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Abstract

ILucid is both a programming language and a formal system for
proving properties of Lucid programs. The programing language is unconven-
tional in many ways, although programs are readily understood as using
assignment statements and loops in a 'structured' fashion. Semantically,
an assignment statement is really an equation between ‘'histories', and a
whole program is simply an unordered set of such equations.

From these equations, properties of the program can be derived
by straightforward mathematical reasoning, using the Lucid formal system.
The rules of this system are mainly those of first order logic, together with
extra axioms and rules for the special Lucid functions.

This paper formally describes the syntax and semantics of programs,

and justifies the axiams and rules of the formal system.
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Program proving, Formal semantics, Formal systems



0. Introductian

Lucid is both a language in which programs can be written, and a
formal system for proving propertics of such programs. These properties
are also expressed in Lucid. This is possible because a Lucid program
is itself simply an unordered set of assertions, or axioms, fram which other
assertions may be derived by fairly conventional mathematical reasoning.

The statements in Lucid programs are special cases of Lucid terms.

In this paper we present the formal basis for Lucid, giving its
semantics and justifying various axioms and rules of inference that are
used in Lucid proofs. An informal introduction to Lucid can be found in (1],
together with a discussion of implementation considerations. This paper
will be rather formal, with motivating explanations and examples confined
mainly to this introduction.

The language cansidered here might be called Basic Lucid, since
it does not include features like arrays and defined functions. Such
extensions are considered in [1].

The main idea in Lucid is that programs should be 'denotational'
and ‘referentially transparent', even when they contain assignment statements.
This means that all expressions in a program must mean sarething, and that
two occurrences of the same expression in a program must denote the same
'savething'. ILucid achieves this aim, and yet manages to treat assignment
statements as equations. (Thus, if a Lucid program contains the (assignment)
statement Y = X + 2, every occurrence of Y in the program can be replaced
by X + 2z, without changing the meaning of the program.) This is accomplished
by considering the program to be talking about the ‘histories' of the various
variables, Semantically, all expressions in programs without nested loops

will denote infinite sequences of data objects. Reassignment to a variable



must be done by using the special Lucid function next, and the initialisation
of a variable nust also be explicit, by using the function first. Thus the
two statements first X = 0, next X = X + 1 define the value, or history,
of X to be the infinite sequence <0,1,2,3,...>. (The numeral 1 denotes
1,1,1,...>, and + works pointwise. The function next drops off the first
item of its argument.) Note that these two statements imply the existence
of a 'loop', and explicit control statements are unnecessary. Also, the
order of the two statements is irrelevant. If we also have first Y =0,
next Y = Y + XxX, then this loop also generates a history for Y, namely,
<0,0,1,5,14,...>. We can get out of the infinite iteration using the Lucid
function as soon as: e.g. output = Y 3s soon as X > 3 gives' the variable
output the value of Y when X > 3 is first true, i.e. the fifth valve, 1l4.
(In fact, output is <14,14,14,...>.) With these three functions it is
possible to write programs without nested loops, in a very natural way.

For programs with nested loops we must generalise our noticn of
‘history'. Consider the following Lucid program, which determines whether
the first integer N on the input stream is a prime number or not.

Program Prime

N = first input
first I = 2
begin
T first multiple = IxI
next multiple = multiple + I
IdivN = multiple eq N as_soon as multiple 2 N

end
next I = I+l
output = "IdiwN as soon as IdiwN v IxI 2 N,



The program contains one loop within another. The inner loop is

delimited by begin and end. Intuitively, the ocuter loop generates successive

values of potential divisors I of N, starting 2,3,4,..., and, for each value
of I, the inner loop generates successive multiples of I, beginning with 12.

The variable IdiwN is set true or false depending on whether or not a multiple

of I is found which is equal to N. In the outer loop, output is set false

or true depending on whether IdivN is ever true or not.

The predicate 'eq' is like '=! except that its value is undefined

if either of its arguments is undefined (of course undefined = undefined is true).

The program as it stands is not strictly speaking a set of assertians

because of the begin and end. Informally, the effect of begin and end is to

"freeze" the values of the glabal variables I, N and IdiwN, (The global
variables of a loop are all those variables mentioned outside the loop.) The

begin and end can be removed by replacing all enclosed occurrences of I, N and

IdiwN by latest I, latest N and latest IdivN. (The meaning of the function
latest will be given later.) Thus the first line of the inner loop becomes
first multiple = latest I x latest I. The resulting transformed program
Prime' is an unordered set of assertions which can be used as axiams fram

which to derive further assertions.

In practice, it is easier to write programs using the begin ... end

notation rather than latest and, moreover, we have rules of inference which

allow us to carry out proofs of programs in the begin ... end notation, with-

out using latest, as follows. We keep track of the loop associated with a

program statement or other assertion that we have derived. Informally, an



assertion that does not contain any of the special Lucid functions can be
moved into loops, and can be moved out of loops if in addition it only refers
to glabal variables of the loop. Moreover, within a loop we can add the
assertion X = first X for any glabal variable X (which states that X is
quiescent, i.e. constant for the duration of the loop) . When proving things
“wwithin a loop" we may only use statements from within the loop (which may
have been brought there or have been added as above).

This might be called the technique of "nested proofs". It reduces
reasoning about nested loops to reasoning about simple loops. Before we
discuss generalized histories we can illustrate this sort of reasoning by
deriving from the statements of Prime and the assumption first input > 0 the

assertion

Output = ™ JLIK 2sK<first input A LXK = first input.

Proof

We will assume the only data objects are the integers, true, false
and the special object undefined.

