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Abstract

This paper deals with the problem of non-linear
landmark-based registration of CT (at two different instants
of the breathing cycle, intermediate expirations) and PET
images of thoracic regions. We propose a general method
to introduce a breathing model in a registration procedure
in order to simulate the instant in the breathing cycle most
similar to the PET image and guarantee physiologically
plausible deformations. Initial results are very promising
and demonstrate the interest of this method to improve the
combination of anatomical and functional images for diag-
nosis and oncology applications.

1. Introduction

Registration of multimodal medical images is a widely
addressed topic and is important in many different domains,
in particular for oncology and radiotherapy applications.
We consider Computed Tomography (CT) and Positron
Emission Tomography (PET) of thoracic regions, which
provide complementary information about the anatomy and
the metabolism of the human body (see Figure 1). Their
registration has a significant impact on improving medical
decisions for diagnosis and therapy [7, 14, 23]. Linear regis-
tration is not sufficient to cope with the local deformations
produced by cardiac and respiratory motions. Therefore,
non-linear registration methods are required to register mul-
timodality images of thoracic and abdominal regions, even
with combined PET/CT scanners [21].

Most of the existing non-linear registration methods use
intensity information or features in order to calculate the
transformation between the images [8, 13, 26]. Thus they
have to either find the transformation that maximizes the
similarity between the registered image and the target image
(iconic methods) or compute a transformation that matches
some particular features (landmarks) in both images (geo-
metrical methods). In the case of landmark-based meth-
ods, the selection of these particular features is an important
task. In many methods, the curvature of the surfaces to reg-

ister is used. However, few papers included a detailed study
of the selection of the landmarks [3, 16]. Moreover, most
registration methods are based on image information, and
do not take into account the physiology of the human body.
However, physiological information can be useful in order
to ensure realistic deformations and to guide the registra-
tion process. While several papers present breathing models
built for medical visualization [27], no paper exploits such a
model in a registration process. Consequently, in this paper,
we propose an approach in which we integrate a physio-
logically driven breathing model in a non-linear registration
procedure based on lung surface landmark points in order
to guarantee physiologically plausible deformations.

In Section 2, we summarize existing works which use
breathing models combined (or not) with registration al-
gorithms and then we provide an overview of the selected
model. The proposed model-based non-linear registration
algorithm is detailed in Section 3. Then, the application of
a landmark-based registration method adapted to patholog-
ical cases combined with the breathing model is described
in Section 4. Section 5 discusses some results.

(a) (b) (c)
Figure 1. Corresponding views of the same patient in CT
(a)–(b) for two instants of the breathing cycle, and PET (c).

2 Breathing Models
2.1 Thoracic Imaging Registration

A recent study highlighted the effects of breathing dur-
ing a non-rigid registration process and the importance
of taking these into account [22]. Three techniques for
respiration-gated radiotherapy are being developed to im-
prove the efficiency of lung tumors radiations:

(1) active: controling the patient’s breathing via airflow
blockage;



(2) passive or empirical: using external measurements in
order to adapt radiation protocols to the tumor’s mo-
tion [9, 12, 25];

(3) model-based: employing a breathing model to predict
lungs deformations during the breathing cycle [19].

We focus on thoracic volume registration and propose a
“patient-specific” registration through the use of a breath-
ing model (technique (3)). Different bio-mathematical rep-
resentations of the human respiratory mechanics have been
developed [10].Mathematical toolscan be employed and
the most popular technique, for medical visualization, is
called NCAT (NURBS-based cardiac-torso). It is based
on Non-Uniform Rational B-Spline (NURBS) to correct
for respiratory artifacts of SPECT images [20]. A multi-
resolution registration for 4D Magnetic Resonance Imaging
(MRI) was proposed in [15]. In [5], a 4D NCAT phan-
tom and a 3D CT image were used to generate 4D CT
and to compute an elastic registration.Physically-based
modelsdescribe the important role of airflow inside the
lungs and can be based on Active Breathing Coordinator
(ABC) [19] or volume preservation relation [17, 27]. Au-
thors of [15, 22] used pre-register MRI to estimate the
breathing model. In [5], the NCAT phantom was used, but,
from a modeling and simulation point of view, physically-
based deformation methods are better adapted for simulat-
ing lung dynamics as they allow precise generation of inter-
mediate 3D lung shapes. They are easy to adapt to patients,
without the need for physical external adaptations for each
radiotherapy treatment.

