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Orientation Preference Patterns
in Mammalian Visual Cortex:
A Wire Length Minimization Approach

entation preference map of realistic appearance. How-
ever, the reason for the existence of singularities in the
maps and the variability in the map structure has re-
mained elusive. Analysis of a representative model
(Swindale, 1982; Cowan and Friedman, 1991) based on
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lateral inhibition, which could result from competitive1 Bungtown Road
Hebbian learning, shows that the ultimate orientationCold Spring Harbor, New York 11724
preference map that minimizes the corresponding cost-
function does not contain singularities and is instead
given by the Icecube layout (see Experimental Proce-Summary
dures). Therefore, in the framework of these models, pin-
wheels and fractures result from imperfect developmentIn the visual cortex of many mammals, orientation
reflected in incomplete cost-function minimization.preference changes smoothly along the cortical sur-

Hubel and Wiesel (1977) suggested that orientationface, with the exception of singularities such as pin-
preference maps result from evolutionary pressure towheels and fractures. The reason for the existence of
minimize cortical wire length while maximizing cover-these singularities has remained elusive, suggesting
age. This suggestion inspired dimension reduction ap-that they are developmental artifacts. We show that
proach, which was implemented by elastic net modelssingularities reduce the length of intracortical neu-
(Durbin and Mitchison, 1990; Goodhill and Cimponeriu,ronal connections for some connection rules. There-
2000). These models also produce maps of realistic ap-fore, pinwheels and fractures could be evolutionary
pearance, including pinwheels in orientation map. How-adaptations keeping cortical volume to a minimum.
ever, elastic net models seem to predict annihilationWire length minimization approach suggests that in-
of pinwheels (Wolf and Geisel, 1998), suggesting thatterspecies differences in orientation preference maps
Icecube layout is the ultimate state and pinwheels arereflect differences in intracortical neuronal circuits,
developmental defects.thus leading to experimentally testable predictions.

In this paper, we prove that singularities are requiredWe discuss application of our model to direction pref-
by an evolutionary principle. We compare the wire lengtherence maps.
for smooth and discontinuous maps and show that sin-
gularities reduce the brain volume in some cases. OurIntroduction
theory reproduces interspecies variability in map struc-
ture and relates it to experimentally measurable proper-Neurons in mammalian visual cortex respond best to
ties of intracortical neuronal circuits.edges in their receptive field. Edge orientation, which

We base our model on wire length minimization princi-evokes most vigorous response, determines orientation
ple (Allman and Kaas, 1974; Cowey, 1979; Nelson andpreference of a neuron. Electrophysiological studies
Bower, 1990; Mitchison, 1991; Cherniak, 1994; Cajal,have shown that preferred orientation remains constant
1999; Chklovskii and Stevens, 1999; Chklovskii and Kou-in vertical penetrations while varying in the directions
lakov, 2000). Since axons and dendrites take up a signifi-parallel to the cortical surface (Hubel and Wiesel, 1974).
cant fraction (about 60%) of the cortical volume (Brait-Two-dimensional maps of preferred orientation were re-
enberg and Schüz, 1998), limitations on the brain sizevealed electrophysiologically (Swindale et al., 1987) and
require keeping neuronal processes as short as possi-

optically (Bonhoeffer and Grinvald, 1991; Blasdel, 1992).
ble. Evolution was likely to select for developmental

Further research showed significant differences in map
rules that produce sufficiently optimized, in terms of

appearance between species. In visual cortices of mon- wire length, orientation maps. Therefore, we attempt to
keys, ferrets, tree shrews, and cats, the maps contain reproduce orientation preference maps by minimizing
linear zones, where orientation preference changes the length of neuronal connections, or wiring.
smoothly. These linear zones are periodically inter- To formulate the model, we notice that the majority
spersed by pinwheels, i.e., point singularities, and frac- of inputs received by cortical neurons come from local
tures, i.e., line discontinuities. Recently, optical imaging connections, which stay within the cortex (LeVay and
in tree shrews (Bosking et al., 1997) and cats (Shmuel Gilbert, 1976; Peters and Payne, 1993; Ahmed et al.,
and Grinvald, 2000) showed extensive pinwheel-free lin- 1994), rather than from thalamocortical projections.
ear zones, i.e., Icecube regions. Electrophysiology in Therefore, we look for the neuronal layout that minimizes
rats shows that nearby neurons have different preferred the length of intracortical wiring. We assume that intra-
orientation, indicating a Salt&Pepper layout (Girman et cortical connections can be described by a connection
al., 1999). function, c(u). This function gives the number of connec-

