
http://wrap.warwick.ac.uk/

Original citation:
Ashcroft, E. A. and Wadge, W. W. (1976) Lucid - a formal system for writing and proving
programs. Coventry, UK: Department of Computer Science. (Theory of Computation
Report). CS-RR-004

Permanent WRAP url:
http://wrap.warwick.ac.uk/59398

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/59398
mailto:publications@warwick.ac.uk

The University of Warwick

THEORY OF

COMPUTATION

REPORT
loLest

No.4
(revised)

Lucid- a Formal System for

Writing and Proving Programg foltowed h1f ollowed bg

lotest

(l3 soon q3

lo besf

ot fput

lepa rtrnen t of Computer 5c ience
lJn ivers i ty cf t/arwick
c0\",illTF.Y cvA 7AL
l:llcLrlllD.

Janua ry 1979

Lucid - A Ftrrrnal Systern for Writjng and
Pr.ouing Prograns

by

E.A. Ashcroft
Departrent of Coirputer Science

UnircrsiQr of Waterlo, Waterloo, Ontario, Canada

and

W.W. Wadge
@rputer Science Depaftfient

ttreirrersity of Warwick
Coverrtrl, Englard

A c"ondenst:d r,crsioir of tlris; papcr was presented at
. tlre Int-c--nraLional Syrrposirln on Provinq and Irncrovinq
Prograns, 1975.

Abstracb

Ilcid i-s both a prcgrarnli.:ng langr:age ard a formal systern for

prcving prcperties of Ilcid prograrns. ftre prograrrning langntagre is unconven-

tional in nrarry ways, althou$r programs are readily tlrderstood as using

assignnent statenents and lmps in a 'stnrcturcdt fashion. Senrantically,

a1 assigrrnent sta@rent is really an equation between 'historiesr, and a

lrtrole progrdn is sirrply an unordered set of suctr eqr:ations.

1trr61n ttrese equations, protrerties of the program can be derircd

b}' straightfor*rard nat]rernatical reasorrirrg, using the Lucid formal systen.

The nrles of this slctern ane rnainly ttrose of fir:st order logic, together with

extra axicns and mles for the strncial Lucid funcbions.

T[is paper forrnally describes ttre slnntac and senrantics of prografis,

and justifies the acicnr.s and nrles of the formal system.

Kqnmrds

fogram pnovjng, Forrnal ssnantics, Forn'al systens

0. IntroducLion

Lucid is both a language in wldch programs can be written, and a

fornnl system for proving prop,erbics of suctr programs. These pnoperLies

are also e>pressed in l,ucid. Ttr.is is possible becar.rse a llcj-d program

is itself srnply an unordered set of assertj-ons, or axicrm, frcrn which other

assertions nray be derived by fairly ccrrvenLional rnathenatical reasonilg.

The statgrents irr Lucid progralls are slnci-al cases of Lucid terrns.

In tld-s paper we present the formal basis for l,ucid, givi-ng its

senrantics and justifying various axicnrs and mles of inferenoe that are

used in Lucid proofs. An jnforrnal introducbj-on to Lucid can be found in [I],
togetlrer with a dj-scussion of inpJ-enentaticn considerations. Thris paper

will be rattrer fornal, with nptivating explar:,ations and exanples confjned

nainly to this introduction.

The la;lgiuage considered here rnight be ca11ed Basic Lucid, sjle

it does not include features like arrays and defined func'tions. Suchr

exbensions are crcnsidered i-rr [1]

Thre mairr idea j:r Lucid is that prograns should be rdenotational-l

and rrefererrlially transparentr, even tafrrerr thqz cgrtain assignnent statenpnts.

Ttris nreans that all expressi-ons in a program nnrst lrean scnrething, and that

tno occurtenq3s of tlre sarrc e>pression in a program rnust denote the sanre

rscneth-ilgr. Lticid ach-ieves th-is aim, and yet nEmages to treat sssignnent

statsnents as equatj-ons. (Thus, if a Lucid program cqrtains the (assignnert)

statenent Y = X + Z, everlf occurrence of Y in the program can be replaced

hy X + Z, without chrangilg thre rearring of the program.) Ttr-is is acconplished

by cursidering the progran to be talking about thre rhj-storiesr of tLre various

variables. Sennntically, all exL:ressj-ons in progranrsi without nested loops

will derpte infinite sec1uences of data objects. Reassignnent to a variable

-2-

nurst be <lone by using tle special Lucid funcLiorr !€X!, and tlp iniLialisation

of a variable nnrst also be explicit, qf rrshg tle fwrction €ifg!. Thu.s the

two statenents f!$l X = 0, l€I! X = X + 1 define the value, or history,

of X to be ttre j:rfinite sequen€ <0,L,2r3r...). (Ttre ntureral l denotes

(1,111,...), and f works poinUrise. ltre furction ngX! drcps off the first

itsn of its argr-urent..) Note that these two statenents inply tlre existence

of a rloopr, ild eplicit cnntrol statenents are unnecessa4t. Also, tfie

order of the tr,ro statenents is irrelevant. If we also have €i5S! Y = 0,

m$ Y = Y * XxXr then this loop also generates a history for Y, nanely,

<0,0r1r5,14r...). We can get out of the jnfjnite iteratiot using ttre Lucid

fi:nction ff,Fgg$^.e€: e.g. output = Y gE-s^99F^,3E, X > 3 girres'the variable

output the value of Y utren X > 3 is first Lrue, i.e. the fiftlt value, 14.

(In facb, output is <14,14,14,...).) Wittr these three fi:nctions it is

possible to write progralls wlthout nested lops, i-n a rrery natural way.

F\rr prograns with nested locps rre must generallse our noLicn of

rhistory' . Consider the follcraring Lucid program, whictt deterrnires vfietlrer

t.l:e first integer i.l on tire input streal is a prine nr.urJcer or not.

Procrram Prirre

N = €iI:3 irtput
€U:!r=2
begjrt

-fu!
nn:ltiPle = IxI

ngx'g multipfe = multiPle + I
rdivr\ = nmltiple eq N €€-Fgg3*€n nmltiple > N

end
l*r=r*1
output = -Iclivi.{ gp^€Pgi},gg ldivl{ v IxI) N.

-3-

Ttn program cantains one loop within another. Thre i-nner loop is

delimited bV begin and end. Intuitirzely, the cuter Imp generates sucessive

values of potential divisors I of N, starting 2r3r4,..., and, for eactr value

of I, tLre irurer locp generates successive nn:ltiples of I, beginning with f 2.

Tle variable Idivtt i-s set true or false depending or wtrettrer or not a nn:ltiple

of I is found wl'rich is egual to N. In the outer loop, artput is set false

or tnre depending on r^drether ldivi,l is errer tnre or not.

The predicate reqr is like r= | exc€pt that its value is undefined

if eittrer of its arqunents is r:ndefj.ned (of course trndefined = r:ndefjled is true) .

Ttre pr^ogram as it stands is not strictly speaking a set of assertiors

because of the begin and end. Infornnlly, tlte effect of begin arld end is to

"freeze" the values of tJ.e global variables I, N and Idivr\. (The global

variables of a lorp are all ttrose variables nentio'red outside the loop.) The

begin and end can be rsncrrcd b1' replaclng all enclosed occLrrren€s of I, N and

Idivl{ by k!gE!-I , Jgleg! N and ICE9S! Idr\N. (The neaning of the function

lgg g will be given later.) Thus the first line of the jmer lop becores

€i5gg nu.rltiple = JglCgg r * $!gg! r. The resulting transforned program

Prirrer is an unordered set of asserLi-ons wtrich can be used a,s axicns frcrn

wfddt to deri'ue fr:rther assertiqts.

