
Impact of request dispatching granularity in geographically

distributed Web systems

Mauro Andreolini, Claudia Canali, Riccardo Lancellotti

University of Modena and Reggio Emilia

Department of Computer Engineering

{mauro.andreolini, claudia.canali, riccardo.lancellotti}@unimo.it

Abstract

The advent of the mobile Web and the increasing demand

for personalized contents arise the need for computationally

expensive services, such as dynamic generation and on-the-

fly adaptation of contents. Providing these services exacer-

bates the performance issues that have to be addressed by

the underlying Web architecture. When performance issues

are addressed through geographically distributed Web sys-

tems with a large number of nodes located on the network

edge, the dispatching mechanism that distributes requests

among the system nodes becomes a critical element.

In this paper, we investigate how the granularity of re-

quest dispatching may affect the performance of a dis-

tributed Web system for personalized contents. Through a

real prototype, we compare dispatching mechanisms oper-

ating at various levels of granularity for different workload

and network scenarios. We demonstrate that the choice of

the best granularity for request dispatching strongly de-

pends on the characteristics of the workload in terms of

heterogeneity and computational requirements. A coarse-

grain dispatching is preferable only when the requests have

similar computational requirements. In all other instances

of skewed workloads, that we can consider more realistic,

a fine-grain dispatching augments the control on the node

load and allows the system to achieve better performance.

1 Introduction

A significant trend in the mobile Web is the growing

amount of personalized contents required by users, that in-

creasingly access the Web through heterogeneous and mo-

bile devices. The underlying Web system needs to handle

increasing percentages of dynamic generation and adapta-

tion services to deliver personalized contents that match

user preferences and device capabilities. A typical ex-

ample is related to Web sites providing location-based or

tourism services, that are commonly accessed by mobile

users through devices with limited capabilities. These Web

sites aim to offer personalized contents to provide the users

with information tailored to their interests or current loca-

tion. These contents are dynamically generated on the basis

of user-related information and delivered, possibly after the

adaptation of part of the contents (e.g., images) to match the

requirements of the user device.

The delivery of personalized contents exacerbates the

performance issues of the underlying architecture for a

twofold reason. First, contents have to be generated and

adapted at the moment of the request, since a pre-generation

of formats for any combination of user preferences and de-

vice capabilities is simply unfeasible. Second, generation

and adaptation of contents typically have much higher com-

putational requirements with respect to the request/reply

service of traditional static resources [2]. For these reasons,

much interest of the research community has been oriented

to achieve efficient content generation and delivery through

geographically distributed systems. Replication guarantees

the possibility of sharing the load of computationally expen-

sive tasks, while location of nodes close to the network edge

allows the reduction of network-related delays. Through-

out this paper, we consider an architecture which is com-

monly used in distributed Web systems [10, 23], where a

core component, typically consisting of a cluster of servers,

is integrated with distributed edge nodes that are close to

the clients (see, for example Figure 1).

In similar distributed Web systems the request dispatch-

ing mechanism and algorithms play a fundamental role to

efficiently exploit the system resources and to provide load

sharing among the nodes [19, 25]. We should consider that

a user click for a Web resource originates multiple client re-

quests for the resource template and the components, where

a component may range from a fragment to a multimedia re-

source. Moreover, each component may require a different

1

Clients

Core

Node

Network edge

Edge

Node

Figure 1. Distributed system for personalized

Web contents.

generation or adaptation service. In this scenario, an im-

portant choice in the design of efficient dispatching mech-

anisms concerns the level of request granularity to operate

on. We can ideally go from coarse-grain dispatching that

assigns all requests for a single Web resources to the same

node, to fine-grain dispatching that may assign each com-

ponent of the same Web resource to a different node. Since

the granularity of request dispatching has significant effects

on the distribution of the computational load on the sys-

tem nodes, it is important to understand which is the most

convenient granularity to be used in a geographically dis-

tributed system supporting personalized Web contents.