2.2 Physics-Based Breathing Model

The modeling approach used in this work was previously
discussed in [17] and the two major components involved in
the modeling and visualization efforts include:

(1) the parameterization of Pressure-Volume (PV) data of
a human subject which act as an ABC;

(2) the estimation of the deformation operator from either
4D (3D+t) CT lung data or two 3D CT lung data set.

In step (1) a parameterized PV curve, obtained from nor-
mal human subjects, is used as a driver for simulating the
3D lung shapes at different lung volumes. In step (2), the
computation takes as inputs the nodal displacements of the
3D lung model and the estimated amount of force applied
on the nodes of the meshes (which are on the surface). Dis-
placements are obtained from 4D CT of a normal human
subject. The direction and magnitude of the lung surface
point’s displacement are computed using the fact that the
expansion of lung tissues is linearly related to the increase
in lung volume. The estimated amount of applied force on
each node (that represents the air-flow inside lungs) is esti-
mated based on a PV curve and the lungs’s orientation with
respect to the gravity, which controls the air flow. Given

these inputs, a physics-based deformation approach based
on Green’s function (GF) formulation is estimated to de-
form the 3D lung surface models. Specifically the GF is
defined in terms of a physiological factor, the regional alve-
olar expandability (elastic properties), and a structuralfac-
tor, the inter-nodal distance of the 3D surface lung model.
To compute the coefficients of these two factors, an iterative
approach is employed and, at each step, the force applied on
a node is shared with its neighboring nodes based on a lo-
cal normalization of the alveolar expandability coupled with
inter-nodal distance. The process stops when sharing of the
applied force reaches equilibrium [18].

3 Using the Breathing Model in Registration
We have conceived an original algorithm in order to in-

troduce the advantages of using the breathing model de-
scribed above in a registration procedure. Figure 2 shows
the computational workflow of the complete algorithm. The
inputs consist of one PET volume and two CT volumes of
the same patient, corresponding to two different instants of
the breathing cycle (intermediate expirations). The first step
of the algorithm consists in segmenting the lungs and the tu-
mors on the PET data and on the two CT data sets, using a
robust mathematical-morphology-based approach [4]. The
meshes (called CT mesh and PET mesh) corresponding to
the different segmentation results are computed. The sub-
sequent steps are detailed next.

PET CT(s)

SEGMENTATION (M1, MN )

BREATHING MODEL (Section 3.1)

CT SELECTION (Section 3.2)

REGISTRATION

Landmarks selection (Section 4.1)
Computation of the deformation (Section 4.3)

(M1, . . . , MN )

(MC )

(MRbm

PET (N))

(MPET )

Figure 2. Computational workflow of the registration of CT
and PET images using a breathing model (cf. Section 3.3).

3.1 Patient-Specific Breathing Model

We first estimate the intermediate 3D lung shapes be-
tween the two segmented CT lung datasets. Displacements
of lung surface points are computed as follows:

(1) Directionsare given by the model (computed from a
4D CT normal data set of reference).

(2) Magnitudesare “patient-specific” and are computed
from the given 3D CT lung datasets.

In other words, for known directions of displacement the
magnitude of the displacement is computed from the two
3D CT lung datasets. With known estimations of applied



force and “subject-specific” displacements the coefficients
of the GF can be estimated (cf. Section 2.2). Then, the GF
operator is used to compute the 3D lung shapes at differ-
ent intermediate lung volumes. This methodology is further
detailed in [17].