In practice, it is easier to write prograns using the begin . .. end

notatj-on rather Uran lqlR:g and, noreorrer, we harue rules of inference wlridr

allcnr us to carr1l out proofs of programs il ttre begjx ... en{ notaticn, wittt-

out using lg!€g!, as follor,rs. We keep track of the loop associated with a

program stateryJnt or other assertion that we harc derived. Informally' an

-4-

assertion $14t does not srtain arry of tle special rrcid furcLias can be

ncried into 1ops, and can be norred out of loops if in addition it only refers

to glcbal variables of ttre loP. Iq)rec^rer, w:ithjn a locp we can add the

asserLion X = €i*g! X for any global variable X (wfdch states ttrat X is

qrriescent, i.e. constant for tLre dr.rration of tlre loop) . !'ltlen prwing things

,\^rithin a 1oop" \^re nny arly use statenents frcrnr within tlre 1oQ (t^ttidt may

have been br:ou$rt there or have been added as aborie) .

Ttris rni$rt be caIled ttre tedrnique of "nested proofs". It reduces

rea,soning about nested locps to reasonjng about sinple loPs. Befone we

discgss gelerallzed histories we can ilh:strate this sort of reascning by

derivisg frcm tlre staterenLs of Prine and tl.e assr-urption €if* input > 0 the

assertion

Ortput = ' fLJK Z<x.€lIE! input n LxK = €i{:g input.

h:oof

h1g will assurrE the only data objects ate tlre inteprs, tnle, false

and ttre slecial object' r:ndefjned

ftre first step is to prcnre the correctness of tlre j-nner 1ocp.

we jntrnduce a nehr variable J by setting !lrp* J = I and *95! J = Jfl so

that beti^ieen the beqir and end ve have

EU,:! J = r
next J = Jtl
fft multiPle = IxI
next

-nnrftiple = nnrlliple + I
iilil = moluipte ec{ N eE-:999*eg muJ-Lip1e > N.

-5-

Sirtce J does not ap1rear elssd'rere jn the program, arry asserLion

not involving J vJfridt is prwable frcrn ttre e>panded prcgram can be proved

frcrn tle origiral. With J so defiled we can pro\re

(1) multiple = IxJ.

The prof uses the basic Lucid induction rule:

(RI) €if:l P, P + lS* P l- P

I'itrere for arry assertion A and set f of asserbions, I l:a neans tlnt t]le

truth of A is inplied bV the truth of every assertion irr f.
If v,e let P be 'hLtltip1e = Ix.J'r then

gi€g P = !!IF! (multiple = IxJ)
= ([ilg! nn:ltip1e = €in! r x €ifE! J)
= (IxI = IxI)

$Jhidl is true (rrc r.r.sed ttre fact that f!g! I = I jnside the inner locp) .

Ncnr we assurp t|rat P is true at scne stage, i.e. we a.ssure

rultiple = IxJ. Thren,

lg5! (t*ltiple = I'J) = (!gX! nmltiple = lgx! I x ngxg J)
= (nnrlliple + I = Ix (J+l))

= (nu.iltip1e + I = IxJ + I)

hrhich is true because of the induction assunption. t^]e can dischrarge thre

assunpLion P, giving P * !CI! P, and so \,re have prorrcd mrltiple - fxJ bV

indrction.

We also r:setl an axicrn vitricir says that IiI:: and l:5! rcqnrmter with

conrrcntiornl operaticns fike ttltt: for any e><pression A not cmtaining any

spcial Lucid functions and ha'rjlg free variables Xf ,XZ,... r& rte have

-6-

(a1) l* gIgI e = A(xrl€i{:,! xr,...,V€ir9g t)
(A2) l: !g5! e = A(xtlng* X1,...,\./!CX! \) ,

wtrere a(vo denotes term A wittr free variable x replaed by term Q.

ttaving prcxred nultiple = IxJ we can replace any occulTencre of

multiple jn or:r program by IxJ. Thre program can then be sinplified, to gi're

program Prinet:

n = €kF! irpur
tirsg r = 2

begin
G,sJ= r

nexb. J = Jtl
iarT;N = rxJ eq N gE-pgpn^€g rxxaN

end
ffir=I*t
oiiiput = - Idivl'l es-€gpg,eg ldivii v IxI>N

and if A is arry assertion without free occun:ences of J then Prine l: a iff

Prfure. l: a.
I'

To fjnish t5e proof of correctness of tfre ilner locp we must

deternrine tlre value of Idivttl.

To do ttr-is we fjrst introduce the functiot bS5[9, defined by

(A3) l: rireg bilherle P = r

^ lcx! hilbeslg P = P n bilhsrlg P'

Using this r,rre can estabti-sh bY indLlction that

(21 bigl}e-€lg (rxJ<N) * (VK r<n<J + IxK4{).

If we define firsLinE P to nean i'] n hitherto -?, we can Orveniently

state an axicm for tle fr-lrcbion ag-g-optl. gl, ard a ILle for €ilst'irre:

(A4) l: Sirs-gc P + x e€^€gg^.e€ P = X

(R2) fi{slirc p * €rI€! e, *nHslfy e l: €irel 0.

The first states tlrat the value of X 3g,g9g3^,€g P is ttre value of X r,vhen P

is true for ttre first Lirre. The second states that if sorre propertff O

holds when P is true for the first tine, and Q is quiescent and P does even-

tr:ally beccne true, tLen properQ' Q itolds.

Using (2) lve can establish

(3) €iSEgiIE (IxJ>N) -* IxJ e{ N = (lX r<rol n IxK = N) .

(A proof of this step can be found i-rr [2].)

Sjnce (a+1 gives us

€i[Egilg (IxJ>}{) + Idivtl = IxJ eq N

vve carl onclude

Lifgli{g (IxJ>N) + Idivl{ = (fK I<<4{ ^ IxK = N) .

Since thre term on the right-hand si-de is guiescent, to apply mle f€ ta€

srnply need to prove gyglggglly (rx;>N) . Fbr tJ.is we u.se the follouing:

Iternrinationr rule for iltegers:

(R3) jnteser L, L > le5! L f
: egglgef* (L < 0) .

To apply R3 we first prove that integer (N-I>O) and N-IxJ > lg5! (N-rxl) .

This is straightfomard (but note that I > 0 nust be established by inducLi-or

in the outer loop, arul ther-r brougtrt into the j-nncr loop) .

-7a-

No*, applying the g€^"999S^EF, nrle R2, r€ get

(4) Idivl{ = 3K I<K<N n IxK4{ -

essertior (4) ccntaix-s no Lucid funcb,ions ant all its free variables are

globals, dld so it nay b taken outside the inner locp. l{e nclt d:iscard the

jruner logr yielding tprognamr Prirrer:

n = €i*:! input
first I = 2

Idivr\ = 3K I<K{.I n IxK = N
nect, I = I*1
5ffi"t = - Idivl{ R5-s^89[-iE Idi\Ai v IxI>II

and as before prine, l:e inpUes Prine l:a tor any assertion A. Actually

prine, is no longer a progiram but ratlrer a hybrid object halfway beLween a

program and statenent of oorrestness.

Note tJrat l4ivll is always eittrer tnre or false (it ould be

r-rrdefined if N were trrdefined, but we]<ncw N > 0) .

Nqv to fjnish the Proof tiat

orq)ut. =' J[lK 2sK<N A [xl(= \f

we must first shcr^r that

(5) Ji:g$tlg (Idivl{ v IxI>N)+ Idivt'l = 3IiK 2<<<N n I;<I(= N'

The proof of this is si:nilar to the pnoof of (3) , p:ovided we

first pr"ove that

(6) bitlg*g - Id.ivl'l * (Vr, L<r + (- 3K 2d(<II n LxK = N)).