The comparison between different levels of dispatching

granularity has been widely investigated for the delivery

of static contents, for example in cluster-based Web sys-

tems [5, 4], where fine granularity is preferred for load

sharing purpose, and in CDNs [19], where Kangasharju et

al. [18] demonstrates the superiority of coarse-grain dis-

patching. Even many recent proposals of systems for dy-

namic contents [12, 24] rely on DNS-based approaches, that

operate a coarse-grain dispatching, or on application-layer

redirection that statically assigns requests on the basis of the

current application placement over the system nodes. How-

ever, to the best of our knowledge, this is the first paper

that investigates the impact of different dispatching gran-

ularity on the performance of geographically distributed

systems providing personalized contents that are dynami-

cally generated. Understanding the impact of different dis-

patching granularities is particularly important in a scenario

where generation and adaptation services place a significant

load over the system and make less effective common tech-

niques that are traditionally used in content delivery, such

as caching or prefetching [6, 23, 11].

This paper evaluates how different granularity choices in

request dispatching affect the user-perceived performance

of a distributed Web system composed by a core node and

geographically distributed edge nodes. We consider three

dispatching mechanisms, namely coarse-grain, medium-

grain and fine-grain, that are described in Section 3. Our

analysis shows that the choice of the best granularity for re-

quest dispatching strongly depends on the characteristics of

the workload in terms of heterogeneity and computational

requirements. Experimental results demonstrate that, in a

scenario where all the provided services have similar com-

putational requirements, dispatching mechanisms with dif-

ferent granularity lead to similar performance, but a coarse-

grain dispatching is preferable since it causes less overhead

on the system. On the other hand, for highly heteroge-

neous workloads, a fine control of the request dispatching

is of fundamental importance to achieve good performance,

since it provides the flexibility necessary to efficiently share

the load among the nodes of the distributed Web system.

The rest of this paper is structured as follows. Sec-

tion 2 outlines the geographically distributed Web system

for personalized contents considered in this paper. Sec-

tion 3 presents the dispatching mechanisms operating at dif-

ferent levels of granularity. Section 4 describes the proto-

type and the experimental setup. Section 5 compares the

performance achieved by the considered dispatching mech-

anisms. Section 6 discusses some related work. Section 7

summarizes our main results and conclusions.

2 System overview and operations

In this section we describe the distributed Web system

that represents the reference scenario for this paper. As

shown in the model of Figure 1, we consider a distributed

architecture [10, 23] consisting of a centralized core node

integrated with geographically replicated edge nodes. The

use of replicated edge nodes represents a common solution

for a system providing personalized Web contents for per-

formance reasons and also because most mobile devices ac-

cess the Web through some intermediary node. The consid-

ered architecture is an evolution of the systems where the

geographically distributed nodes are reverse proxies [26]

that cache and serve static content. Our approach follows

the recent trend of modern systems that exploit servers on

the network edge to replicate services (possibly including

generation and adaptation), as can be observed in recent lit-

erature [24, 19, 17] and in CDN solutions [27, 12]. It is

worth to note that we focus on a scenario where the con-

tent provider manages the entire architecture and controls

all services and information hosted on the core and the edge

nodes. However, the results of the paper can be extended to

the case where a CDN houses or hosts the edge components

of the distributed architecture.

The reference architecture model, that is described in

2

Client

User

profile

1

3
2

4b

6

Web resource

template

Edge node

Core

node

Profiles Back-end

server(s)

4a

5
User

Application

server

Application

server

Switch

Front-end

server

Dispatcher
Application

server

HTTP

server

HTTP

server

Static

resource

repository

Query

cache
Resource

cache

Figure 2. Detailed view of the distributed sys-
tem supporting personalized Web contents.

Figure 1, is detailed in Figure 2. We can see that the core

node is basically a three-tier Web system, where the first

tier consists of the HTTP servers, the second tier hosts the

application servers, and the third tier consists of back-end

servers managing the data for the dynamic generation of

contents. The core node maintains a static resource repos-

itory and a user profile database, that stores user infor-

mation necessary to generate personalized contents. Each

edge node consists of a two-tier Web system with a front-

end server that receives client requests and an application

server that carries out generation and adaptation functions.

As shown in Figure 2, each edge node of the distributed

Web system hosts a local resource cache that maintains a

replica of the static resource repository on the core node.

