Noveber 1986 , , Report No. STAN-CS-86-1134 @

SR

—_—

-
N :
N UlO: A Uniform1/0 System Interface
2 for Distributed Systems
|
Q0
< "
David R. Cheriton

hY

Department of Computer Science

Stanford University
Stanford, CA 94305

DISTRIBUTION ST/ TTVETT &

Approved for piiiic rele
Distribusion @07 niia

SECURITY CLASSIFICATION OF THIS PAGE (When Leia Entered)

READ INSTR)
REPORT DOCUMENTATION PAGE [gertEAPINSTRUCTIONS
T REFORT NUMBER 2 GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and dubtitle) , S. TYPE OF REPORT & PERIOD COVERED
ULIO: A Uniform I/0 System Interface Technical

for Distributed Systems

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(S) 8. CONTRACT OR GAANT NUMBER/(4s)
David R. Cheriton NO0O039-83-K-0431
NO0039-84-Cc-0211

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Department of Computer Science
Stanford University

1. fCONTQOLl.AmG OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency November 1986

1400 Wilson Boulevard
Arlington, VA 22209

14. MONITORING AGENCY NAME & ADDRESS(/! different irom Controlling Otlice) tS. SECURITY CLASS. (of thie report,

13. NUMBER OF PAGES

18¢. DECLASSIFICATION ' DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, if dilferent {rom Report)

8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side |/ necessary end identify by block number)

distributed system, input/output, interface, byte stream,
remote procedure call, interprocess communication, files

20 ABSTRACT (Consinue on reverse side If necessary and Identily by block number)

See reverse

DD %% 1473

SECURITY CLASSIFICATION OF THIS PAGE (When Dere Entered)

SECLARITY C._ASSIFICATION OF THIS PAGE ‘When Data Entered)

19 KEY WCRDS (Continyea!

A uniform [/O interface allows programs to be written relatively independent of specific I/O services
and yet work with a wide variety of the [/O services available ia a distributed environment. [deally, the
interface provides this uniform aczess without excessive complexity in the interface or loss of performance.
However, a uniform interface does not arise from careful design of individual system interfaces alone; it
requires explicit definition.

In this paper, we describe the UIO (uniform I/Q) system interface that has been used for the past five
vears in the V distributed operating system, focusing on the key design issues. This interface provides
several extensions beyoad the /O interface of UNIX, including support for record [/O, locking, atomic
transactions and replication as well as attributes that indicate whether optional semantics and operations
are availabie. We also describe our experience in using .nd implementing this interface with a variety of
different I/O services plus the performance of both locai and network [/O, We conclude that the UIO
interface provides a unifcrm I/O system interface with significant functionality, wide applicability and
no significant performaace: penalty.

20 ABSTRACT (Continuedl ' -

DD. 5351473«

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data trnrered)

UIO: A Uniform I/O System Interface
for Distributed Systems

David R. Cheriton
Computer Science Department
Stanford University

e Abstract

A uniform I/O interface allows programs to be written relatively independent of specific I/O services
and yet work with a wide variety of the /O services available in a distributed environment. Ideally, the
interface provides this uniform access without excessive complexity in the interface or loss of performance.
However, a uniform interface does not arise from careful design of individual system interfaces alone; it
requires explicit definition.

In this paper, we describe the UIO (uniform I/O) system interface that has been used for the past five
years in the V distributed operating system, focusing on the key design issues. This interface provides
several extensions beyond the I/O interface of UNIX, including support for record 1/0, locking, atomic
transactions and replication as well as attributes that indicate whether optional semantics and operations
are available. We also describe our experience in using and implementing this interface with a variety of
different I/O services plus the performance of both local and network I/O, We conclude that the UIO
interface provides a uniform I/O system interface with significant functionality, wide applicability and
no significant performance penalty. =~ - y. g .

This work was supported in part by the Defense Advat;é'ed Projects Agency under contracts MDA903-80-C-
0102 and N00039-83-K-0431, by Digital Equipment Corporation, and by the National Science Foundation.

The initial work was supported by the Natural Sciences and Engineering Research Council of Canada.

