
The Train Delivery Problem -
Vehicle Routing Meets Bin Packing

Aparna Das?, Claire Mathieu??, and Shay Mozes

Brown University, Providence RI 02918, USA.

Abstract. We consider the train delivery problem which is a generaliza-
tion of the bin packing problem and is equivalent to a one dimensional
version of the vehicle routing problem with unsplittable demands.
The train delivery problem is strongly NP-Hard and does not admit an
approximation ratio better than 3/2. We design two types of approxima-
tion schemes for the problem. We give an asymptotic polynomial time
approximation scheme, under a notion of asymptotic that makes sense
even though scaling can cause the cost of the optimal solution of any
instance to be arbitrarily large. Alternatively, we give a polynomial time
approximation scheme for the case where W , an input parameter that
corresponds to the bin size or the vehicle capacity, is polynomial in the
number of items or demands. The proofs combine techniques used in
approximating bin-packing problems and vehicle routing problems.

1 Introduction

We introduce the train delivery problem, which is a generalization of bin packing.
The problem can be equivalently viewed as a one dimensional vehicle routing
problem (VRP) with unsplittable demands, or as a specific kind of an offline
scheduling problem.

In the VRP setting with unsplittable demands, containers are to be trans-
ported from Seattle’s harbor to n customers located at positions pi along a
railway that extends into the mainland. The number of containers destined to
customer i is wi, and the maximum number of containers that the freight train
can carry is W . All containers destined to a particular customer must be placed
on the same train so that they are delivered at the same time. We wish to find
a set of train trips to deliver all containers so as to minimize the total length of
all trips.

In the bin packing setting, various temperature sensitive products are shipped
by sea from southeast Asia to the US. Each product has a weight (in metric tons)
and a maximal temperature at which it may be stored (there is no minimum
temperature limit). Each ship can carry at most W tons. Since the route is
fixed, the cost of operating the ship is determined by the ambient temperature
in the cargo area. The lower the temperature, the higher the cost (this can be

? Supported by NSF grant CCF-0728816.
?? Supported by NSF grant CCF-0728816.

an arbitrary monotone function). The shipping company is interested in keeping
the cost of operations as low as possible while keeping the temperatures low
enough so none of the products on board a ship are damaged. The goal is to find
a packing of the products in ships so that the overall cost of operating all of the
ships is minimal.

Formally, in the train delivery problem we are given a positive integer ca-
pacity W and a set S of n items, each with an associated positive position pi

and a positive integer weight wi. We wish to partition S into subsets {Sj} (train
tours) so as to minimize∑

j

max
i∈Sj

pi subject to ∀j
∑
i∈Sj

wi ≤ W.

Bin-packing is the special case of the train delivery problem where all the pi’s
are equal. It is well known [12] that bin-packing is strongly NP-hard and does
not admit a polynomial time approximation algorithm with approximation ratio
better than 3/2 unless P=NP, hence those negative results also hold for the train
delivery problem. There are, however, algorithms that achieve an approximation
factor of 1+ ε for bin-packing for any ε > 0, provided that the cost of an optimal
solution is at least 1/ε (that is, at least 1/ε bins are necessary). Such algorithms
are called asymptotic polynomial time approximation schemes (APTAS).

The train delivery problem does not admit an asymptotic approximation
scheme in the usual sense. The reason is that the cost of the solution is deter-
mined by the positions pi, so any instance can be scaled so that the cost of an
optimal solution is arbitrarily large without changing the solution itself. There-
fore, to define a notion of asymptotic approximation scheme for our problem we
restrict the ratio of the optimal solution and the maximal position.

Theorem 1. Given an instance of the train delivery problem such that maxi pi =
O(ε)OPT, Algorithm 1 outputs a solution of cost (1+O(ε))OPT in time n(1/ε)O(1/ε)

.

In other words, scale the input so that maxi pi = 1; then we are in the asymptotic
regime if the scaled input has optimal cost at least 1/ε. Given an instance of
the train delivery problem we can use any constant factor approximation of
the optimal solution to check whether the conditions of Theorem 1 hold. For
example we can use the constant factor approximation for the metric vehicle
routing problem with unsplittable demands given by [14].

Alternatively, we give a polynomial time approximation scheme (PTAS) for
the case where W = poly(n) (or where W is specified in unary). Note that
bin-packing is still NP-hard for such instances.

Theorem 2. Given an instance of the train delivery problem, Algorithm 4 out-
puts a solution of cost (1+O(ε))OPT. Its running time is W eO(1/ε)

+n(1/ε)O(1/ε)

which is polynomial in n and W .