-8-

ftris reqrires a straightforrnrard jlduction proof , nnkilg extensive

u.se of pnoperbies of integers, and the properby N > 0.

Since ldivt$ is always either trr:e or false, to establislr the seond

pr.ernise for ttre g:,Fggg-.Cg ru1e, nanely, gE$g*AlY (IAi\n{ v IxJ>t{) , it is

srrfficient to shor,s tlnt eVe!-qrel]y (fxf>W) . This follows frcrn the termiratj-or

nrle R3.

So finally, we can eUminate all the variables except ou@ut

leaving rprogramr Priner:

ouS>ut = - 3L3K 2<i.€i#! ilput ^ LxK = €S! i-nput. !

Note thrat - fLSK 2sl(.fi{s-I input n KxL = €tIE! irrput is eittrer

tnre or false, when jltegier fi{S! i-nput. Ttrus output is not undefined, and

so program Prjrne terminates wittr tlx: corresb result.

Ttr-is sanple proof shcrcs that it is Snssible to reason about prograns

}noring riery 1itt1e of the fornal senrantics, h partic-ular kno,ving very little

ab6rlt, the senranLie of nested 1ops. But we must gir,e a senwttics for nested

locps to jr.r.stify ttre nested proof sQrle of reascning.

In the program Prjrre, the history of I can be thought of as

<2,3r4r...>, but the kr-istoti/ of nn:ltiple nnrst be ((4n6,8r...), <9,L2r15r...),

<16,20 ,24, .. .), . . .), i..e. a two dj:n:lsicnal infinite sequence. A one

dinensiqral infilite sequcn@ can bc cansidered as a frnctior frcrn the natural

nunbers N (including zero) to data clenerts, and, similarly, a two dinensional

sequence is a functics-r frcm f/xN to ciata elsrents';. If r.e write Ir", instead of

I (n) , we see that I^ = n*2. Fbr tl.rr cil:rensions, we ac]ctpt the on :ntion

-9 -

that ttre first subscript is the nore rapidly varf ilg tirre paraneter, the

nr.urber of ite.raticr-rs of the jnner loop. fnus nrultiPler* = (n*2) (rrrn+2) .

Tlre lpcid firncLions (exoept]glff$ act on the*q+Si& ti:re paraneter' e'g'

(g*,t nnrltiPle)*, = nmltiPle*.

To nrake this work we need to do tr,vo tiri-trgs. Firstly, we get rid

of t].e begin ... end notation as jldicated previou-sly, bY introducjrg t.}le

furcLion IRf:* $,tLich incr^eases the nr-urlcer of ti:ne dirrensions, €-9.

(lglg:l I)Ixn = I*. (iqote that Jg€ggt I is Eliescent.) Secondly, we rn-ify

tj.e treatnent of variables at different lc.vels of locp nesting by considering

all iulstories as depend:ing on an jnfinite nunlcer of Lirre paraneters (only a

finite nunl:er of wfrich will usuafly be nec€ssarT for eacfi variable) '

Tlru.s, in the rest of uris paper we @nsider Lucid prograrm that

use lglggt jxstea.c of begjn ,.. end., and t]1e senunulcs of Lucld is given

in terrns of fi:ncticns of infjlLite sequencs of tjne paraneter:s '

As a for:na] qgston Lucid is similar, jlt sone respects, to first

order logic. On the otlrer hand, Lucid can be viewed as a tense Iogic, a

branch of rpdal logic hitrich formalises certai.:r kjnds of reasoning akrout tjne.

(The suitability of nodal logic for proofs about prograrc has already been

recognised by Burstall [3].) In Lucid a term, such as X > Y, need not be

sirrply tn:e or false. It can be true at sone 'tines' and false at others (and

evren undefined at others) . As we irave seen, senraltically, the value of X > Y

depends on variow tirre paraneters because the vah:es of the variables X ard

Y ttpnselves depend on tine paraneter.s. ,\s- a rcsult of t}.is,

-10-

gerbaill prq)e*ies of first order logic, such as tl:e neducbion Theoren,

fail to hotd for lucid, exept in special cjrcunstances.

Lucid also differs frcrn first-order logic irr that r.e wj-sh to allcrvr

prograns to ccnpute tnrth values, and tJ:erefore we have to allcw an

"urdefined" tl:LltLr value, for sub-programs v{hich do not terrninate. (Since

we have thj-s undefined truth value, we can abolish tJ:e distinstion between

terns ald fornulas, logical onnecLives ap,plied to non-truth-values acting

as tlrey would for the undefj-ned value. This wriform treatrent is not essen-

tial hcrnever - it nerely sinpllfies the fornral t::eatnent.) The formal qlstem

rust be able to deal wittr "undefined" withj-n the logic. This ITEans, for

oranple, that the la'ar of the o<cluded nriddle does not hold.

Nevert|el-ess, the rules of inference for Lucid are alnpst identical

to tlpse for first-order logic.

SecLions I to 3 of tlre paper are devoted to setting up the jlter-

pretaticns on wtridr the senanLlcs is based. Thsr il SesEion 4 we define tte

class of sets of terrns tlnt are Lucid programs. We shsrs tltat eveq/ progran

has a rnigue rninirnal solution, or 'treaniltg". In the rest of the paper we

disc1rss a fornral systen for provllg propertles of progirans, justifying the

sort of ::easoning used jn tJre proofs given irr [I]. In parLicular, i-n Section 7

we justify thre Inested proof I technig:e for prcnring tnhgs about progrralns

with nested locps.

-11 -

1. F\rrnalism

Itre realjngs of prcgrams will be based on "ccn5>utation structures",

whictr jl.I turn are defined ix terrLs of sirple structures. we first defjne

a general rrotion of strtrctr:re, dnd build on this in later sections'

L.1. S\mtir<

A Ipcicl alphabet I ls a set ontaining tlre slmbols "u", "E' ard,

for each naturaL nr:rn$ nr ily nrmber of n-ar1 operatj.on s1'mbols, including, for n=0

the nulla-qr oPeratlon s1mboL T.

We also have at our disposal a set of variables' e'9' x,yrz'

Tlre set of X-terms is defined as follcnvs:

(a) every variable is a l-term;

(b) if G is an n-artrt o5:eration symbol in X anit Alr... ,An are X-terms

ttren G(At,... rAr) is a x-term;

(c) if V is a variable and A is a l-term then gVA is a X-term'

L.2 Sqnantics

If I is an alphabet then a f,-stmeture S is a fi:nction $ftich assigrns

to eacfr s1'rnbol o il I a "reaning" o, h such a way that U, is a set, Eg is a

fi.grction fncrn subsets of US b elsrents of U, and, if G is an n-arat operation

syrnbolr G, is an n-arlt operation on U,

An S-jnterpretation I exterds S to assign to each variable V an

elgrent V, of Ur.

If I is an S-interpretalion, V is a rrariable ard cl is an elenent

of ur, tJren l(v/o,l denotes the S-jnterpretalion differing frpm 1 only in

tlnt it. assigrs e to V.

-12-

If A is a f,-term, S a l-stnrctr:re ard I an S-interpretation then rnle

define an elsient lel, of U, (ttre "nean5ng" of A) as follcrrns:

(a) for variable V, lvlt is vt

(b) for X-terms A1'A2r...rAn ard n-ar1 operation symbol G of I'

lctar,. ..,An) | 1 i" cr(larl r,lorl1,..., larrl t)

(c) for l-term A ard variable V

l: v al I = 3s t{ lel , (v/s) :0 e ur})

We say, l:l A (/ satisfies A or A is valid i-:r /) iff lel, = tr;
if f is a set of tenns th* l:Jf iff l:ia for eachr B in f ; f l? iff l:If
inplie.s l:1a for all S-interpret^ati-ons 1.

