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Abstract—When multiple users access a network storage
system for cloud computing, security becomes a key factor
in the service, as well as performance and reliability. The
“encrypt-on-disk” scheme effectively protects transmitted and
stored data in network storage. However, this scheme has the
problem of revocation for shared files. Active revocation is safe
but has denial periods to allow immediate reencryption, while
lazy revocation has no denial period but is unsafe during the
delay. We propose intelligent storage nodes capable of handling
active revocation in storage without the denial period by adopt-
ing a primary–backup configuration. This approach provides
a good combination of security and availability by replication.
However, the reencryption process negatively affects the update
performance. Delaying the reencryption process and disk write
on the backup node improves performance with no ill effect
on security and a small decrease of MTTDL for the simple
primary–backup configuration. We evaluate the performance
of the proposed approaches by experiments, and the reliability
by estimation.

Keywords-secure storage, revocation, encrypt-on-disk, paral-
lel storage, primary–backup structure

I. Introduction

Network storage is undoubtedly a key component of
cloud computing. The scalability, availability and security
of the storage systems are important requirements for the
cloud computing [1]. There are many types of network
storage systems, including those based on Redundant Array
of Independent Disks (RAID). However, the most popular
RAID types (types 3–6) have scalability and maintainabil-
ity problems. The primary–backup configuration guarantees
bandwidth and response time even under disk failures, and
even in a large system. A combination of chained decluster-
ing data placement [2] as a form of primary–backup and a
distributed directory is effective to derive scalable bandwidth
and low latency.

For the security of the network storage system, data trans-
ferred between the network storage system and clients, or
within the network storage system itself, must be protected
from malicious attacks. To implement secure storage sys-
tems, several data protection functions have been proposed
[3]. The so-called “encrypt-on-disk” scheme protects the
transferred data by encrypting the data as they are stored

to disk, while the “encrypt-on-wire” scheme performs the
encryption on the fly as the client requests the data. The
former scheme is safer and provides better performance than
the latter, because it does not use encryption processes for
every read or write operation on the storage side, and it
keeps the data in cipher [4]. However, if files in the network
storage are shared by multiple users, the encrypt-on-disk
scheme must be able to handle the revocation of users.
These files should be reencrypted with a new key whenever
a revocation occurs. Active revocation is safe but has access
denial periods because of the immediate reencryption, while
lazy revocation has no denial period but is unsafe during the
delay [4], [3].

We have proposed a method of handling active revocation
in intelligent storage nodes without the denial period by
adopting a primary–backup configuration [5]. Preencrypting
backup data with a key different from that used on the
primary store and switching the role of primary and backup
after a revocation realizes a nonstop safe service. It provides
a good combination of security and availability because of
the replication. However, it may cause update performance
degradation because the encryption taking place on the
backup node constitutes an additional load.

Here, we consider delaying the write and reencryption
processes on the backup node to improve update perfor-
mance. In the delayed write approach, the differences caused
by recent writes are not written to the backup disk im-
mediately but are kept in memory in the backup node. In
the delayed reencryption and write approach, the encryption
operations for the updated data are also delayed. These
approaches have the benefit of utilizing system resources
effectively and aggregating multiple updates for a file but
also have the ill effect of decreasing system reliability by
keeping data in volatile memory. However, the practical
decrease in reliability is very small because of the same
effect of the nWAL protocol [6]. To demonstrate this, we
evaluate the performance of the proposed approaches by
experiments, and the reliability of the system by estimation.

The remainder of this paper is organized as follows. Sec-
tion II discusses requirements for network storage systems
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possessing high performance, availability and maintainabil-
ity. Section III surveys the current encryption and revocation
techniques in network storage. The proposed approaches are
explained in Section IV. Section V reports experiments to
evaluate performance of the proposed approaches. Section
VI estimates their reliability. Finally, Section VII concludes
the paper.

II. Requirements for Network Storage Systems

Performance and availability are the most essential proper-
ties required for network storage systems for cloud comput-
ing. Scalability is also quite significant. A very-large-scale
system configuration should have adequate performance
for its size while ensuring high availability. The costs of
maintaining a large storage system to satisfy performance
and availability requirements become a crucial problem. The
total amount of storage exceeds the management capability
of a human administrator who maintains the system.