We note that, unless P=NP, we cannot hope to achieve a PTAS when the
conditions of Theorem 2 do not hold. A PTAS that also works when W > poly(n)

would give us a polynomial time algorithm, rather than a pseudo polynomial time
algorithm, for deciding the NP-hard partition problem1.
Related work. Both bin-packing and vehicle routing are extensively studied
in the literature. We do not attempt to provide a comprehensive survey, but
focus mostly on the works whose techniques we use in this paper. Bin-packing
is one of the problems originally shown to be strongly NP hard by Garey and
Johnson [12]. Fernandez de la Vega and Lueker [10] obtained the first APTAS.
They handle small and big demands separately. The big demands are rounded so
that all possible ways to assign big demands to bins can be enumerated in O(Cε),
where Cε is exponentially large in 1/ε, but does not depend on n. Subsequently,
Karmarkar and Karp [16] gave an asymptotic fully polynomial approximation
scheme (AFPTAS) using the same framework. Instead of enumeration, they
show how to efficiently solve and round an LP relaxation of the problem on
just the big demands. Their running time depends polynomially on 1/ε, rather
than exponentially. Many variants of bin-packing have been considered, (see [8]
for a survey). In multi-dimensional bin-packing (See [6, 17, 3, 7] and references
therein), the constraints on the bins are multi-dimensional, but the cost of each
bin is still a fixed constant. In variable-size bin-packing (See [11, 19, 9]) bins of
several different sizes are available and the cost of each bin is proportional to its
size. In bin-packing with “general cost structure”(See [9, 18]), the cost of a bin
is a non-decreasing concave function of the number of elements packed in the
bin.

There are AFPTAS for all of these variants and all of those we are aware of
handle big and small items separately and use rounding of the big items. They
differ substantially in the methods used to approximately solve the problem for
the big items and how to combine the small items to obtain a near optimal
solution. None of these variants, however, captures the problem we consider.

The VRP is another widely studied problem. The train delivery problem is
the 1-dimensional version of the VRP with unequal or unsplittable demands [14,
5, 4] where a set of customers, each with its own demand wi must be served
by vehicles which depart from and return to a single depot. Each vehicle may
serve at most W demands and each customer must be served by a single vehicle.
The objective is to minimize the total distance travelled by all vehicles2. In
the 1-dimensional version the depot is located at the origin and the position of
customer i is given by pi.

We are not aware of any prior work that specifically considers the 1-dimensional
VRP with unsplittable demands. For the metric case Haimovich, Rinnooy Kan,
and Stougie give a constant factor approximation [14]. Bramerl et al. give a prob-
abilistic analysis for the Euclidean plane where customer demands are drawn i.i.d
from any distribution [5].

For the splittable case, where customers may be served by multiple vehi-
cles, Haimovich and Rinnooy Kan gave a PTAS for the Euclidean plane when
1 Partition: Given a set of integers S = w1, . . . , wn, decide if S can be partitioned into

two sets S1 and S2 such that the sum of the numbers in S1 and S2 are equal.
2 The VRP objective is 2 times the objective of the train delivery problem

W = O(log log n) [13]. Their approximation scheme partitions the customers
into two disjoint instances (far and close) based on the distance from the depot
and solves each instance independently. The far instance is small enough so
that it can be solved exactly by brute force, but sufficiently large, so that the
error incurred by solving the instances independently is controlled. The close
instance is “close” enough to the depot such that for small values of W a con-
stant factor algorithm (that they also present) finds a near optimal solution for
close. Recently, Adamaszek, Czumaj, and Lingas extended this to W ≤ 2logδ n

(where δ a function of ε) [1]. Their algorithm partitions the instance into disjoint
regions based on distances from the depot, and solves the problem in each region
independently. Their analysis uses a shifting technique [2, 15].

Main techniques. To achieve Theorem 1, we first deal with big demands. We
round their positions geometrically, and apply the bin packing rounding scheme
from [10] at each position to get a small number of distinct big demands. We then
use a scheme similar to [1] to partition the items into disjoint regions and solve
the problem for each region independently. A shifting technique as in [1] shows
that if we do this for a few different partitions, at least one of them will yield a
near-optimal solution for the original instance. In each region of the partition,
we exhaustively enumerate all solutions for just the big demands, extend each
by greedily adding the small demands, (as is done in bin packing algorithms),
and output the lowest cost solution. The crux of our analysis lies in showing
that it is possible to construct a near-optimal solution by greedily inserting the
small demands to the big demand solutions that we enumerate. See Section 2
for details.

To achieve Theorem 2, we partition the instance into close and far instances
and solve the two resulting instances independently, as was done for the splittable
VRP problem in [13]. Our far instance is small enough to solve it exactly by
dynamic programming, and our close instance is solved by Theorem 1. The
crux of the analysis is a structural lemma which is an extension of [13] to the
unsplittable case. See Section 3 for details.

Preliminaries. For the remainder of the paper we use the language of the vehicle
routing problem: We refer to tours (rather than sets), customers (rather than
items), locations (rather than positions) and demands (rather than weights). We
assume the existence of a depot at the origin.

Without loss of generality we assume that all customers are located to the
right of the depot. Otherwise we can solve the right and left sides of the depot
separately, as they are analogous to one another, and return the union of the
two solutions.

We will use the following lower bound from [14].

Lemma 1. [14](Rad.) Given an instance I of the train delivery problem, any
feasible set of tours that covers all customers must have cost at least

Rad(I) =
2
W

∑
i∈I

pi · wi.

2 Algorithm for Theorem 1

Our algorithm is summarized in Algorithm 1. We present the high level descrip-
tion first followed by the details of each step.

Algorithm 1 Asymptotic PTAS for train delivery
Input: customers (pi, wi)1≤i≤n, train capacity W
Precondition: maxi pi ≤ εOPT

1: Round the input using Algorithm 2.
2: for 1 ≤ i ≤ 1/ε do
3: Let Pi be the i-th partition into regions (as in Definition 1).
4: for each non-empty region R of Pi do
5: for each feasible configuration of R for big demands (as in Definition 3) do
6: Extend it to a solution for all demands using Algorithm 3.
7: end for
8: Let Best(R) be the minimum cost solution after step 7.
9: end for

10: Let Best(Pi) = ∪R∈PiBest(R) be the solution for Pi.
11: end for

Output: mini Best(Pi), the minimum cost solution found.

