(2) passive or empiricalusing external measurements in these inputs, a physics-based deformation approach based
order to adapt radiation protocols to the tumor's mo- on Green'’s function (GF) formulation is estimated to de-
tion[9, 12, 25]; form the 3D lung surface models. Specifically the GF is

(3) model-basedemploying a breathing model to predict defined in terms of a physiological factor, the regional alve
lungs deformations during the breathing cycle [19].  olar expandability (elastic properties), and a structtaed

) _ _ tor, the inter-nodal distance of the 3D surface lung model.

We focus on thoracic volume registration and propose a -, compute the coefficients of these two factors, an itegativ

_pat|ent-specn‘|c _reglstratlon_ through_ the use of a breath approach is employed and, at each step, the force applied on

ng mod_el (technique (3)). lefe_rent blo-mathematlcal-rep a node is shared with its neighboring nodes based on a lo-

resentations of the human respiratory mechanics have beef ,ormalization of the alveolar expandability couplethwi

developed [10].Mathematical toolsan be employed and  jniar_nodal distance. The process stops when sharing of the
the most popular technique, for medical visualization, is applied force reaches equilibrium [18].

called NCAT (NURBS-based cardiac-torso). It is based ) _ _ _ )
on Non-Uniform Rational B-Spline (NURBS) to correct 3 Using the Breathing Model in Registration

for respiratory artifacts of SPECT images [20]. A multi-  \ye have conceived an original algorithm in order to in-
resolution registration _for4D Magnetic Resonance Imaging troduce the advantages of using the breathing model de-
(MRI) was proposeq in [15]. In [5], a 4D NCAT phan- scribed above in a registration procedure. Figure 2 shows
tom and a 3D CT Image were use_d to ge_znerate 4D CTipe computational workflow of the complete algorithm. The
and to comp_ute an ?IaSt'C reg|strat|0|ﬁ>.hy5|call_y-b_ased inputs consist of one PET volume and two CT volumes of
modelsdescribe the important role of airflow inside the ¢ same patient, corresponding to two different instahts o
lungs and can be based on Active Breathing Coordinatory,e preathing cycle (intermediate expirations). The fiegs
(ABC) [19] or volume preservation relation [17, 27]. AU~ ofyhe aigorithm consists in segmenting the lungs and the tu-
thors (_)f [15, 22] used pre-register MRI to estimate the ., o 'the PET data and on the two CT data sets, using a
breathing mOF’e'- In [5]_' the NCAT phantom was use_d, but, 1opust mathematical-morphology-based approach [4]. The
from a modeling and simulation point of view, physically- ., oshes (called CT mesh and PET mesh) corresponding to

based deformation methods are better adapted for simulaty,g gitferent segmentation results are computed. The sub-
ing lung dynamics as they allow precise generation of inter- sequent steps are detailed next

mediate 3D lung shapes. They are easy to adapt to patients,
without the need for physical external adaptations for each

radiotherapy treatment.
} . (MprT) SEGMENTATION (M1, Mn)
2.2 Physics-Based Breathing Model T
The modeling approach used in this work was previously BREATHING MODEL (Section 3.1)  (Mj, ..., Mn)
discussed in [17] and the two major components involved in - Y
the modeling and visualization efforts include: CT SELECTION(Section 3.2) (Mo)
v v
(1) the parameterization of Pressure-Volume (PV) data of | (MEY%(N)) REGISTRATION
a human subject which act as an ABC; Landmarks selection (Section 4.1)
(2) the estimation of the deformation operator from either Computation of the deformation (Section 4.3)

4D (3D+t) CT lung data or two 3D CT lung data set.
Figure 2. Computational workflow of the registration of CT

In step (1) a parameterized PV curve, obtained from nor-  and PET images using a breathing model (cf. Section 3.3).
mal human subijects, is used as a driver for simulating the . . .

3D lung shapes at different lung volumes. In step (2), the 8.1 Patient-Specific Breathing Model
computation takes as inputs the nodal displacements of the We first estimate the intermediate 3D lung shapes be-

3D lung model and the estimated amount of force applied tween the two segmented CT lung datasets. Displacements
on the nodes of the meshes (which are on the surface). DisOf lung surface points are computed as follows:

placements are obtained from 4D CT of a normal human
subject. The direction and magnitude of the lung surface
point’s displacement are computed using the fact that the
expansion of lung tissues is linearly related to the ineeas

in lung volume. The estimated amount of applied force on

each node (that represents the air-flow inside lungs) is esti In other words, for known directions of displacement the
mated based on a PV curve and the lungs’s orientation withmagnitude of the displacement is computed from the two
respect to the gravity, which controls the air flow. Given 3D CT lung datasets. With known estimations of applied

(1) Directionsare given by the model (computed from a
4D CT normal data set of reference).

