
Reasoning about Faults in Aspect-Oriented Programs: A Metrics-based Evaluation

Rachel Burrows∗, François Taı̈ani∗, Alessandro Garcia† and Fabiano Cutigi Ferrari‡
∗School of Computing and Communications – Lancaster University – UK

Email: {r.burrows, francois.taiani}@comp.lancs.ac.uk
†Informatics Department – Pontifical Catholic University of Rio de Janeiro – Brazil

Email: afgarcia@inf.puc-rio.br
‡Computing Department – Federal University of São Carlos – Brazil

Email: fabiano@dc.ufscar.br

Abstract—Aspect-oriented programming (AOP) aims at fa-
cilitating program comprehension and maintenance in the pres-
ence of crosscutting concerns. Aspect code is often introduced
and extended as the software projects evolve. Unfortunately, we
still lack a good understanding of how faults are introduced
in evolving aspect-oriented programs. More importantly, there
is little knowledge whether existing metrics are related to
typical fault introduction processes in evolving aspect-oriented
code. This paper presents an exploratory study focused on the
analysis of how faults are introduced during maintenance tasks
involving aspects. The results indicate a recurring set of fault
patterns in this context, which can better inform the design of
future metrics for AOP. We also pinpoint AOP-specific fault
categories which are difficult to detect with popular metrics
for fault-proneness, such as coupling and code churn.

Keywords-Aspect-Oriented Programming; Fault-proneness;
Software Metrics

I. INTRODUCTION

Aspect-Oriented Programming (AOP) [1] seeks to fa-
cilitate program comprehension by providing mechanisms
that improve modularity of crosscutting concerns. Because
aspects are usually included and extended as the software
projects evolves, the reliability of aspect-oriented (AO) code
needs to be better understood in this context. In particular,
the characteristics of the source code of such evolving
projects need to be measured to better highlight their impact
on program understanding and fault-proneness. Tradition-
ally, such measurements rely on code metrics, which are then
used to detect potentially faulty modules. However, even
with the establishment of industry-strength AOP frameworks
such as SpringAOP, JBossAOP and Glassbox, the metrics-
based detection of fault-prone modules in evolving aspect-
oriented software has rarely been investigated.

Contemporary evidence suggests that faults are largely
influenced by particularities of the underlying program-
ming mechanisms [2, 3, 4, 5]. The potential downside of
AOP mechanisms is that they introduce intricate depen-
dencies between modules, which might in turn lead to
faults [6, 7, 8, 9, 10]. The role of these dependencies in
the fault introduction process is particularly important to
during software maintenance tasks, when developers must

first understand the dependencies between modules of pro-
grams. It is also important in developing effective testing
strategies for AOP [11, 12, 13]. Evaluating and improving
existing metrics, and the general AOP practice, requires
however a good understanding of how faults might arise
when AO programs are maintained. Unfortunately, such an
understanding is still missing for AOP, in particular during
maintenance tasks involving aspects.

This paper presents the results of an exploratory user
study focusing on the faults introduced by maintenance tasks
in AO programs. We asked 16 developers, organised in
eight pairs, to conduct specific maintenance tasks on an
existing AO application. The application is written in As-
pectJ, a language that provides a classical AOP model [14]
that includes, mainly, pointcut and advice mechanisms. A
tally of approximately 130 changes made by programmers
were analysed and tested to reveal faults. We report how
those faults tended to be introduced by programmers while
including or extending aspect code in the target program.
In addition, we systematically analyse to what extent some
classical metrics [15, 16, 17] for fault-proneness could be
used to detect the faulty aspects. Based on these analyses,
our main findings are as follows:

1) By far, faults related to incorrect join point selection
occurred when introducing new pointcuts rather than
when partially or fully reusing a pointcut.

2) More importantly, we also found that AOP-specific
coupling metrics proposed in earlier works [16, 10]
do not correlate well with pointcut faults in evolving
programs. Surprisingly, these faults do not correlate to
code churn either, a traditional metric that is typically
highly correlated with faults [17, 18];

3) Many faults were introduced when data dependencies
between base classes and aspects increased. In partic-
ular, directly extracting data from a base code module
appeared to be more fault-prone than other methods
of data extraction e.g. using shared join points or
reflection.

4) We use this analysis to highlight future directions for
AOP metrics. In particular, we show that a specific

targeting of the mechanism being measured, and lower
granularity of measurement can substantially improve
the fault sensitivity of a metric, and propose a new met-
ric to detect pointcut faults based on these principles.

The paper is structured as follows. After a brief back-
ground on AOP, fault proneness, and metrics (Section II),
we present our experimental setup (Section III). We then
analyse the observed fault patterns, and propose a new
metrics to address the limitations we noticed in popular
metrics (Section IV). In the sequence, we summarise the
related research and discuss the limitations of our work
(Section V). Finally, we reflect on future directions for AOP
metrics in our conclusion (Section VI).

II. BACKGROUND AND PROBLEM STATEMENT

A. Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) [1] seeks to im-
prove the modularity of crosscutting concerns, such as
exception handling, concurrency and caching. Whereas these
concerns are typically scattered across multiple modules in
a software system, AOP offers mechanisms to refactor this
code from the base code and modularise them into aspects.

An aspect contains advices, which are method-like con-
structs that encapsulate crosscutting behaviour. Differently
from methods, advices are implicitly invoked1 at specific
points of the program execution (the join points), which are
specified in pointcut expressions. AOP languages such as
AspectJ also support intertype declarations (ITDs) that allow
aspects to alter the static structure of the system, e.g. by
introducing new members into modules such as methods or
fields and modifying the inheritance amongst classes through
declare-like statements. More details about the language
features can be found in the language documentation [19].

B. Fault Prediction in AO Programs

AOP may improve important software quality attributes
such as evolvability [20], modularity [21] and maintainabil-
ity [22]. However, it also introduces intricate dependencies
between aspects and the base code. This can lead to the
introduction of specific faults which are particularly hard
to foresee or detect with conventional coupling metrics [23,
24, 25]. For instance, a pointcut expression has the powerful
ability to quantify and implicitly invoke an advice method
at multiple points, significantly changing the control flow
and the data flow of the underlying program. This greatly
hardens the task of predicting, detecting and locating faults
in AO applications.

We highlight that, in general, faults are largely influenced
by particularities of inter-module dependencies established
by the underlying programming mechanisms [2, 3, 4, 5]. De-
spite a large body of work evaluating module dependencies
and faulty modules in object-oriented programs, this level of

1This is the implementation model found in AspectJ-like languages,
although this may vary in other AOP supporting technologies.

knowledge is lacking with respect to AOP, for which only a
few initiatives can be found [10, 9].

C. Coupling and Churn Metrics for AO Programs

Coupling metrics are popular indicators of fault-proneness
in object-oriented systems [2, 3, 4]; Existing work has
highlighted effective coupling metrics as indicators of good
modularity such as Coupling Between Components and
Depth of Inheritance Tree [15].