Every update to the static resource repository is propagated

from the core node through push-based caching mecha-

nisms to guarantee Web data consistency [14, 13, 22]. Each

local resource cache also stores a copy of the user pro-

files that are necessary to allow edge nodes to generate and

adapt Web contents. The user profiles are maintained on the

edge nodes only for the period of time necessary to perform

the assigned tasks. This choice allows the system to avoid

any problem related to the consistency of replicated pro-

files, that may change frequently in modern Web systems

(e.g., [15]). Finally, the edge nodes host a query cache,

that stores the results of previous queries to the back-end

database servers [13, 22].

The steps to serve a client request for a Web resource

are detailed in Figure 2. We recall that a user click for a

Web resource originates multiple requests for the resource

template and the components, each of them may require a

different generation or adaptation service. After receiving

a client request (Step 1), the edge node determines if that

request denotes a new user session. We define a user ses-

sion as a sequence of Web resource requests issued from

the same user to the same site during a limited time inter-

val. In the case of a new session, the edge node contacts the

core node (Step 2) to retrieve the user profile and a template

that lists the components of the Web resource (Step 3). If

the client request refers to an already established session,

the edge node retrieves from the core node only the tem-

plate of the Web resource, because it already owns the nec-

essary profile information. The dispatcher running on the

edge node executes one of the dispatching mechanisms de-

scribed in Section 3, that decide which Web resource com-

ponents will be processed by the local edge node (Step 4a)

and which by the core node (Step 4b). If the processing

of a resource component requires database information, the

application server of the edge node may contact directly

the back-end servers of the core node (Step 5) or interact

with the local query cache. After the generation/adaptation

of each component of the Web resource, this is sent to the

client by the edge node (Step 6).

3 Request dispatching

In this section we describe multiple dispatching mech-

anisms using different levels of granularity in the distribu-

tion of requests for Web resource components among the

edge and the core nodes. All the considered dispatching

mechanisms aim to improve performance by moving as

much computation as possible on the network edge to re-

duce network-related delays, as suggested by some of the

best practices in efficient Web content delivery [24, 17, 12].

To avoid overloading the edge nodes, the dispatching mech-

anisms have to take into account information on the sys-

tem status. As most generation and adaptation tasks are

CPU-bound operations, we choose the CPU utilization of

the nodes as the most representative index of the system

status [1]. We follow a threshold-based approach, that is

commonly used in literature [3], where the tasks originated

by a client request are assigned to the edge node until this

node reaches a utilization threshold UT . When the edge

node utilization UE is higher than the threshold, some or all

requests for other Web resource components are forwarded

to the core node with different strategies depending on the

granularity exploited by the dispatching mechanism.

We present three dispatching mechanisms, namely fine-

grain, medium-grain and coarse-grain, that are character-

ized by increasing levels of granularity in request dispatch-

3

ing.

Fine-grain dispatching

The fine-grain dispatching distributes requests among the

edge and the core nodes by operating at the level of individ-

ual components of a Web resource. If the edge node utiliza-

tion UE is below the threshold UT , all the N components of

the Web resource are processed locally. Otherwise, the dis-

patching mechanism determines the amount of components

NC that should be forwarded to the core node on the basis

of the fraction UE−UT

1−UT

, that indicates how much the edge

node utilization is beyond the threshold:

NC ⇐ ⌊N
UE − UT

1 − UT

⌋ (1)

In this way, a higher value of UE determines a higher

amount of components that are assigned to the core node

in the attempt to offload the edge node. We assume that the

NC forwarded components are randomly chosen among the

N components of the Web resource.

Medium-grain dispatching

The medium-grain dispatching operates at a coarser level of

granularity than the fine-grain scheme by considering that

the Web resource components are grouped into macrocom-

ponents. Indeed, in modern Web sites components typi-

cally embed other components in a recursive way. Hence,

Web resources can be structured as hierarchical documents,

where the overall resource represents the first level root

node and the single components are the leaf nodes. This

is consistent with the fragment-based composition of a Web

resource described in [27, 7]. The medium-grain dispatch-

ing considers a Web resource as composed by M macro-

components, where a macrocomponent is the set of com-

ponents belonging to the same sub-tree that starts from

the second level of the hierarchy related to the Web re-

source. If the edge node utilization UE is below the thresh-

old UT , all macrocomponents are processed locally. When

the edge node utilization is above the threshold, the dis-

patching mechanism computes the number MC of macro-

components that should be forwarded to the core node in a

way similar to Equation 1. The MC forwarded macrocom-

ponents are randomly chosen among the M macrocompo-

nents of the Web resource.