2. Basic results

E\rcn in general stnrctures l^le can establish several useful properrJes.

2.L Substitutlon

An occr:rrence of a variable V i:r a X-term A is l^ound if ard cnly if

ttre occurrence is in a sub-term of A of the form S V B, ottrerwise thre occurrence

is free. If A ard Q are l-terms ard V is a variable then A(V/Q) is the term

formed by replacjng all free ocsurrences of V in e bV 0. In th-is situation

V is said to be free for Q in A iff th-is substitution does not result in a

free variable in 0 bec.'oruiry bourd in A(V/Q) , i.e. iff V does not occur

free i5r A in a subterm of the form A W B for scrne variable W occurring free

ln Q'

L€nrna I For X-strusbure S, S-ilterpretation 1, X-terms A ard Q ard variable

Vr if V is free for Q i,n A thert

le(v/o) l, = loll rullolrl

-13-

proof The proof of the analogor:s resu.l-t for first-order logic carries

cnrer direcbly. 0

2.2 Pcrrer str:uctures

One wqr of building structures or:t of sirpler stnrstures is by a

generalised Cartesian product.

2.2.L rbr any l-stnrctrrre S and any set X, SX is tJ:e r:nique X-stnrcture

C suctr ttrat

(a) U, is the setof alL functions frcrnXbUS. Ifx e Xardo e Ua

we will write a* i-nstead of o (x) .

(b) If G is an operation slmbof in I ard 4,9r"' t UC ard x e X

tlren (Gr(o,8,...))* = Gr(a*rB*r...) .

(c) If Kisastr]csetof Urardxe Xthen (gC(K))*=gs({a*:c e K}).

ttrr-r.s SX carries over tJle operations arrl 4rantifiers of S by nraking ttrern work

'pointw"ise' on the elenents of Ua. Ttrus aI1 nuI1ar1 cperation slmbols are

assigrred constant firncbions. In particular, T, is ttre constant funcLion on

X with value T^.
D

2.2.2 rur sX-interpretation I and x e X, 1* denotes the trrigue S-interpreta-

tion wtrich assigns eachr variable V tlre vah:e (VI)x.

Ttre follonring lenrna establishes ttrat e\Ery l-term acts "po5-ntwise"

jn SX, erren tiose t€rns containing guantifiers.

Ienrna 2 ltrr any l-strucbure S, Sx-interpretation 1, I-term A and elenent

xeX,

(lalr)* = lell
x

*14-

Pr@f r€t c be tl.e stn:sture sX' The pnof pnoceeds $r stnrctrrral

irduction on A.

(a) If A is a variable the result is inmediate.

(b) If A is c(A'r...ron) for n-ar1, operation synbol G ix [, ard l-terms

AIr...rArrr thert

(lal,)* = t lco\r,. . . rerr) l1)*

= Gs((lArlt)x,..., tlnrl r)*)
= rcs (lArlr* ..,lArrl1*)

= lc{er,...en)lr*.

(c)IfAisgVBforscmevariableValdl-termBthen
(ls v BII)* = (ur({lulltu/ol :c e ur}))*

= ur({tlell N/il)*:o e ur})

= ss({

'ullx
N/a):o e ur})

(since if 1' = |(Y/a) tnen 1] = I*(V/o*))

= u, ({

'"1
lx(v/a) :a e ur})

(since as o ranges over UC, o* ranges cnrer Ur)

= ltru ullx 0

-15-

It follcx*s tlnt' S ard Sx have the sare theory:

&roIla::r 2.1 F\rr arry f,-structr:re S, arry set Xrany l-term A ard set I of

f,-terms, if C = sX tfren

l FsAiff t Fco

proof SuSpose fi-rst tl't f F, O. I'.t J be a C-jrrteryretation such that

F_,f. TtrenforanyB jnf andarryxinX,T,= (TC)*= (lelr)*= lrly*tV

tsnna 2. flrus Fr* ard so Fr* hence

'ol-lx

= TS' Ttrerefore

tfaf ,)* = lel: = Ts = (TC)x. since x was arbitrary, lel J = aC ard so l--l o'
J^'x

Now supgnse f FC O. L€t 1 be an S-ilterpretation such that Fl f '

Define the C-irrterpretalion J by settilg MJ) * = V, for eech x in X ard

eaclr variable v, i'e' J* = I for eactr x' Tt€n' for any B i.:r f '

tlel:)* =
'"1-7x

= lBlI = Ts = (tC)* for arry x in X ard so F-l l' Therefone'

F-l o ard, choo;ing any x i-:r xr T, = tlelrl* = lel;x = lAlI *d so pt e' 0

-16-

3. lg]gll of 6lre9!atl9q

we ncrr build up the strusturq necessarlz to give neaning to progrars'

These will be pj^rer structures, based or certain elenrenLarlz stnrch:res called

standard stJuctures.

We defire Spec to b'e thc set of special Lucid function slmbols

tfirsl, ter!, e€.-sg^es, btflgrlp']e!s:!' €e]lgge*-ry]'

3.1 Standard strusbures

An alphabet I is ltgl"Iqg{ if in addition to T and f it contairrs the

nu}lar1, operation syrfi:ols r and F, ttle unary operation syrbol -, the binary

cperation sl,rrbols v ard : and the ternary operation synbol if then else,

hrt rpne of the special Lucid syrbols in Spec. (I may contain nturerals 0'1

etc. as nuIlar1' operation qmbols')

A stander4 j;q-r{gtur:e is a stnsbure S vtrose alphabet is st:ndard

ard suctr that

(a)Ts,Fsarrdr,aretrue,false,arrdurdefjned,respectively.

(b) -5 lie1ds trr-re if its ;rrgunent is false, false if its argunent

is true, undefined othr-r:wise.

(c) v, yields trqg if at lc.ist onc argunent is tnre, false if both

are fa1se, undefined otherwj-se'

(d) =, yields tn{: if its argr:nents are identical, false otherr'^dse'

(e) if tleen el-sen yields its secon,l argr:nent if its first is true,

its thit{i if it-s first is faL;g, g$efined- ottrerwise.

(f) for any subset K of us, 3s(K) is tnre if tn:e e K, false if

K = {fake}, g4.f,rgg ot}rerwjse.

(g) all other cperations of S are nenotonic, for the ordering on

U,defincclllyx=yiffx=yorx=undefined.(Notethenthat

the only non-ncnotonic operat-ron iu =r.)

-17 -

standard structures are our basic dornails of data objecEs and corres-

trnnd nost closely to orrcinaqr first-order structures. Note ttrat if we restrict

-S and uS b tnte, false and undefined, tttey agree with the corresponding

c6:erators in tfre three-valued logic of Lukasisnricz'

a ', nnmrrfa.|-inn str.ltctllf€S

p]3ogtrarc will use tlre special l,ucid ftrnctions spec, and these

functions are interpreted over certain Qrpes of poler strucbures'

3.2.L Ccnp(S)

If s is a stardad x-structure, then ccnp(s) is the unique (r u spec)-
.,N

stmct're C utr-ich ertends sN * to th. larger alphabet' as follcn'rs:

For cl,B e UC ard € = t'tttr'" t NN

i) (tif,Elc (o))€ = oorrrr...

ii) (le5EC (a)) - = oro+I rrtz. . .

iii) (a 3S^gegc0) = c! . if there is a unique s such
€ sclt2...

tlat B^. . is tme ard B'.+ +-- -Stlt2... ILIL2" '

is false for all r < s, urdefined if

rP such s otists'

= true if cr-* * i" tnre for all s ' tO'
e Dure2' "

false if a^* * i= false for scrne s < tO'
Dulu2' ' '

r,udefiled otherwise.

iv) Qi$erle, (o))

v) (Iatest^ (c))-#L
E

= otrt2"
"

vi) (a lgJI9nel^"UC B) otrt, = oorrtr...