In the context of AOP, one can find a number of coupling
metrics [16, 26, 23, 27] which have been successfully used
in empirical studies of AOP [26, 28, 29]. However, they
have certain limitations for not effectively capturing subtle
coupling unique to AO programs that results from the use
of the aforementioned constructs [23, 24, 25].

In our previous research, we found that certain coupling
connections are more fault-prone than others [9]. We then
proposed a suite of exploratory metrics [10] that showed
to be more effective for predicting faulty modules than
traditional (AOP-adapted) metrics such as Coupling Between
Components and Coupling on Advice Execution [16]. Obvi-
ously, the achieved findings require further investigation in
order to allow proper generalisation.

In regard to code churn metrics, they have recently shown
high capacity of fault prediction [17, 18]. In the AOP field,
code churn has been investigated as a predictor of design
flaws in studies about design stability [28, 29]. Despite the
work by Stoerzer and Graf [30], who explore delta analysis
to realise the impact of changes in pointcut expression in
terms of quantification of join points, to the best of our
knowledge code churn has not been investigated as fault
predictor for AO programs.

III. STUDY SETUP

A. Study Goal and Hypothesis

The goal of this study is to explore fault introduction
processes in aspect-oriented programs and compare the
effectiveness of existing coupling and churn metrics for AOP
to detect the faulty modules. As part of the analysis we aim
to analyse the underlying causes of common faults in AO
programs and compare the ability of existing metrics to de-
tect fault-prone implementation strategies in such programs.

B. The Target Application

In this study, we evaluated an AspectJ application called
Telecom, which is a telephony system simulator which
is originally distributed with AspectJ [19]. We planned a
set of maintenance tasks in Telecom– further described in
Section III-C – with the goal of understanding how faults
are introduced while the system evolves.

We carefully selected the Telecom application as it
provides suitable base template to investigate a variety of
dependencies between both the classes and aspects. The
aspects contain advice, pointcuts, declarations which change
the control and data flow of the base program in a variety

«aspect»
Timing

Timer

Call
+ hangup()
+ pickup()
+ merge()

LongDistance

Customer
+ pickup()
+ hangup()
+ merge()
+ localTo()

«aspect»
TimerLog

Connection
+ complete()
+ drop()

«aspect»
Billing

<<crosscuts>> <<crosscuts>> <<crosscuts>>

caller

caller

receiver

receiver

<<introduces>>

connections1 *

Local

Figure 1. UML representation of classes and aspects in the Telecom system.

of ways. Importantly, the example is not too large or overly-
complex, thus enabling us to reduce the effect of extraneous
variables. It also enables us to perform a deep analysis of
the faults related to maintenance tasks as described further
in section III-C.

More importantly, the chosen application can be used
in the context of controlled experiments where time is
constrained for the programmers to comprehend and perform
the tasks they are assigned.

Figure 1 shows a simplified UML diagram of the system.
In Telecom, timing and billing of phone calls are handled
by aspects. The version we use in this study includes nine
modules, being six classes and three aspects.

The Call, Connection, and Customer classes provide
the basic functionality, i.e. they simulate local and long
distance phone calls between customers. The Timing aspect
measures the duration of calls, which is logged by the
TimerLog aspect. Billing implements the billing concern
and ensures calls are charged accordingly, managing updates
in the customers’ bill.

Note that Figure 1 shows a simplified view of the system,
which includes part of the public interface of the classes and
the modules that are crosscut by aspects2.

C. Setup and Coding Tasks

The study included 16 developers with experience in Java,
AOP and AspectJ. The level of experience varied, some
developers only possessed academic-level experience with
both programming languages whereas some participants had
industrial experience.

Pair programming was utilised to promote discussion on
alternative designs and AO implementing strategies (e.g.
which join point should be selected and whether or not a
pointcut should be reused) . Each pair of developers was
given a set of 11 maintenance tasks to perform on the

2Note that Figure 1 does not show advices within the aspect elements
since advices in AspectJ are anonymous method-like constructions.

Telecom system. Each developer was previously given a
briefing on the functionality of the Telecom application and
a presentation stating the main role of each module.

The maintenance tasks – listed in Table I – did not specify
the coding strategy to be followed by the developers. There-
fore, they intended and resulted in developers modifying
different modules and varying the types of dependencies
sourced from a broad range of AOP mechanisms. The time
allocated to perform the tasks was 90 minutes, although
developers were able to submit their answers if they finished
beforehand.

Note that, in order to aid understandability, the tasks are
divided into three groups, namely T1, T2 and T3. Each of
them contains one or more maintenance operation, which
are enumerated throughout the text included in the table.
For instance, #1 marks maintenance operation 1, #2 marks
maintenance operation 2 and so on.

The defined tasks included modifying existing function-
ality (T1 and T2), and adding new functionality (T3, #4–
#11). Maintenance operarations from T1 did not require
any access to data from the base code whereas operations
from T3 (#5–#10) did; the functionality of T3 could be
achieved by matching a number of different join points,
creating new pointcuts or reusing existing ones, and using
ITDs and different types of advices. This allowed an in-
depth comparison of the fault-proneness of a variety of
implementation strategies.

The focus of this study is both qualitative and quan-
titative in nature. We performed an direct comparison of
the different implementations in order to find trends in the
types of faults introduced. To aid the qualitative analysis,
we performed Pearson’s correlation analysis. This enabled
us to quantitatively assess the effectiveness of metrics in
indicating faulty modules.

D. Fault Collection
Existing JUnit tests were utilised from the work of Lemos

et al. [31]. These were adapted and extended in order to test

Table I
ENUMERATED DESCRIPTION OF MAINTENANCE TASKS

Task Description
T1 Manipulate the TimerLog aspect so that when any method in the Timer is called, a message is printed out. The

message to be printed out is “Timer class is being accessed”#1

T2 Manipulate the Billing aspect so that both the caller#2 and receiver#3 share the cost of the call.
T3 Record call information using a new aspect named “CallHistory”.#4 The information to be saved per call is as follows:

– Name of the caller#5 and receiver#6.
– Duration of the call between caller#7 and receiver#8; to be saved in a variable named “totalConnectTime”.
– Charge given to the caller#9 and receiver#10 for the call.
Test your CallHistory aspect works correctly; create a callsToString method, which prints out all saved
information to the screen.#11

the new functionalities introduced by the tasks. These tests
aimed to validate and verify (i) functional core requirements
of the application e.g. making a call between customers;
(ii) behaviour of the existing aspects e.g. billing and timing
semantics; and (iii) behaviour added from maintenance tasks
completed by the developers.

Figure 2 presents the structural coverage3 achieved with
the developed test set. Note that all implementations, enu-
merated as G1–G8, have been executed on the same test set,
irrespective of their differences. The chart shows that the
statement coverage is higher than 90% on average, while
the branch coverage is between 70% and 80% on average.

G1 G2 G3 G4 G5 G6 G7 G8
%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Statement Branch

Pairs of developers

C
o

v
er

ag
e

Figure 2. Structural test coverage of the implementations.