Accession For .
NTIS GRA&IL
DTIC TAB
 Unannounced a
Justificatio
DTIC
Y BY
aPECTED _Distribution/
4 Availability Codes
|Ava'11 and/or
:Dist [Snacial

* |

Al

General Termrs: Design, Performance, Experimentstion, Standardization

Keywords and Phrases: distributed system, input/output, interface, byte stream, remote procedure call,
interprocess communication, files.

CR Categories: D.4.4 Input/Output

1 Introduction

A uniform [/QO interface specifies the syntax and sernantics for a set of I/O operations that are provided in a
sufficiently similar form across the I/O services of an operating system such that programs can be written to
be relatively independent of the data sources and sinks to which their [/O operations are eventually bound.
A familiar example of such an 1/O interface is the UNIX I/O interface [29] ! consisting of the system calls
open, read, write, seek, viose and ioctl. 2 Most programs written using this I/O interface can work with a
variety of different 1/O services including disk files, terminals and pipes.

Without a uniform I/O interface, each program would only work with the set of I/O services it had been
explicitly programmed to :andle. In the extreme, every program would have to be explicitly programmed
tc handle (for example) output to a terminal as well output to a file or else only work with one or the
other. The result would be greater burden on programmers, greater program ccmplexity and less flexible
interconnection of pregrams with 1/0 servizes.

A well-specified and powerful uniform I/O intetface is even more important in a distributed system
because of the multiple different file systems, printers, network services and so on that can be interconnected
and the wide range in function they can provide. Proper specification is essential so that existing services
can be retrofit with a facadc that implements the interface and so that new services can be designed to
work with the existing applications. In this regard, the UNIX I/O interface is neither well-specified, nor well
suited to a distributed environment based on remote procedure call (RPC) (3] or message-passing, nor does
it provide support for locking, replication and atomic transactions.

A uniform interface does not arise frorn careful design of individual system interfaces alone. There needs
be a ~ommon abstraction and interface for a class of services with the interface of each service in that class
designed to L= compatible with the common interface. For example, if a read operation is part of a common
1/0 interface then all I/O services should implement a read operation with the same syntax and the same
generic semantics 3.

In addition, the interface should specify common procedures for all reasonably general I/O functionality
and distinguish between compulsory functionality— that which all I/O servers need to provide~—and optional
functionality. Optional functionality in a uniform icterface specifies a common interface if the functionality
is present, but does not require every service to implement it. For example, not all servers can support
random access to data, yet this is an important functionality to provide in a uniform way to clients. In
this vein, a uniform interface that simply specifies the “lowest common denominator” of the I/O services is
inadequate, since that could not include random access.

Finally, the designer should recognize that some functionality is too specialized to include in the uniform
interface and instead provide a standard escape mechanism for accessing this functionality. For example,
setting a broadcast network interface into so-called “promiscuous mode” is highly specified to a certain class
of devices and is not appropriate as part of the uniform interface. Nevertheless, access to the functionality is
important. The appropriate choice of a common abstraction for I/O and partitioning of functionality across
the compulsory, optional and “escape” portions of the interface is a significant design challenge.

Additional considerations are introduced by the use of RPC or equivalent as the transport-level communi-
cation mechanism.? First, there is no connection maintained between calls so the I/O interface must provide

1UNIX is a trademark of AT&T Bell Laboratories.

2In fact, Thompson [34] describes the UNIX kemnel as primarily an “I/O multiplexer”.

3The exact semantics of, for example, reading from terminal differ from reading from a file. However, at some level of
abstraction, namely the generic level for the class under consideration, the semantics are the same.

*For example, the V [PC facilities are equivalent to RPC for our purposes here.

Application Program

application programming interface
I/Q Run-time Library

Figure 1: Application I/O versus System I/O Interface

connection support itself 5. By connection, we refer to tho state and association that span multiple calls.
For example, a multi-window service must be able to associate multiple independent calls with the same
window. Similarly, an 1/O service requires criteria for reclaiming the state record and resources associated
with 2 client, especially when the client terminates abnormally. Finally, there needs to be uniform criteria
for access contro! to the I/Q level connection state and resources.