(2) Magnitudesare “patient-specific” and are computed
from the given 3D CT lung datasets.



force and “subject-specific” displacements the coeffigent wheref" is the registration transformation afdy, .-
of the GF can be estimated (cf. Section 2.2). Then, the GF denotes the registered mesh. Then, the transformation

operator is used to compute the 3D lung shapes at differ- due to the breathing is used to register g ... to the
ent intermediate lung volumes. This methodology is further original CT (continuous line in Figure 3). The trans-
detailed in [17]. formation due to the breathing betwe#fy, and My

can be computed as the following composition:
3.2 CT Selection

By applying the continuous breathing model, we can

obtain different instants (“snapshots”) of the breathigg c We apply toM} ., the same transformatichc  in
cle, generating simulated CT meshes. By comparing each order to compute the registration witl y :

CT mesh with the PET mesh, we select the “closest” one.

PoN=¢N_1,NO...0bct1,042° Pc,ct1- (4)

Let us denote the CT simulated meshesMy, Ms,..., MEBYR(N) = ®cn(Mp g (C)) (5)
My. The meshMy corresponds to the CT in maximum = Qo n(f"(Mprr, Mc)),

inhalation andM; to maximum exhalation. By using the

breathing model, the transformatign; between any two where M%7 denotes the PET registered mesh using
instantsi andj of the breathing cycle can be computed as: the breathing model.

M; = ¢;;(M;). We can compare these CT meshes with

the PET meshX/pgpr). We define a measure of similarity M, Mc My
between meshes (or their corresponding volumes) and the CT Meshes — ==
mesh that minimizes the criteriof'] is denoted ad/¢:
Mc :argm_inC(Mi,]WpET). (1)
4

The Root Mean Square (RMS) distance has been Reg|strat|_opfrom PE]
to CT original mesh

chosen as the criterionC, as a first approach: . CT Mc mesh &
1 using the and PET mesha
Drus(M,A) = \/5 [drms (M, A)? + drys (A, M)? breathing model step . .
superimposeds
with dpars(M, A) = \/ o Y e D(p. A)? and where H
D(p, A) = [minge 4 d(p, q)] with d the Euclidean distance. ‘.'
g EEEEEEEEEEEEEERE. .i‘
3.3 Deformation of the PET ! Registration from PET td ennt
) ) . * CT original mesh directly MppT
Registration ofM pgr and the original CT mesiify “eeeececscascaaa=- .
can be perform with two approaches :
(1) Adirectregistration (dashed line in Figure 3): Figure 3. The meshV/¢ is the closest to the mesWp 1.
R R We can registeM prr to My following one of the two
Mpgr(N) = [ (Mpgr, MN), () paths (notations are defined in Section 3.3).

wheref** denotes the transformation that registers di- 4 Registration Adapted to Pathologies
rectly Mpgr and My, andMﬁgT the result of reg-

istering the PET directly to the CT mesiiy. The
transformationf ¢ may be computed by any registra-
tion method adapted to the problem. As an illustrative
example, we choose the original CT to correspond to
the end-inspiration}/, but a similar process could be
applied for any CT image. In this approach the defor- 4,1  Influence of Selected Landmark Points
mation itself is not guided by any anatomical knowl-
edge. In addition, if the PET and the original CT are
very different (end-inspiration CT), it is likely that this
registration will provide physically unrealistic results
(2) To avoid such potential problems, we propose here an
alternativeapproach: once the appropriate C¥ )
is selected, we compute the registration between the
M pgrr mesh and thé/- mesh as:

The algorithm described in Section 3 can be applied with
any type of registration method. We show how the proposed
approach can be applied for landmark-based registration of
multimodality images in pathological cases, in partictdar
diagnosis, follow-up and radiotherapy treatments.

