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Abstract—We evaluate two types of prosodic features utilizing 

automatically generated stress and tone labels for non-native 

read speech in terms of their applicability for automated speech 

scoring. Both types of features have not been used in the context 

of automated scoring of non-native read speech to date. 

In our first experiment, we compute features based on a 

positional match between automatically identified stress and tone 

labels for 741 non-native read text passages with a human gold 

standard on the same texts read by a native speaker. Pearson 

correlations of up to r=0.54 between these features and human 

proficiency scores are observed. 

In our second experiment, we use stress and tone labels of the 

same non-native read speech corpus to compute derived features 

of rhythm and relative frequencies, which then again are 

correlated with human proficiency scores. Pearson correlations 

of up to r=-0.38 are observed. 

 

I. INTRODUCTION 

 

A. Background and Related Work 

 

When assessing the proficiency of non-native speakers in  

reading passages of connected text, the following four major 

dimensions are traditionally considered to be most relevant 

[1][2][3]: (1) reading accuracy, i.e., considering reading errors 

on the word level such as insertions, deletions or substitutions, 

compared to the reference text; (2) fluency, i.e., is the passage 

well paced in terms of speaking rate and distribution of pauses, 

and free of disfluencies such as fillers or repetitions; (3) 

pronunciation, i.e., are the words pronounced correctly on a 

segmental level (usually evaluated on individual phones); and 

(4) prosody, i.e., does the distribution of stressed and 

unstressed syllables, as well as the pitch contours of phrases 

and clauses match those of a native speaker. 

While accuracy, fluency, and pronunciation measures have 

been explored in much detail in the past [3][4], this is much 

less the case for prosodic features. The reasons may include (1) 

that it is much harder and time-consuming to establish 

“references” or gold standards than for, e.g., pronunciation or 

fluency features; and (2) that prosodic features are much 

harder to compute reliably, in particular for non-native speech. 

One notable exception, though, is the work by [5] who used 

machine-generated stress and tone labels for computing 

rhythm features in a non-native speech corpus. However, this 

work only looked at spontaneous speech. The second 

experiment of this paper will follow the spirit of this work 

quite closely, but now applied to a corpus of non-native read 

speech.  

In other related research, rhythm metrics that do not require 

knowing stress or tone information have been used, [6][7]. In 

one study involving English speakers with Korean as their 

first language, it was found that the metrics regarding vocalic 

intervals are more effective than consonantal interval 

measures [6]. Another study reports on research on using such 

rhythm features for judging the nativeness of Japanese 

learners’ parroting of English [7]. 

While these rhythm features have the advantage of not 

relying on human annotations of stress and tone, we decided 

to base the prosodic features in this paper on stress and tone 

labels since stress and intonation are explicitly mentioned as 

scoring criteria in the guidelines for human raters of the read 

speech test responses and therefore, the precision of these 

labels’ location needs to be measured in automated speech 

scoring (first experiment in this paper). 

 

B. Overview 

 

In this paper, we look at the extent to which automatically 

predicted stress and tone labels can be used to compute 

prosodic features in an assessment for read speech, the ERT 

(English Reading Test). The current system for ERT is 

capable of computing features related to reading accuracy, 

fluency, and pronunciation, but still needs to be expanded into 

the prosody domain.  

For the purpose of automatically generating stress and 

boundary tone information (boundary tones or just “tones” 

refer to the ending syllables of intonational phrases), we first 

develop decision tree classifiers for stress and tone labels 

trained on approximately  12,000 human annotated syllables 

of a non-native speech corpus. Then, we conduct two 

experiments of features utilizing these automatically generated 

stress and tone labels on a corpus of 741 text passages read by 

non-native speakers of English.  

In the first experiment, the goal is to generate features that 

represent how well non-native speakers’ stress and tone 

patterns (as predicted by a classifier) match a human gold 

standard based on native speech. For this purpose, we 

automatically align time stamps of machine-predicted stress 

and tone labels with a reference gold standard, created by 

human expert annotators, and then correlate the obtained 



precision, recall, and F1-scores with human proficiency scores 

of the same text passages.  

In the second experiment, the goal is to establish which 

measures of rhythm and frequency, derived from stress and 

tone patterns in non-native read speech, are most indicative of 

speech proficiency. For this purpose, we compute 12 features 

derived from machine-predicted stress and tone labels, 

indicating rhythm, stress and tone distributions, and their 

relative frequencies. Again, these features are correlated with 

human proficiency scores for the same text passages. 