With a virtual circuit-based communication mechanism, the server can maintain one virtual circuit per
window and associate all data cotiing in on one circuit with the same window. Also, the server is normally
informed when the circuit is cleared as a result of client failure so the service can reclaim the state at that
point. Finally, the service may assume that any client able to use the virtual circuit is authorized on this
I/O connection.

Although these considerations may appear to point out deficiencies in the RPC model of communication.
we argue that I/O state maintenance, reclamation and protection can be done easily at the I/O interface
level, allowing for greater optimization by the I/O service modules. In addition, we strongly support the
view that the RPC model simplifies the transport service compared to using a virtual circuit model.

In this paper, we describe the uniform I/O (UIO) system interface used in the V distributed operating
system [6,9] as an example of a uniform interface that addresses the above issues. The UIO interface defines
a comnion abstraction for a diversity of services that fit into the general notion of I/O. We focus on the
key design issues and on the rationale behiud the design choices made in developing this interface. We also
describe our experience in using and implementing this interface with a variety of different I/O services
as well as the performance of both local and network I/O. We conclude that the UIO interface provides a
uniform I/O system interface with significant functionality, wide applicability and no significant performance
penalty. We also propose the UIO interface as a good design for the system I/O interface in other RPC-based
distributed systems.

In the following discussion, it is important to distinguish the I/O system interiace from the application
1/0 interface which is the abstraction seen by the application programmer. The I/O system interface is an
operating system interface designed for maximum performance, reliability, security and flexibility to handle
a variety of different application I/O interfaces. The application I/O interface is defined by the programming
language, as in Ada or Pascal, or by a standard run-time library, as in C [22]. It is implemented on top
of the system I/O interface as a set of standard procedures, the run-time library, linked directly with the
application, as shown in Figure 1.

This distinction is significant in centralized systems because of the cost of protection boundary crossing
associated with the system interface. For example, byte-stream I/O implemented by get-byte and put-byte
system calls would be significantly slower than an application run-time implementation because of the system

5 An RPC mechanism may use an underlying connection mechanism. However, it is not generall; .\ ailable to the RPC client
or server level.

identifier

owner

authdomain

permissions
attributes
lockwaittime
blocksize
nextblock
lastblock
last byte

Figure 2: Client-visible Generic UIQ State

call overhead. In modern distributed systems, this distinction is even more pronounced owning to several

factors that favor putting as much function as possible in the application run-time routines. These factors
include the following;

e The cost of a remote system call is higher since it entails network communication and all the associated
costs. Thus, performance is improved by adding function o the application run-time procedures if it
reduces the frequency of these remote calls.

e Server processing is a critical shared resource since each server machine that implements these system
calls provides service to multiple nodes running applications, each with their own processor(s). Over-
all system performance is improved by adding to the application run-time procedures function that
transfers processing load from the server processor to the client processors.

e The falling cost of semiconductor memory has reduced the role of the system module as a mechanism
for run-time code sharing, allowing interface design to be based on reliability, security and communica-
tion/processing overhead considerations alone. In our experience, these criteria tend to shift function
from the system service modules to the application run-time routines compared to the function place-
ment in conventional operating systems.

Recognizing these factors, the UIO interface is designed to minimize load on I/O servers and the communica-
tion mechanism, relying on a significant layer of I/O run-time procedures to build a conventional application
programming I/O interface on top of the UIO interface.

The remainder of the paper is organized as follows. The next section describes the key design aspects
of the UIO interface. Section 3 describes our experiences with this interface and its associated protocol in
V, including performance. Section 4 indicates the relation of this work to other work. We close with some
conclusions. The UIO intetface is summarized in the Appendix.

