
A UML Profile to Model Mobile Systems

Vincenzo Grassi, Raffaela Mirandola, Antonino Sabetta

Università di Roma “Tor Vergata”, Italy

Abstract. The introduction of adaptation features in the design of ap-
plications that operate in a mobile computing environment has been
suggested as a viable solution to cope with the high heterogeneity and
variability of this environment. Mobile code paradigms can be used to
this purpose, since they allow to dynamically modify the load of the host-
ing nodes and the internode traffic, to adapt to the resources available
in the nodes and to the condition of the (often wireless) network link. In
this paper we propose a UML profile to deal with all the relevant issues
of a mobile system, concerning the mobility of both physical (e.g. com-
puting nodes) and logical (e.g. software components) entities. The profile
is defined as a lightweight customization of the UML 2.0 metamodel, so
remaining fully compliant with it. In the definition of this profile, the
underlying idea has been to model mobility (in both physical and logical
sense) as a feature that can be “plugged” into a pre-existing architecture,
to ease the modelling of both different physical mobility scenarios, and of
different adaptation strategies based on code mobility. Besides defining
the profile, we give some examples of use of its features.

Keywords: mobile computing, code mobility, UML profile.

1 Introduction

Mobile computing applications have generally to cope with a highly heteroge-
neous environment, characterized by a large variance in both the computing
capacity of the hosting nodes (that span portable devices and powerful fixed
hosts) and in the available communication bandwidth, that can range from tens
of Kbps to tens of Mbps, depending on the type of wireless or wired network [12].
Moreover, these environment conditions can also rapidly change because of the
physical mobility, that can cause a mobile node to connect to different nodes, or
to enter zones covered by different wireless networks, or not covered at all.

As a consequence, mobile computing applications should be designed so that
they are able to adapt to their execution environment, to successfully cope with
the problems caused by its high heterogeneity and variability. In this respect,
mobile code paradigms and technologies can be exploited to devise possible adap-
tation strategies [7], for instance by dynamically modifying the current deploy-
ment of the application components, to better exploit the new communication
and computing features that have become available.



The main goal of this paper is to provide a modeling framework for mo-
bile computing applications, where both the physical mobility of the computing
nodes and the logical mobility of software elements are taken into account, since
both kinds of mobility deserve consideration, for the reasons explained above.
However we would like to remark that, even though our focus is on mobile com-
puting where both physical and logical mobility are present, logical mobility is
a valuable design paradigm also in other fields (e.g. wide area distributed appli-
cations [7]). To enhance the usability of our framework, we have defined it as a
UML 2.0 lightweight extension, exploiting the Profile mechanisms, so remaining
fully compliant with the UML 2.0 metamodel [3].

For what concerns the modeling of the physical and logical mobility, we would
like to point out that they play different roles from the viewpoint of a mobile
computing application designer. Indeed, physical mobility is an environment
feature that is generally out of the control of the designer; in other words, it is
a sort of constraint he has to deal with, to meet the application requirements.
On the other hand, logical mobility is really a tool in his hands, that he can
exploit to better adapt the application to the environment where it will be
deployed. Despite this basic difference, we have adopted a common approach in
modeling them, based on a clear separation of concerns between, on one hand, the
models of the application logic and of the platform where the application will be
eventually deployed and, on the other hand, the models of the logical and physical
mobility. The underlying motivation has been to look at mobility (both physical
and logical) as a feature that can be “plugged” into the system model, to support,
for example, “what if” experiments concerning a mobile computing environment:
for a given application logic and deployment environment (with possible physical
mobility), what happens if different mobile code based adaptation strategies are
plugged into the application? what if the physical mobility does change?

Note that, of course, “what happens” should be defined in terms of some ob-
servable application property (e.g. some performance measure). In this respect,
we would like to remark that we have adopted a minimal approach in our mod-
eling framework, including in it only aspects strictly related to mobility. We do
not have included in it the modeling of other aspects that could be relevant in a
given analysis domain (for example, resource features and utilization to be used
for performance analysis). Depending on the type of analysis one is interested in,
our modeling framework should be integrated with other modeling frameworks
(e.g. the UML “Profile for Schedulability, Performance and Time Specification”
in the case of performance analysis [2]).