3.2 CT Selection

By applying the continuous breathing model, we can
obtain different instants (“snapshots”) of the breathing cy-
cle, generating simulated CT meshes. By comparing each
CT mesh with the PET mesh, we select the “closest” one.
Let us denote the CT simulated meshes byM1, M2,. . . ,
MN . The meshMN corresponds to the CT in maximum
inhalation andM1 to maximum exhalation. By using the
breathing model, the transformationφi j between any two
instantsi andj of the breathing cycle can be computed as:
Mj = φi j(Mi). We can compare these CT meshes with
the PET mesh (MPET ). We define a measure of similarity
between meshes (or their corresponding volumes) and the
mesh that minimizes the criterion (C) is denoted asMC :

MC = arg min
i

C(Mi, MPET ). (1)

The Root Mean Square (RMS) distance has been
chosen as the criterionC, as a first approach:

DRMS(M, A) =
√

1

2
[dRMS(M, A)2 + dRMS(A, M)2]

with dRMS(M, A) =
√

1

|M|

∑

p∈M D(p, A)2 and where

D(p, A) = [minq∈A d(p, q)] with d the Euclidean distance.

3.3 Deformation of the PET

Registration ofMPET and the original CT meshMN

can be perform with two approaches :
(1) A direct registration (dashed line in Figure 3):

MRd
PET (N) = fRd(MPET , MN), (2)

wherefRd denotes the transformation that registers di-
rectly MPET andMN , andMRd

PET the result of reg-
istering the PET directly to the CT meshMN . The
transformationfRd may be computed by any registra-
tion method adapted to the problem. As an illustrative
example, we choose the original CT to correspond to
the end-inspiration,MN , but a similar process could be
applied for any CT image. In this approach the defor-
mation itself is not guided by any anatomical knowl-
edge. In addition, if the PET and the original CT are
very different (end-inspiration CT), it is likely that this
registration will provide physically unrealistic results.

(2) To avoid such potential problems, we propose here an
alternativeapproach: once the appropriate CT (MC)
is selected, we compute the registration between the
MPET mesh and theMC mesh as:

M r
PET (C) = f r(MPET , MC), (3)

wheref r is the registration transformation andM r
PET

denotes the registered mesh. Then, the transformation
due to the breathing is used to register theM r

PET to the
original CT (continuous line in Figure 3). The trans-
formation due to the breathing betweenMC andMN

can be computed as the following composition:

ΦC,N = φN−1,N ◦ . . . ◦ φC+1,C+2 ◦ φC,C+1. (4)

We apply toM r
PET the same transformationΦC,N in

order to compute the registration withMN :

MRbm
PET (N) = ΦC,N (M r

PET (C))
= ΦC,N (f r(MPET , MC)),

(5)

whereMRbm
PET denotes the PET registered mesh using

the breathing model.

CT Meshes
. . .

superimposed

Registration from PET to
CT original mesh directly

and PET mesh

MPET

. . .

Registration from PET
to CT original mesh

using the
breathing model steps

CT MC mesh

M1 MC MN

Figure 3. The meshMC is the closest to the meshMPET .
We can registerMPET to MN following one of the two
paths (notations are defined in Section 3.3).

4 Registration Adapted to Pathologies
The algorithm described in Section 3 can be applied with

any type of registration method. We show how the proposed
approach can be applied for landmark-based registration of
multimodality images in pathological cases, in particularfor
diagnosis, follow-up and radiotherapy treatments.

4.1 Influence of Selected Landmark Points

Features selection is an important task in registration. In
this section, we focus on voxel selection but more com-
plex features can be detected [1]. The selection can be
manual (as in most methods) [24], semi-automated [16],
or automated [16]. Manual selection is tedious and time-
consuming. The authors in [6] suggest that semi-automated
selection is interesting, integrating experts knowledge in an
automatic process. Automatic selection permits reduced ex-
ecution time with high accuracy. Most of these automatic



Same axial views of the lung.
MEA GAU

VL = 3431 VL = 2885

MEA-GAU MEA-GAU-UNI

VL = 3484 VL = 3794

Figure 4. Selection of landmarks – In each image, two
regions of interest are identified with two rectangles. In
the large rectangle, there is no landmark withGAU method
whereas there are four landmarks with theMEA method.
In the fusion method (MEA-GAU), these landmarks are se-
lected. In the small rectangle, no landmark is selected with
the mean and/or the Gaussian curvatures. However, a land-
mark is added in this area with theMEA-GAU-UNI method.

methods exploit curvature [16]. In [3], an auto-correlation
method is also combined with curvature.