Rounding. We reduce the number of locations by rounding each location up to
the next integer power of (1 + ε). We call demand wi big if wi ≥ εW and small
otherwise. We use the classical rounding technique from bin packing algorithms
to reduce the number of distinct big demands at each location.
Partitioning into regions. We partition the customers into disjoint regions
based on their distance from the depot (Definition 1) so that each region has
only a constant number of locations containing customers. We solve the problem
approximately within each region independently. Using a shifting argument, we
show that if we do this for a few different partitions, the union of the individual
approximate solutions in at least one of the partitions yields a near optimal
solution for the original instance.
Solving within a region. Within each region, we treat big and small demands
differently. Since each region R contains just a constant number of locations
and each location contains a constant number of distinct big demands, the total
number of distinct big demands in R is constant. This allows exhaustive enu-
meration of all solutions for the big demands in R. We extend each solution by
adding the small demands greedily, and output the solution with the lowest cost.
We prove that the solution we output has cost at most (1 + 2ε)OPT(R) + 2pR,
where OPT(R) denotes the optimal solution of region R and pR is the location
furthest from the depot in R (Lemma 7).

Our definition of regions ensures that pR decreases geometrically as the re-
gions get closer to the depot. Thus the sum of pR over all regions is at most
O(pmax), where pmax is the location of the furthest customer. Our assumption

pmax ≤ εOPT ensures that the additive cost incurred by the greedy extension
(the pR terms) is within the desired approximation factor.

We now discuss each of the steps in more detail. Rounding is performed
using Algorithm 2. The analysis relies on the following lemma whose proof (in

Algorithm 2 Rounding Instance
Input: train capacity W , customers (pi, wi)1≤i≤n

1: Round each pi up to the smallest (possibly negative) integer power of (1 + ε).
2: Partition demands (wi)i into big (≥ Wε) and small (< Wε).

Rounding big demands:
3: for each location ` with n` ≥ 1/ε2 big demands do
4: Go through those big demands in decreasing order to partition them into ε−2

groups such that each group (except possibly one) has cardinality exactly bn`ε
2c.

5: for each group g do
6: Round every demand in g up to the maximum demand in g.
7: end for
8: end for

Output: rounded instance I ′ of the train delivery problem

the appendix) is an extension of the bin packing rounding analysis by Fernandez
de la Vega and Lueker [10].

Lemma 2. Given an instance I of the train delivery problem, Algorithm 2 out-
puts an instance I ′ such that:

– Each pi has the form (1 + ε)k for some (possibly negative) integer k.
– Each location has at most 1/ε2 + 1 distinct big demands.
– Any feasible solution for I ′ is also feasible for I.
– OPT(I ′) ≤ (1 + O(ε))OPT(I).

We partition the instance into regions, solve the problem in each region in-
dependently and output the union of the solutions. We use a shifting technique
similar to that of Baker [2] and Hochbaum and Maass [15] to show (Lemma 3)
that at least one of the shifted partitions yields a near optimal solution.

Definition 1. Let I be an instance of the train delivery problem and pmax =
maxi pi. A block, defined by an integer i, is the set of customers with locations
in (pmaxε

i+1, pmaxε
i]. A region is a group of at most 1/ε consecutive blocks.

For 0 ≤ j < 1/ε, let Pj denote the partition of I into regions, one initial
region (εjpmax, pmax] and the other regions (εjpmaxε

(i+1)/ε, εjpmaxε
i/ε] for i ≥ 0.

Lemma 3. Let partitions be as given in Definition 1. There exists a partition
Pi such that

∑
R∈Pi

OPT(R) ≤ (1 + O(ε))OPT.

To prove Lemma 3 we first show that a near optimal solution can be obtained
using tours which cover points in a bounded region.

Definition 2. A tour that covers only points between locations p and p′, p ≤ p′,
has expanse p′/p. A small expanse tour has expanse at most 1/ε.

Lemma 4. Let I be an instance of the train delivery problem. There exists a
solution using only small expanse tours which costs at most (1 + 2ε)OPT(I).

The proof appears in the appendix. Small expanse tours have a simple structure
as they cover points in at most two blocks (Recall that the expanse of a block is
1/ε). Intuitively, only a few tours of the optimal small expanse solution will cover
points in more than one region. This allows us to use an averaging argument to
prove Lemma 3 (see appendix).

A configuration for a region is a concise description of a solution for the big
demands in that region.

Definition 3. (Configuration) Fix a region R.
A demand type is a pair (p, b) where p is the location of a big demand and

b ≤ 1/ε2 is one of the values of big demands at location p.
A tour profile consists of a location r, which is the rightmost location of the

tour, and of a multiset of demand types whose demands sum to at most W and
whose locations are all at most r. Let cp be the number of distinct tour profiles.

A configuration is a list (βi)
cp

i=1 s.t. βi is the number of tours with profile i.

The profile of a tour roughly describes which points it will cover: If a profile
contains a demand type (p, b) in its multiset, then the tour covers an (arbitrary)
big demand from location p with demand b.

Definition 4. A configuration of R is feasible if it covers all big demands in R.

