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ABSTRACT 

This paper argues that a hypothetical “dark” particle (a black hole with the reduced Planck mass and arbitrary tempera-
ture) gives a simple explanation to the open question of dark energy and has a relic density of only 17% more than the 
commonly accepted value. By considering an additional near-horizon boundary of the black hole, set by its quantum 
length, the black hole can obtain an arbitrary temperature. Black-body radiation is still present and fits as the source of 
the Universe’s missing energy. Support for this hypothesis is offered by showing that a stationary solution to the black 
hole’s length scale is the same if derived from a quantum analysis in continuous time, a quantum analysis in discrete 
time, or a general relativistic analysis. 
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1. Introduction 

Cosmological observations from early in the last century 
indicate the Universe is expanding. These observations 
show that the speed at which objects move away from 
Earth has a strong correlation with their distance, known 
as Hubble’s Law. However, it was not until the end of 
the last century, when we had observations of Type Ia 
supernova, that we concluded the Universe is also accel-
erating [1]. 

The most popular explanation for these findings is an 
elusive energy density with an equation of state, w < 
−1/3 [2] coined “Dark Energy” making up ~73% [3] of 
the energy density of the Universe. Many attempts have 
been made to explain dark energy’s origin [4], yet those 
attempts have ultimately been unsatisfying [2,5]. Many 
theories are still under review [6,7]; with the most ac-
cepted being the Lambda Cold Dark Matter model, 
ΛCDM where Lambda, the Cosmological Constant, pro-
vides a negative pressure , to the Universe [1,2]. 1w  

1w

By hypothesizing a “dark particle” we begin to answer 
the question of the missing dark energy density. We will 
see that a dark particle is a black hole with the reduced 
Planck mass. At this mass, the original assumption in 
Hawking’s work on black hole radiation [8] breaks down 
and I show how a quantum boundary, set by the width of 
the wave packet, is larger than the event horizon. The 
surface gravity at this new quantum boundary is such that  

the temperature is arbitrary. Still the distribution of ki-
netic and potential energy is shown to be that of the 
black-body. 

We now have a source of a black-body energy density 
that contributes to the energy density of the Universe. 
One might conclude that dark particles are in thermal 
equilibrium with the Cosmic Microwave Background; 
however, I will argue that the coupling mechanism be-
tween the dark particles and the background radiation 
field has been turned off since after the Dark Ages when 
re-ionization happened. If this is the case and if the dark 
particles temperature is frozen, they have an equation of 
state of    and the right relic density to explain 
dark energy. 

It is also shown how the dark particles cool via a sta-
tionary diffusive process where the quantum solution to 
width of the wave packet (the near horizon quantum 
boundary) is derived. I present this analysis in both con-
tinuous and discrete space-time and use a computer model 
to show that the two give the same solution. A linkage 
between quantum mechanics and gravity is gained by 
considering three energy density terms of the dark parti-
cle. The resulting length scale, as solved by Friedmann’s 
equation, is identical to solution of its quantum length. 

Section 2 argues that a black hole with the reduced 
Planck mass (a dark particle) has an arbitrary tempera-
ture and that its density explains dark energy. Section 3 
confirms that a dark particle’s energy is still in the form 
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of black-body radiation. Section 4 solves the length scale 
of a dark particle from a continuous quantum derivation 
and explains the mechanism by which the dark particle 
cools. Section 5 validates the solution to the length scale 
derived in Section 4 by modeling the diffusive process in 
discrete space-time. Section 6 shows that an identical 
solution to the length scale can also be derived from 
Friedmann’s equation when appropriate densities are con-
sidered. Section 7 discusses other similar work and how 
dark particles might solve other open questions as well, 
such as dark matter. 