The representation of mobility in computer systems has been treated in a
number of work in the past. Some of them tackled this issue using UML based
approaches [9, 4], while others have adopted more formal and rigorously defined
frameworks [10, 11, 6, 5].

For what concerns the former approaches, the proposal in [9] requires a non-
standard extension of UML sequence diagrams; on the other hand the proposal
in [4] extends the UML class and activity diagrams allowing the representation of
mobile objects and locations as well as basic primitives such as moving or cloning.



In this work both the mobility model (how objects move) and the computational
model (which kind of computation they perform) are represented within the same
activity diagram.

For what concerns the latter approaches, they in general provide useful in-
sights for mobility related modeling problems, but the non widespread diffusion
of the formal notations they are based on limits their direct use in real modeling
problems.

The paper is organized as follows: in the next section we start identifying
the key aspects that deserve to be modeled in mobile systems, introducing some
conceptual schemata and a reference framework. In section 3 we define the profile
modeling elements while in section 4 we give some examples to show how the
profile and the conceptual guidelines sketched in section 2 can be used. Moreover
in section 5 we use the profile to model some basic mobile code paradigms.
Finally, in section 6 we draw some conclusions and outline a few interesting
issues that could be the subject for further investigation and future works.

2 Modeling Mobile Systems

We are interested in devising a framework that gives the application designer the
possibility of extending a basic model of a computer (software) system by adding
or removing mobility at will, in order to experiment with different environment
characteristics and design solutions since the earliest phases of the design process.
In order to do so, we have to clearly define the following issues:

– how to model the movement of an entity;
– which entities move;
– what causes the movement of an entity.

Note that the above issues apply to both physical and logical mobility; hence,
as far as possible, we will adopt a common approach to model them.

For what concerns the first issue, we believe that any attempt to represent
movements requires that an underlying concept of location be defined. In our
framework we model this concept as a relationship that binds two entities so that
one acts as a container for the other, thus we will say that the latter is located
in the former. We have derived from [5] the basic idea of modeling locations as
nesting relationships among entities. However, with respect to the simple (and
elegant) unifying model of [5], we have implemented in two different ways this
idea for physical and logical mobility as shown in section 3, to remain compliant
with the UML metamodel, trading off simplicity and elegance with usability.
Given this basic model of location, a movement is modeled as a change in the
relationship between a mobile entity and its container.

With regard to the second issue, both logical and physical mobile entities
must be considered. A logical mobile entity can be, in principle, any kind of
software artifact (run time entity), intended as the manifestation of a software
component (design time entity) whose location can be an execution environment
or a computing node.



On the other hand, the physical mobile entities can be computing nodes
(and the execution environments inside them) whose location is a place (such
as a building, a room or a vehicle). Places themselves can be mobile and can be
located in other places (e.g. a car, which can be considered as a place on its own
right, can be located inside a building) so that possibly complex hierarchical
topologies can be conceived.

Any movement, either of a physical or a logical entity, should be constrained
by a simple principle: it can happen only if the location where the moving entity
currently is and the destination location are connected by a channel. Since this
concept is so generic and abstract, the idea of a channel can be easily mapped, in
a very intuitive way, onto different types of mobility. For instance a network link
between two workstations can be described as a channel interconnecting two ex-
ecution environments so that, under certain conditions, the software components
located in one of the two workstations can flow across the channel and migrate
towards the other workstation thus realizing software mobility. Similarly a cor-
ridor between two rooms can be thought of as a channel that allows a mobile
device, such as a PDA (i.e. an execution environment) to move from one room
to the other. It is important to observe that in this latter example the mobility
of an execution environment, which is rendered explicitly, implies that all the
software elements contained by the migrating entity move together with it.