In order to account for orientation preference maps, tions a neuron establishes with other neurons whose
a variety of models (Erwin et al., 1995; Swindale, 1996) orientation preference differs by u. Based on anatomical
were proposed. Many of these models reproduced ori- (Buzas et al., 1998; Roerig and Kao, 1999; Yousef et al.,

1999), electrophysiological (Gardner et al., 1999), and
psychophysical (Lee et al., 1999) observations, we ex-‡ To whom correspondence should be addressed (e-mail: mitya@

cshl.org). press the connection function as a sum of Gaussian
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Figure 1. Parameters of the Connection Function

Bars represent numbers of connections that each neuron must re-
ceive from neurons with different orientation preferences.

and constant components. We study how optimal layout
depends on the two parameters of the connection func-
tion: the width of the Gaussian and the relative magni-
tude of the constant component. We obtain a complete
phase diagram for these parameters of the connection
function.

Results

In our model, the number of connections with neurons
whose orientation preference differs by u is dictated by
the connection function:

Figure 2. Broad Connection Functions and Corresponding Orienta-
tion Mapsc(u) 5 5A o

∞

n52∞
e

2
(u21808·n)2

2a2 1 B6. (1)
Constant connection function (A) and Salt&Pepper orientation map
(B); (C and D) Icecube (width of Gaussian 5 828, c(90)/c(0) 5 2/16);

Here {x} rounds x to the nearest integer, coefficients A (E and F) Wavy Icecube (width of Gaussian 5 498, c(90)/c(0) 5 2/16).
and B determine the magnitude of Gaussian and con- Maps in (B) and (D) represent arrays of 50 3 50 neurons with periodic

boundary conditions, whereas the map in (F) shows a 60 3 60 array.stant components, respectively. We express the first
For our numerical analysis, we discretize the connection functioncomponent as a series of identical Gaussians spaced
into 15 preferred orientation classes.by 1808 in order to keep the connection function smooth

at 6908. The values of the connection function at 908
and 08 are denoted as c(90) and c(0), respectively (Figure Salt&Pepper arrangement (Figures 2A and 2B). In this
1). Since for large numbers of connections [c(0) À 1] layout, neurons of each preferred orientation are equally
the appearance of the map depends only on the ratio represented at every location, thus allowing local con-
of parameters c(90) and c(0), and not on their abso- nections to satisfy fully the requirements of the constant
lute values, we represent our results as the function of connection function. Note that the constant connection
c(90)/c(0). function does not imply that it does not matter which

We consider connection functions whose width, as orientation is connected to which. Each neuron in Figure
defined in Figure 1, is equal to 10, 14, 20, 35, 49, 60, 82, 2B must connect to an equal amount of “blue,” “red,”
and 90 degrees. These values are generated by a equal and “yellow” neurons, for instance. In the Experimental
to 4, 6, 9, 12, 15, 21, 26, 38, and 66 degrees, respectively. Procedures, we prove that Salt&Pepper is the optimal
For the values of a below 248, the connection function layout for the constant connection function.
width is related to parameter a according to width 5 Next, for a wide Gaussian, we find numerically that
2a√2ln2 and Equation 1 reduces to the following: the optimized layout is the Icecube, or smooth linear

arrangement (Figures 2C and 2D) (width of Gaussian 5c(u) 5 {[c(08) 2 c(908)]e2u2/2a2
1 c(908)}. (2)