2. Missing Energy 

2.1. Dual Gaussians 

We begin by setting the context on a particle of mass m 
in equilibrium with a heat bath at temperature T. We as-
sume a particle is in the dual Gaussian ground state. 
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Using the equipartition theorem on the kinetic energy 
[9], one has 

Δp mk T

 

             (3) 

And using Heisenberg’s Uncertainty equation [9], 
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Making use of the equipartition theorem implies that 
the particle is coupled to an ensemble of particles or heat 
bath [10]. The bath in this case is an external radiation 
field (for example, the Cosmic Microware Background). 
However, as we will see, the coupling between the dark 
particles and the heat back can be turned on or off with 
the presence or absence of neutral hydrogen atoms. We 
will use the temperature at the time of last coupling and 
the particle’s mass to define the width of the wave func-
tion.  

2.2. Black Holes 

We will now apply these lengths to our understanding of 
black holes, specifically holes with a mass equal to the 
reduced Planck mass. 

8
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                 (5) 

A number of special conditions arise at this value of 

mass. First, the quantum limit, 2dx mc   is equal to a 
circle’s circumference with the Schwarzschild radius, 
Figure 1. 

2 4
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
          (6) 

Indeed this is a small cross-sectional area for the black 
hole. 

Second, the Hawking temperature is equal to the mass 
of the black hole, 
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Third, it is not clear that the Hawking temperature is 
valid at this value of the mass. Specifically Hawking 
stated in his seminal paper from 1975 [8], “Eventually, 
when the mass of the black hole is reduced to , 
the quasi-stationary approximation will break down. At 
this point, one cannot continue to use the concept of a 
classical metric. However, the total mass or energy re-
maining in the system is very small.” 

Even more recent derivations of Hawking’s work still 
breakdown at this mass [11]. I will argue that when a 
black hole has the reduced Planck mass, the Hawking 
temperature breaks down because a secondary quantum 
boundary is greater than the Schwarzschild radius and it 
is this boundary that defines the near horizon’s surface 
gravity. The length of the boundary is such that its sur-
face gravity/temperature is arbitrary. I will also argue 
that even though “the total energy in the system is very 
small,” it has just the right density (given the history of 
our Universe) to explain dark energy. 

2.3. Quantum Boundary 

As the event horizon is defined by the quantum limit, dx, 
the outer quantum boundary is defined by the square root 
of the position’s variance  0Δx . If 0Δx  defines the 
circumference of the boundary (as  defines the cir-
cumference of the event horizon), the radius of the outer 
boundary will be , see Figure 1. 

dx

QBR
 

RS
dx

RQB
Δx

 

Figure 1. Event horizon (solid line) and quantum boundary 
(dotted line) of dark particle. 
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The surface gravity at radius  is [12], 
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The effective temperature [8] for surface gravity at ra-
dius  will thus be, 
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The width of the black hole’s wave packet (which is 
set by the temperature of the heat bath) that defines the 
outer quantum boundary is just the right size to define a 
surface gravity such that the temperature is arbitrary and 
not a function of mass or other defining feature of the 
black hole. The temperature is its own independent pa-
rameter of the black hole. Thus I will call a black hole 
with the reduced Planck mass and arbitrary temperature a 
dark particle. 

ω2

Coupling mechanism 
through hydrogen atoms

Hydrogen atoms
ω1

When the mass of a black hole is greater than the re-
duced Planck mass, the quantum boundary QB  is nec-
essarily smaller than RSchwarzschild and thus it is RSchwarzschild 
that defines the surface gravity. When the black hole is a 
dark particle it can’t lose any more mass lest its quantum 
limit will become larger than RSchwarzschild; thus it will 
cease to be a black hole. If the dark particle loses radia-
tion it must shed its non-massive energy and thus de-
crease in temperature. On the flip side, if the dark parti-
cle is in a heat bath at a higher temperature than the dark 
particle, it will match that larger temperature (assuming a 
coupling mechanism is in place) without gaining mass 
until the reduced Planck temperature is reached. 

2.4. Dark Energy 

Now hypothesize that a local group of dark particles are 
able to exchange heat with the Cosmic Microwave Back-
ground when neutral hydrogen atoms or other sinks are 
nearby to capture the radiation from its gravitational 
binding but that they become frozen (constant tempera-
ture) when neutral hydrogen atoms are not nearby. 