The first step is to prove the correctness of the inner loop.
We introduce a new variable J by setting first J = I and next J = J+1 so

that between the begin and end we have

first 3= I

next J = Jtl

first multiple = IxI

next multiple = multiple + I

TdivN = nultiple eg N as soon as multiple 2 N.



Since J does not appear elsewhere in the program, any assertion
not involving J which is provable from the expanded program can be proved

from the original. With J so defined we can prove
(1) multiple = IxJ,

The proof uses the basic Lucid induction rule:
(R1) first P, P+next P [=P

where for any assertion A and set ' of assertions, I' |= A means that the
truth of A is implied by the truth of every assertion in I'.
If we let P be "multiple = IxJ" then

first P = first (multiple = IxJ)

N(f:ﬁég multiple = first I x first J)
(IxI = IxI)

nn

which is true (we used the fact that first I = I inside the inner loop) .
Now we assume that P is true at sawe stage, i.e. we assume

multiple = IxJ. Then,

(next multiple = next I x next J)

(multiple + I = Ix(J+1))
(multiple + I = IxJ + I)

next (multiple = IxJ)

|
itn

which is true because of the induction assumption. We can discharge the
assumption P, giving P + next P, and so we have proved multiple = IxJ by
induction,

We also used an axiam which says that first and next 'commte' with

conventional operations like "+": for any expression A not containing any

special Lucid functions and having free variables Xl,Xz, ces 'XK we have
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(a1) |= £ixst A = A(X /Eizst X ... X/Rist %)

(A2) |- next A = A(X;/next X;,....X./next X,
where A(X/Q) denotes term A with free variable X replaced by term Q.
Having proved multiple = IxJ we can replace any occurrence of

multiple in our program by IxJ. The program can then be simplified, to give

program Pri.mel:

N = first input
first I =2

begin
ﬁlrst J=1

next J = J+l

IdivN = IxJ eq N as_soon as IxJ2N
end
next I = I+l
output = ~ IdivN as soon as IdivN v IXI2N

and if A is any assertion without free occurrences of J then Prime |=A iff
Prime; |=A.
To finish the proof of correctness of the imner loop we must

determine the value of IdivN,

To do this we first introduce the function hitherto, defined by
(a3) |- first hitherto P = T

A next hitherto P = P A hitherto P.

Using this we can establish by induction that
(2) hitherto (IxJ<N) » (VK I<K<J > IxKN).

1f we define firstime P to mean P a hitherto “P, we can conveniently

state an axiam for the function as soon as, and a rule for firggime:



(nH) |= firstime P >~ X as soon as P = X

(R2) firstime P > first Q, eventually P |= first Q.

The first states that the value of X as soon as P is the value of X when P
is true for the first time. The second states that if some property Q
holds when P is true for the first time, and Q is quiescent and P does even-
tually became true, then property Q holds.

Using (2) we can establish
(3) firstime (IxJ=N) + IxJ egq N = (3K IsKN A IxK = N),

(A proof of this step can be found in [2].)

Since (Ad4) gives us

firstime (IxJ2N) - IdiwN = IxJ eq N

we can conclude

)

firstime (IxJ2N) - IdiwN = (3K IKN A IxK = N),

Since the term on the right-hand side is quiescent, to apply rule R2 we
simply need to prove eventually (IxJ2N). For this we use the following:

'termination' rule for integers:
(R3) integer L, L > next L {= eventually (L < 0).

To apply R3 we first prove that integer (N-IxJ) and N-IxJ > next (N-IxJ).
This is straightforward (but note that I > 0 must be established by induction

in the outer loop, and then brought into the inner loop) .
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Now, applying the as soon as rule RZ2, we get
(4) IdiviN = 3K IsK<N A IXK=N,.

Assertion (4) contains no Lucid functions and all its free variables are
globals, and so it may be taken outside the inner loop. We now discard the

inner loop yielding 'program' Pri.mezz

N = first input

first I =2 |

IdivN = 3K IsKN A IxK = N
next I = I+l

output = ~ Idivi as soon as IdiwN v IxIN

and as before Prime, |=A implies Prime |- A for any assertion A. Actually
Pr:'une2 is no longer a program but rather a hybrid abject halfway between a
program and statement of correctness.

Note that IdiwN is always either true or false (it could be
undefined if N were undefined, but we know N > 0).

Now to finish the proof that

output = = 3L3K 2<KN A LXK = N

we must first show that
(5) firstime (IdivwN v IxI>N)+ IdivN = 3L3K 2<KN A LxK = N,

The proof of this is similar to the proof of (3), provided we

first prove that

(6) hitherto = IdiwN + (VL L<I + (7 3K 2KN A LxK = N)).



This requires a straightforward induction proof, making extensive
use of properties of integers, and the property N > 0,

Since IdiviN is always either true or false, to establish the secand
premise for the as soon as rule, namely, eventuyally (IdivwN v IxJ2N), it is
sufficient to show that eventually (IxI=N). This follows fram the termination
rule R3,

So finally, we can eliminate all the variables except output

leaving 'program' Prime 3

output = ~ JLIK 2<K<first input A LxK = first input. 0

Note that - 3L3K 2<K<first input A KxL = first input is either

true or false, when integer first input. Thus output is not undefined, and

sO program Prime terminates with the correct result.

This sample proof shows that it is possible to reason about programs
knowing very little of the formal semantics, in particular knowing very little
about the semantics of nested loops. But we must give a semantics for nested
loops to justify the nested proof style of reascning.