2 Key Design Aspects of the UIO Interface

The UIOQ interface is defined in terms of an abstract object called a UIO. The operations on UIO objects
constitute the operations of the UIO interface; the UIO object itself represents the state of the interface,
the I/0 state. The client-visible generic UIO state is shown in Figure 2. By generic, we mean that this
client-visible state is present in all UIOs. UIO objects for specific services may include client-visible state
specific to the service. For example, a UTO object corresponding to a window may include its current screen
coordinates as part of its client-visible state.

c

S oy UIO Interface

= , Client /O State ' Server

% X ' /O State
)

g open)

) file state N ulo Files

L]

TR\ =

= L)
S A
= Client I/O State N \Q
L, N
8. open - uo <3
& | filestate N

\

Figure 3: Partitioning of Client and Server I/O State

The UIO object represents the I/O state as some control state and a sequence of data blocks, as depicted
in Figure 2. The control state includes information required to access the data. The sequence of data blocks
represents the data that can be read and written through this interface. The control state portion defines:
an identifier as a short name fur the object, owner, guthorization domain and permissions as criteria for
protection, accounting and reclamation of the I/O state, and, attributes that indicate client-visible differences
between UIQs. For example, some 1/O services support random access whereas others must restrict reading
and writing to sequential access. These differences arise from optional aspects of the UIO interface that
different services elect to support, or are able to support. The lockwaitiime indicates the maximum time
to wait for a lock. The sequence of data blocks associated with a UIO is described in the control state by
nertblock, the current lowest numbered block, lastblock, the current highest numbered block, lastbytes, the
number of bytes in the last block. and blocksize bytes, the maximum size for blocks.

In a systom such as the V distributed system using the UIO interface, each I/O service is abstracted as
one or more UIO objects. For example, the V transmission control protocol (TCP) service [11] is abstract«d
as two UIO objects per connection, one for reading and one for writing. Allocation and initialization of I/O
state is abstracted as the creation of one or more UIO objects using the Create U'io operation. Cleanup and
reclamation of I/O state is handled by the deletion of UIO objects using the ReleaseUio operation. With
respect to the TCP service again, CreateUio sets up a connection and ReleaseUio closes the connection.
Reading and writing is represented as access to the UIO data blocks using the operations ReadUio and
Write Uio. Operations are also provided for querying and modifying the UIO control state. The CreateUic
operation effectively creates an abstraction of the underlying file-like object or I/O service in the form of a
UIO object, setting up a translation from the UIO operations to specific operations on the reai 1/0 service.
For example, the ReadUio operation for a UIO corresponding to an Ethernet interface must be translated
into the device-specific operations in order to read from the interface.

The UIO interface partitions I/O state between the client run-time library and the I/O server, as shown
in Figure 3. The UIO object corresponds to the portion of the open file connection state maintained in the
service module. The remainder of the I/O state is maintained in the client run-time library. In particular.
the client run-time state includes open file descriptors that maintain current file position and perform the
translation between byte-stream (if used by the client) and block array, as supported by the UIO interface.
Maintaining this state in the client, rather than the server, reduces the space and communication costs to
the server. For instance, there may be multiple open file descriptors corresponding to a single UIO. This
separation of the “opening of files” at the client level from the creation of I/O state in the server also reduces
the processing load on the servers.

The following subsections describe the rationale behind key aspects of the UIO interface design. The
reader is referred to the Appendix for further details on the UIO interface.

2.1 Data Access Model

I/O functionality is centered around the reading and writing data between local memory and an external
storage or communication service. Each I/O operation must specify the unit of data to read or write, how
that unit is addressed or referenced, and how many units can be read or written at one time as well as the
ordering constraints on data access, i.e. sequential access, random access or sequential with rewind, etc.
Different I/O services exhibit considerable diversity with respect to these parameters. For example, disk
files may be addressed by sector number whereas record files may be addressed by character string keys.
Similarly, disk files may contain fixed-size blocks but user terminals deliver variable-length line records. A
file server can easily support large read and write operations yet these are difficult to provide in a terminal,
network connection or pipe. Finally, network connections are strictly sequential in nature, tape drives are
sequential but allow rewind or reset, and disk files provide random access. A uniform I/O interface must
specify a data access model that accommodates these differences yet provides a common abstraction.