Up to now, we have discussed issues concerning the phenomenology of mobil-
ity (how we can model the manifestation of a mobile behavior), but we have not
tackled the description of what causes and triggers mobility. Our idea is to model
this latter issue by means of the mobility manager concept whose main purpose
is to encapsulate all the logic of mobility, separating it from the application logic.
A mobility manager is characterized by the ability to perceive changes in its “en-
vironment” (which can be composed of both physical and software elements) and
reacts to them by firing mobility activities, whose effect is to cause a movement
(location change) of some mobile entity. We adopt this same concept for both
physical and logical mobility. Note that, in principle, a mobility manager should
be mainly intended as a modeling facility, that could not directly correspond
to some specific entity in a real implementation of the system we are modeling,
or whose responsibilities may be shared by several different entities; its model-
ing utility actually consists in providing an easily identifiable entity where we
encapsulate the logic that drives mobility. This separation of concerns implies
that different mobility managers, each modeling a different mobility policy, can
be modularly plugged into some physical environment or software application
model so that different environment dynamics and/or adaptation policies can be
experimented.

The fundamental difference between mobility managers modeling physical
and logical mobility is that the former are models of some existing physically
observable behavior which is not modifiable by the software designer, whereas the
latter are meant to model behaviors which are completely under the control of
the designer, and that can be devised to realize some mobility based adaptation
strategy.



3 The Profile

After the domain oriented survey of architectural and mobile code concepts pro-
vided in the previous section, we turn now to the very UML viewpoint focusing
on the mapping of those concepts onto the UML metamodel. Here we define the
semantics of the proposed extensions that build up the profile.

3.1 Place

Semantics and rationale. The Place stereotype extends the metaclass Node
and represents both the concept of location as delimited by concrete or admin-
istrative boundaries and the physical entities located in it (see figure 1). Exam-
ples of places are computing nodes, buildings, vehicles, rooms, persons and so
on. Places can be nested (e.g. a building can contain rooms, which in turn can
contain PCs).

Deployment

CurrentDeployment
<<stereotype>>

AllowedDeployment
<<stereotype>>

Dependancy

*
DeploymentTarget

+location

ExecutionEnvironmentDevice

+nestedNode

Place
<<stereotype>>

+nestedNode
 {subsets nestedNode}

(from StructuredClasses...)

Node

Class

Node <<stereotype>>
Place

+location
NodeLocation

<<stereotype>>

Association

*

+nestedNode

1 +location

Fig. 1. UML metamodel fragment and some of the stereotypes introduced with the
profile

3.2 NodeLocation

Semantics and rationale. This stereotype is applied to associations that are
defined between Nodes and Places, and it is used to express the location of Nodes
(see figure 1). The Place that is attached to the location end of a NodeLocation
association represents the location of the Node at the opposite end (nestedNode).

The profile supports the specification of activities that modify the value of
the location of a given Node (see MoveActivity below).



3.3 MobileElement

Semantics and rationale. This stereotype is used to mark an element as mo-
bile. In particular a Place can be a MobileElement. The location of MobileEle-
ments can be changed by means of MoveActivities.

3.4 MobileCode

Semantics and rationale. This stereotype is a specialization of MobileEle-
ment. It can be applied to components, classifiers, artifacts or other software
level elements to specify that they can be treated as a piece of mobile code and
as such can be copied and/or moved and possibly executed in different execution
environments.

3.5 CurrentDeployment

Semantics and rationale. This stereotype extends the semantics of the De-
ployment metaclass and specifies the deployment target where an artifact is
currently deployed to.

The profile supports the specification of activities that modify the value of
the CurrentDeployment of a given entity (see MoveActivity below).

3.6 AllowedDeployment

Semantics and rationale. This stereotype extends the semantics of the De-
ployment metaclass and specifies which deployment targets are allowed for a
MobileCode element. Such multiple specification is used to declare which loca-
tions a mobile component can be deployed to.

This stereotype can be used to introduce additional constraints on the mo-
bility of a mobile software artifact, to reflect, for example, administrative or
security related policies, besides those defined by the physical existence of chan-
nels between the execution environments that are the origin and the destination
of a movement.

3.7 MobilityManager

Semantics and rationale. The stereotype MobilityManager can be applied
to state machines which are meant to control physical or logical mobility. The
initial state of the state machine is entered as soon as the system is started.