This hypothesis rests on the idea that a virtual particle 
that leaves its pair becomes trapped by the outer quantum 
boundary, even if it escapes the event horizon, unless a 
sink is around to capture it. See Figure 2. With no sink 
the net energy to escape is zero. However if a sink is 
around, like a neutral hydrogen atom, the sink can absorb 
radiation at one energy and release radiation into the dark 
particle at another energy, keeping it in thermal equilib-
rium.  

During the dark ages, the time between decoupling and 
re-ionization [13], the Universe was filled with hydrogen  

 

Figure 2. Without a coupling mechanism, the radiation 
can’t escape thereby not allowing the dark particle to cool. 
However with a hydrogen atom or other sink the dark par-
ticle can equilibrate with the background field. 

 
atoms that provided the coupling mechanism between the 
dark particles and regular energy. In these conditions the 
dark particles were coupled to the Cosmic Microwave 
Background (CMB). However after re-ionization, the 
hydrogen was ionized and the dark particles and its asso-
ciated radiation energy density became frozen. The 
red-shift of re-ionization and the current temperature of 
the CMB provide an estimate of the temperature of the 
dark particles at the time of re-ionization where it re-
mains constant up to today. 

 DP Re-ionization CMB-today1 constantT z T      (11) 

If we know the temperature of the dark particles at 
re-ionization, then we should have an idea for the total 
energy density that contributes to the Cosmological con-
stant today. 
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Because we have estimates of today’s z value of re- 
ionization and today’s temperature of the CMB we can 
estimate the density, P-BBR . The Lambda Cold Dark 
Matter model, , provides a completely inde-
pendent estimate of the density of dark energy, Λ

ΛCDM

CDM  
[1], which we can estimate using the parameter, , 
and today’s Hubble constant.  
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Using the 7-year Wilkinson Microwave Anisotropy 
Probe [3] as a source for our estimates Table 1 and Fig-
ure 3 show how our model’s estimate of dark energy is 
higher by 17% but well within the confidence range de-
fined by . re-ionizationz

34~10

260

2.5. Inflation 

It is also supportive to examine how this theory holds up 
to the inflationary period just after the big bang. The in-
flationary period that follows the grand unified period 
lasts for  seconds and during this time, the scale 
factor of the Universe grows exponentially by a factor of 

 [14]. Assuming that dark particles are able to 
release heat, thereby maintaining equilibrium with the 
rest of the Universe’s energy during the time of grand 
unification (immediately preceding inflation), but that 
once the inflation period began the dark particles became 
isolated,then the dark particles will have a constant en-
ergy density during inflation leading to exponential ex-
pansion (but with a much higher rate than today). 

~1

The theory also provides insights into reheating, the 
period after inflation. If you imagine the dark particles 
were at the temperature of grand unification at the begin-
ning of the inflationary epoch only to become isolated,  

 
Table 1. Estimate and confidence ranges of Dark Energy 
from the Dark Particles BBR model and the Lambda Cold- 
Dark Matter model using 7-year WMAP data. 

  Low Average High 

DP BBR   

 3kg m  
5.22E−27 8.12E−27 1.21E−26 

todayT


 

degrees

re-ionizationz

CDM

 
2.725 2.725 2.725 

 9.3 10.5 11.7 

 

 3kg m

H

 
6.21E−27 6.95E−27 7.74E−27 

 

 km sec Mpc



 
68.5 71.0 73.5 

 0.705 0.734 0.763 

 

4.0 6.0 8.0 10.0 12.0 14.0 1e‐27 kg/m

ρ(Dark Particles’ BBR)

ρ(ΛCDM)

2PE Cx

3 

Figure 3. Visualization of density of dark energy from two 
models. 

the dark particles would remain constant during the infla-
tion while the rest of the energy density in the Universe 
would cool by a factor of ~(1026)4. If quarks, anti-quarks 
or gluons (which became available at the end of the in-
flationary period) are able to couple dark particles to the 
rest of the Universe’s energy (as we hypothesized neutral 
hydrogen atoms are able to do), heat could flow from the 
hot dark particles back into the rest of the Universe, re-
heating it. 