In the UIO interface, the data access model is defined in terms of the sequence of data blocks associated
with a UIO object. The unit of data access is a block, with each block addressed by a (32-bit) block number.
The maximum size of block is given by the UIO state variable blocksize. In the common case of fixed-size
blocks, all but the last block are the fixed maximum size. All UIO objects support sequential access. The
ability to reset or perform random access is optional. A strictly sequential or stream UIO object only allows
read operations to the nextblock and write operations to the lastblock+1. These variables are incremented
as part of read and write operations in this case. Multi-block read and write operations are also optional.
The following paragraphs justify this abstraction.

The use of block as the unit of addressing has several advantages. First, the block unit is used to model
logical records such as those that arise in structured files, networks and interactive terminals. In the case of
structured files, each record corresponds to a block. In the network setting, each network packet is a block.
With an interactive terminal, each input line corresponds to a block. In each of these cases, a byte-stream
abstraction is difficult to implement and obscures record boundaries that may have important semantics to
the client §.

For I/O services without client-meaningful logical records, blocks serve as the unit of transfer between
client and server with the client otherwise ignoring the block boundaries. In these cases, the service module
picks the size of block and how it corresponds to the underlying implementation to provide a fast and simple
implementation. In this vein, most I/O services have some internal form of block as the unit of transfer,
buffering or ailocation. Exampies include memory page, network packet, disk buffer and disk sector. If the
block corresponds to this implementation block or multiples thereof, the server module is simplified and
server overhead for client requests is reduced. In particular, all client read and write requests start on a
block boundary so the server need not implement access to an intermediate point in its buffers. Optionally,
the server can limit its service to single block read and write operations, thus making these operations even
simpler to implement. The major disadvantage of our approach is that it requires the client to allocate buffer
space at least as large as the server’s block size. For example, an appiication using our UIO interface in
the V distributed system would have to have at least a 1024-byte buffer to read a file whereas in UNIX, for
example, it could read a byte at a time from the kernel. However, with the low cost of memory, we do not
regard this as a significant disadvantage.

Multi-block reading and writing are defined as optional parts of the interface because, with some services
such as file service, it improves performance and is easy to provide, whereas with other services, such as
terminal input, they are difficult to provide and of limited performance benefit. If a client attempts to
read or write more than the server can support, the server transfers up to the maximum it supports and
returns an error indication plus the amount actually read or written. For example, the V file server software
supports arbitrary size read and write operations, whereas the the V TCP implementation supports single
block (packet) cperations only.

Addressing data blocks using a 32-bit block number is simple, efficient and adequate for most 1/O services.

6Note that a byte-stream is a subcase of the block sequence model with the blocksize restricted to one byte.

For example, with a disk file, the block number designates the ordinal number of the block within the file.
For a terminal (or any stream) it acts effectively as a sequence number for input records. Moreover, the
block number is adequate to handle record-structured files in which records are indexed (or addressed) by
string keys using one of the following techniques. When the record file is accessed sequentially, the block
number is adequate to enumerate the records, being interpreted as the ordinal number of the desired record.
When the file is to be accessed by index key, the CreateUio operation can be used to create a view [16]
of the file corresponding to the subset of records with the desired key by having the name used in the
CreateUio operation specifying the file and key. For example, the name “/dbase/employees/name=smith”
in a CreateUio operation specifies that the database manager create as the UIO a view containing all
employee records with name key “smith”. With this mapping of structured files onto UIO objects as views.
an application uses block numbers to randomly access this subset of records as well as to read the view
sequentially. This approach effectively transfers the complexity of key-based addressing to the naming
facility. Alternatively, the client can access the index and the base set of records as separate UIO objects,
with the record identifiers in the index corresponding to the block numbers in the second UIO. That is.
for example, if the index gives records 17, 39 and 61 as corresponding to the key “smitn”, the client reads
blocks 17, 39 and 61 from the UIO corresponding to the base set of records to get these records. This latter
approach has the advantage of requiring less mechanism and state in vhe server.