In the program Prime, the history of I can be thought of as
<,3,4,...>, but the history of multiple must be <<4,6,8,...>, <9,12,15,...>,
<16,20,24,...>,...>, i.e. a two dimensional infinite sequence. A one
dimensional infinite sequconce can be considered as a function from the natural
nutbers N (including zero) to data elements, and, similarly, a two dimensional
sequence is a functian from NxN to data elaments. If we write I instead of

I(n), we see that In = nt+2, For two dimensions, we adopt the con antion



that the first subscript is the more rapidly varying time parameter, the
nunber of iterations of the inner loop. Thus multiplenm = (m#+2) (mnt+2) .
The ILucid functions (except latest) act on the fig}‘; time parameter, e.g.

(first multiple) = multiple, .

To make this work we need to do two things. Firstly, we get rid
of the begin ... end notation as indicated previously, by introducing the
function latest which increases the number of time dimensions, e.g.

(latest ]:)rlm =1. (Note that latest I is quiescent.) Secondly, we unify
the treatment of variables at different levels of loop nesting by oconsidering

all histories as depending on an infinite number of time parameters (only a

finite number of which will usually be necessary for each variable) .
Thus, in the rest of this paper we oonsider Lucid programs that
use latest insteed of begin ... end, and the semantics of Lucid is given

in terms of functions of infinite sequences of time parameters.

As a formal system Lucid is similar, in some respects, to first
order logic. On the other hand, Lucid can be viewed as a tense logic, a
branch of modal logic which formalises certain kinds of reasoning about time.
(The suitability of modal logic for proofs about programs has already been
recognised by Burstall [3].) 1In Lucid a term, such as X > Y, need not be
simply true or false. It can be true at some 'times' and false at others (and
even undeflned at others). As we have scen, semantically, the value of X > Y
depends on various time parameters because the values of the variables X and

Y themselves depend on time parameters. As a result of this,



- 10 -

certain properties of first order logic, such as the Deduction Theorem,

fail to hold for Lucid, except in special circumstances.

Lucid also differs from first-order logic in that we wish to allow
programs to compute truth values, and therefore we have to allow an
mundefined" truth value, for sub-programs which do not terminate. (Since
we have this undefined truth value, we can abolish the distinction between
terms and formulas, logical connectives applied to non-truth-values acting
as they would for the undefined value. This uniform treatment is not essen-
tial however - it merely simplifies the formal treatment.) The formal system
must be able to deal with "undefined" within the logic. This means, for

example, that the law of the excluded middle does not hold.

Nevertheless, the rules of inference for Lucid are almost identical

to those for first-order logic.

Sectiaons 1 to 3 of the paper are devoted to setting up the inter-
pretations on which the semantics is based. Then in Section U4 we define the
class of sets of terms that are Lucid programs. We show that every program
has a unique minimal solution, or "meaning". In the rest of the paper we
discuss a formal system for proving properties of programs, justifying the
sort of reasoning used in the proofs given in [1]. In particular, in Section 7
we justify the 'nested proof' technique for proving things about programs

with nested loops.
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1. Formalism
The meanings of programs will be based on "camputation structures",
which in turn are defined in terms of sinple structures. We first define
a general notion of structure, and build on this in later sections.
1.1 Syntax
A Lucid alphabet I is a set containing the symbols "U", "d" ard,
for each natural number n, any mmber of n-ary operation symbols, including, for n=0
the nullary operation symbol T.
We also have at our disposal a set of variables, e.g. X,Y,Z2.
The set of I-terms is defined as follows:
(a) every variable is a I-term;
(b) if G is an n-ary operation symbol in I and A,,...,A  are I-terms
then G(A ,...,An) is a I-term;
(c) if V is a variable and A is a I-term then FVA is a I-texm.
1.2 Semantics
If T is an alphabet then a I-structure S is a function which assigns
to each symbol o in I a "meaning” og in such a way that Uy is a set, @g is a

S
function from subsets of Ug to elements of Ug and, if G is an n-ary operation

symbol , Gg is an n-ary operation on Ug-

An S-interpretation I extends S to assign to each variable V an
element VI of US‘
If 1 is an S-interpretation, V is a variable and a is an element

of U., then I(V/a) denotes the S-interpretation differing from I only in

that it assigns a to V.
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If A is a I-term, S a I-structure and I an S-interpretation then we

define an element lAlz of Ug (the "meaning" of A) as follows:

(a) for variable V, |V|I is v

(b) for I-terms Ay ’AZ’ ..o ’An and n-ary operation symbol G of I,
IG(Al,...,An)II is GS(]AlII,|A2|I,...,]AnlI)
(c) for I-term A and variable V

|3 vzs.iI = 35({|Al”v/a) o e Ug})

We say: I=I A (I satisfies A or A is valid in 1) iff ]AII = Tgi
if T is a set of terms then |=I iff |=B for each B in I; T |=A iff |=Ir

implies |=A for all S-interpretations I.

2. Basic results

Even in general structures we can establish several useful properties.

2.1 Substitution

An occurrence of a variable V in a I-term A is bound if and cnly if
the occurrence is in a sub-term of A of the form 3 V B, otherwise the occurrence
is free. If A and Q are I-terms and V is a variable then A(V/Q) is the temm
formed by replacing all free occurrences of V in A by Q. In this situation

V is said to be free for Q in A iff this substitution does not result in a

free variable in Q becoming bound in A(V/Q), i.e. iff V does not occur

free in A in a subterm of the form I W B for same variable W occurring free
in Q.

lemma 1 For I-structure S, S-interpretation I, I-terms A and Q and variable

V, if vV is free for Q in A then

R/ 1 = 1Al o] )



- 13 -

Proof The proof of the analogous result for first-order logic carries

over directly. 0

2.2 Power structures

One way of building structures out of simpler structures is by a

generalised Cartesian product.