In the present work, landmark selection is automatic and
based on Gaussian and mean curvatures, according to the
following steps:
(1) compute curvature for each voxel of the lung surface;
(2) sort voxels in decreasing order of absolute value of cur-

vature;
(3) select voxels based on curvature and distance criteria

(detailed in the following paragraph);
(4) if a uniform selection is needed then add voxels with

zero-curvature in the area where no voxels have been
considered as landmarks.

This algorithm is proposed to select particular voxels
that provide relevant information. Moreover, we intend to
obtain an approximately uniform selection to take into ac-
count the entire surface of the lungs for computing the de-
formation. In step 3, we considerV = {vi}i=0..NS

, the

set of voxels in decreasing order of absolute value of cur-
vature, whereNS is the number of voxels of the surface
andVL = {vLi}i=0..NL

, the set of landmarks, whereNL

is the number of landmarks. For each voxelvi ∈ V (for
i = 0 to NS) with non-zero-curvature, we addvi in VL, if
∀ vj ∈ VL, dg(vi,vj) > T wheredg is the geodesic dis-
tance on the lung surface andT is a threshold to be chosen.
With this selection process, some regions (the flattest) may
contain no landmark, hence the addition of step 4: for each
voxel on the surface of the lungvi ∈ V with zero-curvature,
if there is no voxelvj ∈ VL with dg(vi,vj) < T , we add
vi in VL.

Four variants are tested:

(1) MEA – Mean curvature without step 4;
(2) GAU – Gaussian curvature without step 4;
(3) MEA-GAU – Using mean and Gaussian curvature

without step 4;
(4) MEA-GAU-UNI – Using mean and Gaussian curvature

with step 4.

When mean and Gaussian curvatures are employed
(methods MEA-GAU and MEA-GAU-UNI), the set V
merges the set of voxels in decreasing order of mean cur-
vature and the set of voxels in decreasing order of Gaus-
sian curvature, by taking alternatively a value in each set.
These strategies for landmark point selection are compared
in Figure 4. Results given by the MEA and GAU methods
are different, and it is interesting to combine them (see the
results obtained with the MEA-GAU method). The MEA-
GAU-UNI method permits to add some points in locally flat
regions (see Figure 4).

4.2 Rigidity Constraints in Pathological
Cases

We have developed a registration algorithm for the tho-
racic region in the presence of pathologies [11]. The ad-
vantage of our approach is that it takes into account the
tumors, while preserving continuous smooth deformations.
We assume that the tumor is rigid and thus a linear trans-
formation is sufficient to cope with its movements between
CT and PET images. This hypothesis is relevant and in ac-
cordance with the clinicians’ point of view, since tumors
are often compact masses of pathological tissue. The algo-
rithm relies on previously segmented structures (lungs and
tumors). Landmarks corresponding to homologous points
are defined in both images, and will guide the deformation
of the PET image towards the CT image. The deformation
at each point is computed using an interpolation procedure
based on the landmarks, the specific type of deformation of
each landmark (depending on the structure it belongs to),
and weighted by a distance function, which guarantees that
the transformation is continuous. We have shown that a con-
sistent and robust transformation is obtained [11].



4.3 Registration with Rigidity Con-
straints and Breathing Model

Once the different CT meshes are computed and the clos-
est CT mesh,MC , is selected, the PET and the original CT
(in our exampleMN ), are registered as follows:

(1) Select landmarks on the CT meshMC (with Gaussian
or/and mean curvatures);

(2) Estimate corresponding landmarks on the PET (using
the Iterative Closest Point algorithm [2]);

(3) i = C;
(4) Track landmarks fromMi to the next CT meshMi+1;
(5) If Mi+1 = MN , go to step (6) else go to step (4) with

i = i + 1;
(6) Register (with the method summarized in Section 4.2)

the PET and the original CT using the estimated corre-
spondences.