(a tgllgd^E, B).o*r rlr2... = u.o.rtz...

T-d G-En sct of natrrral ntrnd:crs ;utf d i: Urc scl- of functions frorn N to lJ

i.e. tJre set of infinite scqlence:i of natural nur*>ers.

-lB-

Note ttrat all other otrnrations are pointwise extensions of the

orrespord-ilg operations in S.

3.2.2 The function leleg! is rrsed to forrnalise nested loops. If r,,re have

rp nested loops, a sinpler stnrcture suffices.

r.op(S)

If t ard S are as above and I' is the alphabet of Conp(S), cn[tting

JBt€g!, then Ioop(S) is the un:ique I'-structure C'wtrich extends SV to ['

jn suctr a way tLrat €*IS!g, , !€I!C, etc. are defined as for Ccnp(S) ' but

with t1t2... onitted. For exarple

(€i5glg, (a)) ao = ao ard (rcXlC
'
(c)) ro = oLo+I.

Ttre usefulness of locp(S) lies in the fact, that Lop(S) is easier

to pnderstand and f,oop(S) and Ccrrp(S) have the sare theory for terrns not

involving lgleglt

Ttreorem I For any standard structtue S ard any term A and set of tenrs f

all in the langn:age of r.ooP(S) ,

r l:ccnp(s;A irr r l:r.-p(s)o

proof let C' be tJre restriction of Conp(S) to ttre language of Ioop(S).

It is easily verified that C' is isormrphic to Loop(S)d

and so tJle result folIcr'vs frcrn Oorollary 2.I. 0

3.2.3 Note t].at if S is a standard strudure arid C is an extension of SX

for sone set X, S* =C is not the idenLiQr relaLion on C. Nevertheless

l-^ e = B iff lel^ and lnl^ ar.e identical.I U -- ' 'u 'L

-19-

3.2.4 Oriescence and onstanqf

Ietc=Ccrrp(S)andcl.Uc.llrenaisafunctionfrcnrillfjnite

sequences tot1"2. . . of n,atrrral numbers b Us. If a is ttre rralue of a variable V,

ttren, intlitively, the value of V deperds on the tine parareters tottL2"''

vfiere tO is the nurber of iterations of the loop defining V' tl is the nunber

of iterations of ttre next outer loop, and so on. rf o- is i-rdeperdent of the
t

fixst elenent of € (i.e. o+ + + = o^+ + for all t'O) then we say o' t0"1.2... vule2" '
is quiesent. A term A is quiescent (in C) if l:C 6 = fi!p! A' Note that

for ternr-s A and e, €iIE! A, lglggg A and A 3:^€993^gg B are all quiescent'

If a- is irdependent of E, then q, is said to be constant' Note

t
that G^ is constant for any nul1ar1r cperation synbol G'

L

In Ioop(s) we can use the sane definitions, but then tJrere is nc

d.ifference between quiescene and constanqg'

-20 -

. tl. Prcqrars

We irqnse nilirnal sl.ntactic restrictions on progrralns, to sirq>Lify the

format treatrrent, rn pracLice, other restricLiors would prcbably be re+dred'

4.I Synta><

A l-programP is a set of (x u spec) -terms suctt that

(a) eactr elgrent of P is an equation of t}re form 0 = r1r, whene 0 is a

Erarrtifier-free term havjlg no ocsulTences of =, ard 0 is of the

form X, €i5* X, gg* X or !g!gg[X for scnre variable X'

(b) The rrariable inp,rt, may rot oclalr on the left hard side of any

equation in P.

(c) Every orEhen variable X occurring ix P, wtren appearing on ttre left hard

side of an equation, nEly only do so as part of a definition of X'

xrnrst be defined e><actly oncer in one of ttre follcmring ways:

dtrectly i.e,X=tft
irdirectlv i.e. lgle5g * = {2

iteatively i.e. €i5g! * - Ue

next X = 0,,.'{

In ttre abcve, tlre terms V, ana V, nust be qmtacEicallv quiescent

in P, a propertlt wtrich is defined as follot'vs:

(i) tlggl 0, lgseg! 0 ard 0 eS*eBgB-*€ 0 are slmtactically quiescent in P.

(1i) if 0tr02r...,0r. are slmtaci-icaIly quiescent in P and G is an n-arff

operation symbol irr I, ttre,r G(01,02r... r0rr) is slzntacticalfy Eriescent

i:r P.

(iil) if y = 0 ts jn P ard g is srTntacticalty gtriescent in P, ttren Y is

syntactically quiescent in P.

-2L-

q.2 Sgnantics

fhe nean.jrqs of pnograns are specified by Ccnp(S)-interpretations'

r*rere s is ttre stardarrcl stnrcbure conespordi-ng to the dcmain of data.

,1.2.I Sofutions

For arry l-pnogram P ald stardard l-stnrcture S, if C = Ccnp(S)

ard a is an elsnent of u, then a (s,o) -solution of p is a c-intelanetation 1

such that rrput, = cr ard, Fl n.

4,2.2 thcorsn 2

F\rr any l-lrrOgram P ald stanclard I'-structure s, if c = ccr'p(s) ard

a e U, t]-en tlrere is a (Srcl)-solution 1 of P that is nuinimal, i'e' for arry

(Sro)-solution Irof p, for aII E u d uta all variables V in I, ffI)- c (Vr,)-'
't 't

Proof (sketdr)

Tfre fjrst step is to transfonn P into a set of sinple equations.

Thl-s J.s <1one by replacing eacLr pair of eg:ations of the form €irg! x = 0,

g! X = 0' bY the single sinple equation X = O fgUgg|*ry 0' ' ard

replacing eachr eguation of tlre form ligggl x = O b'y the sinple eqration

-r -1 -1
X = Jg!gg!-tO. rhe operation l3!99!l't" defined b'v (leEeSlC*to".otr...= o'totr...

fhis transforms the program P into a tprogiramt Pt of ttre form

I = t (l) , where I is t.l-e vector of all tlre variables il P otlrer than input.

We now ncte ttrat the rpnogramsr P ard Pr have tlre sane solutions.

That weryr solution of the origirnl Program P is a solution of the

transforned ProgEaln Pt is clear' ard the cornrerse follor"rs frcnr the griescence

restricEions on P, as follo'vs.

-22-

Suppose *ta Ft x = Q fQIlS$.H 0' ' then [l ttre definition of

€BIfed^H, tst €irEg x = Iir€! o ard Ft l* x = 0" Brt if
x = 0 €gUg@^U O' jrr P' care fron [!5g! X = 0 ard ng$ x = 0' in P' then

ttre slmtactic quiescence of Q errsures that Ff O = g!58! 0, so FI EiIEg X = S'

-'lsirnirarly, ts1x = lg!€E!-t q ittpilo Ft lgl€* * = gjIS 0' ard so bY

slmtacEic quiescencu Fl tglgg! X = 0'

Ncmr r,''e rpte that the ordering on u, given in tlre statsrent of the

theorsn makes UC into a cpo (ccnplete partiat orden), ald it is easily

verified that aII the operations jn C tlat are used in the rterm' r are ontjnuou^s'

l,lcreover, although =C i" not eqr:ality dI UC, bV 3'2'3 ttre solutions of Pr are

fbpoixts of t.