Transitions are labeled with a guard condition (in square brackets) and with
the name of an event (e.g. the execution of an activity). A transition is fired
when the event specified by the label occurs, provided that the guard condition
is satisfied. An activity that operates on one or more MobileElements can be
associated to each state or transition of a mobility manager. Such an activity
can be defined, in general, as a suitable composition of the activities listed below
(3.8 - 3.13).



3.8 MoveActivity

Semantics and rationale. The MoveActivity stereotype can be applied to
activities whose execution results in a migration (i.e. change of location) of a
MobileElement. Typically a MoveActivity receives in input the MobileElement
and its destination location; when the activity is performed, the MobileElement
is located in the specified location.

The concept of “being located” is represented differently for logical entities
(i.e. Artifacts that manifest a software component or a class) and physical en-
tities (i.e. hardware nodes or physical ambients), so the low level effect of the
application of a MoveActivity is different according to the type of MobileEle-
ment it is invoked for (we call such element the subject of the migration). For
physical mobile elements (i.e. Nodes) this is done by changing the association
(stereotyped as NodeLocation) with their container Place, whereas for logical
elements it is realized updating the CurrentDeployment dependency.

Constraints

1. Only MobileElements can be the subject of a MoveActivity
2. If the subject is a MobileCode element, the destination must be an allowed

ExecutionEnvironment for it, i.e. an AllowedDeployment dependency must
exist between the logical (mobile) element and the destination location.

3. A MoveActivity cannot act on MobileElements if a proper Communication-
Path (what is called a “channel” in section 2) does not connect the starting
and the destination locations.

3.9 BeforeMoveActivity

Semantics and rationale. The stereotype BeforeMoveActivity is used to de-
fine activities that are performed in order to prepare a MobileCode element to
be copied or moved.

Examples of BeforeMoveActivites are the serialization of a component in a
form that is suitable for transfer, the handling of bindings to resources or local
data, encryption of confidential data that must cross untrusted channels and
other preliminary tasks.

3.10 AfterMoveActivity

Semantics and rationale. This stereotype is used for activities that operate on
a MobileCode element right after its migration to a new execution environment.
An AfterMoveActivity must follow a MoveActivity. Examples of operations that
are good candidates to be stereotyped as AfterMoveActivities are those related to
regenerate out of a serialized transferrable form a component that is capable to be
run again. Other tasks that can be classified as AfterMoveActivities encompass
handling of bindings to resources needed for proper operation of the migrated
component in its new execution environment, recreating data structures and
execution context that the component expects to find upon resuming, and so
on.



3.11 AbortMoveActivity

Semantics and rationale. The stereotype AbortMoveActivity is used to spec-
ify an activity whose execution aborts a migration that was formerly prepared
by the invocation of a BeforeMoveActivity.

3.12 AllowDeploymentActivity

Semantics and rationale. An AllowDeploymentActivity is a CreateLinkAc-
tivity that adds a deployment to the set of allowed deployments for a given
DeployedArtifact.

3.13 DenyDeploymentActivity

Semantics and rationale. This stereotype is complementary to AllowDeploy-
mentActivity and can be used to mark activities that remove a deployment from
the set of allowed deployments for a given DeployedArtifact (which means that
any former AllowedDeployment of the same Artifact to the specified target is
removed).

4 The Profile in Practice: Some Examples

In the following we give some simple examples to clarify the practical aspects
of using the proposed profile, showing how to realize models of both structural
and behavioral aspects of systems characterized by different forms of mobility.
Anyway we remark that, since the profile is not supposed to force practitioners
to follow a particular modeling methodology, these examples are only meant to
give a few hints, not normative prescriptions.

Server
<<ExecEnv>>

ServLocHome Office

Comp_BComp_A Comp_C

PDA

<<deploy>>
<<deploy>>

<<deploy>>

<<ExecEnv>>

Fig. 2. Static system model



In the provided examples we refer to a basic system model depicted in figure 2;
this model represents a “static” system where components deployment and nodes
location are fixed. Then, we separately show how to use the profile to plug
physical and logical mobility into this static model.