3. Black-Body Radiation 

With the derivation of the Hawking temperature breaking 
down at the reduced Planck mass, the derivation of 
black-body radiation is also in question. However as we 
see below, a black hole with the reduced Planck mass 
and arbitrary temperature still radiates a density of en-
ergy with the black-body distribution. 

3.1. Resistive Force 

We begin by assuming aquadratic potential energy term. 
If the equipartition theorem and Heisenberg Uncertainty 
principle hold [9] we can derive the potential energy term. 
We have for one dimension, 

             (14) 

From the equipartition theorem, 
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If 0x p   and if 0 2p x    , one can deduce 
the potential energy and the associated force 
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where, 

2 Bk T .              (19)   

In Section 4 we show how this force is related to ki-
netic motion. Further in Section 6 we show this resistive 
force can also be derived from the self-gravitational po-
tential of the particle and thus only acts over the distance 
defined by the Schwarzschild radius. Since the Sch- 
warzschild radius is much smaller than the quantum step 
size of any particle we have experimental data on, we 
have never directly observed this effect. 
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3.2. Energy Density 

Pulling together the kinetic and potential energy terms 
for all three dimensions we have the energy of the 3-D 
oscillator 

   2 2 22 2 2
2

1
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m
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m



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Again as the harmonic oscillator is in the ground state, 
we see our starting point with dual Gaussian wave func-
tions is justified. Again solutions for position and mo-
mentum in the ground state given by Equations (1)-(4). 

Thus the particle’s wave function is isomorphic to a 
Wigner function of a point particle at  
squeezed to assure the equipartition theorem holds for 
both the kinetic and potential energy [15]. We can solve 
for the probability distribution on   [16]. 
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The average energy of this distribution is the 3-D 
ground state energy of the harmonic oscillator,  

03 2 3 2 spring constant 3m k T     B . However 
before we can associate this probability distribution with 
the internal radiation density, we must account for the 
fact that multiple photons can occupy the same state [9]. 
Thus if M  is the number of photons we have, 
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And  

 
 

3 3

radiation ,
2 B

T M
p d p d

M k T

2

3
e B

M

k T d


      
 

 
 

(25) 

To deduce the radiation density from the probability 
distribution on the photons, one must divide by the sur-
face area at c ,  2

4A c   and multiply by 1  
times the power which in this case is 
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Lastly, sum over all states of photons M (from 1 to ∞), 
and both degrees of polarization [17] since all are possi-
ble. 

 (28) 

One will recognize the energy density of Black-body 
radiation, [17]. 

4. Quantum Solution (Continuous Space 
Time) 

4.1. Free Particle Diffusion 

We begin with the quantum diffusion of a free particle, 
which can be derived from the equations of motion [10]. 
With zero force and 

 

 one can deduce, 
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This solution has three parts. The linear term is from 
classical diffusion and Einstein’s kinetic theory [18]. 
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The constant and quadratic parts are from quantum 
diffusion which is solved (typically by) Fourier Analysis 
on the kinetic energy Hamiltonian. 
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4.2. Resistive Force 

In Section 3 we assumed a quadratic potential energy 
term and derived a resistive spring force. Here we will 
derive the same force but from kinematic arguments. If 
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we look at classical diffusion term and consider the value 
at t   

2

2 Bm mk T
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 
2D         (37) 

Next rearrange the diffusion constant 
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Replacing x vt D and equating 2   to  we 
have, 
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4.3. Modified Langevin Equation 

With a particle no longer free we must re-solve for the 
variance using the Langevin equation. However contrary 
to the ordinary Langevin equation [15,18] we will change 
the assumption that the noisy driving force is uncorre-
lated with the particle’s location. As we just derived, the 
force is anti-correlated with the position 2F mr  

1 D
. 

The  equations of motion become, 
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This equation can be used to solve 2x  if one assumes 
the virial theorem [9] where the average quadratic poten-
tial energy is equal to the average kinetic energy. The 
initial condition   0 2x x t m    is also assumed 
ensuring the equation’s boundary conditions obey Hei- 
senberg’s Uncertainty. With calculus and the chain rule, 
one has, 
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This version of the Langevin equation has the familiar 
  term; however, it represents a stationary process 

where the ordinary Langevin equation is non-stationary.  