The remainder of this paper is organized as follows: 

Section II introduces the data we use for our study; Section III 

describes the automatic speech recognition (ASR) system and 

our system for automatic prediction of stress and tone labels 

for non-native speech; Section IV describes the two 

experiments to evaluate the usefulness of these prosodic 

features for automated speech scoring; Section V discusses the 

results and Section VI concludes the paper. 

 

II. DATA 

 

A. Stress and Tone Labeled Data for Classifier Training 

 

To build the classifiers for predicting stress and tone labels, 

we used a corpus of 87 human-transcribed non-native spoken 

responses of about a minute in length each. The responses 

were annotated for stress and tone labels for each syllable by a 

native speaker of English. Since the development of these 

classifiers was done in the context of a speech scoring system 

targeted at spontaneous speech, this data was also drawn from 

a spontaneous speech corpus. Despite this mismatch in 

speaking ,mode between the training data for the classifiers 

and our test data (spontaneous vs. read speech), our results 

show that significant correlations for prosodic features can be 

obtained nonetheless. In future work, we will compare these 

results with those obtained from classifiers based on annotated 

read speech, i.e., in a matched condition scenario. 

Before the human annotation process, forced alignment was 

used to obtain word and phoneme time stamps. The annotators 

used the Praat toolkit [8] for the annotation, which allowed 

them to listen to the audio sample, to look at its time and 

spectral representation and to enter label information. 

Following the ToBI schema [9], four tone labels as well as 

“no tone” were used. For stress, a binary scheme was used: 

stressed vs. unstressed syllable. Stressed syllables were 

defined as bearing the most emphasis or “weight” within a 

clause or sentence; typically, they coincide with lexical stress, 

but function words such as determiners or prepositions, as 

well as some content words may not bear stress. 

 Our data set had 28.1% stressed syllables and 12.9% 

syllables bearing a tone. 

 

B. Read Speech Data 

 

For the two evaluation experiments in Section IV, we used 

a corpus of 741 text passages, read by a total of 564 distinct 

non-native speakers of English; 387 speakers read one passage 

total, whereas 177 speakers read two passages each. The 

passages were drawn from three unique reading items in ERT 

administrations (item 1, item 2, item 3). 

Further, the same three unique text passages were read by a 

native speaker of English and then annotated for stress and 

tone for each syllable by two native speakers of English who 

also were test development experts. They created a gold 

standard after initial annotations by adjudicating syllable 

labels with divergent annotations. We used the same binary 

scheme for stress annotation as above, but a simplified scheme 

for tone annotation that distinguishes only between rising and 

falling tone and “no tone”.   

Finally, we used forced alignment to map the annotated 

stress and tone labels of the human gold standard to the 

syllable time stamps of the corresponding text passages read 

by the native speaker.  

Table 1 shows the distribution of stress and tone labels in 

this gold standard corpus based on native speech. We note that 

while the relative frequency of stressed syllables in the gold 

standard corpus is almost 10% higher than in the corpus used 

for decision tree training, the overall percentage of syllables 

with tone is by more than 5% lower. We conjecture that as a 

consequence of these distributional differences, the stress 

labels may be under-estimated, while the tone labels may be 

over-estimated by the classifiers on the read speech data. 

 

Table 1. Distribution of stress and tone labels in the gold 

standard read speech corpus. All percentages are computed 

based on the number of syllables. 

 Item 

1 

Item 

2 

Item 

3 

Total 

#words 96 58 60 214 

 

#syllables 160 92 91 343 

Stressed 34.% 41.% 40.% 37.% Stress 

labels Unstressed 65.% 58.% 59.% 62.% 

Rising 

tone 

0.6% 2.2% 3.3% 1.7% 

Falling 

tone 

5.6% 5.4% 5.5% 5.5% 

Tone 

labels 

No tone 93.% 92.% 91.% 92.% 

 

III. AUTOMATIC STRESS AND TONE PREDICTION 

 

A. ASR System 

 