2.2.1 For any I-structure S and any set X, sX is the unique I-structure

C such that
(a) UC is the set of all functions from X to US. If x e Xand o € UC
we will write o instead of a(x).
(b) If G is an operation symbol in I and o,8,... eUCandXeX
then (GC(G,B,...))X = GS(aX,BX,...).
(c) If K is a subset of U, and x € X then (:E[C(K))x = 'EIS({ax:a e K}).

Thus Sx carries over the operations and quantifiers of S by making them work
'pointwise’' on the elements of UC' Thus all nullary operation symbols are
assigned constant functions. In particular, TC is the constant function on
X with value Tg-
2.2.2 For Sx—interpretation I and x ¢ X, IX denotes the unique S-interpreta-
tion which assigns each variable V the value (V).

The following lemma establishes that every I-term acts "pointwise"
in SX, even those terms containing quantifiers.
Lerma 2 For any I-structure S, Sx—interpretation 1, I-term A and element

X ¢ X,

X
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Proof let C be the structure sk, The proof proceeds by structural

induction on A.
(a) If A is a variable the result is immediate.
(b) If A is G(Al poae 'An) for n-ary operation symbol G in I, and I-terms
Al,...,An, then
(Ialpy = deay,...n)lp
= GS((|A1|I)X,...,(IAnlI)X)

?GS(IAllI :---I'AnII )
X X

|G(Al,o . -An) | Ix-

(c) If A is g V B for same variable V and I-term B then

(lav BlI)x = (HC({IBII(V/O.) e UC}))X

i

HS({(IBII(V/Q))x:a € UC})

= g ({|B| 20 € UnD)
S IX(V/aX) C

(since if 1' = I(V/a) then I}'{ = Ix(V/ocx))

il

HS({lBlIx(V/a):a € US})
(since as o ranges over U,, &, ranges over US)

= |4V B|,; . 0
Ix



It follows that S and s¥ have the same theory:

Corollary 2.1 For any I-structure S, any set X,any I-term A and set T of

I~-terms, if C = SX then

[ =g AAff T = A

Proof Suppose first that T |=S A. Let J be a C-interpretation such that
|==J I. Then for any B in T and any x in X, Tg = (Tp), = (IB[J)X = |B]bey
Lemma 2. Thus |=; T and so [=; A; hence |A|J = Tg. Therefore
X X X

alp, = |A|Jx = Tg = (Tg),. Since x was arbitrary, |a]; = T, and so = A

Now suppose I' f=, A. Let I be an S-interpretation such that f-—-I r.
Define the C-interpretation J by setting (v J)x = Vi for each x in X and
each variable V, i.e. Jx = | for each x. Then, for any B in T,
(Bl = |B|Jx = |B|; = Tg = (T for any x in X and so f=; I'. Therefore,

}=J A and, choosing any x in X, Tg = (|A|J)x = |A|JX = IAII and so }=I A. 0
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3. Models of Computation

We now build up the structure: necessary to give meaning to programs.
These will be power structures, based or certain elementary structures called
standard structures.

We define Spec to be the set of special Lucid function symbols

{first, next, as soon as, hitherto, latest, followed by}.

3.1 Standard structures

An alphabet I is standard if in addition to T and 3 it contains the
nullary operation symbols i and F, the unary operation symbol ~, the binary
operation synbols v and = and the ternary operation symbol if then else,
but none of the special Lucid symbols in Spec. (I may contain numerals 0,1
etc. as nullary operation symbols.)

A standard structure is a structure S whose alphabet is standard

and such that
(a) Tg, Fg and 1o are true, false, and undefined, respectively.
(b) Tg yields true if its argument is false, false if its argument

is true, undefined othcrwise.

(c) Vg yields trxue if at lcast one argument is true, false if both

are false, undefined otherwise.

(4) =g yields true if its arguments are identical, false otherwise.

(e) if then elsegS vields its second argument if its first is true,

its third if its first is false, undefined otherwise.

(f) for any subset K of US’ BS(K) is true if true ¢ K, false if

K = {false}, undefined otherwise.

(9) all other operations of S are rmonotonic, for the ordering on
Ug defined by x £y iff x =y or X = undefined. (Note then that

the only non-mcnotonic operation is =3.)
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Standard structures are our basic domains of data objects and corres-
pond most closely to ordinary first-order structures. Note that if we restrict
s and Vg to true, false and undefined, they agree with the corresponding

operators in the three-valued logic of Lukasiewicz.

3.2 Computation structures

Programs will use the special Lucid functions Spec, and these
functions are interpreted over certain types of power structures.

3.2.1 Carp(S)

If S is a standard I-structure, then Comp(S) is the unique (T u Spec)-

N ,
structure C which extends SN * to the larger alphabet as follows:

Eora,seucandE=ttt...eNN

07172
1) (Eixske (“))E = %ot t,...
11) (pexte (“))E = Yttty
iii) (o as_soon aSCB)E = aStlt2"' if there is a unique s such
that Bstitz... is true and Brtltz...
is false for all r < s, undefined if
no such s exists.

iv) (hi‘chertoc(ot))E = true if aStlt2'“ is true for all s < to,
false if aStltz'“ is false for same s < t,,
undefined otherwise.

v) (l.gggggc (o) )E = atltz' I

vi) (o followed Ine B)Otltz = %0t ty...

(o Wc 8)t0+l £tye e - Btotltz...

* N is the scot of natural numbers and NN is the sct of functions from N to N
i.e. the set of infinite sequences of natural numbers.
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Note that all other operations are pointwise extensions of the
corresponding operations in S.
3.2.2 The function latest is used to formalise nested loops. If we have

no nested loops, a simpler structure suffices.