828). Peaking of the connection function around zero
orientation difference implies more connections be-For these connection functions, we look for the layout

of neurons on a square lattice that minimizes the total tween neurons of similar orientation preference, which
leads to clustering of neurons of similar orientation pref-length of connections. The details of the numerical algo-

rithm are given in the Experimental Procedures section. erence. In Experimental Procedures, we prove that Ice-
cube layout is optimal for the class of semi-elliptic con-Below we present the results and give an intuitive inter-

pretation. nection functions.
In general, the appearance of the optimal map resultsWe start with a purely constant connection function,

whereby each neuron is required to establish equal num- from competing requirements of the Gaussian and con-
stant components of the connection function. Thebers of connections with neurons of all preferred orienta-

tions. We find that the optimal layout in this case is the Gaussian part of the connection function creates an effec-
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When the connection function narrows sufficiently,
the optimized layout is a lattice of pinwheels (Figures
3A–3D). This arrangement contains regions where orien-
tation changes smoothly as required by the Gaussian
part of the connection function. At the same time, there
are singularities where neurons of all possible orienta-
tion preferences are present. Hence, a neuron does not
have to look farther than the nearest pinwheel to make
connections with all orientation preferences as required
by the constant part of the connection function.

In the extreme case of a very narrow connection func-
tion, the optimized layout consists of linear zones, or
Icecube patches, separated by fractures terminating on
pinwheels (Figures 3E–3H). Linear zones accommodate
connections required by the Gaussian part of the con-
nection function. Fractures realize short connections
between neurons of dissimilar preferred orientation re-
quired by the constant part of the connection function
(see, also, Das and Gilbert, 1999).

In the intermediate region between Icecube and Pin-
wheel layouts, we find Wavy Icecube (Figures 2E and
2F) (Braitenberg and Braitenberg, 1979). Bending of the
Icecube is the result of attraction between neurons of
dissimilar preferred orientations. Again, this layout com-
bines clustering of similarly oriented neurons with bring-
ing orthogonally oriented neurons closer than in a regu-
lar Icecube.

In addition to varying the width of the Gaussian, we
alter the balance between the two components of the
connection function by changing the magnitude of the
constant component. We represent our results in a
phase diagram (Figure 4) that shows optimized layouts
as a function of the Gaussian width and the relative
strength of constant component of the connection
function.Figure 3. Narrow Connection Functions and Corresponding Orien-

In our model, layouts, other than Salt&Pepper, havetation Maps
a characteristic periodic appearance. The period of the(A–C) Pinwheels (width of Gaussian 5 358, c(90)/c(0) 5 2/16); (E–G)

Pinwheels and Fractures (width of Gaussian 5 288, c(90)/c(0) 5 2/16). layout is determined by the numbers of connections in
(C) Orientation gradient map. Lighter areas correspond to regions of the c(u). The structure of the maps does not change
higher gradient (pinwheels). Four 1808 pinwheels are shown by plus when the connection function is rescaled by a constant
and minus signs, which designate the clockwise and counterclock-

factor, while the period of the pattern scales as thewise change in orientation preference while walking around the pin-
square root of the number of connections.wheel. (D) shows locations of neurons (circles) connected to a given

neuron (crosses). (G) Orientation gradient map. Fractures are bright
lines of high gradient. They terminate at 908 pinwheels designated Application of the Model to Direction
by plus and minus. Notice that the discontinuity of preferred orienta- Preference Maps
tion at the fracture is close to 908 (see also [F] and [H]). (H) Preferred

Although the current model was developed for orienta-orientation along the track shown by the bright line in (G). This line
tion preference maps, it can be applied to other corticalintersects three fractures. The change of the preferred orientation
maps. For example, as revealed by intrinsic optical im-on the first two of them is close to 908. The variation of orientation

on the third is about 1008, after averaging the short-range oscilla- aging, direction preference maps exist in visual cortex
tions on two sides of the fracture. of many species. These maps exhibit regions of continu-

ous change in direction preference, separated by occa-
sional fractures where preferred direction changes bytive attraction between neurons of similar orientation pref-

erences. Therefore, the Gaussian part favors the Icecube 1808 (Malonek et al., 1994; Shmuel and Grinvald, 1996;
Weliky et al., 1996; Kim et al., 1999).arrangement, where orientation changes smoothly from

point to point. On the other hand, the constant compo- Results for orientation preference maps presented
here can be carried over to direction preference maps,nent of the connection function creates an effective at-