Our ASR system is a gender-independent continuous-

density Hidden Markov Model (HMM) speech recognizer, 

initially trained on about 30 hours of non-native spontaneous 

speech, using additional spoken corpora for the language 

model [10]. To adapt the acoustic model for read speech, we 

used maximum a-posteriori (MAP) adaptation with 870 non-

native read-aloud responses from ERT (about 12 hours of 

speech, disjoint from the data set containing 741 read passages 

used for the evaluations in Section IV).
1
 We further built an 

                                                 
1 This adaptation set contains passages from 6 ERT items, containing 

the 3 items used for the experiments in Section 4. 



interpolated trigram language model (LM) where 90% of the 

weight is assigned to the LM built on the same set of 870 

read-aloud passages and 10% to the initial LM of the 

recognizer (background LM). The word error rate (WER) of 

the adapted ASR system was 15.5% measured on an 

independent held-out evaluation set of 100 read-aloud 

passages (no speaker overlap with the adaptation set). 

For the experiments in Section IV, our system ran in 2-pass 

mode, where it decoded the responses first using the default 

AM, trained on non-native speech, and then performed forced 

alignment with the hypotheses from Pass 1 using an AM 

trained on mostly native speech (see [11] for more details). 

The main reason for this set-up is to allow for maximum word 

accuracy in decoding of the non-native speech, while at the 

same time allowing the use of native speech acoustic 

characteristics for computing  both pronunciation and 

prosodic features based on the forced alignment pass. 

 

B. Features for Stress and Tone Prediction 

 

Our system automatically extracted about 30 features based 

on power, pitch, duration, word-identity, syllable position 

within a word, dictionary stress, distance from last syllable 

with stress or tone, and pauses for every syllable (see [5] for a 

more detailed description). Furthermore, a context of five 

syllables prior and after the current syllable was also encoded 

for most of the features.  

A total of 270 features were used as input features for 

classifier training (comprising the current syllable and the left 

and right contexts.) 

 

C. Stress and Tone Classifiers 

 

We trained decision tree (C4.5, [12]) classifiers to predict 

stress and tone information for every syllable, using a five-

fold cross-validation set-up due to the rather small data size. 

Tables 2 and 3 provide the results of these cross-validation 

experiments. 

 

Table 2. Results of C4.5 classifier for stress prediction on a 

syllable level (classification accuracy and F1-scores). 

Number 

of 

syllables 

Accuracy 
Stressed 

(F1) 

Unstressed 

(F1) 

12203 84.4% 69.6 89.5 

 

Table 3. Results of C4.5 classifier for tone prediction on a 

syllable level (classification accuracy and F1-scores). 

Number 

of 

syllables 

Accuracy 
Tone 

(F1) 

No tone 

(F1) 

12203 93.2% 64.5
 

96.2 

 

We can observe that for stress, the classification accuracy 

of 84.4% is by12.5% absolute higher than the baseline of 

71.9% (when marking all syllables as “unstressed”). For tone, 

the tone classification accuracy of 93.2% is by 6.1% higher 

than the baseline of 87.1%. In terms of relative error reduction, 

the error rate (100.0 - accuracy) on stress classification is 

reduced by 44.5% relative compared to the baseline, and for 

tone, by 47.3% relative compared to the baseline. 

 

 
 

IV. PROSODIC FEATURE EVALUATION EXPERIMENTS 

 

A. Features Based on Comparing Predicted Labels with 

Human Gold Standard  

 

In the first experiment, our system first generated stress and 

tone labels for 741 read-aloud passages based on the C4.5 

decision trees described in the previous section. Since the 

distribution of tone labels in both the annotated data used for 

decision tree training (four tone labels) as well as in the 

human gold standard for native read speech (two tone labels) 

was highly skewed, we mapped all tone labels to a single label 

and thus achieve a binary classification, analogous to the 

stress classification. 

The labels, along with their time stamps, were then 

converted into NIST’s
2
 RTTM

3
 format [13], with every vowel 

(syllable nucleus) appearing as a LEXEME line for basic 

alignment (time interval), and every stress or tone point (in 

separate files) as an IP
4
 line (points in time). The 

corresponding human gold standard for the respective passage 

was then transformed into a time-warped reference file, where 

the total reading time is “stretched” (or “warped”) so that it 

matches the reading time of the non-native speaker (the 

average warping factor is about 1.34 which means that non-

native speakers take on average about 34% longer to read the 

same passage than the gold standard native speaker). 