Loop(s)

If £ and S are as above and I' is the alphabet of Comp(S), amitting
latest, then Loop(S) is the unique I'-structure C' which extends sV to 1
in such a way that ;E;J_gggc, ’ gnggc. etc. are defined as for Comp(S), but

with tit,... omitted. For example

(firstc| (d))to = (10 and (Q,ie}(twc| (a))to =0

t0+l
The usefulness of Loop(S) lies in the fact that Loop(S) is easier |
to understand and Loop(S) and Carp(S) have the same theory for terms not

involving latest:
Theorem 1 For any standard structure S and any term A and set of terms T

all in the language of Loop(S),

I () HE T Feop(e)®

Proof Let C' be the restriction of Comp(S) to the language of Loop(S).

W

It is easily verified that C' is isomorphic to Loop(S)

and so the result follows from Corollary 2.1. a

3.2.3 Note that if S is a standard structure and C is an extension of SX

for sone set X, then =c is not the identity relation on C. Nevertheless

o A =B iff |A|C and IBIC are identical.



3.2.4 Quiescence and constancy

Let C = Cap(S) and a € Up. Then « is a function from infinite
sequences totltz” . of natural numbers to Ug. If o is the value of a variable V,
then, intunitively, the value of V depends on the time parameters totltZ' e

where t. is the number of iterations of the loop defining V, tl is the number

0
of iterations of the next outer loop, and sO on. If o_ is independent of the
t
first element of t (i.e. at0t1t2"' = a0tlt2”. for all to) then we say o

is quiescent. A temm A is quiescent (in () if |=, A= first A. Note that
for terms A and B, first A, latest A and A as soon as B are all quiescent.

If o_ is independent of t, then a is said to be constant. Note
that Ge is wn:tmt for any nullary operation symbol G.

In Loop(S) we can use the same definitions, but then there is no

difference between quiescence and constancy.
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L. Programs
We impose minimal syntactic restrictions on programs, to simplify the

formal treatment. In practice, other restrictions would probably be required.

4.1 Syntax
A I-program P is a set of (I v Spec) -terms such that

(a) each element of P is an equation of the form ¢ = ¢, where y is a
quantifier-free term having no occurrences of =, and ¢ is of the
form X, first X, next X or latest X for same variable X.

(b) The variable input may not occur on the left hand side of any
equation in P.

(c) Every other variable X occurring in P, when appearing on the left hand
side of an equation, may only do so as part of a definition of X.

X must be defined exactly once, in one of the following ways:

directly ie. X= "’1

indirectly i.e. latest X =1V,

iteratively i.e. first X = ‘D3
next X = Y.

In the akove, the terms y, and §; must be syntactically quiescent

in P, a property which is defined as follows:

(i) first ¢, latest ¢ and ¢ as soon as Y are syntactically quiescent in P.
(i1) if ¢l,q>2,. .o s, are syntaciically quiescent in P and G is an n-ary

operation symbol in I, then G(¢l,¢2,... ,¢>n) is syntactically quiescent
in P.
(iii) if Y= ¢ is in P and ¢ is syntactically quiescent in P, then X is

syntactically quiescent in P.
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4,2 Semantics

The meanings of programs are specified by Camp (S)- interpretations,
wherc S is the standard structure corresponding to the damain of data.
4,2.1 Solutions

For any I-program P and standard I-structure S, if C = Camp(S)

and o is an element of UC then a (S,0)-solution of P is a C-interpretation I

such that input; = o and |=I P.

4,2.2 Theorem 2
For any L-rrogram P and standard I-structure S, if C = Camp(S) and

a e Up then there is a (S,a)-solution I of P that is minimal, i.e. for any

(s,a)-solution I' of P, for all t e W and all variables Vin I, (V;)_ & (V) _-
t t

Proof (sketch)

The first step is to transform P into a set of simple equations.
This is done by replacing each pair of equations of the form first X = ¢,
next X = ¢' by the single simple equation X = ¢ followed by ¢', and
replacing each equation of the form latest X = ¢ by the simple equation

X = latest 1¢. The operation latest. is defined by (latest L)) =q
RS RRSRSC ~RSSRAC totl. .o OtOtl' .

This transforms the program P into a 'program' P' of the form
X = 1(X), where X is the vector of all the variables in P other than input.
We now note that the 'programs' P and P' have the same solutions.
That every solution of the original program P is a solution of the
transformed program P' is clear, and the converse follows from the quiescence

restrictions on P, as follows.
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Suppose that |=I X = ¢ followed by ¢'. Then by the definition of
followed by, =7 first X = first ¢ and |=; next X = ¢'. But if
X = ¢ followed by ¢' in P’ came from first X = ¢ and next X = ¢' in P, then
the syntactic quiescence of ¢ ensures that }=I ¢ = first ¢, so }=I first X = ¢.
similarly, |, X = latest™ ¢ implies |= latest X = £irst ¢, and so by
syntactic quiescence }=I latest X = ¢.
Now we note that the ordering on UC given in the statement of the
theorem makes Up into a cpo (complete partial order), and it is easily
verified that all the operations in C that are used in the ‘term' T are continuous.

Moreover, although =c is not equality on U+ by 3.2.3 the solutions of P' are
fixpoints of T.