As further support for structured files, an I/O server may optionally support two operations, InsertU-
ioBlocks and DeleteUioBlocks for inserting new blocks in a file and deleting existing blocks. The Dele-
teUioBlocks operation also provides the ability to truncate UlOs on arbitrary disk files. The insert and
delete operations effectively renumber the resuiting block sequence as necessary.

Several other aspects of the data access model merit discussion. First, the data blocks associated with a
UIO are addresgsed as a single sequence of blocks because this is adequate for the common cases of random
access files and a uni-directional streams, i.e. sequential reading or writing. The most common case not
directly supported by the UIO interface is the bi-directional stream, such as a TCP connection [11]. A
bi-directional stream can be handled as two uni-directional UIO-based streams. However, there needs to be
a way to associate the second UIO with the same underlying bi-directional stream as the first. For example,
if a UIO is created corresponding to the writing side of a TCP connection, the second UIO needs to be
associated with the reading side of the same TCP connection. Similarly, if a UIO is created corresponding
to a window in a multi-window system, the second UIO needs to be associated with the input stream from
that window. To achieve these associations, the normal CreateUio operation is used to create the first UIO.
corresponding to the stream in one direction. The CreateRelatedUio operation creates the second UIO.
taking as argument the first UIO, so that this second UIO is associated with the same stream but in the
other direction. The direction of the first stream is either reading or writing, depending on the specified
access mode. An implementation may restrict the order and modes used in creating these related U10
objects. For instance, it may require that the writing stream be specified in the initial CreateUio call if
the read stream is to be opened at all. In addition, an implementation may effectively have to create both
streams in response to the first call (since this is required by some network protocois, tor example) and
simply create the UIO for the second stream in response to the second call. This scheme generalizes to the
creation of multiple related UIO objects.

An alternative scheme for creating multiple related UIO object is to have the first CreateUio operation
create the multiple UIOs with a fixed association between the identifier for the first UIO and those of the
others. The client can then determine the identifiers of the other UIOs from the first and proceed to use all
of them after a single CreateUio operation. For example, the V pipe server implementation creates two UlOs
in response to a CreateUio request, the UIOs representing the two ends of a new pipe. 7 The parameters for
the output UIO are returned in response to the CreateUio operation. The identifier for the reading end is
one greater than that of the writing end so the client can easily determine its uio-id and use it immediately
without additional create operations. This approach is best applied when all the related UIO objects are

7 A single UIO is adequate in theory to represent a pipe since a pipe is a uni-directional stream. However, the V pipe server
uses two UIOs to allow the writing end to be released independent of the reading end.

generally required whenever the first one is created, as is true with pipes.

The UIO block model does not explicitly support sparse files, that is files in which large holes of undefined
data blocks may exist between the start of the file and the last block in the file. For this case, the nextblock
and lastblock fields act as upper and lower bounds on the range of valid blocks. Reading an undefined
block causes the ReadUio operation to return an error code indicating the block is undefined. This provision
is adequate because most uses of sparse files impose an access structure that guides access to the defined
portions of the file, avoiding the holes. It rarely makes sense to read a sparse file sequentially.

Finally, ReadUio and WriteUio specify the block number in each invocation eliminating the need for the
server module to maintain a per-client current block number and implement a seek operation to modify this
current block number when random access is implemented. (With the UIO interface, the seek operation is
instead performed locally in the client run-time library, which also maintains the current block position.)
Explicit specification of the block number also allows the ReadUio operation to be handled as tdempotent
because the block nurmber is an absolute address. That is, rereading from block K should have the same
effect as the original read operation unless there has been an intervening write. The disadvantage is that it
is more difficult to share a file pointer between two different programs, than it is in UNIX for example.