NIST’s RTTM alignment and evaluation scripts
5
 then 

generated statistics on differences of all 1482 pairs of 

references (i.e., gold standard labels) and hypotheses (i.e., 

automatically predicted labels) (741 files each for stress and 

tone), and we extracted information about precision, recall, 

and F1-score from the output files. We used a tolerance 

window of T=200msec to count stress or tone labels as correct 

match. Since the warping factor is likely to vary across the 

entire response, an even higher T might be warranted, but we 

chose a conservative approach to avoid over-estimation of 

system performance. 

Tables 4 and 5 report correlations between human scores 

and precision, recall and F1-scores for the three passages 

(items 1, 2 and 3) as well as the entire set (ALL). The human 

scores are summations of two sub-scores, range from 0 to 6, 

and reflect accuracy and appropriateness in pronunciation, 

intonation, stress and pacing. We want to emphasize that these 

                                                 
2 National Institute for Standards and Technology 
3  Rich TranscriptionTtime Markers. The RTTM format was used 

previously for meta-data research, including speech units, discourse 

markers, and disfluencies. 
4  IP stands for “interruption point” in the context of disfluency 

detection. 
5 We mainly used version 17 of md-eval.pl from SCTK. 



tables do not report precision, recall and F1-scores directly 

(based on the match between predicted labels and gold 

standard labels), but rather their correlations with human 

proficiency scores. The results will be discussed in Section 5. 

 

B. Features Derived from Predicted Labels 

 

Our second experiment is looking at correlations with 

human scores of a set of 12 features that are derived from the 

automated stress and tone predictions. 10 of them can be seen 

as capturing aspects of global speech rhythm in terms of the 

pacing and evenness of stress and tones (features 1-10 in 

Table 6); the 2 other features indicate the relative frequency of 

stress and tone labels in a speaker’s response (features 11 and 

12 in Table 6). 

Table 6 provides correlations between these 12 features 

derived from stress and tone predictions and human rater 

scores on the same data set as above (741 passages) and also 

provides definitions of the features. 

 

Table 4. Correlations between precision, recall, and F1-scores 

of stress predictions and human rater scores for different read-

aloud passages (items). 

Item(s) 

Correlations 

with 

Precision 

Correlations 

with Recall 

Correlation 

with 

F1scores 

ALL 

(N=741) 
0.402 0.284 0.419 

1 (N=385) 0.333 0.111 0.317 

2 (N=179) 0.543 0.338 0.537 

3 (N=177) 0.451 0.311 0.429 

 

Table 5. Correlations between precision, recall, and F1-scores 

of tone predictions with human rater scores for different read-

aloud passages (items). 

Item(s) 

Correlation 

with 

Precision 

Correlation 

with 

Recall 

Correlation 

w.F1scores 

ALL (N=741) 0.276 0.306 0.305 

1 (N=385) 0.140 0.161 0.154 

2 (N=179) 0.198 0.270 0.251 

3 (N=177) 0.316 0.308 0.332 

 

V.  DISCUSSION 

 

In our first experiment, where we computed features based 

on the match in time location between predicted labels and 

human gold standard labels, we found an average correlation 

with human proficiency scores of r=0.42 for stress labels and 

r=0.31 for tone labels. In both instances, performance across 

different test items was quite variable; e.g., for item 2, the 

correlation of F1-scores and human proficiency scores 

reached r=0.54. This is higher than our best performing non-

prosodic feature on this data set (r=0.503 for speaking rate). 

Furthermore, we observe that for stress-label based features, 

while correlations between precision values and human scores 

are roughly at par with those of F1-scores, correlations with 

recall values are usually substantially lower. For tone-based 

features, we observe the converse (with one exception). 

The reason for these divergences is most likely the stress 

and tone prediction rate of the decision tree; since the 

incidence of stress labels in the C4.5 training data is lower 

than in the human gold standard data, about 22% fewer stress 

labels (relative) are predicted than expected, which improves 

precision at the expense of recall. For tone, the picture is less 

clear, since although the C4.5 training data contains a larger 

percentage of tone labels than the human gold standard data, 

this does not result in a larger prediction rate by the decision 

tree classifier; in fact, the number of predicted tones is  about 

10% smaller (relative) than expected from the gold standard. 

Of course, the non-native speakers’ prosodic characteristics 

are likely to diverge quite a bit from the native speaker’s norm 

in the first place. 