Therefore, ttr€ transforrned program Pr has a r:nique minjrnal (S'a)-

solution 1, arxl hence so does P. (In facE O, =
,i'ltitrl

lr; see, e'9',[S]') [

4.3 Srrntacfic Srrictrren't

To facilltate the vritj:rg of pr^ograns we introduce rnestillgr in

prograns,asaslmtacbicabbreviation.Wesaythattheocpression

beg:rt

QI

Q2

:
+n

erd

is sfPrthard for the set of terrns

oi
qi

i;,

-23,

r*rere 0i is obtained frcrn 0, b&' repl "rcing eadr rglobalr variable V by lelg5g V.

A g1oba1 variable is one wtlich occurs witJrirr ttre rest of the program enclosing

the oriEinal begin ... end *pression. Thre syrnbols begin and end are r:sed

to deUmit inner locps, and the fornulation rrsjng lg!ff! shqps that within

inner Jocps global variables becone guiesc-ent. loops can be nested to any

depth. Note tJ.at for a prnograrn using beqin ... end to be legal, t}re result of

rsrn^rjng the begin ... end's nmst be a legal program aconding to 4.1.

5. A:cicltts

We ncnr descibe tkre formal systern of axicnrs ard nrles of j-nference

r.rsed for proving properties of Lucid pro€frars.

5.1 1he follor,rring abbnerriations will be used in tlre rest of tlte paper:

AAB neans -(-Av-B)

A+B IIEans-(A=T) vB

VVA IIEans 'gV-A

l.lote that, jn stardand stmctures, A ag:rees with tlre three-valued logic of

Irrkasier,sicz, but + does not. In parLicular, we frave l: r + Fr brt in standard

ttrree-valued logic 1 + I' r^pu1d be r. This difference is crucia1, ard allows,

for exanple, ttre use of the deduction theorsn in stardard stmctures. (Hcr,sever,

+ is def ined in terms of = t ard tierefore it nay not be used in prograrns.)

5.2 Parenttreses will be (ard have been) drcpped frcnr terrns by using the

follcr,ring rankjng of priorities for operators (frcm highest to lcxrcst):

€iIE!, !9S, l3I€5!, hilbgllg, -, A, v' if then else' 3€^899F^ES'

fqUqd^ry t =t *.
I -...#

N,ote ttre lovr priority of 35^-€p9!.-gg, ard t}re sren lor'ver priorities of = ard -+'

Tl-rus A + B = c gg^Fpgl^Eg D ^ E means A -' (B = (C eE^.ggJn^gg 1gt ',t E)))'

-24 -

5,3 Theorsn 3 The folloaring are valid in Ccnp(S) for any standard I-
stnrcture S, ard (E u Spec)-terms X' Y and P

(a) (X = y) y -1(X = Y)

(b) ((A=T) = (--A=T)) n ((n =rn) = (:A=T))

(c) (g{5gg €iIEl x = first X) I (neX! €iEgg x = €isgg X)

(d) (€15€g (x €ellg{cg^.U v1 = €i€sE x) ^ (!g[(x €ellsggl^H Y) = Y)

(e) (gi€Egstfle[lgP=r) ^ (ng*lglbcrleP=P ^ hilEIISP)
(f) x e€^€gggeg P = 1g g![Eg P then €i€Sg x else (pg5! x gE-SPgg-3g !g! P)

(g) X 3S^€€BLFS P = x eE^€gBn^eS P ^ hithqrts -tr

(h) €i5gg(x eg^Sggg-eg P) = X gE^€999^F€ P

(i) P ^ hllbgllg -rP -r (x eS.-:ggn^eg P) = X

(j) r egigg?E^Es P * git* x eg-sgggs€ P = g+f,gt x

(k) (if f thenXelseY=X) ^
(r:tFthenXelseY=Y)

proof These results (fon variables X, Y and P) are easily verified jn

Ioop(S) ard carry over to Ccrry(S) by Ttreoran 1. The variables can then be

replaced by (I u Spec)-terms. 0

If rrye defjne gsg€uy P to be T eg.€pPn^gs P (with the sane prioritlz

as gg,ffi-gg), @ hane ttre folloring corollary'

Corollartr 3.1 With S, X and P as above, the follcnving are valid in Ccr.g(S) :

(a) gs$gellv P * fl€€l x e€",gss[-es P = €irs! X

(b) pgC$gefu P = gaglgE3llY P n hitherto r P

(c) geggI p = 1! €:fgg P then r else WCglg3ffy !g* P'

proof These follcr.l frcrn tj.e a>dcns of ttreorsn 3. 0

5.4 Tkre nexb theorsn justifies rptrshingt €i=Ul and !S$ past quantifiers

ard rpn-Iucid oPerations.

-25 -

Ttreorem 4 F.or any standarrt l-stnrcture S and any l-term A in $fiiclr X1rX2'...rL

are ttre variables occuncing freely:

(a) €if:g A = A(x/glIEg x'x2l€ilpg x2, " ') is varid i-t: @ry(s) '

along with orrespoding equat'icrrs for !€I3 and]g!ff!'
(b) ggIg3UI P -) A eE^.€gg!-e5

p = A(xtAr e€^EeLFg P, xZB2 e€^.€P9!-3€ P " '

is valid jn conp(S).

proof We will consider only Lmp(S) . The results canar over to Conp(S) bY

Ttreorem l-. rl!1. I be a r-oop(s)-interpretaLion and let t be any natural nr-:nlcer.

Then, if I denotes Xrrlr...r\,

(lgi1gg el r)r = (lAl r) o

= lal, (b1r r.enrna 2l = t"l-O \try r'r=rtrtra zt - l-l10(X/(xI)O)

=
'ollo(V(

lrirsr ll l) t)
= lel rL(i/(l€:rsl xlr) t)
(since A has no other free variables)

= (lel r1lltj=Eg *lr))r (bv r.€nrna 2) = tletl/€ir:g n Itl.
(by Lsnna 1).

Similar reasoning verifies the othrer results' I

6. Rrles of Inference

Lucid cannot be a conplete forral systern because the Lucid fi:nctions

are poberful enough to characterise r:nsolvable pr&lens that are not even

parLially decicable. A11 we can do is add to Lucid vfiaterrer arions ard mles

of inference seem natrrral and useful. rn this secti-on r."e give ntles of

inference for the logical onnectj-ves, and useful mles for the special Lucid

functions. The ,logical' mles of inferenc-e are those of a sinple natural

deducbion systcrn (see, for ecanple [4]) '

-26 -

6.1 Natural Deducbion Rules

6.1.1 Theorsn 5 The follovring rules are valid for stardand l-stn:cttrre S,

I-terms A,BrCrDrPrQ, fjnite sets f ard A of X-terms and variable V' prcvided V does

rot oceur freely il f or D' ard is free for P ard I in A:

1u) e,BFsA^B (^D) A^B[=ro
A^B l=ro

(vr) nFsAvB (vn) A+crB'rc,AvBFra
sFsAvB

(Fr) A1 '-r n F, "
(rB) u [:, t

(*r) if A,A F, t then A F, n * n Gnn) A -| B,A l=s B

(vr) irr Frntienr FuVve ({B) vva FraF/ol

f,F) A(v/O) Fr U v a OB) if r F,A * D then r' 8\IA l=r o

(=r) F, v.= v (=E) A(v/P) ,P T Q l=, n N/Ql .