Coarse-grain dispatching

The coarse-grain dispatching operates at the level of an en-

tire Web resource. If the edge node utilization UE is below

the threshold UT , the Web resource is processed locally.

Otherwise, the dispatcher assigns the entire Web resource

to the core node.

4 Prototype

To evaluate the performance of the request dispatching

mechanisms, we have implemented a prototype supporting

a Web portal site that provides dynamic and personalized

contents.

4.1 Services and workload

Our prototype provides three main services, that are typi-

cally offered by Web portals for personalized contents, such

as MyYahoo [21]: personalized banner insertion, aggrega-

tion of RSS feeds and adaptation of Web content to the user

device.

The personalized banner insertion service uses a

database to associate banners to one or more keywords: it

extracts from the database a list of banners according to the

user interests. Then, a set of banners is randomly selected

from the list and inserted into the Web resource.

The aggregation of RSS feeds allows us to generate the

Web resources through the information collected from mul-

tiple sources. The RSS feeds are downloaded off-line and

periodically refreshed. Then, the conversion from the RSS-

XML code to HTML is carried out dynamically for every

request depending on the user preferences.

The adaptation of Web content to the user device aims

to transform static HTML code and embedded images on

the basis of the information stored in the user profile. For

example, the user may select a transcoding service to adapt

images to the client display size and color depth. Further-

more, the user may select a data compression function to

reduce the bandwidth consumption related to HTML and

Javascript code download.

The described services are characterized by increasing

computational requirements that may involve service times

of different orders of magnitude. Indeed, a banner inser-

tion typically requires few milliseconds, a feed aggregation

task may be in the order of tens of milliseconds, while the

adaptation of an embedded image may take from hundreds

of milliseconds up to 1 second [8]. We define three work-

load models, namely WL1, WL2 and WL3, that are charac-

terized by a different mix of services. The exact percent-

ages are reported in Table 1. In the workload WL1, the

majority of the requests refers to the same average service

(Feed aggregation) and consequently have similar compu-

tational requirements; in the workload WL2, the requests

are evenly distributed among the three offered services; in

the workload WL3, the majority of the requests is evenly

distributed among the two services with the lowest and the

highest computational requirements (Banner insertion and

Content adaptation, respectively), while a little percentage

of requests refers to the third average service (Feed aggre-

gation).

4

Table 1. Workload composition
Service

Workload Banner Feed Content

insertion aggregation adaptation

WL1 5% 90% 5%

WL2 33% 34% 33%

WL3 45% 10% 45%

To exercise our prototype we use synthetically generated

traces since none of the existing benchmarking models (e.g.,

Spec-Web, TPC-W) includes features for highly personal-

ized Web contents. The requests in the traces are divided

into sessions, each related to a different user. Sessions are

initiated at the rate of 5 sessions per second and are evenly

distributed among the edge nodes. Each session contains

requests for 5 Web resources on average. A Web resource

typically consists of a template and 10 components, each

of them requiring one of the previously described services.

We use traces generating a workload intensity that is lower

than the overall system capacity, because our study aims

to evaluate the impact of the dispatching granularity on the

performance of a system that is in non-saturated conditions.

To handle flash crowd events, the system may be integrated

with already existing mechanisms for preventing overloads,

such as policies of admission control [16].

4.2 System

The prototype is implemented through open sources

technologies for multi-tier Web systems on the core and

the edge nodes. The core node of the prototype is a Web

cluster with a front-end switch, HTTP-servers, application

servers and back-end servers. The software handling dy-

namic generation and adaptation services on the application

servers is based on the Perl scripting language. The back-

end servers on the core node run a MySQL DBMS. The

database is replicated on each back-end server and contains

the data required by the offered services, for example, a list

of banner images used by the banner insertion service. Fur-

thermore, the DBMS handles the user profiles. Each edge

node is composed by two servers: a front-end server run-

ning an Apache Web server that is equipped to carry out the

request dispatching process by means of additional mod-

ules, and an application server, that hosts a query cache to

accelerate queries frequently issued to the back-end of the

core node. The query cache is similar to the caching module

proposed in other middleware systems [13, 22].