traction between neurons of unlike preferred orientation. provided connectivity between neurons of different pre-
ferred directions can be approximated by a connectionThe constant component favors discontinuities in the

orientation map, as manifested in the Salt&Pepper lay- function of a central Gaussian and a constant back-
ground. To do this, we notice that preferred orientationout. The relative weight of the two components deter-

mines the optimal layout. As the Gaussian narrows, its varies in the range {2908; 908}, while preferred direction
variable must be in the range {21808; 1808}. Therefore,relative weight diminishes, and singularities start to ap-

pear in the optimized map (Figure 3). we need to rescale all angles by a factor of two both in
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Figure 4. Phase Diagram of Orientation Preference Patterns

(A) Optimized layouts for different values of the Gaussian width
at half-height and the ratio between numbers of connection with
neurons of the same and orthogonal orientation. SP, Salt&Pepper;
PW, Pinwheel; PW1F, Pinwheel and Fracture; IC, Icecube; and WIC,
Wavy Icecube. The column of fractions on the left shows the actual
minimum and maximum values of connection function used in calcu-
lation. The column on the right shows the decimal representation
of these fractions.
(B) Decrease in wire length in optimized maps relative to the optimal

Figure 5. Relation between Orientation and Direction PreferenceIcecube layout for a given connection function. The lines show the
Mapsphase boundaries from (A). The formation of singularities (pinwheels

and fractures) for the narrow connection function reduces wire Orientation connection function (A) and the corresponding orienta-
length by more than 30% (lower left corner). tion preference map (B). Direction connection function (C) and the

corresponding direction preference map (D) obtained by simple re-
scaling of the orientation map. (F) Gradient direction map (lighter
pixels reflect higher gradient values) showing fractures terminatingconnection functions and in the maps. An example of
at 908 pinwheels (arrows). (E) Orientation connection function de-the rescaling is shown in Figures 5A–5D for a narrow
scribing connections in the direction map (D). Orientation map ob-connection function. The corresponding direction pref-
tained from the direction map (D) by invoking orthogonality of pre-

erence map contains linear zones and fractures, where ferred orientation and preferred direction for a given neuron. (H)
direction preference changes by 1808. Gradient of the orientation map (G). Bright spots are 1808 pinwheels.

Next, we consider the appearance of the orientation
preference map for the same region as described by
the direction preference map. To do this, we notice that is orthogonal to preferred direction, it makes a full 1808

circle while going around the termination of the fractureorientation preference of a given neuron is orthogonal
to its direction preference. Therefore, we can obtain the and does not change across the fracture. These direc-

tion preference maps are consistent with experimentalorientation preference map (Figure 5G) from the direc-
tion preference map (Figure 5D). The corresponding ori- observations (Malonek et al., 1994; Shmuel and Grin-

vald, 1996; Weliky et al., 1996; Kim et al., 1999).entation preference map shows linear regions and pin-
wheels. The linear regions in orientation map originate
from the linear regions in direction map. Fractures in Discussion
direction map turn into linear regions in orientation map,
because when direction changes by 1808, preferred ori- Comparison with Experimental Observations

The types of orientation preference maps obtained inentation remains the same (Figures 5F and 5H). Finally,
terminations of fractures in direction maps produce pin- our model span most of the observed interspecies vari-

ability. Below we compare our results with experimen-wheels in orientation maps (Figures 5H). This is because
the direction preference gradually changes by 1808 while tally obtained orientation maps in different species.

The Salt&Pepper layout resembles the situation in ratgoing around the termination of the fracture and then
jumps by 1808 at the fracture. Since preferred orientation V1, where neurons of all preferred orientations are pres-
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ent at every point (Girman et al., 1999). This is despite
the fact that each individual neuron is well tuned for
orientation.