4.4. Stationary Diffusion 

The quantum solution from the modified Langevin pre-
sented in Section 4.3 is very interesting for two reasons. 
First it has a finite asymptotic value, which is what we 
would expect for a quantum solution to a black hole. We 
would expect that a black hole has a finite width to it and 
the outward diffusive pressure is balanced by an inward 
gravitational pressure. 

Secondly we notice the asymptotic variance of posi-
tion is twice that of 0

where the particle gets the energy needed to radiate. The 
energy transfers over to the radiation field when the dark 
particle’s wave function collapses as the photon is cre-
ated. After the photon releases, the dark particle begins to 
diffuse again now at temperature of 

 2
Δx . This represents the dark 

particle cooling. As the particle diffuses out to 0 2
2 Δx  

the temperature cools to 2T

Bk T
 and the total energy in the 

oscillator goes from 3  to 3 2Bk T . This is also  

2T

T

. 
To remain consistent with our analysis above, if the 

photon is not collected by a neutral hydrogen atom be-
fore the next cycle of the harmonic oscillator begins, the 
photon will be re-absorbed, the dark particles’ position 
will become fuzzy again and it will regain its energy and 
maintain its original temperature . 

5. Quantum Solution (Discrete Space-Time) 

5.1. Discrete Space Time 

Adding credibility to the modified Langevin equation, I 
simulate the outcome. Discrete space-time has been 
around for a while [19] and is becoming even more im-
portant [20]. To derive the correct model and the correct 
parameters for the model we will start with what we 
know. 

5.2. Standard Bernoulli Process 

The standard Bernoulli process is thoroughly reviewed 
by Reif [17] and Chandrasekhar [21]. In the standard 
Bernoulli process a particle steps to the right or steps to 
the left a distance ,1 x  with probability   re-
spectively at every time step t . To derive the spatial 
step size, x , we look at the variance as a function of 
the number of steps, K , and compare it to the continu-
ous solution. Assuming 1 2 ,  

 2 2Δ
K

x x K             (42) 

From Dirac’s solution to the eigenvalue of the velocity 
[22] of a particle we know, x c t 
t K t

, and since 
 , we have, 

 2
Δ

K
x x c t  

 2 2Δ
K

p p K

            (43) 

A similar uncorrelated process in the momentum space 
gives us 

            (44) 

From the virial theorem [9] we see, p mc K  , 
giving us the discrete linear solution 

       2
2 2 2

2

Δ
Δ Δ 2K

K

p
x t x t x c t

m
    

   

    (45) 

2
ΔxFrom the continuous linear solution t t m   

one deduces, 

2
x

mc
 


               (46) 
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5.3. Bernoulli Process with Resistive Force 

We can now proceed to modify the standard Bernoulli 
processes to account for the resistive force we found in 
the continuous case. We will find this discrete solution is 
equal to the modified continuous Langevin equation. 

To begin with, we need to match the continuous 1-D 
force, 2F mx    with the ensemble average force 
experienced by the discrete case. The ensemble average 
force felt in the discrete case is the probability that the 
particle experiences a positive change in momentum 
times the impacted force p t   plus the probability 
the particle experiences a negative change in momentum 
times p t  . We can solve for the probability   as 
a function of x  by examining the ensemble average 
discrete force on the particle felt at the location x  dur-
ing time t . 