The prototype for the experiments is deployed on 17

physical servers with the same capacity, where 9 servers

compose the core node and 8 physical servers are used for

the edge nodes. The core node consists of 1 Web switch,

2 HTTP servers, 4 application servers, and 2 back-end

servers, while each edge node consists of 1 front-end server

and 1 application server. All the servers are connected

through a fast Ethernet network. Since the generation and

adaptation tasks considered in our experiments are charac-

terized by a significant computational cost, the system load

mostly lies on the application servers. Hence, we choose to

utilize the same number of application servers on the core

and the edge nodes to provide the same computational ca-

pacity for a fair comparison among the different dispatching

mechanisms, with no influence due to the specific architec-

tural choices. The CPU utilization of the application servers

is collected through the System Activity Reporter (SAR).

4.3 Network

To evaluate the impact of network delays on the perfor-

mance of the dispatching mechanisms, we emulate Wide

Area Network effects on the links connecting the edge and

the core nodes. We do not emulate WAN effects on the link

connecting the client to the edge nodes since it does not af-

fect the results of the comparison of the dispatching mecha-

nisms. We use the netem packet scheduler (part of the Linux

kernel) to emulate network delays on the links between the

edge and the core nodes. The netem scheduler introduces

packet delay and loss to mimic WAN effects. We add also

a token bucket filter scheduler to add bandwidth limitation

effects in order to achieve a full WAN emulation. We con-

sider three scenarios where the mean value for the delay on

the edge-to-core links is set to 10, 40, 100 ms. The emu-

lated WAN effects include also packet loss (set to 1%) and

bandwidth limitation (10Mbit/s). Round trip delays, loss

rates and bandwidth considered in the network scenarios are

consistent with the datasets from real-world measurements

used in [28].

5 Experimental results

In this section we present the performance evaluation of

the request dispatching mechanisms for different workload

and network scenarios. We consider as the main perfor-

mance metric the Web resource response time, that is mea-

sured as the time between the client request and the arrival

of all the components of the Web resource (see Figure 2 for

the service of a Web resource).

5.1 Performance comparison

Figure 3 shows the cumulative distribution of the Web

resource response time for the coarse-grain, medium-grain

and fine-grain dispatching mechanisms under the work-

loads WL1, WL2, and WL3 described in Section 4. We

note that the impact of request dispatching granularity on

performance strongly depends on the characteristics of the

workload. The fine-grain dispatching provides slightly

worse performance than that of the other two dispatching

5

alternatives for the workload WL1, where all the requests

have similar computational requirements, while it outper-

forms both the medium-grain and coarse-grain dispatching

schemes for the workloads WL2 and WL3, characterized by

highly variable computational requirements. We now ana-

lyze the performance of the three dispatching mechanisms

for each workload.

Figure 3(a) shows the performance of the dispatch-

ing mechanisms for the workload WL1. We see that

the medium-grain and coarse-grain dispatching schemes

achieve almost identical performance, while the fine-grain

dispatching achieves slightly higher response time. This re-

sult demonstrate that, when all requests have similar com-

putational requirements, a fine granularity at the level of

single Web resource components is not able to improve

the system performance with respect to dispatching mecha-

nisms that operate on classes of components or entire Web

resources. Moreover, we should consider that a fine-grain

dispatching causes a higher overhead on the system if com-

pared to medium or coarse dispatching, since it requires op-

erations on the user profile information and Web resource

template at the beginning of each Web resource request.

For the workloads WL2 and WL3 the fine-grain dis-

patching achieves better performance than that of medium-

grain and coarse-grain alternatives, as shown in Fig-

ures 3(b) and 3(c).

In Figure 3(b), we see that for the workload WL2 the

fine-grain dispatching achieves slightly lower response time

if compared to the medium-grain dispatching, but it signif-

icantly ouperforms the coarse-grain alternative, with a dif-

ference of 29.7% on the 90-percentile of the response time.