4.1 Modeling Physical Mobility

First of all we introduce in the basic example the provision for physical mobility.
Dynamic topological models can be valuable in studying the software application
behavior when the physical environment, e.g. the placement of locations and
consequently the connectivity conditions, are subject to change.

If we want to allow the representation of physical mobility we need to enable
hosts themselves and places to be contained in other places in a dynamically
changing hierarchical structure composed of elements that are possibly nested
and where the hosts are considered as contained entities themselves and not only
as containers for software entities.

Server
<<ExecEnv>>

ServLoc
<<Place>> <<Place>> <<Place>>

Home Office

Comp_CComp_BComp_A

PDA
<<MobileElement>>

<<ExecEnv>>

<<CurrentDeployment>>

<<AllowedDeployment>>

<<MobileCode>>

<<CurrentDeployment>>

<<
Cur

re
nt

Dep
lo

ym
en

t>
>

<<
Allo

wed
Dep

lo
ym

en
t>

>

<<NodeLocation>> <<NodeLocation>>

(a) Mobile system structure

state A

PDA_MM
<<MobilityManager>>

<<MoveActivity>> move(PDA,Office)

<<MoveActivity>> move(PDA,Home)

sleep(uniform(6hours))

state B

sleep(uniform(4hours))

(b) Physical mobility manager

Fig. 3. Mobile system model

For the example of figure 2, figure 3 shows how we can plug into it physical
mobility. Note that figure 3 also shows profile elements related to logical mobility,
but we ignore them in this section.

As we can see, the PDA execution environment has been stereotyped as a
MobileElement ; since a link (modeling the channel concept of section 2) connects
the Home and Office places, the PDA is enabled to move between them. Its
actual mobility pattern is modeled by the mobility manager PDA MM depicted
in figure 3-b.



Note that, with respect to figure 2, figure 3 actually depicts a snapshot of
one of the numerous allowed configurations. In the case of physical entities the
only constraints to such configurations are enforced by the links that connect
the nodes.

4.2 Modeling Code Mobility

As defined in the profile, the formal specification of a mobility manager modeling
logical mobility does not basically differ from the definition of a mobility manager
modeling physical mobility: also in this case, it consists of a state machine, whose
state transitions are triggered by the occurrence of events, possibly conditioned
by some guard condition. In the case of logical mobility, typical events triggering
a transition are “internal” events of the software application (e.g. sending a
message, completing an activity) or “external” events such as a modification of
the application execution environment (e.g. a physical movement of a mobile
host that causes a change in the available communication bandwidth).

state A

[some_condition] Event2 /

entry/SomeMobilityActivity()

state D

<<MobilityManager>>
LMob_MM

entry/SomeMobilityActivity()

state C

state B

entry/SomeMobilityActivity()

[loc(PDA)==Home] Event1 /

[loc(PDA)==Office] Event2 /

[batterylevel(PDA)<30%] Event1 /

Fig. 4. Example of a logical mobility manager

As already remarked in section 2, the fundamental difference of logical mo-
bility modeling with respect to physical mobility is that in the latter case the
designer is forced to define a state machine modeling some given physical be-
havior (as the example in figure 3-b), while in the former he can freely select the
states, the triggering events and the guard conditions to define some suitable
code mobility based adaptation policy. This policy will be “implemented” by
the code mobility activities dispatched by the state machine as a consequence
of a state transition. In figure 3-a the Comp B component has been labeled as
MobileCode and two AllowedDeployments have been associated with it, so that
any code mobility policy can move Comp B between these two locations. In
more complex settings, specifying within the same diagram the current location
as well as the potential deployments for every mobile element could clutter the



model. If this is the case, it might be more effective to use different diagrams to
provide separate views for the possible and current deployments. Figure 4 shows
an example of mobility manager that applies to the Comp B mobile compo-
nent implementing a given logical mobility policy. This mobility manager causes
the migration of Comp B when some (non specified here) events (Event1 and
Event2) occur. The state transitions (and hence the Comp B migration) also
depend on some environmental conditions (in this example, battery level and
PDA location). The migration of Comp B is realized by a code mobility activity
associated, in figure 4, to the states of the mobility manager.