Handling remote operations idempotently is attractive because it reduces the cost of providing for re-
transmission of the return packets. Without idempotency, the server (at the transport-level) needs to retain
copies of all return packets for some timeout period in case they need to be retransmitted. With idempo-
tency, the server can handle the retransmission by simply redoing the request to regenerate the response.
The cost of retaining a copy of the return packets can be significant, especially for read operations returning
large amounts of data. In particular, the time taken to copy this data is approximately the same as the
time to transmit the data, at least on local networks. Thus, in the normal case, idempotency can reduce
by half the time to send return packets. Moreover, the cost of redoing an idempotent operation is incurred
infrequently because of the low error rates and low delay on local networks. In addition, with disk files.
for instance, the file server frequently has the requested blocks in its buffer pool from the original request
handling, so redoing the read operation can be handled as a new request at minimal cost, with zero cost
imposed on the normal case (when there are no retransmissions.) Given that file reading is often 80 to 90
percent of file activity, the performance benefits of idempotency in this one case alone can justify its support
in the design of both the I/O interface and the transport level.

Note that even stream UIOs can be made idempotent to the degree required here with relatively little
overhead, recognizing that only the last read ever needs to be retransmitted. To provide for retransmission
of the last block read, the server module saves this block in a buffer. A read of block K+1 acts as an
acknowledgement of block K, allowing the server to overwrite the buffer containing block K.

In general, we have optimized the UIO data access model for the common cases to achieve efficiency and
simplicity, identified techniques for handling less common cases, eliminated the need for per-client state in
U10 objects. and allowed for use of efficient idempotent read operations, as described above. 8

2.2 Representation of I/O State

A uniform I/O interface needs to support I/O state, state that is associated with access to the file or device.
as opposed to state associated with the file or device itself. For example, I/O state arises with conventional
disk-based files as file and record locks. Similarly, the temporary versions of a file created prior to atomic
update or abort are I/O state. A writer updates a temporary version of the file that logically only becomes
part of the underlying file after the commit point. Similarly, a reader may see a snapshot of the file that

% |dempotency, while contributing to system efficiency, has disadvantages in the reliability and error reporting in the system.
For example, if a server does not implement idempotency properly, it may only show up as a timing-dependent problem under
particular system load, not during the testing of the server. Also, with an idempotent ReadUio operation on a stream, the
error of reading repeatedly from the same block is not reported, even though it would cause a failure in a non-idempotent
implementation. However, we see idempotency as an essential technique for performance, especiallv when our general [/O
design must stand up to the performance comparisons with more specialized file access protocol such as used in Locus (35].

remains unchanged despite updates made to the file subsequent to the reader opening the file. Examples of
I/O state in other I/O services include:

e buffering and synchronization associated with pipes [29].

e screen coordinates, border, size and contents associated with a window or virtual terminal in a multi-
window system.

e protocol state associated with a network connection.

e status and contents associated with a printer spool file, all of which are created as a result of “opening”
the printer.

In each of these examples, the state is created when the entity is opened and typically discarded (in some
service-specific way) when it is closed. For example, the spool file is logically appended to physical printer
on close whereas the network connection state is just discarded (after a timeout period). Similarly, all the
state associated with a pipe is created when the pipe is opened and discarded when it is closed since a pipe
only exists when it is open.

In the UIO interface, the I/O state maintained by the server is represented by the UIO object. The
CreateUio operation provides for creation and initialization of this state. For example, a CreateUio operation
specifying a TCP connection allocates a descriptor and initializes the protocol state required to setup a
TCP connection as well as the generic UIO state. In general, the ReleaseUio operation allows release and
reclamation of this state, as well as service-specific actions associated with the UIO. For example, ReleaseUio
on a disk file may cause any associated modified buffers in the server to be written to disk.

The use of the UIO object for I/O state has several advantages. First, it is general enough to handle all
the different I/O services we have considered. Second, it defines a uniform client-visible view of the I/0 state
plus provides a basis for handling service-specific state. That is, each server can store additional state in its
UIO records and clients can access that state using the UioControl procedure. Finally, the UIO inte face
separates the I/O state representation from the communication mechanism. This is essential for systems
using RrC as the communication abstraction because RPCs do not support state between calls (at ieast
from a user’s standpoint). Although a virtual circuit-based transport level might directly support open file
connections with one virtual circuit per open file, this approach is expensive at the transport levei in the
number of connections required and does not eliminate the need for state at the I/O level for every open
file. Multiplexing multiple open file connections on a single transport-level connection introduces compiexity
that eliminates many of the benefits of virtual circuits without eliminating the virtual circuit overhead.
For instance, multiplexing on top of virtual circuits means that separate flow control is required for the
multiplexed streams and that the virtual circuit level flow control is useless and perhaps even a liability.