Lemma 5. The number of configurations of a region R is at most n(1/ε)O(1/ε)
.

With each configuration (βi)i, we associate a list T of tours, (rt, ct)t covering
big demands, where rt denotes the maximum location of tour t, and ct denotes
its remaining capacity after it has covered the big demands. Given a feasible
configuration, Algorithm 3 takes the associated list of tours (rt, ct)t as input
and extends the solution to also cover the small demands of R.

We turn to show that the greedy extension results in a near optimal solution.
This is the crux of the whole analysis. The following lemma is a generalization
of the Rad bound (Lemma 1) of Haimovich, Rinnooy Kan, and Stougie [14].

Lemma 6. Let (pi, wi)i, T be the input of Algorithm 3. Let OPT |T be the mini-
mum cost extension of T to a set of tours that covers the small demands (pi, wi).
For any increasing sequence (xs)s such that x0 = 0, we have

Cost(OPT |T) ≥ Cost(T) +
2
W

∑
s≥1

(xs − xs−1)(
∑

i:pi≥xs

wi −
∑

t∈T :rt≥xs

ct).

Proof. Let ρs =
∑

i:pi≥xs
wi denote the total small demand at locations at least

xs. Let Ts = {t : rt ≥ xs} denote the set of input tours that cover some point at
location at least xs. Let γs denote the total available capacity of all input tours

Algorithm 3 Greedy Extension
Input: small-demand customers (pi, wi)i, list T of tours (rt, ct)t covering big demands
s.t tour t has maximum location rt and remaining capacity ct.

1: for each small demand (pi, wi) by order of decreasing pi do
2: if there is a tour t with rt ≥ pi and ct ≥ wi then
3: cover (pi, wi) with t and set ct := ct − wi

4: else
5: add a new tour t with ct = W and rt = pi

6: cover (pi, wi) with t and set ct := ct − wi

7: end if
8: end for

Output: the resulting tours.

that cover some point at location at least xs (i.e., γs =
∑

t∈Ts
ct). The amount

of small demand at locations greater than xs that cannot be covered by T is
ρs − γs. Therefore, the number of tours that any extension must add on top of
the input tours in order to cover all the demands at locations greater than xs is
at least 1

W (ρs − γs). This yields the desired lower bound.

Lemma 7. Let G be the output of Algorithm 3 on input (pi, wi)i, T . Let OPT |T
be as in Lemma 6. Then cost(G) ≤ (1 + 2ε)cost(OPT |T) + 2pmax.

Proof. Consider the new tours added by algorithm 3. Let (xs)s≥1 be the set
of maximum locations for these tours, sorted in increasing order, and define
x0 = 0 for convenience. Let As denote the set of additional tours, added by the
algorithm, whose maximum point is at least xs. We have:

cost(G) = cost(T) +
∑
s≥1

2(xs − xs−1)|As|. (1)

Consider xs. We use the same notations as in the proof of Lemma 6. By the
condition in line 1 of the algorithm, since the demands are small and since a new
tour is added by the algorithm at location xs, it must be that every tour t ∈ Ts

has remaining capacity at most εW in G. Thus the amount of small demand
assigned by G to the tours in Ts is at least γs − |Ts|εW , and so the amount of
small demand assigned by G to new tours is at most ρs − γs + |Ts|εW .

Since G does not open another additional tour until all existing tours (of As

as well as of Ts) are almost full, we have:

|As| ≤
ρs − γs + |Ts|εW

(1 − ε)W
+ 1. (2)

Substituting (2) into (1) and using Lemma 6 we get that cost(G) is at most:

cost(T)+
1

1 − ε
(Cost(OPT |T)−Cost(T))+

ε

(1 − ε)

∑
s≥1

2(xs−xs−1)|Ts|+2 max
s

xs.

Since cost(T) ≥
∑

s≥1 2(xs − xs−1)|Ts| and maxs xs ≤ pmax, we obtain

cost(G) ≤ 1
1 − ε

Cost(OPT |T) + 2pmax.

Correctness of Algorithm 1. By Lemma 2 the optimal solution of the rounded
instance is a near optimal solution for the original instance. To solve the rounded
instance Algorithm 1 tries all 1/ε partitions of it into regions. Lemma 3 shows
that for at least one of these partitions, P ∗, a near optimal solution is obtained
by solving in each region independently and combining the solutions. For the
rest of the analysis, focus on the execution of Algorithm 1 that uses partition
P ∗. Let R∗

1, R
∗
2, . . . , R

∗
r be the regions of P ∗. It remains to show that Algorithm

1 finds a near optimal solution for each region of partition P ∗.
Consider a region R∗

i of P ∗. Algorithm 1 enumerates all feasible configura-
tions for covering the big demands in R∗

i . In particular, it considers the config-
uration that agrees with the tours of OPT(R∗

i) for covering big demands in R∗
i ,

which we denote by C∗. Algorithm 1 invokes Algorithm 3 on C∗ to produce a
solution whose cost, by Lemma 7 is at most (1+2ε)OPT(R∗

i)+2pR∗
i
, where pR∗

i

is the maximum location in R∗
i .

Applying the above argument to all regions in P ∗, and using Lemma 3,
Algorithm 1 finds a solution of cost∑

i≤r

(1 + 2ε)OPT(R∗
i) + 2pR∗

i
= (1 + O(ε))OPT + 2

∑
i≥0

pR∗
i
.