Therefore, the transformed program P' has a unique minimal (S,0)-

solution I, and hence so does P. (In fact ;{I = | |Tl(I) II; see, e.9.,[5].) 0
i=0

4,3 Syntactic Enrichment
To facilitate the writing of programs we introduce ‘'nesting' in

programs, as a syntactic abbreviation. We say that the expression

begin

end

e

is shorthand for the set of terms
¢
5

o
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. where q)j'_ is obtained fram 9 by rep).icing each 'global' variable V by latest V.
A global variable is one which occurs within the rest of the program enclosing

the original begin ... end expression. The symbols begin and end are used

to delimit inner loops, and the formulation using latest shows that within
inner loops global variables become quiescent. Ioops can be nested to any
depth. Note that for a program using begin ... end to be legal, the result of

removing the begin ... end's must be a legal program according to 4.1.

5. Axioms

We now describe the formal system of axiams and rules of inference

used for proving properties of Lucid pregrams.

5.1 The following abbreviations will be used in the rest of the paper:

AAB means —(" AV ™ B)

A~+B means "(A=T) VB

¥YVA means gV ~A
Note that, in standard structures, A agrees with the three-valued logic of
Lukasiewicz, but + does not. In particular, we have |= 1 -+ F, but in standard
three-valued logic 1 + F would be 1. This difference is crucial, and allows,
for example, the use of the deduction theorem in standard structures. (However,

+ is defined in terms of =, and therefore it may not be used in programs.)

5.2 Parentheses will be (and have been) dropped fram terms by using the

following ranking of priorities for operators (fram highest to lowest) :
followed by, =, .

Note the low priority of as soon as, and the even lower priorities of = and -.

Thus A + B = C as soon as D A E means A -~ (B = (C as soon as (D A E})).
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5.3 Theorem 3 The following are valid in Camp(S) for any standard I-

structure S, and (I u Spec)-terms X, Y and P .
(a) X=Y%) valX=Y)
(b) (A=T)=CA="))A((A=r)=(A="17))
(c) (first first X = first X) A (next first X = first X)
(a) (first(x followed by ¥) = first X) A (pext(X followed by Y) = Y)
(e) (first hitherto P = T) A (next hitherto P = P A hitherto P)
(£) X as_soon as P = if first P then first X else (next X as soon as next P)
(99  XassoonasP= Xassoonas P A hitherto P
(h) first(X as soon as P) = X as soon as P
(1) P A hitherto - P + (X as soon as P) = X
(3) T as soon as P > g;l,ggi\:'XassoonasP:giv_gggX
(k) (if T then X else Y = X) A (if F then X else Y = ¥)
Proof These results (for variables X, Y and P) are easily verified in

Loop(S) and carry over to Comp(S) by Theorem 1. The variables can then be

replaced by (I u Spec)-terms. O

If we define eventually P to be T as soon as P (with the same priority
as as_soon as), we have the following corollary.

Corollary 3.1 With S, X and P as above, the following are valid in Corp(S) :

(a) eventually P ~ first X as soon as P = first X

(b) eventually P = eventually P A tNmitherto — P

(c) eventually P = if first P then T else eventually next P.
Proof These follow fram the axiams of Theorem 3. 0
5.4 The next theorem justifies 'pushing' first and next past quantifiers

and non-Lucid operations.
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Theorem 4 For any standard I-structure S and any I-term A in which X ’X2" ..,Xk
are the variables occurring freely:

(a) first A = A(Xl/first Xl,xz/first X2,. ..) is valid in Comp(S),
along with corresponding equations for next and latest.

(b) eventually P ~ A as soon as P = A(Xl/xl as soon as P, Xz/x2 as soon as P,...

is valid in Comp(S).

Proof We will consider only Loop(S). The results carry over to Comp(S) by

Theorem 1. Let I be a Loop(S)-interpretation and let t be any natural number.

Then, if X denotes Xl’x2""’xk’

(|£ixst Aly)y = (alp)

|a], (by Lemma 2) = |Al; 3,3
10 IO(X/(XI)O)

I8l7 Gyivse Xl = Pl R g Xl Y

(since A has no other free variables)

= (lAII()-(/Ifirst 3-(|1))t (by Lemma 2) = (|A(X/fizst X) II)t
(by Lemma 1).
Similar reasoning verifies the other results. 0

6. Rules of Inference

Lucid cannot be a complete formal system because the Lucid functions
are powerful enough to characterise unsolvable prablems that are not even
partially decidable. All we can do is add to Lucid whatever axioms and rules
of inference seem natural and useful. In this section we give rules of
inference for the logical connectives, and useful rules for the special Lucid
functions. The 'logical' rules of inference are those of a simple natural

deduction system (see, for example [4]).
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6.1 Natural Deduction Rules

6.1.1 Theorem 5 The following rules are valid for standard I-structure S,

I-terms A,B,C,D,P,Q, finite sets ' and A of I-terms and variable V, provided V does

not occur freely in I' or D, and is free for P and Q in A:

(AT) A,B }=S AAB (RE) AAB }=S A
AAB ;:S B
(vI) AlgAVE (VE) A»C,B+CAVB |5 C
B =g AVB
(FI) A, — A F (FE) F |=¢ B
(+1) if A2 l=s B then A t=s A+D (*E) A > B,A |=s B
(vi) 4ifT |=S A then T |:S VVa VE) VVA |==S A (V/Q)
Gl A(V/Q) g A VA (1) if T' |=A + D then T, aVA |=g D
=) V=V (=B) A(V/P),P =0Q |=¢ AV/Q).
(TI) A|=SA=T (TE) A=T|=SA

Proof The validity of the rules can be established by straightforward

calculation fram the definitions. a

There are no rules for — because we do not have the law of the
excluded middle: A v —m A is not valid in general, because A may not be truth-
valued. This means that some of the tautologies and derived rules of first-
order logic are not valid in standard structures. For example (A > B) » ~A VB
is not valid, and if we were to define A< B to mean (A+B) A (B~>23a),

then we would not have substitutivity of (note, for example, that 1 «> F).
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6.1.2 Most of the rules of Theorem 5 hold also for Camp(S):

. Theorem 6 All the rules of Theorem 5, except (+I),are valid for C

in place of S (where C is Camp(S)), and I u Spec in place of I.