The situation in rat V1 raises a question about the
relation between the tuning of neuronal response and
the tuning of the connection function. Although they are
related, these two tunings do not have to coincide. This
is because contributions of input connections to the
tuning of neuronal activity are weighted by the synaptic
strength that varies from connection to connection and

Figure 6. Result of an Incomplete Minimization of the Wire Lengthmay even be negative (for inhibitory inputs).
Our model yields layouts with no singularities at all, (A) The connection function belongs to the area on the phase dia-

gram corresponding to the lattice of pinwheels (width of Gaussian 5such as Icecube (Figure 2D). Icecube arrangements, or
358, c(90)/c(0) 5 3/16).linear zones, are common in tree shrews along the V1/V2
(B) 60 3 60 array of preferred orientations resulting from only 1/10thborder and along the caudal edge of the dorsal portion of
of the regular optimization process.

V1 (Bosking et al., 1997). Linear zones have recently
been observed in sizable regions of cat V2 (Shmuel and
Grinvald, 2000). Thus, singularities in orientation maps clusions of our model are robust with respect to devel-
are not always necessary, in agreement with our predic- opmental noise and disorder pertinent real maps.
tions. Wolf and Geisel (1998) suggested analyzing cortical

By comparing our orientation maps with experiments orientation maps by comparing the scaled density of
done in cats (Swindale et al., 1987; Bonhoeffer and Grin- pinwheels q̂ 5 nl2, where n is the density of pinwheels
vald, 1991), monkeys (Blasdel, 1992), and tree shrews and l is the characteristic spacing of iso-orientation
(Bosking et al., 1997), we conclude that the orientation domains. The scaled density measures the number of
map in Figure 3F comes closest to these maps. In partic- pinwheels in a region of area l2. The average values of
ular, we observe linear zones that are segregated by this quantity vary from 2.1–2.6 in tree shrews to about
fractures. The change of preferred orientation on these 3.5 (Obermayer and Blasdel, 1997) or 3.75 (Wolf and
fractures is close to 908 (Figure 3H). This is in accord Geisel, 1998) in macaque monkey. The average values
with the experimental observations. The fractures termi- for other species are between tree shrew and monkey.
nate on 908 pinwheels (Figure 3G). In addition, we obtain However, intraspecies variability in macaque monkey is
standalone 1808 pinwheels, which are not connected to rather high, 3 , q̂ , 4.5, as inferred from Obermayer
any fracture. Both types of singularities are observed in and Blasdel (1997). The scaled density of pinwheels in
these species. our model is expected to be smaller or comparable since

Good agreement between Figure 3F and the data from additional pinwheels may be generated by noise in real
cats, monkeys, and tree shrews suggests that the con- system (Wolf and Geisel, 1998). The scaled density for
nection function in these species is close to the one

the maps in Figures 3B and 3F is equal to 3.9 and 1.2,
shown in Figure 3E. This is consistent with the measure-

respectively. For the incompletely optimized map in Fig-
ments of the connection function (Roerig and Kao, 1999;

ure 6B, the scaled density is 3.3. Thus, the values of
Yousef et al., 1999), according to which the central peak

scaled density observed in our model are within thehas a width of 208–408.
experimentally observed range.The periodic Pinwheel layout (Figure 3B) resembles

that in ferrets (Weliky et al., 1996) (see, however, Rao
Experimental Predictionset al., 1997). At the same time, the direction map in
Orientation preference maps vary substantially betweenferret V1 contains fractures. The relationship between
species and even within one animal. Wiring optimizationorientation and direction preference maps in our model
hypothesis suggests that these differences reflect varia-is discussed in the Results.
tions in intracortical circuitry. In particular, rats, unlikeThe maps observed in ferrets and other mammals are
cats and monkeys, seem to have a Salt&Pepper arrange-far from regular (Bonhoeffer and Grinvald, 1991; Blasdel,
ment in V1 (Girman et al., 1999). Thus, we predict that1992; Bosking et al., 1997). We attribute the irregular
their connection function should belong to the Salt&arrangement of singularities seen in experimental orien-
Pepper region of the phase diagram (Figure 4A).tation maps to both developmental noise and to various

Experiments in tree shrew (Bosking et al., 1997) andsorts of quenched disorder, such as the weak coupling
cat V2 (Shmuel and Grinvald, 2000) show both Pinwheelbetween orientation and other maps, the presence of
and sizable Icecube regions. We predict that this shouldblood vessels, etc. To mimic such variability, we per-
be reflected in different shapes of the connection func-formed an incomplete wire length minimization, limiting
tion in these regions (Figure 4A). Our predictions regard-the annealing procedure (see Experimental Procedures)
ing connection functions can be tested with experimen-to 1,000 steps instead of 10,000. The result of one such
tal techniques used by Roerig and Kao (1999) andincomplete run is shown in Figure 6B. The connection
Yousef et al. (1999).function in Figure 6A corresponds to the region of phase