      1F x x
p p

x
t t

 
 




 

         (47) 

Solving for x  we have, 

  2
1

mx t

p

1

2
x


 

 
   

p

           (48) 

We can reduce this further since we know   and 
t . Since we are dealing with the harmonic oscillator 

the only energy transition can be in multiples of the 
quantized energy of the oscillator, 0 B2k T  . Thus a 
change in momentum p  must be equal to 2k T c

t
B ; 

  can also be replaced by 22mc  as described 
above. 

  1

2
1 Bx k T

c

   
 

x             (49) 

The best way to show how this works is through a 
model where we show the variance of the position is 
equal to that of the modified continuous Langevin equa-
tion. 

5.4. Computer Model 

The following Matlab code shows the discrete model 
gives the same solution as the continuous modified Lange- 
vin. See Figures 4 and 5. 

G=6.67e-11;    %Constants 
hbar=1.05e-34; 
c=3e8; 
m=sqrt(hbar*c/8/pi/G); %Mass 
dt=hbar/2/m/c^2;  %Time step  
dx=c*dt;      %Spatial step 
D=hbar/2/m;   %Diffusion constant 
kT1=m*c^2/72;   %Arbitrary Temperature #1 
kT2=m*c^2/97;    %Arbitrary Temperature #2 

tau1=hbar/2/kT1;       %Thermal time #1 
tau2=hbar/2/kT2;       %Thermal time #2 
dp1=dx*m/tau1;      %Momentum step #1 
dp2=dx*m/tau2;      %Momentum step #2 
 
t=0:dt:2*pi*max(tau1,tau2); %Time vector 
 
N=100000;        %Number of trials 
 
x1(:,1)=zeros(N,1);        %Initial conditions 
x2(:,1)=zeros(N,1); 
p1(:,1)=zeros(N,1); 
p2(:,1)=zeros(N,1); 
 
for k=1:length(t)-1 
 
%Determine probability 
Bx1=.5*(1-kT1*x1(:,k)/hbar/c);   
Bx2=.5*(1-kT2*x2(:,k)/hbar/c); 
Bp1=.5*(1-p1(:,k)*c*dt/hbar);   
Bp2=.5*(1-p2(:,k)*c*dt/hbar); 
 
%Sample the probability and step 
x1(:,k+1)=x1(:,k)+dx*(2*floor(rand(N,1)+Bx1)-1);  
x2(:,k+1)=x2(:,k)+dx*(2*floor(rand(N,1)+Bx2)-1); 
p1(:,k+1)=p1(:,k)+dp1*(2*floor(rand(N,1)+Bp1)-1); 
p2(:,k+1)=p2(:,k)+dp2*(2*floor(rand(N,1)+Bp2)-1); 
 
end 
 
%Update position to include momentum contribution 
x1=x1+p1*tau1/m;  
x2=x2+p2*tau2/m; 
 
figure(4) 
%Calculate variance from discrete model 
xvar1=mean(x1.*x1)-mean(x1).^2;   
xvar2=mean(x2.*x2)-mean(x2).^2; 
%Calculate variance from Langevin 
langevin1=2*D*tau1*(1-exp(-t/tau1));   
langevin2=2*D*tau2*(1-exp(-t/tau2)); 
plot(t,xvar1) 
plot(t,langevin1,'r') 
plot(t,xvar2,'g') 
plot(t,langevin2,'k') 
 
figure(5) 
sigma=sqrt(2*D*tau1);  %Asymptotic variance 
x=-4*sigma:dx/10:4*sigma; %Position vector 
P=hist(x1(:,length(t)),x)/N;  %Calculate PMF 
%Calculate PDF 
p=1/sqrt(2*pi*sigma^2)*exp(-x.^2/2/(sigma^2))*dx;  
plot(x,P) 
plot(x,p,'r') 
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Figure 4. The variance in position of a dark particle; com-
parison between the discrete model and the exact continu-
ous solution at two different temperatures. 

 

 

Figure 5. Probability distributions for one temperature; a 
comparison between discrete model and continuous theory. 