By definition of regions, pR∗
i

is at most pmaxε
i/ε. Thus∑

i≥0

pR∗
i
≤
∑
i≥0

2pmaxε
i/ε ≤ 4pmax ≤ O(ε)OPT,

where the last inequality follows by our assumption that maxi pi ≤ εOPT.
Running time of Algorithm 1. By inspection, one can see that the bottleneck
is the number of configurations, which is n(1/ε)O(1/ε)

by Lemma 5.

3 Algorithm for Theorem 2

Algorithm 4 gives the high level description.
Partition into close and far instances. We index the customers in decreasing
order of their location from the depot and identify a customer ic. The instance
is partitioned into, close and far where far contains the customers with indices
at most ic and close contains the customers with indices greater than ic.
Optimal solution of far. The partition is such that far contains O(W) total
demand. This implies that an optimal solution of far uses a constant number of
tours (Lemma 10). This allows us to enumerate, in polynomial time, all possible
such solutions. Using a generalization of the well-known dynamic program for
subset sum, we can determine in polynomial time whether a proposed solution
is feasible or not, hence an optimal algorithm for far.

Algorithm 4 PTAS for the train delivery problem when W ≤ poly(n)
Input: train capacity W , customers (pi, wi)1≤i≤n

Precondition: W ≤ poly(n).

1: Partition the instance into close and far using Algorithm 5
2: Find OPT(far) using Algorithm 6.
3: Find Best(close) using Algorithm 1

Output: Best(close) ∪OPT(far), as the solution for the whole instance.

Approximate solution of close. We use Algorithm 1 to find a near optimal
solution to close. The cost of the solution is at most (1 + ε)OPT(close) + 4pic

.
Overall solution. The solution is just the union of the solutions for close and
far. The choice of ic guarantees the desired approximation factor.
We next discuss each of the steps in greater detail.

Algorithm 5 Partition Close and Far
Input: train capacity W , customers (pi, wi)1≤i≤n s.t. p1 ≥ · · · ≥ pn.

1: Let ic be the smallest index such that
•

P
j≤ic

wj ≥ W/ε
• pic

P
j≤ic

wj ≤ ε
Pn

j=1 wjpj .
If no such ic exist, set ic := n.

2: Far: Let the far instance consist of the customers indexed by 1, . . . , ic.
3: Close: Let the close consist of the remaining customers ic + 1, . . . n.

Output: instances far and close

Lemma 8. Given an instance I of the train delivery problem, Algorithm 5 re-
turns two instances far and close s.t. OPT(close)+OPT(far) ≤ (1+O(ε))OPT.

The proof transforms the optimal solution into separate solutions for close and
far with small additional cost (see appendix).

To solve the far instance, we first show that the total demand in far is O(W).
The following combinatorial lemma is an extension of Haimovich and Rinnooy
Kan’s [13] analysis to the case with unsplittable demands. It bounds the total
demand in the far instance by arguing that there cannot be too many customers
that violate the requirement pic

∑
j≤ic

wj ≤ ε
∑n

j=1 wjpj , see the appendix.

Lemma 9. Let ic be as in Algorithm 5. Then
∑

j≤ic
wj = exp(O(1/ε))W .

This implies that OPT(far) uses at most a constant cfar tours. We then
show how to solve such an instance optimally using dynamic programming.

Lemma 10. Let I be an instance of the problem such that the sum of the de-
mands of all customers in I is D. Then OPT uses at most d2D/W e tours.

Definition 5. (Far Configuration) Let cfar denote the maximum number of
tours OPT(far) may use. A configuration for far consists of:

– An ordered list of locations r1 ≥ r2 . . . ≥ rcfar
, where ri is the maximum

location of the i-th tour.
– For every i ∈ [1, cfar], a list Si of i numbers Si = {si

1, . . . s
i
i}.

The cost of the configuration is
∑

j≤cfar
2rj.

For i = 1, 2, . . . cfar − 1, define an interval Ii = (ri+1, ri]. Let Icfar
be the

interval [pic
, rcfar

]. The customers in Ii can only be covered by the i tours whose
maximum location is at least ri. The list Si specifies the total demand from
interval Ii that is assigned to each of these tours. Note that Si does not directly
describe how to partition the demands among the i tours. Finding a set of
partitions that is consistent with a configuration, or finding out that no such set
of partitions exists, is done in nW eO(1/ε)

time (i.e., polynomial in n assuming
W ≤ poly(n))) using a trivial extension of the dynamic program for the subset
sum problem (see appendix).

Algorithm 6 solves the far instance by iterating all configurations of OPT(far),
checking feasibility, and returning the minimum cost feasible configuration.

Algorithm 6 Solving the far instance
Input: far customers (pi, wi)i with

P
i wi = WeO(1/ε)

1: for each configuration f of far as given in definition 5 do
2: for each tour j ≤ cfar do
3: if

P
i≤cfar

si
j > W then

4: Mark f infeasible. {capacity of tour is exceeded}
5: end if
6: end for
7: for each interval i ≤ cfar, with total demand dem(Ii) do
8: if Extended DP of subset sum cannot partition dem(Ii) into si

1, . . . , s
i
i then

9: Mark f infeasible. {demands cannot be partitioned}
10: end if
11: end for
12: end for

Output: Solution realized by the minimum cost configuration not marked infeasible.