Differences in intracortical connectivity may reflectdiagram occupied by the lattice of 1808 pinwheels. It is
differences in visual processing between species orevident from Figure 6 that the regularity of pinwheel
within the visual field of the same animal. Therefore, thelattice is destroyed if noise is added to the system. At
map structure may be related to the statistics of naturalthe same time, the local structure of the map dominated

by 1808 pinwheels is preserved. This suggests that con- stimuli. A similar question was addressed in the recent
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work of Sharma et al. (2000) spanning different sensory Coupling between orientation and retinotopic maps
should be even weaker. Since the dependence of themodalities.

It is possible that the layout of cortical maps is preset cortical connectivity on parameters other than orienta-
tion is not clear at the moment, we postpone the treat-by evolution before any visual experience. It is also likely

that intracortical circuitry may be affected in the course ment of the interaction between different cortical maps
until more experimental evidence is available.of development by manipulating the statistics of external

inputs. This approach was used to demonstrate that
kittens raised in a vertically striped environment have Relationship to Other Models
larger cortical area devoted to neurons with vertical- Many models of orientation maps rely on the principle
preferred orientation (Sengpiel et al., 1999). Similarly, of uniform coverage, i.e., complete representation of all
we propose that raising kittens equipped with goggles parameters of the visual stimuli. Recently, the impor-
containing strong lenses (or filtering out high spatial tance of this principle was highlighted by Swindale et
frequency harmonics some other way) should flatten al. (2000). However, the principle of uniform coverage
the connection function. If the appearance of the map by itself cannot explain the appearance of cortical maps.
reflects wiring optimization implemented by experience- Indeed, imagine taking a map optimized for coverage
dependent (rather than experience-independent) devel- and scrambling it, while keeping neuronal connections
opmental rules, then we would expect smaller density and neuronal preferred stimuli fixed. The circuit will stay
of pinwheels. the same and, hence, optimized for coverage. But the

map will have a completely different structure. There-
fore, another principle is needed to explain map struc-Interaction with Other Maps

The connection function in our model is independent of ture. Several authors pointed out that this principle
might be continuity (Hubel and Wiesel, 1977; Swindale,other features represented by cortical neurons such as

retinotopy and ocular dominance. Thus, we assume that 1996), which requires smooth change in neuronal re-
sponse properties between nearby neurons. Becausethe coupling between the orientation preference map

and other maps is weak. Indeed, variability in the ocular the likely motivation for continuity is wire length minimi-
zation (Swindale, 1996), our theory is complementary todominance maps and discontinuities in the retinotopy

do not affect the orientation preference map in ferrets Swindale et al. (2000).
The structure of orientation maps has probably(White et al., 1999). Although coupling between different

maps has been reported in monkeys (Bartfeld and Grin- evolved to optimize both coverage and wire length. An
example of such optimization is dimension reductionvald, 1992; Blasdel, 1992) and cats (Crair et al., 1997; Das

and Gilbert, 1997; Hubener et al., 1997), the qualitative approach. However, the relative importance of the two
principles is not clear. Our work shows that a singleappearance of orientation maps in these animals is simi-

lar to ferret, implying that this coupling is weak and does principle of wire length minimization is enough to explain
both singularities in orientation maps and interspeciesnot affect the appearance of orientation maps signifi-

cantly. This is also supported by observations of qualita- variability. Because our approach does not invoke the
second principle, it has an advantage of being moretively similar orientation map in tree shrews (Bosking et

al., 1997), which lack ocular dominance patterns alto- parsimonious (Occam’s razor). Future work should ad-
dress the interplay between the principles of uniformgether. The simplicity of our model allows us to explore

the parameter space fully and to make predictions about coverage and wire length minimization.
Most of the existing developmental models rely onanatomically measurable connection functions.