6. Friedmann’s Equations Solutions 

We now show that by combining the energy density with 
three different equations of state, 1, 1 3, & 1 3w    
we arrive at the same solution as what was derived in 
both the continuous and discrete quantum solutions. The 
solutions to Friedmann’s equation with the densities 
standing alone correspond to the solutions to the linear 
and quadratic time terms of the variance when the parti-
cle is free. We need to assume the particles comes as 
pairs such that we can define a general relativistic length 
scale L  and a quantum mechanical length scale . 

6.1. Length Scales 

We define L  as twice the light time  , the maximum 
distance two particles can traverse in time  . 

2
B

c
L c

k T
 





              (50) 

We define  as the variance between the two parti-
cles. If the two particles have independent wave func-
tions we have 

2 Δx                (51)  
Using these two definitions we will show that under 

three different equations of state L  (the solution to 
Friedmann’s equation) will be equal to  (the variance 
of quantum diffusion).  



6.2. Equation of State, w = 1/3 

First for the equation of state 1 3w  , we have the en-
ergy in the 3-D oscillator 

   2 2 2 2 2 2
2

1

22
x y y

m
x y z p p p

m



         (52) 

We begin with the probability distribution on  
 ~ ,p T d  

 
 

 from Section 3.2  

3 2

3
~ , e

2
Bk T

B

p T d d
k T


  








3k T
3V L

      (53) 

Since we are no longer talking about photons/bosons 
like above but are talking about fermions we don’t have 
to account for multiple particles. The average energy of 
this distribution is the three dimensional ground state 
energy of the harmonic oscillator, . B

If we consider a volume  the energy density is 

 
   1 3 3 42

3 3B
w

k T
L

c L c L
   


        (54) 

The Friedmann equation when the density is domi-
nated by this equation of state, 1 3w 

 
 becomes, 

 
 

2

1 3 4

8 8

3 w

L G G
L

L c L
 

      
 
 

 
       (55) 

 LSolving for t  we see it is equal to linear diffusive 
term from Section 4.1. 

1 2
2 2

1 3 linear

32 2
w

G
L t t

c m
    

 

         (56) 

6.3. Equation of State, w = −1/3 

In deriving the density and solution for this equation of 
state we turn to a derivation of Friedmann’s equation [1]. 
We will start by deriving the gravitational explanation of 
the resistive spring force. Equating the average gravita-
tional potential energy to 3  for 3 dimensions 
gives, 

2Bk T

gravity

3

2
Bk TGMm

PE
r


          (57) 
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When 34 3M r    

24

3

GMm G mr

r

  
         (58) 

Due to symmetry we can re-write 2r  as  
 2

03 Δ 23 4 Bx mk T   [9] to arrive at, 

 2

2

28

3
Bk TG 




         (59) 

Plugging this back into the relationship between po-
tential energy and force [9] and with time constant 

2 Bk T    we have, 
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d d d 4
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B
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r r r r
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            
   

 
  



 (60) 

When a particle moves within the space curved by the 
black hole, a resistive spring force is in play. Here we see 
a gravitational explanation for the spring force.  

Going back to solve for the density we have, 

2
03

3 2
Bk Tr



T

4 G m 
            (61) 

Where 0  is constant. With  22 23 Δ 3 2r x  0  
and m the reduced Planck mass, the density is 

 
 

0
2

6 Bmk T

c



 

1 3w                (62) 

Friedmann’s equation and its solution show 1 3  is 
equal to the quadratic diffusive term from Section 4.1. 

wL 
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 

2

1 3

8

3 w
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2
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   
 

2 2
quadratict         (64) 

Notice the solution of 1 3w  is imaginary because of 
the positive curvature associated with this equation of 
state [1]. Yet we still have 

L 

L  

cle

. In the next two 
paragraphs we derive the holistic energy density, 

dark parti  which is always positive and thus  
is real. 

dark particleL

1w  
The last term we need is a constant energy density, 

. To solve for the constant density, we insert 

0 0B  (which we show is the asymptotic 
value of the solution) into the density of the oscillator. 
L mk T 

 
 

 22
0
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3 Bm k T

c


1 1 3 0

0

3
w w L L

c L
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
  (65) 

The solution to Friedmann’s equation with this density 
is exponentially increasing, however if we add this den-
sity term to our other two densities we see the solution is 
equal to the solution of the Langevin equation. 

dark partilce 1 1 3 1 3w w w       
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By applying calculus, the solution to Friedmann’s 
equation with this density is 
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 0B 02k TWith     and the D 2m 
L

, this is 
re-written, showing DP  equal to the stationary Lange-
vin equation from Section 4.3. 