In step (1), the four variants presented in Section 4.1 can
be used. The breathing model is used in step (4). The land-
mark points selected onMC are tracked on the meshes es-
timated with the breathing model. Consequently, we can
assume that the corresponding landmarks selected on the
original CT are correct (and actually they represent the same
anatomical point) and follow the deformations of the lungs
during the respiratory cycle.

5 Results and Discussion

In this section we present some results we have obtained
using the general methodology described in Section 3 and
the registration method summarized in Section 4.

We have applied our algorithm on a pathological case ex-
hibiting one tumor and on a normal case. We have one PET
and two CT images for each case. First, the breathing model
is computed using the meshes of the lungs segmented on CT
data. Then, we compare 10 (regularly distributed) instants
of the generated model with the lung surface segmented
from the PET (meshes have more than40 000 nodes). Fig-
ure 5 shows the results of surface comparison between the
PET surface, for two instants from the CT data set: the clos-
est and the end-inspiration.

(a)DRMS = 12.1 (b) DRMS = 24.2

Figure 5. Superimposition of the contours of the PET
(black) and the CT lungs (grey) at two instants of the breath-
ing cycle: (a) closest (MC) and (b) end-inspiration (MN ).

The results obtained with the proposed algorithm are
physically-based and more realistic than results obtainedby
registering the PET directly with the original CT. First re-
sults confirm this statement as shown in Figures 6 and 7. It

can be observed that the result of the registration by a direct
method (Figure 6(d)) produces unrealistic deformations in
the region between the lungs. With the proposed algorithm
(Figure 6(h)), the result is visually more accurate. The RMS
distance between the registered PET lungs and the original
CT lungs is reduced to 11.8 mm. In Figure 7 the improve-
ment of the results is clearly illustrated for the normal case
in the region of the right lung close to the liver. All these
results have been obtained by using landmarks determined
by the combination of mean and Gaussian curvatures plus
a uniform selection. This variant provided visually better
results although further validation is necessary.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Original PET (a) and CT (b) images with tumor
(surrounded by a white circle). Correspondences between
the selected points in the PET image and in the CT image
are shown in (c), (e) and (g). Registered PET data is shown
in (d) for the direct method and in (f) and (h) for the method
with the breathing model with the variant combining mean
and Gaussian curvatures in (e)-(f) and adding uniformly dis-
tributed landmarks in (g)-(h). Illustrations are providedin
2D for the sake of readability.

(a) (b) (c)
Figure 7. Details of registration on the bottom part of right
lung, in a normal case, (a) CT, (b) PET registered with-
out breathing model, (c) with breathing model. The white
crosses correspond to the same coordinates.

6 Conclusion and Future Work
We have developed a CT-PET landmark-based registra-

tion method that uses a breathing model to guarantee phys-



iologically plausible deformations. The method consists in
computing a deformation guided by a breathing model. We
also proposed and studied four variants, based on curvature,
to select landmarks. Initial results on a pathological case
and a normal case are very promising and show the im-
provement brought by the breathing model. Our algorithm
avoids undesired tumor misregistrations and preserves tu-
mor geometry and intensity. Moreover, as the tumor in CT
and PET has not necessarily the same size and shape, the
registration of these two modalities is very useful because
all the information of the PET image is preserved. This is
very important in order to know the true extension of the
pathology for diagnosis and for the treatment of the tumor
with radiotherapy, for example. Moreover, we highlight the
best variant to detect landmarks: to uniformly select land-
marks by combining mean and Gaussian curvatures.

We are currently performing a deeper evaluation on a
larger database, in collaboration with clinicians. Future
work includes a refined “snapshot” selection, using further
subdivisions of time intervals, a more precise characteriza-
tion of the tumor movement and its influence on the breath-
ing, and a comparison of the the proposed method with
other approaches which include rigid objects in the regis-
tration.
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