These results demonstrate that, in a scenario where the com-

putational requirements of the Web resource components

may be heterogeneous, a coarse granularity does not pro-

vide the request dispatching with the flexibility necessary

to efficiently control the load on the edge nodes. On the

other hand, a finer granularity at the level of component

classes or individual components allows to better exploit

the edge nodes capabilities and, consequently, to process a

higher number of resource components on these nodes with-

out overloading them.

If we now consider the performance of the dispatch-

ing mechanisms under the workload WL3, shown in Fig-

ure 3(c), we see that the fine-grain dispatching allows sig-

nificantly lower response time if compared to the other

two dispatching mechanisms, which achieve similar perfor-

mance. This result shows that, in a scenario where the com-

putational requirements of single Web resource components

are very heterogeneous, request dispatching needs to oper-

ate with a very fine granularity at the level of individual

components to fully exploit the edge nodes capabilities.

To summarize the main results of our analysis, we evi-

dence the importance of choosing the correct level of gran-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Response time [s]

Fine-grain
Medium-grain
Coarse-grain

(a) WL1 workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Response time [s]

Fine-grain
Medium-grain
Coarse-grain

(b) WL2 workload

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Response time [s]

Fine-grain
Medium-grain
Coarse-grain

(c) WL3 workload

Figure 3. Cumulative distribution of response
time

ularity on the basis of the characteristics of the expected

workload. Indeed, when the computational requirements

are similar for any request, all the considered dispatching

mechanisms achieve comparable performance, but a coarse

granularity is preferable since it places less overhead on the

6

system. On the other hand, in the case of very heteroge-

neous workloads a fine dispatching granularity is necessary

to efficiently control the nodes load.

5.2 Wide Area Network effects

Due to the distributed nature of the considered Web sys-

tem, the user-perceived response time may be affected by

network delays. Indeed, every Web resource component

processed on the core node has to pay an additional network

delay if compared to the components that are processed

on the edge nodes. It seems interesting to investigate the

impact of WAN effects on the overall performance of the

dispatching mechanisms. Table 2 shows the 90-percentile

of the response time for the dispatching mechanisms as a

function of the mean delay on the edge-to-core link. The

reported results are referred to the workload WL3. The re-

sults of experiments for the workloads WL1 and WL2 lead

to similar conclusions.

Table 2. 90-percentile of response time [s]
Dispatching Mean delay on edge-to-core link

mechanism 10 ms 40 ms 100 ms

Fine-grain 5.38 5.71 6.38

Medium-grain 5.75 6.28 7.36

Coarse-grain 6.46 7.14 8.32

From Table 2 we observe that network delays have dif-

ferent impact on the performance of the dispatching mech-

anisms. As the mean delay on the edge-to-core link passes

from 10 to 100 ms, the increment of the 90-percentile of the

response time is 0.95 s for the fine-grain dispatching, while

it reaches almost 2 s for the medium-grain and coarse-grain

alternatives. This result can be explained if we consider that

the fine-grain dispatching allows a more efficient utilization

of the edge node computational power if compared to other

dispatching mechanisms that operate with a less fine granu-

larity. The fine-grain dispatching permits to assign a higher

number of components to the edge node without overload-

ing it, thus limiting the amount of edge-to-core communi-

cations that negatively affects the resource response time.

We conclude that a fine granularity of request dispatching

makes the system performance less sensitive to network de-

lays on the links connecting edge and core nodes.

6 Related work

Much interest has been focused on request dispatching at

the level of cluster-based Web systems [5], where context-

aware dispatching mechanisms have been exploited to al-

low a distribution at the granularity of individual requests

among the nodes of a cluster. Fine-grain dispatching has

been proved to provide better performance with respect to

a coarse-grain dispatching thanks to a good load balance

among the cluster nodes, although it introduces a signifi-

cant overhead at the Web switch level that may limit Web

cluster scalability [4]. Solutions for a scalable fine-grain

dispatching have been proposed in [9, 26], however, these

studies focus on cluster-based systems distributed in a local

area, while our approach targets geographically distributed

Web systems.