Lemma 11. Given a instance of far with demand WeO(1/ε) Algorithm 6 finds
the optimal solution of far in time nW eO(1/ε)

, which is polynomial in n and W .

The choice of pic implies the following simple bound on OPT.

Lemma 12. OPT > 2pic
/ε.

Proving the Main Theorem 2 is now easy, see appendix for details.

References

1. A. Adamaszek, A. Czumaj, and A. Lingas. Ptas for k-tour cover problem on
the plane for moderately large values of k. In ISAAC, Berlin, Heidelberg, 2009.
Springer-Verlag.

2. B. S. Baker. Approximation algorithms for np-complete problems on planar graphs.
J. ACM, 41(1):153–180, 1994.

3. N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple
dimensions: Inapproximability results and approximation schemes. Math. Oper.
Res., 31(1):31–49, 2006.

4. D. J. Bertsimas and D. Simchi-Levi. A New Generation of Vehicle Routing Re-
search: Robust Algorithms, Addressing Uncertainty. Oper. Res., 44(2):286–304,
1996.

5. J. Bramel, Jr. Coffman, Edward G., P. W. Schor, and D. Simchi-Levi. Probabilistic
analysis of the capacitated vehicle routing problem with unsplit demands. Oper.
Res., 40:1095–1106, November 1992.

6. A. Caprara. Packing 2-dimensional bins in harmony. In FOCS, pages 490–499,
Washington, DC, USA, 2002. IEEE Computer Society.

7. C. Chekuri and S. Khanna. On multi-dimensional packing problems. In ACM-
SIAM SODA, pages 185–194, Philadelphia, PA, USA, 1999. Society for Industrial
and Applied Mathematics.

8. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: a survey. pages 46–93, 1997.

9. L. Epstein and A. Levin. An aptas for generalized cost variable-sized bin packing.
SIAM J. Comput., 38:411–428, April 2008.

10. W. Fernandez de la Vega and Lueker G. S. Bin packing can be solved within 1 + ε
in linear time. Combinatorica, 1(4):349–355, 1981.

11. D K Friesen and M A Langston. Variable sized bin packing. SIAM J. Comput.,
15(1):222–230, 1986.

12. M. R. Garey and D. S. Johnson. “ strong ” np-completeness results: Motivation,
examples, and implications. J. ACM, 25(3):499–508, 1978.

13. M. Haimovich and A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Mathematics of Operations Research, 10(4):527–542, Nov., 1985.

14. M. Haimovich, A.H.G. Rinnooy Kan, and L. Stougie. Analysis of heuristics for
vehicle routing problems. In Vehicle Routing: Methods and Studies. Management
Sci. Systems., volume 16, pages 47–61, North Holland, Amsterdam, 1988. Elsevier
Science B.V. This is a full inbook entry.

15. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. J. ACM, 32(1):130–136, 1985.

16. N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In FOCS, pages 312–320, Washington, DC,
USA, 1982. IEEE Computer Society.

17. C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting
stock problem. Math. Oper. Res., 25(4):645–656, 2000.

18. C.L. Li and Z.L Chen. Bin-packing problem with concave costs of bin utilization.
Naval Research Logistics, 53(4):298–308, 2006.

19. F.D. Murgolo. An efficient approximation scheme for variable-sized bin packing.
SIAM J. Comput., 16(1):149–161, 1987.

A Appendix

A.1 Proof of Lemma 2

Proof. The first three properties are straightforward. We focus on the last prop-
erty. We first analyze rounding locations . Let I1 denote the instance obtained
from I after rounding just the locations (Line 1). Any length d tour in OPT(I)
can be transformed into a feasible tour for I1 by extending its length by at most
εd, so OPT(I1) ≤ (1 + ε)OPT(I).

Next we analyze rounding demands, by carrying out the de la Vega and
Lueker bin packing analysis at each location [10]. Let I” be the instance obtained
from I1 by changing line 6 of the algorithm, rounding demands down to the
maximum demand of the next group. Clearly, I” ≺ I1 ≺ I ′, and so OPT(I ′) ≤
OPT(I1)+(OPT(I ′)−OPT(I”)). However, up to renaming customers, instances
I ′ and I” are almost identical (See Figure A.1). In fact, at each location `, there
are at most bn`ε

2c customers of I ′ that do not correspond to a customer of I”,
where n` is the number of big demands at location `. Using a single tour to cover
each of those customers yields

OPT(I ′) ≤ OPT(I”) +
∑

`

2n`ε
2p` (3)

But by Lemma 1 and the fact that big demands are at least εW , we get

OPT(I1) ≥
2
W

∑
`

n`εWp` =
∑

`

2n`εp` (4)

Combining Equations 3 and 4 yields the lemma.

A.2 Proof of Lemma 3

Let S be the minimum cost solution that uses only small expanse tours. Fix a
particular partition Pi and let Ti be the set of tours from S that cover points
in more than one region in Pi. Since each tour in t ∈ Ti has small expanse, t
covers points in at most two regions of partition Pi. For each t ∈ Ti, make two
copies of t, and assign one copy to cover the points in the first active region and
the second copy to cover the points in the second active region of t. After the
modifications all tours cover points in only one region. We obtain:∑

R∈Pi

OPT(R) ≤ S +
∑
t∈Ti

length(t).