The dependence of the intracortical connectivity on neuronal activity for map formation. Recently, however,
the role of activity has been questioned (Crowley andstimulus parameters other than orientation, such as reti-

notopy, is not completely clear at the moment. One Katz, 1999; Crowley and Katz, 2000), thus challenging
the assumptions of developmental models. Because ofpossible scenario is that cells with close receptive field

positions (RFP) are connected. Then, in case of signifi- the teleological nature of our approach, it bypasses the
question of developmental mechanisms and is, there-cant scatter of RFP (Hubel and Wiesel, 1974; Albright

et al., 1984), our approach is rigorously valid. Because fore, immune to the outcome of the controversy on the
role of activity in map formation. Whatever the develop-neurons with different RFP are intermixed in the same

iso-orientation column, one can find as many close RFP mental mechanism, it is under pressure to minimize the
wiring length.neurons as needed by connecting to any cortical column

in the vicinity. In this case, orientation preference map Although we left the question of developmental mech-
anisms outside of the scope of this paper, it is an impor-is completely decoupled from the retinotopic map. How-

ever, if scatter is not large (Das and Gilbert, 1997; Hether- tant one. We believe that existing developmental rules
should respect wire length constraints. Therefore, devel-ington and Swindale, 1999), then retinotopic and orienta-

tion preference maps should be coupled within the wire opment can be modeled by learning rules that perform
gradient descent on the cost-function expressing totallength minimization approach. In an alternative scenario,

connections between neurons may depend on the simi- wire length. In case of ocular dominance patterns, the
authors have shown (Chklovskii and Koulakov, 2000)larity of the spatial phase of their receptive fields (SPRF),

as strongly indicated by DeAngelis et al. (1999). Then, that this approach leads to learning rules that are mathe-
matically similar to the “Mexican hat” interaction modeldue to the presence of significant scatter in the SPRF

within the same cortical column (DeAngelis et al., 1999), (Swindale, 1982). An analogous calculation for the orien-
tation preference map shows that the cost-function cancoupling between the orientation preference map and

the SPRF map is expected to be weak within our model. be expressed in the form of two-neuron interaction simi-
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o
k
→

uc k
→u2 5 1. (7)lar to that in Cowan and Friedman (1991) and Swindale

(1982) (see Experimental Procedures), but with the inter-
action kernel that depends on the relative orientations This cost-function is minimized by taking
of two neurons in addition to their relative position.

c k
→ 5 d k

→
, k
→

0
, (8)Another approach to relate orientation map structure

to intracortical connectivity has been proposed by Das with the value of k0 corresponding to the maximum of J(k). This is
equivalent to takingand Gilbert (1999) and Schummers and Sur (2000). They

suggested that the horizontal connections of each neu-
u(r

→
) 5 k

→
r
→
, (9)ron come from a local neighborhood defined by a circle

with some characteristic radius (e.g., 500 mm). This ap- i.e., to the Icecube layout.
This result shows that the “Mexican hat” cost-function is opti-proach implicitly relies on wiring minimization hypothe-

mized by an Icecube layout with preferred orientation smoothlysis by postulating the locality of horizontal connections
varying. Singularities in the map, such as pinwheels and fractures,and is, therefore, similar in spirit to ours. An additional
are developmental defects, which can be eliminated by annihilation

level of complexity arises because each neuron ends (Wolf and Geisel, 1998).
up with a different connection function. This level of
complexity can be incorporated into our model by classi- Salt&Pepper Is Optimal for the Uniform Connection Function
fying neurons by their connection function in addition Here we prove that Salt&Pepper is an optimal layout for the uniform

connection function. Consider a single neuron and draw a circleto different preferred orientations.
around it, so that the number of neurons inside the circle is equal
to the total number of neurons it has to receive connections from.