A total of 26 faults were reported and categorised accord-
ing to a revised fault taxonomy for AO software [8]. This
taxonomy classifies each fault according to its cause. For
instance, a fault can be related to (i) a pointcut expression;
(ii) an ITD or a declare-like statement; (iii) an advice; or
(iv) the base program. The fault distribution per category
is depicted in Figure 3. Note that the two base program-
related faults occurred due to changes in the base modules
performed by the developers during the maintenance tasks,
that is, they were not present in code provided to the
developers.

3Computed using the JaBUTi tool [31].

Pointcuts
 (F1)

ITDs and Declarations
 (F2)

Advice
 (F3)

Base Program
 (F4)

0

2

4

6

8

10

12

14

Fault Category

N
u

m
b

er
 o

f
F

au
lt

s

Figure 3. Number of faults per fault category.

E. The Metrics

We applied a variety of metrics in this study, which
include code churn and coupling metrics. The criteria for
metrics selection are based on their popularity as well as
their effectiveness in indicating fault-proneness in industry-
strength systems [17, 18], object-oriented [2, 3, 4, 5] pro-
grams and aspect-oriented programs [10, 9].

In our study, code churn metrics brought an important
insight to the analysis as each modification has a certain
likelihood of introducing a fault into the code. The code
churn metrics were collected by creating a Ruby script4

that parsed through the AspectJ source code. By comparing
the original code with the modified code we quantified the
total number of lines (i)added, (ii)removed, and,(iii) added
or removed.

We also collected three popular coupling metrics for AO
programs: Coupling Between Components (CBM), Coupling
on Advice Execution (CAE) and Depth of Inheritance Tree
(DIT) [16]. These metrics are the most commonly applied
metrics for empirical studies in AOP [25] and consist in
direct extensions from the popular Chidamber and Kemerer
metrics suite for object-oriented programs [15].

Finally, two coupling metrics named Base Coupling and
Aspect Coupling were developed in our previous work [10].
These two metrics consider different coupling directions:
the coupling induced by an aspect on the rest of the code,
yielding Aspect Coupling; and the coupling received by a

4http://www.ruby-lang.org/ - 04/02/2011

module (class or aspect) through this mechanism from all
aspects in the system, yielding Base Coupling. An advantage
of these metrics is that it ensures we do not overlook fault-
proneness sourced from either side of the aspect-base code
relationship. Another key difference of these metrics is that
they are more sensitive to coupling frequency. By coupling
frequency we mean the number of times a module is advised
(possibly at the same join point) rather than summing up the
number of distinct modules that are coupled. For instance,
an aspect that advises a class once is probably less fault-
prone than an aspect that advises a class several times. By
capturing finer-grained coupling, these metrics have shown
to be more effective at indicating fault-prone modules than
traditional coupling metrics [16, 26, 23, 27].

Table II summarises the metrics applied to each group’s
implementation, in addition to the overall number of faults
we found. For each metric we show the average value across
all groups with the standard deviation. Modules in which no
change occurred are shown in grey.

IV. ANALYSIS AND DISCUSSION

Existing software metrics are often not designed to capture
particular implementation strategies or be more sensitive
to particular types of faults. Yes, different implementation
strategies might be more or less fault-prone, and might lead
to different types of faults. If we better understand how
software metrics can reflect the strategies and types of faults
occurring in AO programs, we will be in a better position
to improve both the metrics, and by feedback, proposed
enhanced AO designs and mechanisms.

In the following, we first report on the different implemen-
tation strategies we observed in our study and the types of
faults they led to. We then look at how well existing software
metrics were able to detect these different strategies, and to
provide contextual guidance on the type of potential faults in
AO modules. We finally propose a new metrics that improve
on the deficiencies we observed, and show that, in our study
at least, it considerably enriches the set of tools available
to program managers to detect fault-prone situations in AO
software.

A. Strategies and faults

1) Reuse vs. Pointcut Creation: We first noticed that,
when adding a new advice, developers were much more
likely to capture an incorrect set of join points (categorised
as an F1 fault in Figure 3) if they added a new pointcut,
rather than if they reused an existing pointcut of the telecom
application. In total, 9 F1 faults correspond to incorrectly
selected joinpoints, and all occur in newly created pointcuts.

This is particularly visible in the CallHistory aspect,
in which 8 of the above faults can be found (Table III).
Developers were required to create a new aspect named
CallHistory that implemented features described in tasks
4-11. In Table III, F1 faults (related to pointcuts) are
categorised according to the implementation strategy used

(new vs. existing pointcut). Of the 8 F1 faults, 5 of are
due to a selection of a subset of intended join points,
one to the selection of a wrong set of join points, which
includes both intended and unintended items, and, 2 due
to selection of a wrong set of join points, which included
only unintended items. All 8 of these faults were found
in aspects where advice was bound to new pointcuts. By
comparison, when new advice added was bound to existing
pointcut expressions, the pointcut expression was advising
join points suitable for the advice(0 F1 faults).

Two main reasons might explain why developers were
more likely to select a wrong set of joinpoints when creating
a new pointcut than when binding to existing pointcuts.
Firstly, if certain join points are already captured by ex-
isting pointcuts, they probably represent a crucial point in
the programs execution. For instance, the Timing aspect
has pointcuts that capture key stages of the application’s
execution (e.g. the start of a call and the end of a call).
These key stages act somewhat as “semantic checkpoints”
where essential information about the application’s logic is
made available. At these execution points, multiple tasks
need to be completed such as calculating the cost of the
call, stopping the timer, logging information. For this reason,
when completing a maintenance task related to one of these
key stages (such as Tasks 5 to 10), a suitable pointcut is
likely to be already available in the existing code.

Secondly, if there is a suitable pointcut, its capabilities
for extracting data have already been demonstrated within
the existing advice thus aiding understandability for other
aspects that wish to advise the same method or access
the same data. Reusing pointcuts also provides developers
with efficient means to control advice ordering by bringing
potentially interfering advices on the same set of joinpoints,
where constructs such as declare precedence, or the
different types of advice available in AspectJ can be applied
(i.e. one advice to execute before the join point and the other
after). By contrast, creating a new pointcut often requires an
in-depth understanding of the existing interactions between
the base and aspect code. For instance, Tasks 5 to 10 required
developers to extract data regarding the call that had just
ended. One potential candidate to obtain this data is the
method hangup (Figure 4). Unfortunately, when hangup
finishes, the data about the call is not available yet: this data
is produced by the aspects Billing and Timing, which ex-
ecute later by advising another method that follows hangup.
This complex set of dependencies eliminates hangup (and
any previously executing method) as a potential join point
for Tasks 5-10, but the incompatibility is hard to detect and
requires an in-depth understanding of how Billing and
Timing are woven into the base program.