Proof Apart from the quantifier rules, and (+I), all ruies are of the form

¢ |= ¥ and carry over directly because of the point wise definition of the
oonnectives. We illustrate this for the (VE) rule. Consider any C-interpretation
I for which |=; A > C, |=; B> Cand |= A v B. Then, for all te NN,(|A+ clpg
(|B » CII)E and (|A v B| )¢ are all true. By definition of C, we tien have
(lal g »gtlelpg S UBl g =g (clPg and (Al g vg (IBl}); are all true.

By the (VE) rule for S (Theorem 1) we then have (,C|I)E = true. This holds

for all t e NN, SO }-=I C.

We illustrate the proof for the quantifier rules by considering
(VE) and (JE).

(¥E): Let I be any C-interpretation for which [¥ V AII = T;.
Then for all € ¢ AN

true = (|¥ VA[)¢

= VS{(lAII(V/a))t—: o€ Upt.

- N
N - =
Therefore for all t « and all a € U, we have(lAlI(V/a))t = true. Now

IAII(V/|QH) = IA(V/Q)II, by Lema 1, and so, for all t « NN, (|aw/Q) II)E = true,

that is |==I A(V/Q).

(IE) : Assume T |;==C A > D and consider any C-interpretation I
for which }———I B, for all B ¢ ', ad f:-—I'gVA. ConsideranyEeNN. By the
definition of oo there is same a e Up such that (IAII(V/a))t—: = true. Now I(V/a)
. 4 : — : : : = D
is a C-interpretation and } I(V/a)r' since V is not free in I'. Thus }—I (V/a)A +> D,
and so (IDII(V/a))E = true. Since V is not free in D, we then have (|D|)¢.

We chose t arbitrarily, so }-=I D, g
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6.2 Lucid Rules

6.2.1 One of the most important rules is that a standard I-structure S
and Comp(S) have the same theory, when restricted to I-terms, so any
"elementary" property can be used directly in any proof about a program.
Theorem 7 For any standard I-structure S, any I~-term A and any set ' of I-temms, -

r I=SAiff I' |=¢ A, where C = Comp(S).

Proof Since T and A are in the language of S and since Comp(S) is an
- N

extension of éJ the result follows immediately from Corollary 2.1. ]
6.2.2 Other Lucid rules including induction and termination are given by
the following theorem.

Theorem 8 For any standard I-structure S, if C = Camp(S) then

(a) P |=¢ first P and P |=(¢ next P

(b) first P, P > next P =, P (Induction)
(@ P hitherto = ~ first O, eventually P |=, first Q

(@) P - ~ hitherto (P =F) }=, X as soonas P =1

(e) integer Y, Y > next Y #\C eventually Y < 0 (Termination)
(£) X =next X |-, X= first X

where in (e) we assure S includes the integers.

Proof By calculation from the definitions. 0

6.3 Reocovering the Deduction Theorem

We have seen that the (+I) rule is not valid in Camp(S). However,
we can recover this rule, at the expense of weakening the (=E) rule, by a
form of reasoning which intuitively corresponds to 'confining oneself to a

particular moment during the execution of a program.
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6.3.1 Definition of |X

If S is a L-structure, C = Coamp(S) and A is a term and T a set of
terms on the alphabet of C, then we define T lzc A to mean that for any
C-interpretation I, if (|B|;)g = true for every B in T, then (|al;)g = true.

Thus T |, A means that, at any time, if all the terms in T are
true, then A is true. It is immediate that |=.A implies |~,A, and that

r |~C A implies T l=CA but not vice versa, e.g. P }=C next P but not P Izc next P.

6.3.2 Theorem 9 For any standard I-structure S, if C = Camp(S)

(a) every rule of Thearem 5 except the (=E) rule remains valid if
bgis replaced by |-
(b) for A,P,Q and V as in Theorem 5, if A contains no Lucid functions

then A(V/P), P =Q lzc A(V/Q) .

(c) Theorem 7 is valid for |zc in place of |=C.
Proof Let A,A,D ard V be as in Theorem 5.

(a) We will illustrate the proof by considering the (4E) rule and the (-I) rule
(i) AssumeI‘lch->DandI‘|zC:~1VA. Let T ¢ N and let T be a

C-interpretation such that (IBII)E for every B in I'. Then by the
second assumption (|3 VA'I)E = true and so (IAII(V/OL))E = true
for same a in Ue by the definition of To- Since V does not occur
in any B in T, (IBII(V/a))t—: = (|B|;)g = true for any such B, and so
by the first assumption (IDII)E = true. Therefore I' |, D.

(ii) Let £ e NV and suppose that every C-interpretation which makes A
and everything in I' true at t also makes B true at t. Suppose
now that C-interpretation I makes everything in I' true at t.

If T makes A true at t then it must make B true at £ and so makes
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A + B true at £, On the other hand, if I makes A other than true
at t then A + B will be true at t regardless of the value I assigns
B at £. In either case A+ B is true at t and so T |z, A > B.

(b) Suppose that (|A(V/P) |I)E = true and (IPd,)lI)E = true. Now

‘A(V/P)II = IA'I(V/lPII) by lLemma 1 and ('AlT(V/|P|I))t—: =
|a|,_ _ysince A contains no Lucid functions. But (|P=Q| )z = true

It(V/(IPII)t) |P=0fp)g = true
implies (|P|;)g = (lal)g. Thus

= |a
Al /el pp = Plipwdalpy

= (IAII(V/lQII))E

]

Therefore (|A(V/Q) II)E = true.