RAID 3–6 configurations ensure high availability by
adopting parity calculation techniques, but their performance
is considerably decreased by the parity calculation for re-
construction if a disk in a parity group fails. Moreover, the
scalability of a RAID parity group is restricted for reliability
reasons. On the other hand, multiple RAID groups have the
problems of load balancing and maintainability.

To realize scalable storage systems possessing high per-
formance, high availability and high maintainability, au-
tonomous disks [7] have been proposed. An autonomous
disk system consists of a cluster of highly functional in-
telligent storage nodes 1 in a networked environment. The
intelligent controller in each storage node is responsible
for balancing the access load in the cluster and handling
failures by migrating data between nodes autonomously. The
absence of a centralized controller in the cluster allows high
scalability. To migrate data transparently to the clients, a
distributed directory is necessary. A fat-Btree [8] is adopted
in the autonomous disk system as the distributed directory
to provide high accessibility for data stored in all nodes
with low update overhead, even in large configurations.
This enables each node to migrate data to a neighboring
node without extensive modifications to the whole directory
structure, and hides changes of data location from the clients.

To make the cluster reliable, the autonomous disk system
adopts chained declustering data placement [2] for the
primary–backup configuration, where a neighboring node
of a primary data node keeps its backup data. Chained
declustering is suited to the Btree-based directory structure
while allowing data to migrate between the neighboring
nodes. The neighboring write-ahead log (nWAL) protocol
[6] is effective for asynchronous update of the backup.

1The concept of the autonomous disk can easily be applied to a multiple
RAID configuration by placing the intelligent controller within each RAID
group.

Thus, the approach of the intelligent storage node like the
autonomous disk is effective to realize the scalable storage
system. To preserve security as well as performance and
availability, we consider encryption methods suitable for
network storage nodes utilizing the processing facilities on
them.

III. Encryption and Revocation in Network Storage

A. Encrypt-on-disk vs. Encrypt-on-wire

There are two encryption schemes to protect data trans-
mitted to or from network storage: encrypt-on-wire and
encrypt-on-disk [3]. In the encrypt-on-wire scheme, files are
stored in clear text and encrypted only when transmitted,
using a protocol such as secure socket layer (SSL), while
in the encrypt-on-disk scheme, files are stored in cipher and
transmitted without any further encryption process.

From the viewpoint of data transmission performance, the
encrypt-on-disk scheme is more efficient than the encrypt-
on-wire scheme, because the storage server in the encrypt-
on-disk scheme does not require as much encryption work
as the encrypt-on-wire scheme. Moreover, from the security
point of view, the encrypt-on-disk scheme protects data
while in storage as well as during transmission, while the
encrypt-on-write scheme only protects data during transmis-
sion.

On the other hand, in a system adopting the encrypt-on-
disk scheme for shared files, the files must be reencrypted
with a new key when a revocation occurs. This is because
revoked users can retain the current key, leading to informa-
tion leakage if they intercept transmitted files despite their
access being denied by access control methods. Therefore,
the encrypt-on-disk scheme costs more than the encrypt-on-
wire scheme when a revocation occurs.

B. Active vs. Lazy Revocation

Reencryption methods for revocation in the encrypt-on-
disk schema are divided into active revocation and lazy revo-
cation according to the timing of the reencryption [4], [3]. In
active revocation, related files are immediately reencrypted
using a new key after the revocation, while the reencryption
is delayed until the files are next updated in lazy revocation.

Active revocation is more secure than lazy revocation,
because revoked users are immediately unable to decrypt the
files. However, a weak point of active revocation is that even
authorized users cannot access the files until the immediate
reencryption processes are completed. This weak point is
more pronounced when multiple revocations occur at the
same time for different files.

On the other hand, in lazy revocation, because update
processes involve encryption, they can be combined with
the reencryption required for revocation. In addition, the
reencryption work for several revocations may be performed
together if the file is not frequently updated. Therefore, lazy
revocation is more efficient than active revocation. However,
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lazy revocation introduces a security vulnerability, because
files in storage after the revocation and before the update
are encrypted with the old key, which may be kept by the
revoked users.