The complexity of deciding when to extract data may
also explain the 2 faults created to incorrect advice type
specification as both pointcut expression related faults and
incorrect advice type specification faults have the difficulty
of deciding the point in execution in which the advice is

Table II
OVERVIEW OF RESULTS

Module

Code Lines of Coupling Coupling Depth of Aspect Base # Faults
Churn Code Between on Advice Inheritance Coupling Coupling

Modules Execution Tree
Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ

CallHistory.aj 35.25 18.22 30.50 16.74 3.50 2.07 0.50 0.53 0.00 0.00 3.50 4.63 1.25 1.49 2.69 2.15
Billing.aj 13.63 3.42 35.00 5.81 3.63 1.06 1.50 1.07 0.00 0.00 9.50 3.85 1.50 0.76 0.38 0.52
TimerLog.aj 4.25 1.28 12.00 1.31 1.00 0.53 0.13 0.35 0.00 0.00 11.63 5.21 0.00 0.00 0.13 0.35
Call.java 3.38 9.55 51.75 7.78 3.75 0.71 3.13 0.83 0.00 0.00 0.00 0.00 7.00 3.70 0.00 0.00
Customer.java 1.13 1.55 42.75 1.39 1.25 0.71 2.50 0.76 0.00 0.00 0.00 0.00 3.88 0.64 0.00 0.00
Timing.aj 0.38 0.74 19.00 0.00 2.75 0.71 1.25 0.71 0.00 0.00 5.38 4.31 6.38 1.69 0.06 0.18

N
o

ch
an

ge
︷

︸︸
︷ Connection.java 0.00 0.00 33.00 0.00 0.33 0.82 1.67 0.82 0.00 0.00 0.17 0.41 3.00 1.10 0.00 0.00

Local.java 0.00 0.00 6.00 0.00 0.13 0.35 0.88 0.35 1.00 0.00 0.00 0.00 1.25 0.71 0.00 0.00
LongDistance.java 0.00 0.00 6.00 0.00 0.13 0.35 0.88 0.35 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Timer.java 0.00 0.00 112.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.74 0.00 0.00

inserted into the base code.

// Call.java
public void hangup(Customer c) {
for (Enumeration e =

connections.elements();
e.hasMoreElements();) {

((Connection)e.nextElement()).drop();
}

// CallHistory.aj
pointcut hangUpMethodCall(Call c) :
call (void Call.hangup(Customer)) &&
target(c);

before(Call c): hangUpMethodCall(c) {
history.add(c);

}

Figure 4. Code Extract: Incorrect Implementation.

Table III
FAULTS PER POINTCUT STRATEGY IN CALLHISTORY ASPECT

Advice Binding Strategy # of matching advices F1 (avg)
new 7 7 (1.16)
existing 3 0 (0.00)

2) Data Flow Faults: A second pattern we noticed, was
the prevalence in our study of faults that involved the
extraction of data from the base program. This type of data-
flow faults actually crosscuts the categories used in Figure 3,
as faults may occur at any point of the data-flow path from
the base-program to the aspect and (for invasive aspects)
back. The wrong data might get extracted (F1 faults), the
wrong attributes might be added to base modules (F2 faults),
the data might be improperly processed (F3 and F4 faults).

Table IV shows the distribution of faults within the
modified aspects only. The aspects are divided into 4 rows
depending on their strategy for data extraction. These strate-
gies were to either to (i)extract required data directly from
the base code e.g. creating a new pointcut and advice within
the aspect, (ii) indirectly via another aspect e.g. using shared
join point or reflection mechanisms such as aspectOf(),
(iii) a mix of (i) and (ii), and, finally (iv) no data extraction

- for aspects that did not require any contextual information
from the base code to be passed into the advice body.

Table IV
FAULTS PER DATA ACCESS STRATEGY

Access Strategy # Aspects #Advices #Reflection Uses Faults
Direct Only 5 9 3 12
Direct and indirect 5 10 4 7
Indirect only 7 7 9 5.5
No Data Extraction 7 8 0 1

The key difficulty in extracting data is twofold: (i) devel-
opers need to reason about the availability and current state
of the data when creating the pointcut; and (ii) developers
need to reason about how to access and use the data.
Therefore, if an aspect undergoes modifications, the fault-
proneness is drastically increased if it involves a dependency
on data from the base code.

Firstly,the pointcut signature defines any extracted data
within the parameters. Secondly, the advice signature has to
define any data that is to be used within the advice body.
Finally, the data has to be handled properly in the advice’s
implementation.

Indirectly accessing data proved to be less fault-prone than
the directly accessing the base code. In fact, the module with
the highest number of faults was CallHistory_CC (see
Figure 5) which had a total of 6 faults. This module was
composed of three pointcuts and data was extracted from
the base code in each of them.

B. Existing Metrics
Table V shows the Pearson Correlation Coefficient we

obtained between the metrics selected for our study (Sec-
tion III-E) and the faults we obtained. Of course, to gener-
alise the results would require confirmation based on much
larger datasets; however, the test indicates some interesting
trends, which we discuss below. The correlation coefficients
for F2 and F4 faults (related to Intertype Declarations and
base code) are shown for information. However because
these faults are barely represented in our study, drawing
conclusions appears difficult, and in the following, we
focus on F1 and F3 faults (related to pointcut and advice
implementation, respectively).

Table V
PEARSON CORRELATIONS BY FAULT CATEGORIES

Metrics #Faults F1 F2 F3 F4
CBM 0.25 -0.09 0.29 0.33 0.26
CAE -0.18 -0.16 0.04 -0.13 0.02
DIT -0.19 -0.11 -0.12 -0.14 -0.07
Aspect Coupling -0.20 -0.17 0.23 -0.20 0.04
Base Coupling -0.09 -0.14 0.00 0.00 -0.03
Churn 0.55 0.19 -0.01 0.62 0.14

The first observation is that churn is, by far, the metrics
that is best correlated metrics with the overall number of
faults. Coupling between Module (CBM) comes as second,
which possibly hints the role played by coupling issues
in the fault introduction process. However this role is not
reflected in any of the other coupling metrics we looked at,
namely Coupling on Advice Execution (CAE) [16], Aspect
Coupling [10], and Base Coupling [10].

The good correlation between churn and the overall
number of faults confirms what previous studies have shown
for industry-strength systems [17, 18]. Churn metrics are an
effective way of evaluating code stability, and to indicate
of fault-proneness of both in Object Oriented and AO
programs. The role of churn in our study is further illustrated
in Figure 5, showing the number of faults (y axis) per
module produced by each group (x axis), with the modules
ordered in decreasing order of churn—the majority of faults
appeared in modules with high churn.