 02 2
0 Langevin4 1 e t

DPL D            (70) 

We see the solutions to Friedmann’s equation and the 
equations of quantum diffusion behave in the same way. 
It is interesting to note that the density vanishes at the 
asymptotic value  0DP  so we don’t have to 
worry about this fermionic density contributing to the 
cosmological constant. 

0L 

1w  

7. Discussion 

A similarity one might find with other current work 
would be Primordial Black Hole Remnants (PBHR). 
Chen uses PBHRs nicely to explain dark matter [23]. In- 
terpreted here the density of state is determined by how 
the density scales as a function of the length scale. We 
have suggested that when the dark particles cannot cou- 
ple to ordinary matter the temperature and thus density is 
frozen, implying a density of state of  and ex- 
plaining dark energy. However if the dark particles are 
near neutral hydrogen atoms (et al. near galaxies), al- 
lowing them to couple and release heat, the density of 
state could be positive and the acceleration equation 
would be positive, more in line with dark matter [1].  

A test of the hypothesis that if neutral hydrogen atoms 
are near, dark particles act like more like dark matter 
than dark energy would be to look for cosmological ob-
servations where we observe either bountiful or scanty 
amount of neutral hydrogen. Perhaps Virgo21 (where we 
observe neutral hydrogen atoms and possibly a high den-
sity of dark matter) [24] or global clusters (where any 
neutral atoms would be ionized and almost no dark mat-
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ter) [25] could serve as a first validation. 
A further validation of this hypothesis might be ex-

perimentally possible on Earth. A team led by Perl [26] 
has suggested two identical side-by-side atom interfer-
ometers could reveal a dark energy density by measuring 
the time it takes for atoms to fall through gravity, respec-
tively between the two interferometers. One could build 
on this approach and artificially alter the density of the 
dark particles by surrounding each interferometer in a 
bath of neutral hydrogen atoms (or other suitable sink 
that is not dangerous at high temperatures). One bath 
could be kept at a low temperature and the other at a high 
temperature. If the bath was large enough to allow the 
neutral hydrogen and the dark particles to couple and 
exchange heat before the dark energy reference frame 
moves past the interferometers [26], the density of dark 
particles that interacts with the falling atoms would be 
different between the hot and the cold interferometers 
and the difference would be measured.  

Questions still remain, like the exact mechanism for 
how the dark particle exchanges heat, and more analysis 
is needed for dark particles fully to answer the questions 
of dark energy [2,5], or for that matter other open ques-
tions like dark matter [27]. Yet this initial brief report is 
intended to set the physical parameters and give guidance 
for how the forces of gravity and quantum mechanics 
work together and have complementary solutions in a 
simple straightforward way. 

While it is not possible to create a particle with the 
reduced Planck mass artificially, it would explain why 
prior experiments have been unable to locate the missing 
energy. 

As a note, the dark particle was built out of research in 
Finite Difference Time Domain (FDTD) modeling of 
diffusive motion [19]. By noticing a connection between 
Bernoulli’s process [17,21] and black-body radiation [17] 
it was possible to derive the continuous version of the 
theory. Application to Friedmann’s equation followed a 
need to explain the resistive spring force that keeps the 
particle stationary. When the theory suggested a density 
of black-body radiation was hidden (because the cross 
section of the dark particle is on the order of the Planck 
length) the tie to dark energy was made. 

Mountain View, CA, March 2011. 
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