IV. Backup-assisted Revocation

A. Outline of the Proposed Approach

To solve the trade-off problem between reencryption
methods, we have proposed a method named backup-
assisted revocation or BA-Rev, in which the files to be used
after revocation are the backup copies, which have been en-
crypted with a separate key. Figure 1 illustrates the BA-Rev
method, where K1(F) and K2(F) mean that the file copies
are encrypted using different keys and are treated as the
primary and backup, respectively. After a revocation, K2(F)
is promoted to be the primary, and K1(F) is reencrypted
by the new key K3. If we adopt the chained declustering
placement, these files are migrated asynchronously to satisfy
any location restrictions. However, it is easy to enable
access during the migration by keeping the source during
the process.

When a reencrypted file is prepared using a new key,
an authorized user given the new key can access the file
immediately after the revocation, but unauthorized users
cannot. The method is therefore as safe as active revocation
because it has no unsafe period, and it provides access
for authorized users with no denial period following a
revocation.

However, the naive implementation of the BA-Rev is
disadvantaged in its update performance, because a reen-
cryption of the backup data is required for every update.
The reencryption overhead for updates can be reduced by
partial update with block encryption, which does not require
reencryption of the whole file. Moreover, the encryption
process and disk I/O can be delayed to improve update
performance. We call them delayed write or DW and delayed
reencryption and write or DRW, respectively. When the node
storing the primary file receives an update request with a
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Figure 2. Delayed reencryption and write

differential portion of the file encrypted by K1, it updates
the primary file and sends the portion to the node storing
its backup. The backup node keeps the portion in memory
but does not reencrypt it using key K2, nor does it write it
to disk immediately, as shown in Figure 2.

Here, we assume that revocations occur less frequently
than it takes to apply the delayed updates and to reencrypt
files. It seems reasonable in many cases because the revo-
cation occasionally occurs to change the role of members
for some events. Even if revocations occur more frequently,
users wait for the end of reencryption just same as the active
revocation because the amount of delayed updates should be
small for such the short period.

On the other hand, delaying the reencryption process
and disk I/O to some idle period of the CPU and disk,
respectively, can utilize system resources more effectively to
improve performance, multiple updates for the same portion
can be gathered as one update. This is similar to the concept
of lazy revocation but does not have the unsafe period of
lazy revocation. Considering the reliability aspect, if we
adopt the single-fault assumption, we can tolerate a disk or a
node failure by keeping the update data in volatile memory
on the backup node. This is the same as the concept of
the asynchronous nWAL protocol. Therefore, we evaluated
the performance effect of the BA-Rev with the delayed
reencryption and disk write, and estimated their reliability.

B. Related Work

SNAD[9], Plutus[10], and SiRiUS[11] are secure storage
systems that adopt the encrypt-on-disk scheme. The SNAD
paper describes the revocation method as an issue for future
work because of the trade-off problem. Plutus adopts lazy
revocation, while SiRiUS adopts active revocation. These
systems assume an environment in which clients consider
systems to be insecure (systems are not trusted), so they
allow decryption only on client machines. Thus, their policy
is different from ours, because we implement reencryption
on storage for efficiency reasons. Maat[12] uses automatic
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revocation in the Ceph file system, but they assume a very
short lifetime. On the other hand, our approach is applicable
to other systems if they adopt primary-backup configuration.

There are some cryptographic technologies for HDD in
which all stored data are encrypted by a cryptography
processor embedded in the HDD, such as “DriveTrust” by
Seagate Technology and “MTZ2 CJ” by Fujitsu. These
technologies encrypt all data on the HDD to protect the
data if the HDD is lost, which is a different policy from
data transmission protection. However, the cryptography
processor is also useful for our approach.

C. Implementation Issues

Key management is important for systems using cryp-
tography, and should be distributed if storage nodes are to
meet the concept of fully distributed control. We place a
lockbox which is proposed in SNAD [9] in each storage
node, as a structure storing keys to allow authorized to obtain
keys. Figure 3 shows an example of the lockbox, Key object.
Here, a user x has a public key K+x and a private key K−

x ,
and a file is encrypted with a secret key K. Each column
of key object comprises an authorized user’s ID, a secret
key encrypted with the authorized user’s public key, and
permissions. Only the authorized user can obtain the secret
key because the authorized user’s private key is necessary
to decrypt the secret key. The file owner can distribute keys
without communicating directly with sharers. In addition,
storing secret keys so that they can be transmitted “as is”
provides efficient key distribution.