(Tr) oFsA=r (rE) A=TFso

pnoof Ttre rral-idity of the nrLes can bc established bY straightfon"ard

calculation frcrn the definitions. I

Ttrere are nc rrles for --r because we do not have the law of the

e<cludedrniddle:Av-rAisnotvalidingeneral,becauseArnayrrotbetruth-

valued. T5-is neans that scnre of the tautologies ard derived rules of first-

order loglc are not valid in standarrcl structrrres. For o<anple (A * B) + -rA v B

is rpt valid, and if \lve were to defjne A<-+B to nean (A * B) rr (B + A)r

ther'r we r,rould rrot trave substitr-rLivitlr of +-r (ncte, for ocanple, that r *+ F) '

-27 -

6.L.2 t"bst of the nrles of Theorsn 5 hold also for ccnp(S):

Ttrcorsn 6 A1.1 tlre nrLes of Theorsn 5, e:<cept (-|I),are valid for C

ln place of S (wtrere C is Ccrrp(S)), ard I u Slnc in place of X.

proo{ Apart frcrn ttre quantifier nrles, ard (*I), all nties are of the form

+ l= ,p ard carry cnrer directly because of the poixt wise definition of ttre

onnecbives. We illustrate this for ttre (vE) nrle. Consider any C-interpretation

I forwh.ich F1 A*C, Fl"+Carxl F1 euA. fhen, forallE.Nil,(le*Cll)g,
(Je * CII)t ard (la v glt)t are all tnre. By definition of C, we titen have

tfalrlg *s(lcl lE ,(lelr)6 *, tlclrlE ard tlalt). v, (lell)€ ure all trr,re.

W t}re (!E) nrre for s (Ttreorqn 1) we then have (lclt)F = tttr'' This holds

for al-l E . NN, so P, c.

We illustrate the proof for the qr:antifier mles $r considerj::g

(VE) ard (trE).

(\E) : Iret I be arry C-interpretation foratriclr lv V e1 I = TI.

Trren for att E e NN

true= (lvvelt)E

= vs{ tlelf g/s.))E t 0 e ua}.

Threrefore for all E e ttlN *n all o e u, we rrave(lel IN/ah = tnre. l,lovr

lr'l = la(v/q) 17, W L,snra 1, ard so, for a1l E. NN, (lA(v/O)ll)E = true,tntt(v/ lOlrl - t

tlnt is t=l o N/Q) .

-(m): Assure t F-C A + D ard onsider any C-interpretation 1

for wirich FI ",
for all B e f , ard F1 3 VA. Consider arry E .lfl. Ey thre

definition of f,r, there is scne c e Ug such tlnt (lAll N/ul)g = !sg. Nc'r't TN/a)

is a C-interpretation arxl f:t,/ol f , since V is rpt free in f . Thus l=IN/o)O'O,

ard so tlolf N/a)g = tn-re. Since V is rr:t free in D, we ttren have tloltl;'

We clpse f arbitrarily, so [.=l o. 0

-28-

6,2 l*rcld R.rles

6.2.I One of the rnst iJryortant rules is that a standard X-stncture S

ard Ccnp(S) have ttp sane th*tT, dien restricted to [-terms' so any

'relerentany'r properltrr can be used directly in any prof about a program.

Tteorsn 7 Ftor any stardand X-structure S, any X-term A ard any set f of l-terms ,

t Fs A iff t FC A, vfiere C = oarp(s).

Prof Since f ard A are in tJ:e language of S ard silce Ccnp (S) is an
.,N

erbension of dt the result follours jnnediately frcnr Corollaqr 2.1.

6.2.2 Other Lucid rules ixcludirrg induction ad termination are given b1,

the follorring theorgn.

Theorern 8 For any stardard f,-strr:cture S, if C = Ccrrp(S) ttren

(a) P Fc €ileg P ard P Fc nS5! P

(b) €iISl P, P + nSXg P FC P (lnduction)

(c) P n bi$€rls-'P * €iIFl Q, pycCIlg3lJy p l*c €ing o

(d) P -r - bilbg5lg (P = F) Fg x eE^€ gg€g P = r

(e)]$gggf Y, Y >^n9*" FCg43gSgIU Y < 0 (rermination)

(f) X = !CI! x l-C x = f-i5g! x

wtrere jn (e) we assunp S includes tire integrers.

Proof { calculation frcm t}re definitions. I

6.3 Reoverj-ng the Deduction Theorsn

I{e have seen ttrat the (*I) mle is not valicl in Ccrrp(S). I{ouqrer,

ws can r@ver ttris mle, at the e)<pense of weakening the (=E) nrle, by a

form of reasoning which intuitively corzespords to onfining oneself .to a

partiorlar rcnent during tlre execution of a program.

I

_29 _

6.3.1 Pgfjn"ition of l=
If S is a X-structure, C = Ocrrp(S) ald A is a term ard f a set of

tenrs on ttre alphabet of C , then we defjne f l=C A to nean tJ:at for arry

C-tnteryretation l, lf tlgll)g = trre for arery B irr f, then tlell)€ = tot".

Ttrus f l=C A rreErns that, at any tirre, if all ttre terms in f are

tnre, ttren a is tnre. It Ls jnrnediate that HA inpfies l*.e, ard that

f lo. A inplies t FCo tut rpt vice versa, e.9.
" FC !g! P tut rrot P l=C lg5[P.

6.3.2 Theorsn 9 For afllt stardard l-strucEure S, if C = Ocnp(S)

(a) e ierl' mle of Theorsn 5 er<cept the (=E) rule rsnains valid if

Fti" rePlaced rry l*C.

(b) for A,Pre ard V as jl Theorern 5, if A ontains rp Lucid fiinctions

then A(V/P), P = O l=C A(V/O) .

(c) Theorem 7 is valid for l=C h place oe l:C.

P:rcof L€t A,A,D ard V be as in theorem 5.

(a) We w"iIL illustrate the p:rcof [z consideri-ng the (tE) rule ard the (*I) mle
/ al

(i) Asstnef lscA-+Dardf l=aaVA. LetEe i{Y andletl bea

C-interpretation such ttrat (lBll)g for every B ix f . Ttren bV ttre

secord assunption (lg vell)t = true ard so tlell(v/o))g = tnre

for scnre c in U, by ttre definitjon of aa. Si-ne V does rrct occtrr

in any B jn f , (lBli(u/o))€ = (lBll)g = tnre for any suclr B, ard so

by the fjrst assurption tlDll); = true. Iherefore f l=C O.

(ii) I€t € . t/ *n suppose that wery C-ilterpretatj-on wtLicfr nnkes A

ard everldtring in f true at E also rnakes B tme at E. Suppcse

rrow that C-interpretation I nrakes weryutrirg in f tme at €.

If I nrake.s A tme at € tlren it nnrst nnke B tme at E ana so nakes

-30-

A + B tnre at €, On the otlrer hard, if I nrakes A other than tnre

at E then A -) B wIIl be tnre at E regardless of t]rc value I assigns

B at E. In eitlrer case A + B is t'.e at E ard so f ll, A'r B.