Features selection is an important task in registration. In
this section, we focus on voxel selection but more com-
plex features can be detected [1]. The selection can be
manual (as in most methods) [24], semi-automated [16],
or automated [16]. Manual selection is tedious and time-
consuming. The authors in [6] suggest that semi-automated
selection is interesting, integrating experts knowlechgeri
automatic process. Automatic selection permits reduced ex
Mppr(C) = f"(Mpgr, Mc), 3) ecution time with high accuracy. Most of these automatic



Same axial views of the lung. set of voxels in decreasing order of absolute value of cur-
MEA GAu vature, whereNs is the number of voxels of the surface
E- D _ andV, = {v¢;}i=o.. n., the set of landmarks, wherg,
o - o is the number of landmarks. For each voxgle V (for
i = 0 to Ng) with non-zero-curvature, we add in V., if
Vv, € Vg, dg(vi,vj) > T whered, is the geodesic dis-
tance on the lung surface afids a threshold to be chosen.
With this selection process, some regions (the flattest) may
. contain no landmark, hence the addition of step 4: for each
0. O, ) voxel on the surface of the lung € V with zero-curvature,
R S if there is no voxelv; € V. with d,(v;,v;) < T, we add
v; in Vr.
Vg = 3431 Ve = 2885 Four variants are tested:
MEA-GAU MEA-GAU-UNI (1) MEA — Mean curvature without step 4;
(2) Gau — Gaussian curvature without step 4;
E — _ E - (3) MEA-GAU — Using mean and Gaussian curvature
) ' ’ without step 4;
(4) MEA-GAU-UNI—Using mean and Gaussian curvature
with step 4.

When mean and Gaussian curvatures are employed
) ) (methods MEA-GAuU and Mea-GAu-UNI), the setV
O i B} i merges the set of voxels in decreasing order of mean cur-
et et vature and the set of voxels in decreasing order of Gaus-
sian curvature, by taking alternatively a value in each set.
These strategies for landmark point selection are compared
_ _ _ in Figure 4. Results given by the #A and Gau methods
fégfgffafsiﬁifg;na?; li?jgi?i]filcjsw}r:ntv?c?iicgr?glz’s th(; are different, and it is interesting to combine them (see the
: results obtained with the ¥A-GAU method). The MA-

the large rectangle, there is no landmark withu method . T
whereas there are four landmarks with ieAa method. GAL_"'UNI method permits to add some points in locally flat
regions (see Figure 4).

In the fusion methodMEA-GAU), these landmarks are se-
lected. In the small rectangle, no landmark is selected with
the mean and/or the Gaussian curvatures. However, aland- 4.2 Rigidity Constraints in Pathological
mark is added in this area with theeA-GAU-UNI method. Cases

Ve = 3484 Ve = 3794

We have developed a registration algorithm for the tho-
methods exploit curvature [16]. In [3], an auto-correlatio racic region in the presence of pathologies [11]. The ad-
method is also combined with curvature. vantage of our approach is that it takes into account the

In the present work, landmark selection is automatic and tumors, while preserving continuous smooth deformations.
based on Gaussian and mean curvatures, according to the&/e assume that the tumor is rigid and thus a linear trans-
following steps: formation is sufficient to cope with its movements between

(1) compute curvature for each voxel of the lung surface; CT and PET images. This hypothesis is relevant and in ac-
(2) sortvoxelsin decreasing order of absolute value of cur- cordance with the clinicians’ point of view, since tumors

vature; are often compact masses of pathological tissue. The algo-
(3) select voxels based on curvature and distance criterigrithm relies on previously segmented structures (lungs and
(detailed in the following paragraph); tumors). Landmarks corresponding to homologous points

(4) if a uniform selection is needed then add voxels with are defined in both images, and will guide the deformation
zero-curvature in the area where no voxels have beenof the PET image towards the CT image. The deformation
considered as landmarks. at each point is computed using an interpolation procedure

This algorithm is proposed to select particular voxels based on the landmarks, the specific type of deformation of
that provide relevant information. Moreover, we intend to each landmark (depending on the structure it belongs to),
obtain an approximately uniform selection to take into ac- and weighted by a distance function, which guarantees that
count the entire surface of the lungs for computing the de- the transformation is continuous. We have shown that a con-
formation. In step 3, we considéf = {v;},—o..ns, the  sistent and robust transformation is obtained [11].



can be observed that the result of the registration by atdirec
method (Figure 6(d)) produces unrealistic deformations in

Once the different CT meshes are computed and the clos-the region between the lungs. With the proposed algorithm

est CT mesh)c, is selected, the PET and the original cT (Figure 6(h)), the resuitis visually more accurate. The RMS
(in our examplel/y), are registered as follows: distance between the registered PET lungs and the original