Request dispatching is one of the main issues ad-

dressed by geographically distributed systems, such as

multi-clusters or Content Delivery Networks [19, 25]. The

majority of the studies on distributed systems mainly fo-

cuses on static or streaming contents, while we consider a

highly dynamic and personalized scenario. Kangashariju

et al. [18] found that, in a static scenario, full redirection

schemes using coarse-grain dispatching achieve better per-

formance with respect to fine-grain schemes that split re-

quests for Web resource components among several servers.

Only more recently, the research community and the indus-

trial world have investigated the concept of edge computing,

that pushes the computation on the edge of the network for

better efficiency and performance. Rabinovich et al. [24]

proposes to move content generation on the edge servers

in a CDN-like environment. The proposal is similar to the

Akamai EdgeComputing platform presented by Davis et al.

in [12]. However, both these proposals rely on DNS-based

approaches for request distributions, hence, they do not con-

sider a fine-grain dispatching at the level of single Web page

components, as we do in this paper.

To perform a fine-grain dispatching at the level of single

Web page components, we exploit the composition of Web

pages based on fragments. In the last few years, the genera-

tion of Web pages from fragments has become increasingly

common, as testified by the proposals in [7, 20] of fragment-

based publishing systems. Many research studies have ex-

ploited a fragment-based approach to improve Web content

delivery. The ESI proposal [27] is an attempt to develop a

standard protocol for managing fragments and assembling

them at the network edge in response to a client request.

Datta et al. [11] proposes a proxy cache that stores static

fragments remotely and performs assembly of a response.

Algorithms for cache management that include fragment

invalidation and prefetching have been proposed in [6] to

improve the delivery of dynamic Web contents. The fun-

damental difference with these studies is that our proposal

replicates the computation to generate and/or adapt Web

contents on the network edge, while the other studies han-

dle only responses and leave the computation on the origin

server.

7 Conclusions

In this paper we investigate the impact of request dis-

patching granularity on the performance of distributed Web

7

systems for personalized contents. We consider three dis-

patching mechanisms, namely fine-grain, medium-grain

and coarse-grain, that operate with different levels of gran-

ularity. Through a prototype, we compare the performance

of the three dispatching mechanisms for different workload

and network scenarios. We found that the choice of the best

dispatching granularity strongly depends on the workload

characteristics. When the requests have similar computa-

tional requirements, any dispatching granularity provides

similar performance: in this case, a coarse granularity al-

lows the deployment of simple dispatching mechanisms that

cause a lower overhead with respect to fine-grain dispatch-

ing. On the other hand, when the workload is highly het-

erogeneous, fine-grain dispatching allows a more effective

load sharing, that provides better performance if compared

to a coarse-grain dispatching.

References

[1] T. Abdelzaher, K. Shin, and N. Bhatti. Performance guar-

antees for Web server End-Systems: a control-theoretical

approach. IEEE Transactions on Parallel and Distributed

Systems, 13:80–96, Jan. 2002.

[2] A. Arlitt, B. Krishnamurthy, and J. Rolia. Characterizing

the scalability of a large Web-based shopping system. ACM

Transactions on Internet Technology, 1(1):44–69, 2001.

[3] M. Aron, P. Druschel, and W. Zwaenepoel. Efficient support

for P-HTTP in cluster-based Web servers. In Proceedings of

the USENIX 1999, Monterey, CA, Jun. 1999.

[4] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scal-

able context-aware request distribution in cluster-based net-

work servers. In Proceedings of the USENIX 2000, San

Diego, CA, Jun. 2000.

[5] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu.

The state of the art in locally distributed Web-server sys-

tems. ACM Comput. Surv., 34(2):263–311, 2002.

[6] J. Challenger, P. Dantzig, A. Iyengar, M. Squillante, and

L. Zhang. Efficiently serving dynamic data at highly ac-

cessed Web sites. IEEE/ACM Transaction on Networking,

12(2):233–246, 2004.

[7] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A

fragment-based approach for efficiently creating dynamic

Web content. ACM Transaction on Internet Technology

(TOIT), 5(2):359–389, 2005.