As explained in section 3 the mobility activities dispatched by the mobility
manager can be specified as a suitable composition of the basic activities defined
in the profile (3.8-3.13). In this perspective some basic mobile code paradigms
that can be used to implement a code mobility based adaptation policy have
been identified in the literature, namely the Code on Demand (COD), Remote
Evaluation (REV) and Mobile Agent (MA) paradigms [7]. In the next section
we show how these paradigms and their introduction into an otherwise static
application can be modeled, using our profile, by:

– a suitable definition of the event that triggers a state transition of some
mobility manager;

– the code mobility activity dispatched by this state transition.

Before describing these paradigms and their models according to our profile,
we would like to remark that modelers can refine in different ways a code mobility
activity, by defining customized variants of the basic mobile code paradigms, for
example adding special application-specific activities to the pre/post phases of
code migrations.

5 Models of Basic Mobile Code Paradigms

The COD and REV paradigms can be defined as “location-aware” extensions
of the basic “location-unaware” client-server (CS) interaction paradigm. Indeed,
in the CS case, we have some software component that invokes an operation
implemented by some other software entity; the operation result is then sent
back to the caller. This interaction pattern is depicted by the activity diagram
fragment of figure 5, and is realized independently of the location of the two
partners, that does not change during the interaction.1

In the COD case, upon invocation of the operation, if the artifact that im-
plements the operation is remotely located, a copy of it is first moved to the
caller location and then executed. This interaction pattern can be modeled by
defining the triggering event of the mobility manager as the operation invoca-
tion, possibly conditioned by some other guard condition (see figure 6-b), while
1 Note that in this and in the following figures we give a different meaning to the

activity diagram swimlanes, grouping in each swimlane activities performed within
the same location, rather than by the same component (something similar is also
used in [4]).



Do Service

Use Results

Invoke

LocalExecEnv RemoteExecEnv

Fig. 5. Model of the Client/Server paradigm

the dispatched mobility action is the sequence of activities shown in figure 6-a
surrounded by a dashed line. Figure 6-a also shows the whole activity diagram
fragment obtained by plugging the COD paradigm into the basic CS interaction
pattern of figure 5.

Invoke

<<BeforeMoveActivity>>
PrepareToMigrate

code
<<MobileCode>> <<MoveActivity>>

MoveTo code
<<MobileCode>>

Use Results

Do Service

<<AfterMoveActivity>>
PrepareToExec

LocalExecEnv RemoteExecEnv

Code to
migrate

(a) COD activity

entry/COD(Comp2,Comp1.CurrentDeployment)

state B

state A
[Comp1.CurrentDeployment.fastcpu] InvokeService /

(b) Mobility manager fragment

Fig. 6. Model of the Code On Demand paradigm

Conversely, in the REV case, upon invocation of a locally available software
artifact, a copy of it is first sent to a specified remote location, where it is ex-
ecuted. In this case the triggering event is again the operation invocation (see
figure 7-b), while, analogously to figure 6-a, the corresponding sequence of ac-
tivities and the result of plugging them into the basic CS pattern are shown in
figure 7-a.

Finally, in the MA paradigm an active software component moves with its
state, at some point of its execution, to a different location where it will resume
its execution. In this case the triggering event in the mobility manager can be
any suitable event occurring in the application or its environment (according to
some mobility policy the designer wants to model).



Invoke

<<BeforeMoveActivity>>
PrepareToMigrate

code
<<MobileCode>> <<MoveActivity>>

MoveTo code
<<MobileCode>>

<<AfterMoveActivity>>
PrepareToExec

Do Service

Use Results

RemoteExecEnvLocalExecEnv

Code to
migrate Destination

(a) REV activity

state B

state A

entry/REV(Comp1,ServerHost)

[Comp1.CurrentDeployment.lowbattery] InvokeService /

(b) Mobility manager fragment

Fig. 7. Model of the Remote Evaluation paradigm

Figure 8-a shows an activity diagram modeling the behavior of some com-
ponent, while figure 8-b shows the result of plugging into it the MA paradigm
triggered by the mobility manager fragment depicted in figure 8-c.