CT lungs is reduced to 11.8 mm. In Figure 7 the improve-
(1) Selectlandmarks on the CT me&h- (with Gaussian  ment of the results is clearly illustrated for the normalecas
or/and mean curvatures); in the region of the right lung close to the liver. All these
(2) Estimate corresponding landmarks on the PET (usingresults have been obtained by using landmarks determined
the Iterative Closest Point algorithm [2]); by the combination of mean and Gaussian curvatures plus
() i=C; a uniform selection. This variant provided visually better
(4) Track landmarks from/; to the next CT mesi/; 1; results although further validation is necessary.
(5) If M;11 = My, go to step (6) else go to step (4) with
1=1+1,
(6) Register (with the method summarized in Section 4.2)
the PET and the original CT using the estimated corre-
spondences.

4.3 Registration with Rigidity Con-
straints and Breathing Model

In step (1), the four variants presented in Section 4.1 can
be used. The breathing model is used in step (4). The land-
mark points selected o/ are tracked on the meshes es-
timated with the breathing model. Consequently, we can
assume that the corresponding landmarks selected on the
original CT are correct (and actually they represent theesam
anatomical point) and follow the deformations of the lungs
during the respiratory cycle.

5 Resultsand Discussion

In this section we present some results we have obtained | A
using the general methodology described in Section 3 and (9) i it | //‘ \\
the registration method summarized in Section 4. A AN

We have applied our algorithm on a pathological case ex-

(h)

hibiting one tumor and on a normal case. We have one PET

and two CT images for each case. First, the breathing model
is computed using the meshes of the lungs segmented on CT
data. Then, we compare 10 (regularly distributed) instants

of the generated model with the lung surface segmented

from the PET (meshes have more th#n000 nodes). Fig-

ure 5 shows the results of surface comparison between the
PET surface, for two instants from the CT data set: the clos-

est and the end-inspiration.

(&) Drums 12.1 (b) Dryvs = 24.2
Figure 5. Superimposition of the contours of the PET
(black) and the CT lungs (grey) at two instants of the breath-
ing cycle: (a) closestN/¢) and (b) end-inspiration/ ).

The results obtained with the proposed algorithm are
physically-based and more realistic than results obtdiyed
registering the PET directly with the original CT. First re-

Figure 6. Original PET (a) and CT (b) images with tumor
(surrounded by a white circle). Correspondences between
the selected points in the PET image and in the CT image
are shown in (c), (e) and (g). Registered PET data is shown
in (d) for the direct method and in (f) and (h) for the method
with the breathing model with the variant combining mean
and Gaussian curvatures in (e)-(f) and adding uniformly dis
tributed landmarks in (g)-(h). lllustrations are provided

2D for the sake of readability.

gy
(b) (€)

@)
Figure 7. Details of registration on the bottom part of right
lung, in a normal case, (a) CT, (b) PET registered with-
out breathing model, (c) with breathing model. The white
crosses correspond to the same coordinates.

6 Conclusion and Future Work

We have developed a CT-PET landmark-based registra-
sults confirm this statement as shown in Figures 6 and 7. Ittion method that uses a breathing model to guarantee phys-



iologically plausible deformations. The method consists i

computing a deformation guided by a breathing model. We

[10]

J. Mead. Measurement of Inertia of the Lungs at Incréase
Ambient Pressure]AP, 2(1):208-212, 1956.

also proposed and studied four variants, based on curyaturel11] A. Morenoet al. Non-linear Registration Between 3D Im-

to select landmarks. Initial results on a pathological case
and a normal case are very promising and show the im-
provement brought by the breathing model. Our algorithm

avoids undesired tumor misregistrations and preserves tu-

[12]

mor geometry and intensity. Moreover, as the tumor in CT [13
and PET has not necessarily the same size and shape, the
registration of these two modalities is very useful because [14]

all the information of the PET image is preserved. This is
very important in order to know the true extension of the
pathology for diagnosis and for the treatment of the tumor
with radiotherapy, for example. Moreover, we highlight the
best variant to detect landmarks: to uniformly select land-

marks by combining mean and Gaussian curvatures.
We are currently performing a deeper evaluation on a [16]

larger database, in collaboration with clinicians.
work includes a refined “snapshot” selection, using further

subdivisions of time intervals, a more precise charadceriz

tion of the tumor movement and its influence on the breath-
ing, and a comparison of the the proposed method with
other approaches which include rigid objects in the regis- [

tration.
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