 

Table 6. Correlations between 12 prosodic features for 741 

non-native read-aloud responses and human rater scores.
6
 

# 
Feature description 

Correlat

ion 

1 Mean distance between 

stressed syllables (in 

syllables) 

-

0.298  

2 
Mean deviation of 1 

-

0.376  

3 Mean distance between 

stressed syllables (in 

seconds) 

-

0.040  

4 
Mean deviation of 3 

-

0.158  

5 Mean distance between 

syllables that bear tones 

(in syllables) 

-

0.021  

6 
Mean deviation of 5 

 

0.012  

7 Mean distance between 

syllables that bear tones 

(in seconds) 

 

0.054  

8 
Mean deviation of 7 

 

0.007  

9 Feature 4 / Feature 3 

(normalized mean 

deviation of stress dist.) 

-

0.195  

10 Feature 8 / Feature 7 

(normalized mean 

deviation of tone dist.) 

 

0.112  

11 Relative frequency of 

stressed syllables (in 

percent) 

 

0.367  

12 Relative frequency of 

syllables with boundary 

tone (in percent) 

 

0.206  

                                                 
6 “Mean deviation: is the average of all absolute differences between 

the mean of a data set and each of its elements. 



 

 

In terms of our second experiment, where we computed 12 

rhythm and frequency features derived directly from 

automatically predicted stress and tone labels, we found that 

the feature indicating the mean deviation of time intervals 

between stressed syllables had the highest absolute correlation 

with human rater scores (r=-0.38). This feature has high 

values when the time distance between stressed syllables is 

unevenly paced, i.e., fairly irregular. In other words, more 

proficient speakers are expected to produce stressed syllables 

on a more regular pace than lower proficient speakers do. 

Since more proficient speakers have higher human scores but 

lower feature values (more evenly paced stressed syllables), 

the feature correlation is negative. 

Most correlations related to automated tone predictions 

were fairly low, due to the relatively high error rate of the tone 

prediction classifier. The two features representing the relative 

frequency of stress and tone events have somewhat reasonable 

correlations (r=0.37 for stress and r=0.21 for tone). They 

probably indicate that less proficient speakers tend to have a 

more flat intonation and hence produce relatively fewer 

syllables that bear stress or tone, as compared with their more 

proficient peers. 

Comparing these two experiments, we note that the features 

that involve syllable-by syllable-comparison to expert-labeled 

stress and tone information outperform those that indicate 

overall patterns. This is not surprising as the former type 

provides a more fine-grained evaluation of the stress and 

intonation of read speech. The features that capture the 

deviation in overall stress patterns had stronger relationships 

with human scores than those related to intonation patterns, 

probably due to the more accurate prediction of stress and 

more frequent occurrence of stressed points in the data.  

 

VI. CONCLUSION 

 

This paper reports on the development and evaluation of 

two types of prosodic features computed using automatically 

labeled stress and intonation information. Both features have 

not previously been used for the purpose of automatically 

scoring non-native read speech. 

The first type compares machine-annotated stress and 

intonation points to those annotated by expert test developers 

and shows the deviation in speakers’ stress and intonation 

patterns from expected norms. The average correlations for 

features based on stress labels with human proficiency scores 

is r=0.42, and for one test item, r=0.54 is obtained. For tone-

based features, the average correlation is considerably lower 

with r=0.31. 

The second type of feature is derived based on 

automatically predicted stress and tone information only, and 

captures descriptively overall intonation and rhythmic patterns 

of non-native read speech. The highest absolute correlations 

for this feature class are r=-0.38 for the mean deviation of 

time intervals between stressed syllables and r=0.37 for the 

relative frequency of stressed syllables in a read passage. 

Again, features derived from tone labels exhibit lower 

correlations; the highest correlation is observed for the relative 

frequency of tones in a read passage with r=0.21. 

The results show promise for using these prosodic features 

along with pronunciation and fluency features that have 

already been developed in improving the prediction of human 

evaluations of read speech.  

In this study, we use stress and tone classifiers trained on 

spontaneous speech. However, the prosodic characteristics 

may be somewhat distinct for read speech; consequently, we 

plan to update the classifiers using training data from read 

speech and hope to improve their performance in stress and 

tone prediction for read speech data. 
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