[8] S. Chandra. Content adaptation and transcoding. Practical

Handbook of Internet Computing, 2004. (Munindar P. Singh

ed.), Chapman Hall & CRC Press.

[9] L. Cherkasova and M. Karlsson. Scalable Web server cluster

design with WARD. In Proceedings of the 3rd International

Workshop on Advenced Issues of E-commerce and Web-

based Information Systems, pages 212–221, Los Alamitos,

CA, June 2001.

[10] M. Colajanni, R. Lancellotti, and P. Yu. Distributed architec-

tures for Web content adaptation and delivery. Web content

delivery, 2005. (Tang, Xu, Chanson eds.), Springer.

[11] A. Datta, K. Dutta, H. Thomas, D. Vandermeer, and K. Ra-

mamritham. Proxy-based acceleration of dynamically gen-

erated content on the World Wide Web: an approach and

implementation. ACM Transactions on Database Systems,

29(2):403–443, 2004.
[12] A. Davis, J. Parikh, and W. E. Weihl. EdgeComputing: ex-

tending enterprise applications to the edge of the Internet.

In Proceedings of WWW’04 on Alternate Track Papers &

Posters, pages 180–187, 2004.
[13] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou. A

middleware system which intelligently caches query results.

In Proceedings of Middleware’00, pages 24–44, New York,

USA, 2000.
[14] M. D. Dikaiakos. Intermediary infrastructures for the World

Wide Web. Computer Networks, 45(4):421–447, Jul. 2004.
[15] M. Eiriniaki and M. Vazirgiannis. Web mining for Web

personalization. ACM Transaction on Internet Technology,

3(1), 2003.
[16] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.

A method for transparent admission control and request

scheduling in E-commerce Web sites. In Proceedings of

WWW’04, New York, NY, May 2004.
[17] A. Iyengar, L. Ramaswamy, and B. Schroeder. Techniques

for efficiently serving and caching dynamic Web content.

Web content delivery, 2005. (Tang, Xu, Chanson eds.),

Springer.
[18] J. Kangasharju, K. W. Ross, and J. W. Roberts. Performance

evaluation of redirection schemes in content distribution net-

works. Computer Communications, 24(2):207–214, 2001.
[19] M. Karlsson. Replica placement and request routing. Web

content delivery, 2005. (Tang, Xu, Chanson eds.), Springer.
[20] P. Mohapatra and H. Chen. A framework for managing

QoS and improving performance of dynamic Web content.

In Proceedings of IEEE GLOBECOM 2001, San Antonio,

USA, Nov. 2001.
[21] MyYahoo, 2007. http://my.yahoo.com.
[22] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki, B. Maggs,

and T. Mowry. A scalability service for dynamic Web appli-

cations. In Proceedings of CIDR 2005, Asilomar, CA, Jan

2005.
[23] M. Rabinovich and O. Spatscheck. Web Caching and Repli-

cation. Addison Wesley, 2002.
[24] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on

the edge: A platform for replicating Internet applications. In

Proceedings of 8th International Workshop on Web Content

and Distribution, Hawthorne, NY, Sept. 2003.
[25] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van

Steen. Replication for Web hosting systems. ACM Comput-

ing Surveys, 36(3):291–334, 2004.
[26] J. Song, A. Iyengar, E. Levy-Abegnoli, and D. Dias. Ar-

chitecture of a Web server accelerator. Computer Networks,

38(1):75–97, 2002.
[27] L. Tsimelzon, B. Weihl, and L. Jacobs. Edge

Side Includes language specification 1.0.

http://www.esi.org/language spec 1-0.html.
[28] R. Zhang, C. Hu, X. Lin, and S. Fahmy. A hierarchical ap-

proach to Internet distance prediction. In Proceedings of the

26th IEEE International Conference on Distributed Com-

puting Systems (ICDCS’06), Washington, DC, USA, Jul.

2006.

8

http://my.yahoo.com
http://www.esi.org/language_spec_1-0.html

	Introduction
	System overview and operations
	Request dispatching
	Prototype
	Services and workload
	System
	Network

	Experimental results
	Performance comparison
	Wide Area Network effects

	Related work
	Conclusions