Conclusions The total length of connections for this neuron is shortest if it re-
ceives connections from all the neurons within the circle and doesWe find orientation preference maps that minimize the
not receive any from outside the circle.length of intracortical connections for various connec-

To prove this, notice that any other set of connections for thetion functions. We conclude that singularities in cortical
given neuron can be obtained by sequentially disconnecting neu-maps are necessary to shorten connections between
rons within the circle and connecting to the ones outside. Each such

neurons with dissimilar properties for certain connection step increases the total length of connections. Therefore, if each
functions. We establish a link between the intracortical neuron receives all of its connections from all the neurons within a

circle around it, such a layout minimizes the total length of connec-circuit, as characterized by the connection function, and
tions.the layout of the orientation preference map. Our theory

In the Salt&Pepper layout, each preferred orientation is equallyallows one to infer the connection function from the
represented at every location. Therefore, connecting with neuronsappearance of cortical maps, thus leading to experimen-
within a circle satisfies the uniform connection function and gives

tally testable predictions. the minimal wire length.

Experimental Procedures Icecube Is Optimal for Semi-Elliptic Connection Functions
Consider a class of semi-elliptic connection functions specified by

Icecube Is Optimal for Many Developmental Models the following:
In order to model the formation of orientation preference maps,
Swindale (1982) introduced learning rules for a two-dimensional c(u) 5 c(0)5√1 2 u2/u2

max,uuu,umax

0,uuu$umax

. (10)
orientation variable, u(r). These learning rules are equivalent to a
gradient decent on the following cost-function in the continuous

In this case, the optimal map is Icecube of the appropriate periodic-limit (Cowan and Friedman, 1991):
ity. To prove this, draw a circle that includes the total number of
neurons equal to the area under the connection function. Now,

H 5 2##dr
→

dr
→

9 J(r
→

2 r
→

9)cos(u(r
→
) 2 u(r

→
)). (3) overlay this circle on Icecube layout, whose period is such that the

diameter of the circle spans the range of preferred orientations equal
Here, variable u(r) represents preferred orientation at point r, J(r) to 2umax. By connecting a neuron with every neuron in a circle around
gives the distribution of weights, which usually takes the “Mexican it, we satisfy the connection function and achieve the minimal wiring
hat” form. Integration is done over the two-dimensional variable r. length. Therefore, Icecube is the optimal layout. The period of the
The above authors attempted to reproduce orientation preference Icecube is inversely proportional to the sharpness of the connection
maps by minimizing this cost-function. function.

Here we show that this cost-function is minimized by the Icecube
layout. Therefore, within this model, pinwheels cannot exist in the

The Model
optimal orientation map.

The neurons in our model occupy a square lattice with periodic
First, we rewrite the cost-function in the identical form:

boundary conditions. We use lattices of three sizes: 30 3 30, 50 3

50, and 60 3 60. The preferred orientation of a neuron at each lattice
H 5 2Re{##dr

→
d r

→
9J(r

→
2 r

→
9)exp(iu(r

→
) 2 iu(r

→
9))}. (4) site can take any value between 0 and 180 degrees. Based on

the spatial distribution of preferred orientations and the connection
By using a Fourier transform, rules, we draw connections between cells and evaluate the total

connection length.
exp(iu(r

→
)) 5 o

k
→

exp(ik
→

r
→
)ck

→ Arbitrary pattern of neuronal connections can be defined by the
connection matrix Mi ← j. By definition, the element of the connection
matrix is equal to unity if the neuron number i receives connectionJ(k

→
) 5 #dr

→
J (r

→
)exp(ik

→
r
→
), (5)

from the neuron number j(i, j 5 1…N) and is zero otherwise. Here
N is the total number of neurons (N 5 900, 2500, or 3600). Thewe reduce the cost-function to the following form:
connection matrices in our model are not arbitrary but satisfy con-
straints imposed by the connection rules. The connection rules areH 5 2o

k
→

J(k
→
)uc k

→u2, (6)
dictated by the function c(u), which is defined for the discrete set
of values of the difference in the preferred orientation. u 5

0,Du,2Du,…,1808 2 Du. Here the size of the angular bin Du 5 1808/with the condition
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Nu, where Nu 5 15 is the total number of angular bins. The function Pentium III processor–based personal computer (Dell Computer
Corporation, Round Rock, Texas).specifies how many connections the i-th neuron must receive from

neurons with the preferred orientation in the range between ui 1

u 2 Du/2 and ui 1 u 1 Du/2. Here ui is the preferred orientation of Acknowledgments
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