M
o
d
u
le

 I
D

Te
a
m

 N
a
m

e

Te
a
m

 C
o
d
e

M
o
d
u
le

 N
a
m

e

m
o
d
u
le

A
sp

e
ct

 O
R

 C
la

ss

C
h
u
rn

 (
|A

D
D

| +
 |C

U
T
|)

C
h
u
rn

 (
cu

m
u
l)

N
u
m

b
e
r
o
f
F
a
u
lts

#
fa

u
lt

(c
u
m

u
l)

F
1

F
1
 (
cu

m
u
l)

F
2

F
2
 (
cu

m
u
l)

F
3

F
3
 (
cu

m
u
l)

F
4

F
4
 (
cu

m
u
l)

0 0 0 0 0 0 0

108 IselaElder IE CallHistory CallHistory.aj_IE aspect 68 68 5 19.6% 0 0.0% 0

93 MerlinWandenburgMW CallHistory CallHistory.aj_MW aspect 59 127 1 23.5% 1 11.1% 0

21 AllanLincoln AL CallHistory CallHistory.aj_AL aspect 33 160 4 39.2% 2 33.3% 0

6 Alessandro AS CallHistory CallHistory.aj_AS aspect 30 190 0 39.2% 0 33.3% 0

65 MarceloRodrigoMR CallHistory CallHistory.aj_MR aspect 28 218 1.5 45.1% 0 33.3% 0

79 PercyJose PJ CallHistory CallHistory.aj_PJ aspect 25 243 3 56.9% 0 33.3% 0

36 CamilaChico CC CallHistory CallHistory.aj_CC aspect 20 263 6 80.4% 5 88.9% 0

50 EijiEverton EE CallHistory CallHistory.aj_EE aspect 19 282 1 84.3% 0 88.9% 0

3 Alessandro AS Billing Billing.aj_AS aspect 18 300 0 84.3% 0 88.9% 0

76 PercyJose PJ Billing Billing.aj_PJ aspect 16 316 1 88.2% 0 88.9% 1

105 IselaElder IE Billing Billing.aj_IE aspect 16 332 1 92.2% 0 88.9% 1

18 AllanLincoln AL Billing Billing.aj_AL aspect 15 347 0 92.2% 0 88.9% 0

47 EijiEverton EE Billing Billing.aj_EE aspect 15 362 0 92.2% 0 88.9% 0

33 CamilaChico CC Billing Billing.aj_CC aspect 10 372 0 92.2% 0 88.9% 0

90 MerlinWandenburgMW Billing Billing.aj_MW aspect 10 382 0 92.2% 0 88.9% 0

62 MarceloRodrigoMR Billing Billing.aj_MR aspect 9 391 1 96.1% 0 88.9% 1

115 IselaElder IE TimerLog TimerLog.aj_IE aspect 7 398 0 96.1% 0 88.9% 0

85 PercyJose PJ TimerLog TimerLog.aj_PJ aspect 5 403 0 96.1% 0 88.9% 0

13 Alessandro AS TimerLog TimerLog.aj_AS aspect 4 407 0 96.1% 0 88.9% 0

42 CamilaChico CC TimerLog TimerLog.aj_CC aspect 4 411 0 96.1% 0 88.9% 0

57 EijiEverton EE TimerLog TimerLog.aj_EE aspect 4 415 1 100.0% 1 100.0% 0

71 MarceloRodrigoMR TimerLog TimerLog.aj_MR aspect 4 419 0 100.0% 0 100.0% 0

55 EijiEverton EE PrecedenceAspectPrecedenceAspect.aj_EEaspect 4 423 0 100.0% 0 100.0% 0

28 AllanLincoln AL TimerLog TimerLog.aj_AL aspect 3 426 0 100.0% 0 100.0% 0

100 MerlinWandenburgMW TimerLog TimerLog.aj_MW aspect 3 429 0 100.0% 0 100.0% 0

29 AllanLincoln AL Timing Timing.aj_AL aspect 2 431 0 100.0% 0 100.0% 0

43 CamilaChico CC Timing Timing.aj_CC aspect 1 432 0 100.0% 0 100.0% 0

432 25.5 9 3

C
a
ll
H
is
to
ry
.a
j_
IE

C
a
ll
H
is
to
ry
.a
j_
M
W

C
a
ll
H
is
to
ry
.a
j_
A
L

C
a
ll
H
is
to
ry
.a
j_
A
S

C
a
ll
H
is
to
ry
.a
j_
P
J

C
a
ll
H
is
to
ry
.a
j_
C
C

C
a
ll
H
is
to
ry
.a
j_
E
E

B
il
li
n
g
.a
j_
A
S

B
il
li
n
g
.a
j_
P
J

B
il
li
n
g
.a
j_
IE

B
il
li
n
g
.a
j_
A
L

B
il
li
n
g
.a
j_
E
E

B
il
li
n
g
.a
j_
C
C

B
il
li
n
g
.a
j_
M
W

B
il
li
n
g
.a
j_
M
R

T
im
e
rL
o
g
.a
j_
IE

T
im
e
rL
o
g
.a
j_
P
J

T
im
e
rL
o
g
.a
j_
A
S

T
im
e
rL
o
g
.a
j_
C
C

T
im
e
rL
o
g
.a
j_
E
E

T
im
e
rL
o
g
.a
j_
M
R

P
re
c
e
d
e
n
c
e
A
s
p
e
c
t.
a
j_
E
E

T
im
e
rL
o
g
.a
j_
A
L

T
im
e
rL
o
g
.a
j_
M
W

T
im
in
g
.a
j_
A
L

T
im
in
g
.a
j_
C
C

C
a
ll
H
is
to
ry
.a
j_
M
R

0

1

2

3

4

5

6

7

8

aspects (decreasing churn)

#
fa

u
lt

s
 (

b
y
 c

a
te

g
o

r
y
) F4

F2

F1

F3

Figure 5. Churn vs Fault per Category

This good correlation of churn is however highly condi-
tioned on the types of faults: Although it is particularly high
for F3 faults (related to advise implementation, coefficient of
0.63), the correlation coefficient drops to 0.19 for F1 faults
(pointcut related). This can be explained by the specific role
of pointcuts in AO programs: because a pointcut expression
determines the set of joinpoints to which an advise applies,
comparatively small changes in a pointcut expression (in
term of churn) can have wide ranging implications through-
out an AO program.

Pointcuts are thus dense constructs. Their dense nature
causes challenges both for developers (illustrated by the dif-

ficulty of introducing new pointcuts in an existing programs),
and for the churn metrics. Whether small or wide ranging,
a modification within a pointcut will only register as a one-
line modification, barely showing up in the churn numbers.
Another difficulty of many coupling and churn metrics for
AOP when used as indicators of fault-proneness is that they
do not take into account aspects that are data dependent.
Aspects that are invasive (e.g. if they rely on extracted data
from the base code) are more likely to impose a risks into
the base code such as introducing a fault [32, 33, 34].

More generally, these findings demonstrate the importance
AO-specific fault categories to analyse how faults are in-
troduced in AO software. Although the general number of
faults seem to follow the traditional correlation to churn
(Pearson’s coefficient of 0.55), this hides a chequered reality,
where a substantial category of faults (F1 faults, 34%) are
not accounted for, and would not be properly targeted by a
churn led analysis.

Interestingly, F1 faults are not well correlated by any
of the other metrics we used, and in particular not by
coupling metrics, although these were found to correlate
well to faults induced by aspectisation (the transformation
of a non-AO program into an AO version) in a previous
study [10]. Besides the small scale of the study at hand,
this can be explained by the different nature of the tasks,
as here developers had to both realise the integration of
their aspects in the original code (aspectisation) and realise
the functionalities of these aspects. The telecom application
our study uses is also characterised by narrowly-scoped
(domain-specific) aspects that tend to affect only a limited
set of joint points, while other styles of aspect oriented
programming encourage more broadly scoped pointcuts,
which naturally register more visibly on coupling metrics.