We also use the data structure shown in Figure 4, based
on SNAD. We assume that each user and storage node has a
pair of public and private keys, (K+x ,K

−
x ), and that each file

is encrypted with a secret key, Kn. At the time of encryption,
the file is divided into one or more fixed blocks, and each
block is separately encrypted to decrease the cost of update
by defining the basic unit of updated data.

Each file object has information about the file name, the
owner’s ID, the path of the encrypted file, and a lockbox.
Primary file objects also have information identifying the
nodes where the backup data are stored. Lockboxes have
keys not only for authorized users but also for the storage
node in which they are stored because this node must im-
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plement reencryption processes. In addition, the lockboxes
of backup files in the proposed method contain the primary
decryption keys because the key used with the backup data
must not be known, and so the updated data encrypted with
the primary key are sent to backup when files are updated.

We selected the AES algorithm and ECB mode as the
encryption mode. AES is considered to be robust against,
for example, known plaintext attacks. ECB is the mode by
which data are encrypted in independent blocks, and we
used it to enable updates to be implemented by fixed-length
blocks.

D. Process Flows

Process flows for active revocation with the primary–
backup structure and BA-Rev are shown Figure 5, and
update processes with DW and DRW strategies are shown
in Figure 6. In the figure, each horizontal arrow indicates
a process implemented in a node or an aspect of parallel
processing in a node, depending on the situation. We omit
disk I/O, file transmission, and index updates from the figure
for simplicity.

Active Revocation:: Primary and backup data are
reencrypted immediately. After generating a new secret
key in node A, read, reencrypt, and write operations are
implemented. The key, the file name and the revoked user’s
name are concurrently transmitted to node B via another
thread, and the same process is implemented in node B.
When the processes in node A are completed, notice of
termination is transmitted to the requesting client. If accesses
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to the object file are attempted before termination, they are
blocked and made to wait until processes are completed.

BA-Rev:: After receiving a revoke request, node A
transmits the information to node B and waits. Node B
deletes the secret key for revoked users stored in the file
object for backup data, sets the backup as the new primary
data, and notifies process termination to node A. Because
the new primary data are ready at this point, node A notifies
termination to the client. If an access request to the object
is received before this time, the system makes it wait and
returns a request to reaccess together with information about
the location of the data after process completion. Next, node
A receives the key for the new primary data from node B
and stores it in the lockbox of the new backup data for use
when the file is updated. Finally, the new backup data are
reencrypted with a new key and set as the backup in node
A.

DW Strategy:: In the update process in backup, the
process of writing the updated data (which are already
reencrypted with the key used to the backup data) to the
file is delayed. Unapplied updated data are kept in memory.

DRW Strategy:: The processes of reencrypting and
writing updated data are delayed, and they are also kept in
memory.

We consider four timings to write the unapplied updated
data kept on memory into the backup disk in DW and DRW
strategies:

T1: when a revocation occurs,
T2: when the amount of unapplied updated data exceeds

a threshold (to avoid exceeding the limit of memory
resources), and

T3: when one of the following conditions are satisfied

T3a: after a constant period of time, and
T3b: when the load is less than a threshold.

V. Experiments

We have performed experiments to evaluate the perfor-
mance of BA-Rev with the DW and DRW strategies for the
following cases.

i) Active Revocation: When a revocation occurs and the
primary and backup data are encrypted with the same
key.

ii) BA-Rev: When a revocation occurs and the primary
and backup data are encrypted with different keys.

iii) BA-Rev + DWraw/DRWraw: In addition to ii), the DW
and DRW strategies are applied to update processes.
The timing for their application is T1 or T2 described
in the previous section. Each storage node checks the
amount of unapplied updated data at a constant interval
and applies the updates if the amount exceeds the
threshold.