Summing over all partitions, we obtain:

∑
0≤i<1/ε

∑
R∈Pi

OPT(R) ≤
∑

0≤i<1/ε

(
S +

∑
t∈Ti

length(t)

)
(5)

Fig. 1. Rounding the big demands at location p in the proof of Lemma 2. The big
demands in instance I (white circles) are sorted and partitioned into groups. The big
demands in I ′ (top gray circles) are obtained by rounding demands up to the maximum
in each group. The big demands in I ′′ (bottom gray circles) are obtained by rounding
down each demand to the maximum of the next group.

Note that for i 6= j, Ti and Tj are disjoint; a tour t ∈ Ti spans across two
consecutive regions in Pi and thus two consecutive blocks. These consecutive
blocks are in the same region in partition Pj , thus t /∈ Tj . This implies that the
right hand side of Equation 5 is at most (1/ε + 1)S. Thus we have that,∑

0≤i<1/ε

∑
R∈Pi

OPT(R) ≤ (1/ε + 1)S

As the sum on the left hand side has 1/ε terms, there must exist a term i for
which

∑
R∈Pi

OPT(R) ≤ (1 + ε)S. The proof follows as S ≤ (1 + 2ε)OPT by
Lemma 4.

A.3 Proof of Lemma 4

Start from the optimal solution for I and consider any tour t. Let pt be the
maximum location of the customers covered by t. For every i ≥ 0, define a
new tour ti that covers the customers covered by t in the interval (εi+1pt, ε

ipt].
Replace t by the collection of tours (ti)i≥0 (See Figure A.3).

Together, the tours ti cover exactly the customers initially covered by t, so the
new solution is still feasible. By construction, the tours ti all have small expanse,
so the new solution uses only small expanse tours. We have: OPT(I) =

∑
t 2pt,

and the cost of the new solution is at most∑
t

2(1 + ε + ε2 + . . .)pt < OPT(I)/(1 − ε) ≤ (1 + 2ε)OPT(I).

Fig. 2. Lemma 4. The depot is the star. Tour t of length pt is replaced by t0, t1, t2,
by adding the dashed segments from the depot. No points are covered by the dashed
segments so that ti only covers points in (ptε

i+1, ptε
i].

A.4 Proof of Lemma 5

Proof. R spans (ε1/εp, p] for some p. By Lemma 2 it follows that there are at
most cloc = (1/ε)2 log(1/ε) locations in R. Moreover each location has only
cdem = 1/ε2 distinct values of big demands. Thus there are at most ctype =
cloc · cdem = (1/ε)4 log(1/ε) demand types.

Since big demands have value at least Wε, at most 1/ε big demands can be
taken to make a sum that is ≤ W . Thus the number of tour profiles is at most
cp = cloc ·

∑
j≤1/ε(ctype)j = (1/ε)O(1/ε). There are at most n tours covering big

demands. Thus the number of different configurations is ncp .

A.5 Proof of Lemma 8

Proof. We show how to modify the tours of OPT so that each tour only covers
points in the far instance or only covers points in the close instance. Let T be
the set of tours of OPT which cover points in both instances. For each t ∈ T
cut t at location pic to get three pieces: the first piece goes from the depot to
location pic and covers only points in close, the second piece and covers only
customers in far and the third piece goes from pic

back to the depot covering
only points in close. Concatenate the first and third pieces together at pic

to get
a tour that covers only points in the close instance. Let T2 be the set of second
pieces of each tour in T . While there exists at least two pieces in T2 each covering
at most W/2 demand, concatenate the pieces together at pcic into a new piece
covering at most W demand. After all concatenations are done, all but at most
one piece in T2 covers at least W/2 demand. Add a single round trip connection
from pic

to depot to each piece in T2 to get tours covering only points in the far
instance.

The total cost to modify T into tours covering only points in far or close
is the cost of T plus the cost of the additional round trips required to patch up

the pieces in T2 into tours. Let dem(i) denote the total demand of customers
with indices ≤ i, i.e dem(i) =

∑
j≤i wj . Since all but one concatenated piece in

T2 covers at least W/2 demand, the number of round trips required is at most
dem(ic)/(W/2)+1 < 3dem(ic)/W . Thus the total cost of additional round trips
is at most 2(3dem(ic)/W)pic

which implies that

OPT(close) + OPT(far) ≤ OPT + 6
dem(ic)

W
pic (6)

By choice of ic, dem(ic) ≤ ε
∑n

j=1 wjpj . Using Lemma 1 we obtain

6dem(ic)/W · pic ≤ 6ε
∑

j

wjpj/W ≤ 3εOPT,

as desired.

A.6 Proof of Lemma 9

Proof. Let i0 be minimum such that
∑i0

i=1 wi ≥ W/ε. By definition of ic, for
every i ∈ [i0, ic) we have (w1 + · · · + wi)pi > ε

∑
j wjpj . Equivalently:

∀i ∈ [i0, ic),
1
ε

wipi∑
j wjpj

>
wi

w1 + · · · + wi
.

Summing over i ∈ [i0, ic) implies

1
ε

>
∑

i∈[i0,ic)

wi

w1 + · · · + wi
.