C. The Pointcut-Advice Churn Metric

To better detect F1 faults, we propose a new metrics,
termed pointcut-advice churn, derived from the traditional
churn measure, but adapted in two key respects. First, our
new metrics is targeted in that it only considers the pointcut
expressions of an aspect plus an advice signature, excluding
any other code. Second, our new metric is fine-grained in
that it works at the level of the tokens encountered rather
then lines. The precise definition of the pointcut-advice
churn metric is given in eq. 1, where a is an aspect, d runs
over the advices of a, tokens+d is the set of tokens added to
advice d, and tokens−d is the set of tokens removed from d.

Pcut Adv churn(a) =
∑

d∈adv(a)

(
|tokens+d |+ |tokens−d |

)
(1)

By measuring the number of clauses (tokens) used to
determine when an advice should execute, and how what
data should be extracted from the base code, this metrics
aims to detect complex changes to pointcuts that might

M
o
d
u
le

 I
D

Te
a
m

 N
a
m

e

Te
a
m

 C
o
d
e

M
o
d
u
le

 N
a
m

e

m
o
d
u
le

A
sp

e
ct

 O
R

 C
la

ss

C
h
u
rn

 (
|A

D
D

| +
 |C

U
T
|)

C
h
u
rn

 (
cu

m
u
l)

N
u
m

b
e
r
o
f
F
a
u
lts

#
fa

u
lt

(c
u
m

u
l)

F
1

F
1
 (
cu

m
u
l)

F
2

F
2
 (
cu

m
u
l)

F
3

F
3
 (
cu

m
u
l)

F
4

F
4
 (
cu

m
u
l)

0 0 0 0 0

0.0% 5 38.5% 0 0.0%

0.0% 0 38.5% 0 0.0% 0 0

0.0% 2 53.8% 0 0.0% 432 1

0.0% 0 53.8% 0 0.0%

0.0% 1 61.5% 0.5 100.0%

0.0% 3 84.6% 0 100.0%

0.0% 1 92.3% 0 100.0%

0.0% 1 100.0% 0 100.0%

0.0% 0 100.0% 0 100.0%

33.3% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

13 0.5

X

X

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400

Churn (cumul., aspects w/ largest first)

P
r
o

p
o

r
ti

o
n

 o
f

fa
u

lt
s
 i

n
 c

a
te

g
o

r
y

#fault (cumul)

F1 (cumul)

F3 (cumul)

uniform distribution

M
o
d
u
le

 I
D

Te
a
m

 N
a
m

e

Te
a
m

 C
o
d
e

M
o
d
u
le

 N
a
m

e

m
o
d
u
le

A
sp

e
ct

 O
R

 C
la

ss

C
h
u
rn

 (
|A

D
D

| +
 |C

U
T
|)

C
h
u
rn

 (
cu

m
u
l)

N
u
m

b
e
r
o
f
F
a
u
lts

#
fa

u
lt

(c
u
m

u
l)

F
1

F
1
 (
cu

m
u
l)

F
2

F
2
 (
cu

m
u
l)

F
3

F
3
 (
cu

m
u
l)

F
4

F
4
 (
cu

m
u
l)

0 0 0 0 0

0.0% 1 7.7% 0 0.0%

0.0% 2 23.1% 0 0.0% 0 0

0.0% 0 23.1% 0 0.0% 154 1

0.0% 5 61.5% 0 0.0%

0.0% 0 61.5% 0 0.0%

0.0% 0 61.5% 0 0.0%

0.0% 1 69.2% 0 0.0%

0.0% 0 69.2% 0 0.0%

0.0% 0 69.2% 0 0.0%

0.0% 0 69.2% 0 0.0%

0.0% 0 69.2% 0 0.0%

33.3% 0 69.2% 0 0.0%

33.3% 0 69.2% 0 0.0%

33.3% 0 69.2% 0 0.0%

33.3% 0 69.2% 0 0.0%

66.7% 0 69.2% 0 0.0%

66.7% 0 69.2% 0 0.0%

66.7% 1 76.9% 0.5 100.0%

66.7% 3 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

66.7% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

100.0% 0 100.0% 0 100.0%

13 0.5

X

X

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150

Pointcut churn (cumul., largest churn 1st)

P
r
o

p
o

r
ti

o
n

 o
f

fa
u

lt
s
 i

n
 c

a
te

g
o

r
y

#fault (cumul)

F1 (cumul)

F3 (cumul)

uniform distribution

(a) Pointcut(F1), Advice(F3) and all Faults VS Churn. (b) Pointcut(F1), Advice(F3) and all Faults VS Pointcut-Advice Churn.

Figure 6. Comparing fault distribution relative to churn(left)and pointcut-advice churn(right)

indicate (i) the need to quantify “difficult to reach join
points”, (ii) or high levels of data dependency, or (iii) both.

To check these intuitions we measured the correlation
between pointcut-advice churn and faults (Table VI, with the
coefficients for churn repeated for comparison). By contrast
to churn, our new metric presents high correlation with F1
faults (0.85, to compare to 0.19 for churn). The combination
of traditional churn and pointcut-advice churns also allows
to clearly discriminate between the two types of faults, with
F3 faults much more weakly correlated to pointcut-advice
churn than to traditional churn (0.37 against 0.62).

Table VI
POINTCUT-ADVICE CHURN VS. CHURN

Metrics #Faults F1 F2 F3 F4
Churn 0.55 0.19 -0.01 0.62 0.14
Pointcut-Advice Churn 0.77 0.85 -0.04 0.37 -0.03

Another representation of the same data can be obtained
by plotting the proportion of faults reached when selecting
a certain amount of churn, starting with the modules with
highest churn (Figure 6). This representation is similar to re-
ceiver operating characteristic (ROC) curves used in signal
processing and visually illustrates how proportional faults
are against a particular metrics, across modules. A purely
proportional behaviour will show as a diagonal line, whereas
an over-proportional behaviour (higher values contributing
more to faults) will appear as a left-corner curve.

The difference between F1 and F3 faults, and between the
churn and pointcut-advice churn metric is clearly visible on
the ROC curves of Figure 6. Whereas the overall number
of faults oscillate around the diagonal for both metrics, the
behaviour of F1 and F3 faults is directly inverted between
the churn (6-a) and pointcut-advice churn curves (6-b). In
particular, F1 faults are clearly concentrated in modules
with high pointcut-advice churn values, in a manner that
is over-proportional, demonstrating the additional value of
this metrics to analyse fault-prone pointcuts.

V. RELATED WORK AND STUDY LIMITATIONS

As emphasised in the previous sections of this paper,
knowledge about how faults are introduced into aspect-
oriented programs is still limited. Having this in mind, we
next summarise pieces of work that we believe are mostly
related to the research presented herein. They are distributed
in two categories: (i) fault prediction based on software
metrics; and (ii) the characterisation of faults in the context
of aspect-oriented programs. In the sequence, we discuss
some threats to the validity of the achieved results.