(c) Assume T |=S A and let I be a C-interpretation. For any £ e NN, if
(IBII)E is true for all B in T, then by Lemma 2 ]B|I_ is true for
all Bin I'; i.e. I=I1—: I'. Hence l?IE A, and so (]AII;:E. Conversely,
assume T |zc A. Therefore, T |=C A, and hence T |=S A, by

Theorem 7. O

We call the rule in Theorem 9(b) the (weak =E) rule. To illustrate
that (=E) does not work for |~, note that next P, P = Q [z next Q is not valid
(informally, if P equals Q at some time when P will be true at the next step,
it does not necessarily follow that O will be true at the next step).
We use |~ in the following way. Suppose we wish to prove T I=C A > B.
We assume ' and A, and try to prove B using only axiams and Theorem 7 and the natura

deduction rules of Theorem 5, but with the (weak =E) rule instead of the (=E)
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rule. (We may not use Theorem 8.) If we manage to do this we have T',A |zc B
and we can use (»I) to get I' |, A~ B. Thus T |=CA-*B. We see that to
use the deduction theorem we must not use any of the Tucid rules in Theorem 8,

and use only the weak version of the (=E) rule.

6.3.3 There is another way in which we can regain the déduction theorem.
If we are reasoning about a simple loop, and we have made an assurption that

is quiescent, then the assumption can be cancelled:

Theorem 10 For any I-structure S, if C = Comp(S) and A and B are temms and
[ a set of terms on the alphabet of C omitting latest, then

I, first A |=, B implies T |- first A > B

Proof The theorem holds for Loop(S) in place of Comp(S), because if first A

is ever true it is always true. The result carries over to Comp(S) by

Theorem 1. O
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7. Proofs within Loops

The structuring of programs that is made possible by the use of

begin and end also allows "structured proofs". We will show that

(i) Within a begin .. end loop, all the rules of inference are valid

and so is the assumption that X = first X for every global variable
X. Anything that follows by introducing latest also follows
without latest, in this fashion.

(ii) Any assertion about the globals of a begin ... end loop, that does

not use Lucid functions, can be moved into or out of the loop.

Theorem 11 For any standard I~-structure S, if C = Comp(S), then for any term A
and set of terms T in the alphabet of C, and any finite set of variables X,
(a) X =first X, I =, A iff
I (X/latest X) =, A(X/latest X).
(b) If A is a I-term and X is the set of variables occurring freely in
A, then

[ | A iff T = A(X/latest X).

Proof (a) Assume X = first X, T }=C A, and that, for C-interpretation I,
}=I I'(X/latest X). Let o be |latest >'<|I and 1" = 1(X/a). Then }=1.3'< = first X

and |~=I. I', therefore }:I A, and so }=I A(X/latest X).

Conversely, assume that T (¥/latest X) =, A(X/latest X) and that
for C-interpretation I, f=; X = first X and |=; T. Then |X|; is latest, a
for some a in U, X Let I' be 1(X/Q). Then =, /T (%/1latest X), and s0
l=;, AX/latest X). Hence = A.

(b) Let I be a C-interpretation such that }=I I'. Then since

(] latest AlI)tOtltZ"' = (|A|I)tlt2...’ (|latest Al g = true for all t iff

(|al))g = true for all £. Then since |=; latest A = A(X/latest X) by Theorem 4(a),

the result follows. 0

* In fact o = |1ate§£'l }'(II (see the proof of Theorem 2, Section 4.2.2),
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The theorem justifies (i) and (ii) above as follows. Consider

the program Prime again.

N = first input
first I = 2
next I = I+l

output

“IdivN as soon as IdiwN v IXI2N
begin

o first multiple = IXI

next multiple = multiple + I

I §first =1

next J = J+1

\ IdiwN = multiple eg N as soon as multiple 2 N
end
Prime is actually equivalent to Prime':
rN = first input
first I = 2

next I = I+l

\ output IdivN as soon as IdiwN v IxI2N
¢ first multiple = latest I x latest I
next multiple = multiple + latest I

'\ first J = latest I

next J = J+1

IdivN = multiple eq latest N as soon as multiple > latest N

For program Prime' it is possible to prove that

IdiwN = 3K 2<K<N A IxK = N,
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In the introduction, a 'nested' proof of this, using Prime, proceeded by the
following steps, First we proved, inside the inner loop, that multiple = IxJ,
Then, still inside the locp, we used this to prove that IdivN = 3K 2<K<N A IxK = N,
For this we needed that I>0. This had to be proved in the outer loop, and
could then be brought inside the imner loop, for use in the proof, because it
is a statement not involving Lucid functions. Finally, the statement
IdivN = 3K 2<K<N A IxK = N could be brought out of the inner loop because
it doesn't use Lucid functions, and its free variables are all globals of the
inner loop.

Formally we have 6 |=I 2 0 and I',I 2 0, I = latest I,
N = latest N |= IdivN = 3K 2<K<N A IxK = N. From these we establish
6,I'' |= 3K 2<k<N A IxK = N as follows:

By Theorem lla) we have

', latest I > 0 |= latest IdiwN = 3K 2<K<latest N A

latest TXK = latest N.
But 6 |=TI 2 0, and so by Theorem 11b) we have 8 |= latest I > 0. Therefore,
6,I'" |= latest IdivwN = 3K 2<K<latest N A latest IxK = latest N.
Again using Theorem. 11b) we get

8,I'" |-= IdiwN = JK 2<K<N A IxK = N.
This same sort of reasaning can be extended for loops nested to

arbitrary depth.
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