6 Conclusion

We have defined a UML profile to deal with the fundamental aspects of mobile
systems. One of the main goals that have driven the definition of this profile has
been to look at mobility as a feature that can be easily added to a pre-existing
model, to get (in the case of physical mobility) a more realistic and complete
representation of the physical system that is modeled, and to allow (in the case
of logical mobility) the easy experimentation of different code mobility based
adaptation policies. An additional goal has been to remain fully compliant with
the UML 2.0 metamodel. To meet these goals, we have modeled the location
of physical and logical entities as suitable extensions of the NodeNesting and
Deployment relationships defined in the UML 2.0 metamodel; moreover, we have
introduced the concept of Mobility Manager to encapsulate the “logic” that
drives the modifications of such relationships, thus modeling entities movement,
keeping it separate from the model of the application logic.

Even though the profile proved to be good enough to express simple mobility
scenarios and to model well established mobile code paradigms, nonetheless it
requires further effort to validate its soundness and scalability with respect to
real-life modeling needs. A preliminary test-bench for such an evaluation can be
found in [8] where we elaborate on the proposed framework to make performance
predictions in the context of a more complex case study.

We would like to point out that this vision of mobility as a feature to be added
to a pre-existing model can also be seen in a MDA perspective [1], where a basic
(location and movement unaware) PIM is transformed into a “high level” (loca-



Activity 1

Activity 2

Original Exec. Env. Destination Exec. Env.

(a) Original behavior

Activity 1

code
<<MobileCode>> <<MoveActivity>>

moveToDestination

Activity 2

Destination Exec. Env.Original Exec. Env.

<<BeforeMoveActivity>>
prepareMigration

<<AfterMoveActivity>>
resume

code
<<MobileCode>>

(b) MA activity

state A

state B

entry / MA(ExecEnv1)

SomeEvent /

(c) Mobility manager fragment

Fig. 8. Model of the Mobile Agent paradigm

tion and movement aware) PSM, where some assumptions are made about the
platform where the software application will be deployed (the software compo-
nents location), and about some software infrastructure enabling code mobility.
This high level PSM can then be further refined to get a more detailed PSM
corresponding to some specific platform and mobile code technology (e.g. Java
based).

As a future work we plan to consider the full integration into a MDA frame-
work of our modeling approach, and its extension to other kinds of adaptation,
with the similar goal of supporting the experimentation with different adaptation
policies.

References

1. Model driven architecture. OMG Technical report,
http://cgi.omg.org/docs/ormsc/01-07-01.pdf, July 2001.

2. Uml profile for schedulability, performance, and time specification.
http://cgi.omg.org/docs/ptc/02-03-02.pdf, 2002.

3. UML Superstructure 2.0 - Draft Adopted Specification (ptc/03-08-02). OMG, 2003.

4. H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing. Extending activity
diagrams to model mobile systems. In NetObject-Days 2002 (M. Aksit, M. Mezini,
R. Unland Eds.), LNCS 2591, pages 278–293, 2003.

5. L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Software
Science and Computational Structures (M. Nivat ed.), LNCS 1378, pages 140–155.
Springer-Verlag, 1998.



6. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Klaim: a kernel language for
agents interaction and mobility. IEEE Trans. on Software Engineering, 24(5):315–
333, May 1998.

7. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE
Trans. on Software Eng., 24(5):342–361, May 1998.

8. V. Grassi, R. Mirandola, and A. Sabetta. UML based modeling and performance
analisys of mobile systems. Technical Report, Universit di Roma “Tor Vergata”
(submitted), July 2004.

9. P. Kosiuczenko. Sequence diagrams for mobility. In Proc. of MobIMod Workshop
(J. Krogstie editor), Tampere, Finland, October 2003.

10. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

11. G. P. Picco, G.-C. Roman, and P. McCann. Reasoning about code mobility in
mobile unity. ACM Trans. on Software Engineering and Methodology, 10(3):338–
395, July 2001.

12. U. Varshney and R. Vetter. Emerging mobile and wireless networks. Communica-
tions of ACM, 43(6):73–81, June 2000.