Go through the sequence (wi)i0≤i<ic
in order of increasing i, to greedily partition

the wi’s into groups g1, g2, . . . such that for every group g, we have W/ε ≤∑
i∈g wi < W (1/ε + 1). Letting W0 = w1 + · · · + wi0 and, for group g`, W` =∑
i∈g`

wi, we can rewrite the right hand side as

∑
`≥1

∑
i∈g`

wi

W0 + · · · + W`−1 +
∑

i′∈g`,i′≤i wi′
≥
∑
`≥1

W`

W0 + · · · + W`
.

Since all Wg’s are equal to within a (1 + ε) factor, this is at least

1
1 + ε

∑
`≥1

1
` + 1

≥ 1
2

log(#(groups)).

Thus the number of groups is at most exp(2/ε). Since each group has total
demand at most W (1/ε + 1), the total demand is exp(O(1/ε))W , as desired.

A.7 A Generalization of the Dynamic Program for Subset-Sum

Let {w1, . . . wm} be the demands in interval Ii. The dynamic program populates
a table Q. Table element Q[j, s1, . . . si] specifies whether the demands w1 . . . wj

can be partitioned into i sets whose sums are s1 . . . si. The table is populated
using the following recurrence: Q[j, s1, . . . si] is true if any of the following are
true: Q[j−1, s1−wj , s2, . . . si], Q[j−1, s1, s2−wj , s3, . . . si], Q[j−1, s1, s2, s3−
wj . . . si], . . . , Q[j − 1, s1, s2, . . . , si−1, si − wj]. For the base case Q[1, s1, . . . si]
is true if w1 = sj for some j ≤ i and all the other sk = 0 for all k 6= j.
Otherwise Q[1, s1, . . . si] is false. We are interested in the entry Q[m, s1, . . . si]
which specifies whether the partition Si can be realized or not.

A.8 Proof of Lemma 10

Proof. We can assume that all but at most one tour covers at least W/2 demand.
Otherwise if there are two tours, each covering at most < W/2 demand, they
can be merged together at the depot.

A.9 Proof of Lemma 11

Proof. Correctness: Algorithm 6 iterates through all possible configurations and
checks the feasibility of each configuration. Fix a configuration. Line 3 verifies
that the load of no tour is greater than W . Line 8 verifies that the demand in
Ii can be partitioned into si

1, . . . s
i
i.

Running Time: We analyze the number of configurations possible for far. As
the total demand in far is WeO(1/ε), by Lemma 10, cfar = eO(1/ε). The number
L of locations with customers in the far instance is WeO(1/ε). Thus there are
Lcfar = W eO(1/ε)

possible right most locations for the cfar tours.
For each of the cfar intervals, there is a list of at most cfar numbers where

each number is at most W . Thus there are W c2
far = W eO(1/ε)

possible lists
{si

1, . . . s
i
i}i. Therefore, the total number of configurations W eO(1/ε)

, which is a
polynomial in n when W ≤ poly(n).

Next we analyze the time required to verify the feasibility of a configuration.
Line 3 takes polynomial time as they involve summing a constant number of
values. The extended version of the subset sum DP requires O(cfar · n · W cfar)
time since the table Q has size n · s1 · s2 · . . . · si ≤ n · W cfar , and each entry
can be computed in constant time by looking up at most cfar + 1 entries. Thus
Line 8 takes time n ·W eO(1/ε)

. Therefore, the total running time of Algorithm 6
is n · W eO(1/ε)

.

A.10 Proof of Lemma 12

Proof. By definition of ic,
∑

j≤ic
wj ≥ W/ε. Using Lemma 1 we have

OPT > 2
∑
j≤ic

wjpj

W
≥ 2

∑
j≤ic

wjpic

W
≥ 2

W

ε

pic

W
.

A.11 Proof of Theorem 2

Correctness of Algorithm 4. By Lemma 8 OPT(far) plus OPT(close) is a near
optimal solution of the original instance. It remains to show that Algorithm 4
computes near optimal solutions for both far and close. Lemma 11 proves that
Algorithm 6 computes the optimal solution of the far instance.

Now we focus on cost of solution for close. Using the notation from the proof
of Theorem 1, let P ∗ be the partition of the near for which Lemma 3 holds and
let R∗

1, R
∗
2, . . . , R

∗
r be the regions of P ∗. It remains to show that Algorithm 1

finds a near optimal solution for each region of partition P ∗. Applying the same
argument as in the proof of Theorem 1 we can show that Algorithm 1 finds a
solution of cost∑

i≤r

(1 + 2ε)OPT(R∗
i) + 2pR∗

i
= (1 + O(ε))OPT + 2

∑
i≥0

pR∗
i
.

The farthest customer in close is at location ≤ pic
. Thus by definition of

regions the right most location of a region R∗
i is pR∗

i
= pic

εi/ε. Thus we have∑
i≥0

pR∗
i
≤
∑
i≥0

2pic
εi/ε ≤ 4pic

≤ εOPT,

where the last inequality follows by Lemma 12, pic ≤ εOPT.
Thus the cost of the solution output by Algorithm 4 is at most

OPT(far) + (1 + O(ε))OPT(close) + εOPT,

which is (1 + O(ε))OPT by Lemma 8.

The running time. By Lemma 11 far can be computed by Algorithm 6 in time
nW eO(1/ε)

. By theorem 1 Algorithm finds a solution for the close instance in time
n(1/ε)O(1/ε)

. Thus the running time of Algorithm 4 is nW eO(1/ε)
+ n(1/ε)O(1/ε)

.