Fault prediction based on metrics: Browsing the litera-
ture enables us to find a plenty of research on using metrics
as indicators of fault-prone modules and failures in software.
For example, Nagappan and Ball [17] presented the results of
an empirical study which evaluates the relationship amongst
software dependencies, code churns and post-release failures
observed in a large-scale software system. Based on the
degree of dependence and on the collected code churns
between two releases of the system, Nagappan and Ball built
prediction models for post-release failures. The statistical
analysis showed that the models have good accuracy in pre-
dicting post-released failures, therefore identifying system
modules that should be given more attention, for example,
during the testing and code inspection activities. In our study,
particularly limited by the size of our data set, we only
collected churn-based values to better understand the rela-
tionship between faults and AOP-specific mechanisms. We
also proposed a fine-grained, churn-based metric for pointcut
and advice signatures, which showed a good correlation of
related faults in the analysed system.

More recently, Zimmermann and Nagappan [35] per-
formed an experimental study to evaluate the effectiveness of
network analysis on dependency graphs in predicting faults.
The target system is the same large-scale software system
analysed by Nagappan and Ball [17]. The results show
that network analysis on dependency graphs outperforms

complexity metrics in terms of recall and precision when
predicting critical modules.

In particular for AO software, in our previous research
we investigated coupling metrics as predictors of fault-prone
modules in AO programs [10, 9]. At a first stage, we
analysed the effectiveness of coupling metrics as indicators
of fault-proneness in AO systems [9]. Faults were collected
from several releases of a real-world AO system and used
for the comparison of metrics for coupling and other internal
attributes (e.g. depth of inheritance and weighted operations
in module). We also computed a novel metric that quanti-
fies specific coupling-related dependencies in AO software.
The results showed that coupling metrics, which are not
directives of object-oriented metrics, tended to be superior
indicators of fault-proneness. This motivated us to further
develop fine-grained coupling metrics for AO systems [10].
Based on a larger dataset, we evaluated an exploratory
coupling metrics suite with respect to their capability of
indicating fault-prone modules. Again, the results showed
that a particular set of fine-grained directed coupling metrics
– the Aspect Coupling metrics – has the potential to help
create better fault prediction models for AO programs This
study allowed us to gain insights into different styles of AOP.
For instance, Telecom had a greater proportion of functional
aspects such as Billing and Timing. In addition, the
focus of Telecom study was designed around maintenance
tasks to core language mechanisms such as pointcuts and
advice whereas previous studies focused on refactoring from
OO to AO implementations. A notable difference was that
the average number advice-base code couplings was much
higher in our previous study analysing three larger systems
[36, 10] where faulty modules typically experienced a much
higher variety and number of coupling connections. On the
other hand, this work had a lower range (between 4 and
12) which may be a reason to the lack of correlation in the
finer-grained coupling metrics such as Aspect Coupling.

Fault characterisation for AO software: Several authors
have investigated the characterisation of AOP-specific fault
types [6, 7, 37]. In general, harmful faulty-scenarios are
described based either on simple AO programs or on the
researchers’ expertise. In a recent paper, Ferrari et al. [8]
defined a fault taxonomy for AO software, which encom-
passes the fault types earlier defined by other authors. The
taxonomy includes the four fault categories discussed in
Section III and was preliminarily evaluated through the
categorisation of a fault set identified from several AO
systems in their previous research [36]. In total, 104 faults
were analysed and classified. Besides that, the authors char-
acterised the most recurring faulty implementation scenarios
observed in the analysed systems, within each fault category.
Differently from Ferrari et al. [8], in this paper we investi-
gated how different implementation strategies are prone to
introduce faults in the programs (e.g. reusing pointcuts or
creating new ones, or directly or indirectly accessing context

data). Besides that, we analysed the ability of coupling and
churn metrics to indicate fault-prone modules.

In regard to the study limitations, using AspectJ can be
pointed out as a constraint in our experimental evaluation
and conclusions. In fact, as observed by Filman and Fried-
man [38] at early stages of research on AOP, other pro-
gramming techniques (e.g. Intentional Programming, Meta-
Programming and Generative Programming) are able to
realise the concepts of AOP. On the other hand, AspectJ has
been far the most investigated AOP language, upon which
several facets of AOP have been developed and evaluated.

Another limitation of this study regards the size and
representativeness of the evaluated system, in turn limiting
the generalisation of the results. On the one hand, Telecom
is indeed a small AO application that does not reflect
the industrial practice with respect to complexity in terms
of lines of code. On the other hand, as emphasised in
Section III, Telecom is a well-known application which is
distributed together with the AspectJ language [19]. This
enabled us to reduce the effect of extraneous variables and
to perform the experiment in a prespecified period of time.

The selection of maintenance tasks itself, to be performed
by the study participants, may be considered a threat to the
construct validity. The participants were given the freedom
to modify different modules according to their own design
decisions. Nevertheless, this allowed an in-depth compari-
son of the fault-proneness of a variety of implementation
strategies.

VI. CONCLUSIONS

This paper presented the results of an exploratory study
whose objective was to investigate how faults are introduced
in AO programs during typical maintenance tasks (e.g.
changing an existing feature or adding a new one). Eight
pairs or experienced AOP developers were given the list of
tasks to be performed as well the freedom to modify different
modules according to their own design decisions.

We designed a test suite based on the functional require-
ments of the target system. It enabled us to identify and
document faults from the several implementations. We then
collected a variety of metrics, mostly different in nature
(e.g. coupling, code churn and size), in order to understand
how faults were introduced during the maintenance tasks as
well the impact of changes in software dependencies on the
correctness of the system during its evolution.

The results showed certain implementation strategies to be
more fault-prone than others such as specific techniques for
accessing data from base code modules and binding advice
to pointcuts. In addition we compared the effectiveness of
existing AO churn and coupling metrics to detect faulty
modules and propose future directions for metrics in order
to improve their accuracy at fault localisation. This work
demonstrates the importance AO-specific fault categories to
analyse how faults are introduced in AO software to aid the
teaching, use and evolution of AOP techniques.

Our future research is motivated by capturing the over-
looked attributes of fault patterns in new metrics. To check
the usefulness of the newly proposed pointcut churn metrics,
we also plan to apply it to larger systems, for instance, the
ones evaluated in our previous research on fault-proneness
of evolving AO programs [10, 36].

ACKNOWLEDGMENT

The authors received the following financial support:
Rachel Burrows: UK EPSRC grant; Fabiano Ferrari:
FAPESP (grant 05/55403-6); Alessandro Garcia: FAPERJ
(grant E-26/102.211/2009), CNPq (grants 305526/2009-0
and 483882/2009-7), CAPES/PGCI (project 5688-09-4), and
PUC-Rio (productivity grant).

REFERENCES

[1] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C. Lopes,
C. Maeda, and A. Menhdhekar, “Aspect-oriented programming,”
in ECOOP’97. Springer, 1997, pp. 220–242.