iv) BA-Rev + DWconst:n/DRWconst:n: In addition to iii), the
timing T3a is used. Defining n as a control parameter,

Table I
Configuration of experimental system

CPU AMD Athlon XP-M1800+ (1.53 GHz)
Memory PC2100 DDR SDRAM 1 GB
HDD TOSHIBA MK3019GAX

(30 GB, 5400 rpm, B 2.5 inch)
Network TCP/IP + 1000BASE-T
OS Linux 2.4.20
Java VM Sun J2SE SDK 1.5.0 03 Server VM

the node waits to apply the updated data for n seconds
after an update occurs, and after that, applies the update.
If another update request for the same file is performed
within n seconds, the new data replace or augment the
updated data kept in memory.

v) BA-Rev + DWload:n/DRWload:n: In addition to iii), the
timing T3b is used. Defining n as a control parameter,
each node checks the number of active threads at a
constant interval, then applies the unapplied updated
data if the number is lower than n. This process is
repeated until the condition is fulfilled.

A. Experimental Environment

We developed a client–server program running on a PC
cluster with the specification listed in Table I. Table II shows
the parameters used in the experiments. The initial allocation
of data among the servers follows chained declustering [2],
in which backup data are stored in a neighboring node of
the server storing the primary data. The client program sends
requests to GET or UPDATE a file and measures response
times for the requests. The definition of the response time
for UPDATE for each method is shown in Figure 6. The
client also sends requests to revoke or authorize a user’s
access permission for a file.

The interval for GET or UPDATE requests is determined
by an exponential distribution f (t) = λe−λt in which the
average arrival rate is 1/λ. The request type is selected in
accordance with the GET:UPDATE ratio, which is fixed at
50:50 in this paper. The objects of GET and UPDATE are
selected from files stored in a corresponding storage node
in accordance with a Zipf distribution [13] with parameter
θ.

B. Response Times of Usual Accesses

We first evaluated response performance without revoca-
tion. We used three storage nodes, each of which initially
stored 500 files of size 1 MB. A client node sent GET or
UPDATE requests to a storage node, and nodes were selected
with equal probability. We measured the average response
time as the average arrival interval decreased from 500 ms
to 150 ms.

The performance of GET was about the same in all cases
because the process of GET was the same in all cases.
Therefore, we omit the graphs of response times for GET.
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Figures 7 and 8 show the average response times of
UPDATE with the DW and DRW strategies, respectively.
Comparing BA-Rev and active revocation, the response time
of UPDATE with BA-Rev is longer: reencryption of the
updated data for backup must be processed because different
keys are used for primary and backup.

There was little benefit in applying the DW strategy to
BA-Rev in all applied conditions of updated data, because
the writing to disk is processed quickly by caching the
updated data in this experiment. On the other hand, the DRW
strategy significantly improved the UPDATE performance of
BA-Rev, because the reencryption process is rather resource
consuming. Comparing the performances in each case, al-
though the performance in DRWload:10 is slightly inferior
because it includes the case in which multiple updated data
are applied at high load, the performances in other cases
are equivalent because there are both merits and demerits in
each case.

C. Under Concentrated Revocations

To evaluate the influence of revocations, we measured
response times when revocations occurred in a storage node.
We used three storage nodes, A, B, and C, and three client
nodes for this experiment. The backup data corresponding to
the primary data stored in node A (B, C) were stored in node
B (C, A). We fixed the average arrival interval of accesses at
400 ms, and the parameter n for DW or DRW was five. We
enforced the multiple revocation processes for 50 files stored
in node B simultaneously and measured response times of
100 GETs or UPDATEs, which were performed in the period
containing the start and the end of the revocation processes.
We performed this experiment six times.

Figures 9 and 10 show average response times and 95
percent confidence intervals for each storage node under the
above conditions. With BA-Rev with or without DW and
DRW, the response times of GET and UPDATE at node B
storing target files of the revocation and at node C, which
stores their backup data, are shorter than that for active
revocation. This is because no reencryption for revocations
was necessary in node C in BA-Rev, with or without DW
and DRW. The reencryption was executed in node B, but the
target of reencryption is backup data, which are not accessed
from clients. On the other hand, at node A, response times
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for BA-Rev with or without DW and DRW are equivalent
to, or slightly larger than, those for active revocation. This
is for the reasons given in V-B. However, compared with
the results at nodes B and C, the difference is small.