(b) $rFpose t]'at (|A(V/P) ll)E = tnre ard tlp+|I)E = true' Novr

latv/pl l1 = lal r(v/lnlr, * lgnna I ard tlell $/lplr))E =

lellr(v/(lplr);)"h.e A contains no Lucid fimctions' But tle=Ol1)E = true
-t"

inplies (lnlr)6= tloll)€. rttus

,ollE(v/(lplllgl = lel rEN/(loll) E)

= (lel \-trN/lolt)'t

= (lAN/a, lr)e .

llher:afora (la(v/Q) ll)E = tnre'

(c) Asswre f l:S A arrll let l be a C-jlterpretation- Ftrr any € . d, if

tlgll)E i= lge for all B jn r' then by Lenrna z lell, i" tnre for
't

all B in f ; i.e. l:r_ r. Henoe l:1= A, and so {lalr)a. conrrersely,
't 't

asstlle f l*, a. Therefore, f l:C o, and hence f l:s A' bY

Iheorem T. I

We caII the rule in rheorern 9(b) the (weak J) nrle' ro illustrate

ttrat (=E) does nct work for l=, note that lgI! P, P = O lt 3g* Q is rpt valid

(informally, if P equals Q at sone tjrre vfien P will be true at the ne>ct step'

it does not rrecessarily follcw that Q will be true at the nocL step) .

We use l* io the follcr'rjng way. Sq4nse we wish to proye f l:C A + B'

We assune f and A, and try to prol/e B rrsing orly acicns and Theorern 7 and the natwa

deduction nrles of Theorem 5, but with the (weak =E) nrle jnstead of the (=ll)

-31 -

nrle. ffe rnatr rpt use Iheorem B.) If rrc ITEnage to do ttr-is we have f ,A l:, B

and we can use (*I) to get f l=C A + B- Thus f l-g a * n' We see that to

r:se tlre deducbion tlreorenr rue nnrst not use arry of the Lucid mles in Theorem 8'

ard trse only ttre r,veak version of tlre (=E) nle'

6.3.3 There is another way il wtrich t,,e can regain ttre deicluction theorem.

If r^le are reasoning abcut a sirrple loop, and ue harre made an assrnq)tior that

is guiescent, tlen ttre assr:nptj-on can be cancelled:

Ttreorsn 10 Flor any l-stnrqEr:re S, if C = Corp(S) and A ard B are ter:ns and

I a set of terns on the alphabet of C omitting lg€ggg, tlten

I, €i5E! A l:c B irrPlies r l:C tisg A + B

proof Ttre t1-eorgn holds for r.oop(S) in place of ccrrp(S) , beczuse if €itg€ e

is ever true it is always t::rue. Ttre result carries over to Ccnp(S) by

TLreorern 1. 0

-32-

7, Proofs witt.tin Loops

Ttre stnrcturing of proqrams that is made lnssible fy the use of

beg+ ard erd also allor,Ys 'rstructured proofs". We will shcn'l tlnt

(i) Within a beqin ,. erd loop, aII ttre nrles of inferenc€ are valid

and so Ls ttre assr,nptlon that. X = €*gg X for ever]' global variable

x. Anything that follous hry introducjng l3!€:3 also follot"rs

wittrout Jg!gg!, irr this fashion'

(ii) Any assertion about the globals of a begin . .. end loop' that does

rrot use Ilcid functi-ons, can be nr:ved into or out of the loop.

Ttreorsn 11 For any stardard l-stnrcture S, if C = Ccnp(S), then for arry tsrn A

ard set of terrns f jn the alplrabet of C , ard arry finite set of variables X,

(a) I=€ipggI,rFco iff
r (I/letcsg i) F, a tVleec* xl .

(b) If A is a l-term ard X is the set of variablas occurri.:eg freely in

Ar then

t Fc o iff t F=c A(x/IegCs€ i).

Proof (a) assr.ure i = €jIE! l, I FC a, and that, for C-interpretation 1,

F" r(Vtegggl i). r.et A u. ltelspE lll ard 1' = I(I/;)' trren p'l = €iI* I,L

u* [*1, f , therefore F1 ,A, ard so Fl otVkgg"-t x) .

Conversely, assure that f tVlegggt x) FC o(V13E9:l X) and that

for C-interyretation I, F, I = $59! x am l:I t. Then lxlt is lelegg. A

for scne d in urf I€t, 1' be l(x/A). rnen p'r(VJggss! -x), um
"o

Ft, o(Vl3ls€l i)' Hence [:r o'

(b) Let I be a C-j'terpretation such that |':l f . Then since

(llegggg Alr)* ,.n tlell)*-*--.., (lleggpl elr)r = true for all E i-rr
. -0-IE2... 't "I"2..'

L L

-(lel,)r = true for all €. Then since p, latest A = A(X/lClggl D bV Theorsn 4(a),
"lrlw

the resr.rlt follcrars. I

* In fact d = ltggg:l-I Xl , (see the proof of Theorem 2, Sect'ion U.2.2).

/
I

'j
t

Prirre is asLua

-33-

The ttreorsn justifies (i) and (id above as foIlo,vs. Consider

tlre program Prirre again.

N = €if:! input

€irg! r = 2

!g$ I = ItI

ou$>ut = -tdivN €9,:9PP^€g ldivN v IxI>N

begi.:r

€i5g! nmltiPle = IxI

pg5! nurltiple = multiple + I

€i€!J=r
reXg J = J*l

rdivll = nnrltiple eq N gg,pg^is multiple > N

end

ILy eguivalerrt to Pri.ner :

rlcr program Pri:ner it is possiL'le to prove that

IdivAI = 3K 2<K<'l n IxK = N.

-34-

In ttre introducti-on, a Inestedtp:roof of this, rrsjxg Prine, pnoceeded by the

follov1ng steps. First we prorred, ilside the inner loop, that mulLiple = IxJ.

Then, still jnside ttre Iocp, we used this to prctve that ldivt'l = 3K 2sK<}{ n IxK = N-

For this lve needed that I>0. Tlris had to be proved in the outer locp, and

could tLlgn be brought inside the jrurer loop, for use jn the prof , because it

is a statsrent not inrrclving Lucid funcbicns. Finally, the statenent

Id.i\AI = 3K 2<K<N ^ IxK = N cOuld be brought ouL of the ilner loop becar:^se

it doesnrt u.se Lucid funsbions, and its free variables are all globals of the

iryter locp.

Forrnally we harre 0 l: I > 0 and f ,I' 0, I = J3!9E! I,

N = lglg=! N l: Idivt{ = 3K 2<K<N n IxK = irl. Ftcrn these we establish

Orf t l: X 2<k<N ^ IxK = N as follcnrs:

BY Theorqn 11a) we hatre

f t, JSI:eE! I > 0 l: fgtsgg ldivt'{ = fI(2<(<latest N n

J3te* IxK = ICLPS! N.

But e l: r = O, anl so by Ttreorsn 11b) $,e have 0 l:t€geg! I > 0. Therefore'

6-f r l: latest rdi\N = fK 2<I(<LA!-eS! N n Jates^t rxK = lalegt N.vr. | _/\,w_

Agairr using Theorem. llb) \^E get

0,f t l': faiw = lK 2(<N n rxK = N.

Tlis sane sort of reason-ing can be extended for lcops nested to

arbitra4' deptft.

-35-

8" Refenences

tll E.A. Ashcroft and W.W. Wadge, rrDemystifuing Pnog4arn Pr:oving: An fnfonmal
Introduction to Lucid", to appear in the Communications of the A.C.M.

121 E.A. Ashcnoft and W.li. Wadge, frPnogram Proving Without Tearstt,
Pnoc. fntl. Sy*p. on Pnoving and fmpnoving Pnognamsr Arc et
Senans, July 1975.

t3l R. Bunsta1l, 'rProg:ram Pr"oving as Hand Simul-ation with a Little
Inductionrr, Proceedings IFIP Congness l-974, Stockholm.

t+l Z. Manna, rrlntnoduction to Mathematical- Theory of Computationfr,
McGraw Hill, New Yorkr 1974.

t5l R. Mil-ner, rrModels of LCF", Memo AIM/CS 3320 Stanfo::d (1973).