[2] K. El Emam, W. L. Melo, and J. C. Machado, “The prediction
of faulty classes using object-oriented design metrics,” Journal of
Systems and Software, vol. 56, no. 1, pp. 63–75, 2001.

[3] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” IEEE TSE, vol. 31, no. 10, pp. 897–910, 2005.

[4] R. Subramanyam and M. Krishnan, “Empirical analysis of CK
metrics for object-oriented design complexity: Implications for
software defects,” IEEE TSE, vol. 29, no. 4, pp. 297–310, 2003.

[5] A. B. Binkley and S. R. Schach, “Validation of the coupling depen-
dency metric as a predictor of run-time failures and maintenance
measures,” in ICSE’98, 1998, pp. 452–455.

[6] R. T. Alexander, J. M. Bieman, and A. A. Andrews, “Towards the
systematic testing of aspect-oriented programs,” Dept. of Com-
puter Science, Colorado State University, Fort Collins/Colorado -
USA, Tech. Report CS-04-105, 2004.

[7] M. Ceccato, P. Tonella, and F. Ricca, “Is AOP code easier or harder
to test than OOP code?” in WTAOP’05, 2005.

[8] F. C. Ferrari, R. Burrows, O. A. L. Lemos, A. Garcia, and J. C.
Maldonado, “Characterising faults in aspect-oriented programs:
Towards filling the gap between theory and practice,” in SBES’10.
IEEE, 2010, pp. 50–59.

[9] R. Burrows, F. C. Ferrari, A. Garcia, and F. Taı̈ani, “An empirical
evaluation of coupling metrics on aspect-oriented programs,” in
ICSE WETSoM Workshop. ACM, 2010, pp. 53–58.

[10] R. Burrows, F. C. Ferrari, O. A. L. Lemos, A. Garcia, and F. Taı̈ani,
“The impact of coupling on the fault-proneness of aspect-oriented
programs: An empirical study,” in ISSRE’10. IEEE, 2010, pp.
329–338.

[11] M. Harman, F. Islam, T. Xie, and S. Wappler, “Automated test data
generation for aspect-oriented programs,” in in AOSD. ACM,
2009.

[12] O. A. L. Lemos, A. M. R. Vincenzi, J. C. Maldonado, and
P. C. Masiero, “Control and data flow structural testing criteria
for aspect-oriented programs,” Journal of Systems and Software,
vol. 80, no. 6, pp. 862–882, 2007.

[13] F. C. Ferrari, J. C. Maldonado, and A. Rashid, “Mutation testing
for aspect-oriented programs,” in ICST’08. IEEE, 2008, p. 52-61.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “Getting started with AspectJ,” Communications
of the ACM, vol. 44, no. 10, pp. 59–65, 2001.

[15] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object
oriented design,” IEEE TSE, vol. 20, no. 6, pp. 476–493, 1994.

[16] M. Ceccato and P. Tonella, “Measuring the effects of software
aspectization,” in WARE Workshop, 2004.

[17] N. Nagappan and T. Ball, “Using software dependencies and churn
metrics to predict field failures: An empirical case study,” in
ESEM’07. IEEE, 2007, pp. 364–373.

[18] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Mur-
phy, “Change bursts as defect predictors,” in ISSRE’10, 2010, pp.
309–318.

[19] The Eclipse Foundation, “AspectJ documentation,” Online, 2010,
http://www.eclipse.org/aspectj/docs.php - 21/01/2011.

[20] Y. Coady and G. Kiczales, “Back to the future: A retroactive study
of aspect evolution in operating system code,” in AOSD’03, 2003,
pp. 50–59.

[21] R. Laddad, “Aspect-oriented programming will improve quality,”
IEEE Software, vol. 20, no. 6, pp. 90–91, 2003.

[22] M. Mortensen, S. Ghosh, and J. M. Bieman, “Aspect-oriented
refactoring of legacy applications: An evaluation,” IEEE TSE,
2010.

[23] H. Shen, S. Zhang, and J. Zhao, “An empirical study of main-
tainability in aspect-oriented system evolution using coupling met-
rics,” in TASE’08. IEEE, 2008, pp. 233–236.

[24] M. Bartsch and R. Harrison, “An evaluation of coupling measures
for AspectJ,” in LATE Workshop. ACM, 2006.

[25] R. Burrows, A. Garcia, and F. Taı̈ani, “Coupling metrics for
aspect-oriented programs: A systematic review of maintainability
studies,” in ENASE’09. Springer, 2009.

[26] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and A. von Staa,
“On the reuse and maintenance of aspect-oriented software: An
assessment framework,” in SBES’03. Brazilian Computer Society,
2003, pp. 19–34.

[27] J. Zhao, “Measuring coupling in aspect-oriented systems,” in MET-
RICS’04 (Late Breaking Paper), 2004.

[28] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Filho, and F. Dantas,
“Evolving software product lines with aspects: An empirical study
on design stability,” in ICSE’08, 2008, pp. 261–270.

[29] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia,
N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, and
A. Rashid, “On the impact of aspectual decompositions on design
stability: An empirical study,” in ECOOP’07. Springer, 2007, pp.
176–200 (LNCS 4609).

[30] M. Stoerzer and J. Graf, “Using pointcut delta analysis to support
evolution of aspect-oriented software,” in ICSM’05. IEEE, 2005,
pp. 653–656.

[31] O. A. L. Lemos, I. G. Franchin, and P. C. Masiero, “Integration
testing of object-oriented and aspect-oriented programs: A struc-
tural pairwise approach for Java,” Science of Computer Program-
ming, vol. 74, no. 10, pp. 861–878, 2009.

[32] M. Rinard, R. Sǎlcianu, and S. Bugrara, “A classification system
and analysis for aspect-oriented programs,” in In Proc. 12th Symp.
on the Foundations of Soft. Eng. ACM Press, 2004, pp. 147–158.

[33] S. Katz, “Diagnosis of harmful aspects using regression verifica-
tion,” 2004.

[34] F. Munoz, B. Baudry, and O. Barais, “A classification of invasive
patterns in AOP,” INRIA, Research Report RR-6501, 2008.

[35] T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in ICSE’08, 2008, pp. 531–
540.

[36] F. Ferrari, R. Burrows, O. Lemos, A. Garcia, E. Figueiredo,
N. Cacho, F. Lopes, N. Temudo, L. Silva, S. Soares, A. Rashid,
P. Masiero, T. Batista, and J. Maldonado, “An exploratory study
of fault-proneness in evolving aspect-oriented programs,” in
ICSE’10, 2010, pp. 65–74.

[37] J. S. Bækken and R. T. Alexander, “A candidate fault model for
aspectj pointcuts,” in ISSRE’06. IEEE, 2006, pp. 169–178.

[38] R. E. Filman and D. Friedman, “Aspect-oriented programming
is quantification and obliviousness,” in Aspect-Oriented Software
Development. Boston: Addison-Wesley, 2004, ch. 2, pp. 21–35.