Comparing DW and DRW with BA-Rev, these strate-
gies provide better GET performance, especially in node
B. This is because they reduce the number of writes of
updated data in the backup. For UPDATE, policy DRW, in
which reencryption of updated data is delayed, has better
performance than BA-Rev with DW. Thus, the reencryption
process is susceptible to revocation processes, which also
involve reencryption.

D. Under Distributed Revocation

To evaluate the mutual influence of multiple revocations
occurring in contiguous storage nodes, we distributed the
target files for revocation to all three storage nodes. We
enforced multiple revocations for 15 files in each storage
node and measured the response times of 100 accesses
during the revocations. We performed this experiment six
times.

Figures 11 and 12 show average response times and 95
percent confidence intervals for all storage nodes. Compar-
ing BA-Rev, DW and DRW with active revocation, each
proposed environment has better performance for both GET
and UPDATE, similar to the results for the concentrated
revocation examined above. In particular, the response time
of UPDATE with DRW is the shortest, while those for other
BA-Rev with or without DW and those of GET are nearly
equivalent. The reason for the equivalent results is that the
load per storage node is low in this experiment because of
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Table III
Definition of parameter forMTTDL

MT BFDisk(Power) MTBF of HDD, or power supply system
MTTRDisk MTTR of the HDD
N number of storage nodes
M maximum bandwidth of a storage node
R bandwidth the node can allocate to repair
S scale factor about the correlate disk failure
P probability of successfully reading all disk sectors
E the processing speed for re-encryption

the distributed revocation targets to multiple nodes. This
result indicates that the BA-Rev realizes steadily better
performance than that with active revocation, regardless of
the method of applying updated data, if the number of
revocation objects per node is not large.

VI. Reliability Estimation

With the DW and DRW strategies, data are temporarily
inconsistent between the primary and backup disks because
the updated data for backup are kept in memory. Therefore,
there is the possibility of data loss from the combination
of a disk failure and a power fault, even if the data are
redundant because of the primary–backup structure. In this
section, we estimate and compare Mean Time To Data
Loss (MTTDL) of the normal environment adopting chained
declustering (with active revocation or primitive BA-Rev) in
the environment with DW or DRW.

A. Deriving MTTDL

We derived MTTDL using the method described in [14],
and the parameters are defined in Table III. We use three
factors for HDD failure: disk failure (DF), correlated disk
failure (CDF), and unrecoverable bit error (UBE). For CDF,
failures are commonly based on environmental factors (e.g.,
earthquakes, power dips and surges) and manufacturing
factors (e.g., early or late failures in disk drives) [14],
taking into account the higher probability of subsequent
disk failures. With the UBE, the bit error rate (BER) is
considered, this being the probability of encountering single
bit errors.

B. Reliability with Chained Declustering

When a failure on storage node (k) occurs in the environ-
ment with chained declustering, the neighboring node (k+1)
must set the backup data as the new primary, receive the data
from node (k − 1) for the backups lost on node k, and send
the new primary to node (k + 2) to repair the redundancy.
Therefore, the amount of data to be transferred is the disk
size at worst, so MTTRDisk is as follows.

MTTRDisk =
DiskS ize

M × R × 3600
[hrs] (1)

MTTDL can be calculated for each factor of failure inde-
pendently. With chained declustering, data are lost if one
storage node has failed and one of the two neighboring nodes
also fails before the repair has completed. Each MTTDL is

therefore calculated as follows, and the overall MTT DLDisk

is calculated as the harmonic average of the individual
MTTDLs.

MTT DLDF =
MT BFDisk

N
× 1

MTTRDisk

MT BFDisk/2

(2)

MTT DLCDF =
MT BFDisk

N
× 1

MTTRDisk

MT BFDisk/S/2

(3)

MTT DLUBE =
MT BFDisk

N
× 1

1 − P2
, P =

⎛
⎜⎜⎜⎜⎜⎝1 −

1
BER
4096

⎞
⎟⎟⎟⎟⎟⎠

� DiskS ize
512 �

(4)

C. Reliability with DW and DRW

For the DW or DRW strategies, there are two combina-
tions of failures that cause loss of data: one is a combination
of storage nodes failing, and the other is a combination of a
single node failure and a power failure. We deal with these
separately.

1) MTTDL for Storage Node Failures: The calculation
method is the same as in VI-B, except MTTRDisk. With
the DW or DRW strategies, when backup data are set as
primary to repair, the updated data that are unapplied must
be applied. Therefore, MTTRDisk is longer (because of the
writing of the updated data in the DW strategy, and because
of the reencrypting and writing of them in the DRW strategy)
than defined in formula 1.

2) MTTDL for Storage Node and Power Failure: When
a power supply fails, the updated data kept in memory are
lost. Therefore, a storage node must send the primary data
to the neighboring node to repair the backup data. About a
disk’s quantity of data must be transferred per node in the
worst case, so the formula for MTTRPower is the same as
formula 1.

There are two patterns in which data are lost with
power supply failure: when the power supply fails and any
disk error follows before the repair is completed (P →
{DF,CDF,UBE}); and when any single node fails and a
power failure follows before the repair (D → P). In the latter
case, strictly speaking, data are not lost if the updated data
have already been applied, but we assume that this situation
occurs negligibly often in this paper.

Each MTTDL is as follows, and MTT DLPower is also
calculated by the harmonic average of them.

MTT DLP→DF = MT BFPower × 1
MTTRPower

MT BFDisk/N

(5)

MTT DLP→CDF = MT BFPower × 1
MTTRPower

MT BFDisk/S/N

(6)

MTT DLP→UBE = MT BFPower × 1
1 − PN

(7)

MTT DLD→P =
MT BFDisk

N
× 1

MTTRDisk

MT BFPower

(8)
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Figure 13. The MTTDL of disk
failure in each environment and of
power failure with DW/DRW

Table IV
Estimation parameters

Disk size 500 GB
MT BFDisk 1.2 × 106hrs
MT BFPower 1.752 × 106hrs
BER 10−14

M 300 MB/s
R 0.5
S 10
E 2 MB/s

D. Discussion

We compared MTTDLs in the environment with the
chained declustering (CD) and that with DW or DRW. The
parameters for estimation are listed in Table IV, referring to
[14], [15] to select these values.

Figure 13 shows the MTTDL for disk failures in each
environment and that with power failure with the DW or
DRW strategies. The lines of CD, DW, and DRW of MTTDL
for disk failures (MTT DLDisk) are almost overlapped, and
the difference is smaller than one percent of MTTDLs. In
addition, MTT DLPower, which expresses the probability of
data loss caused by power supply failure in the environment
with DW or DRW, is much larger than MTT DLDisk. For
example, in the case of N = 32, MTT DLPower is about
107 hours while MTT DLDisk is about 106 hours for the
given parameters. Therefore, we can say that reliability
degradation with DW and DRW is very small.

VII. Conclusions

We have proposed backup-assisted revocation (BA-Rev)
with delayed write (DW), and with delayed reencryption
and write (DRW). BA-Rev is a more efficient reencryption
method for revocation in the encrypt-on-disk system than
the active revocation method, and more secure than lazy
revocation. By substituting the backup data encrypted with
a key different from that of the primary for the primary
data when a revocation occurs, the revocation is completed
rapidly at low cost. To improve the update performance
decreased by the backup handling, the reencryption process
and disk write on the backup node are delayed, which has no
ill effect on security and a very small decrease in reliability.

The experimental results using a PC cluster show that
the proposed approach greatly reduces the average response
times of accesses when revocations occur compared with
active revocation. In addition, DRW achieves update per-
formance equivalent to active revocation, and improved
revocation performance. The estimation of reliability shows
that the decrease in MTTDL by the DW and DRW is
smaller than one percent of MTTDL for the normal chained
declustering. Those results demonstrates that the proposed
approach provides high performance and availability for
secure network storage systems.

In future work, we plan to evaluate the proposed approach
in actual environments including different types and sizes of
files accessed from heterogeneous applications.
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