Despite the simplification offered by stateless interfaces such as used in WFS [31], state is necessary for
the generality required of a widely applicable uniform I/O interface. For example, it does not appear possible
to handle multi-window systems, pipes, network connection and numerous other 1/O services in a stateless
interface. The WFS design, while simple and elegant, only handled simple disk files and had no provision of
other devices and I/O services.

2.3 I/O State Management

The provision of state in the 1/O interface introduces the need to manage this state, specifically: protect the
state from unauthorized access, account for the costs of maintaining it, and reclaim the resources associated
with the state at some point. The [/O state needs to be protected since any process can attempt to invoke an
operation on any UIO simply by specifying the UIQ’s identifier. In contrast, a virtual circuit or connection
model can treat the connection as a communication capability as done in DEMOS [2] or Accent [27] to control
unauthorized access. Similarly, the server module must have some criteria for determining that it can discard
the 1/O state because the RPC model provides no transport-level notification that a client has terminated,
unlike that present in most virtual circuit-based communication systems.

To deal with these issues, each UIO has an associated UIQ owner process or task, authorizalion domain
and zccess permissions recorded as part of the UIO state. The initial owner of a UIO is the process that
requested its creation. The initial authorization domain is that associated with the initial owner. Initial
permissions are those required by the CreateUio access mode, namely read if the access mode is READ else
read and write.

On each UIO operation, the server checks that the requesting p-ocess is in the authorization domain
associated with the UIO and that the operation is consistent with the permissions, {c: ihat the proress is
associated with the authorization domain of the UIO owner). If not, the operation is terminated with the
error code NO_PERMISSION. The SetUioPermissions operation is used to modify the initial author.7ation
domain and permissions as required. Only processes in the same authorization domain as the owner of the
UIO or the owner of the underlying file can change the permissions. Moreover, tiey are restricted frocm giving
greater access to the data than provided during the original UIO creation or provided by the underlying file.
Using SetUioPermissions, the UIO owner can give a process access to a particular UIO without pr~viding the
process or its associated authorization domain with access to the underlying file. For example, a command
interpreter can pass open files to a program run in a restricted authorization domain that would not be able
to open the files itself. In general, a process can only get greater access to a file than authorized by the file
protection by being passed a UIO with such access by a process that is s0 authorized.

The UIO interface bases accounting and reclamation on the UIO owner. The cost of maintaining the
UIO state, if accounted for, is charged to the account associated with the UIO owner. The UIO state is
automatically reclaimed by the server if the owner process is determined to be invalid.

The SetUioOwner operation is used to transfer ownership to another process as well as optionally change
the authorization domain and permissions. A common case in which this occurs is command execution, in
which the command interpreter opens the input and output files and then passes these open files to the
executed program. Using the UIO interface, the ownership of the UIOs associated with these open files
is transferred to the executed program. This ensures ti-at these open files are automatically reclaimed (or
closed) if the program terminates abnormally without explicitly closing these files, and that the use of the
open files is charged to the same account as that used for the program execution. It also gives the program
access to the UIO even though it may not be authorized to open the associated file itself.

This design has several advantages. First, it is simple and efficient for the server to implement, since it
need only record three fields for each UIO, the owner, the authorization domain and permissions. The code
to check permissions against the authorization domain and permissions field is simple, as is the code to check
the validity of the owner. ° It is also quite efficient, given that the client is normally the UIO owner. Second,
it provides a means to control access to the UIO as desired yet allows access to be effectively passed to a
process without providing access to the underlying file. Third, it does not require communication with the
server to establish access except when the UIO is created or its ownership or access control is changed. For
example, a command interpreter can pass access to a UIO to a newly created program without contacting the
I/0 server simply by passing information on the UIO object to the new program (assuming the new program
is executed with access to the UIC object). Finally, it does not rely on the communication mechanism for
protection or notification of abnormal termination. As noted earlier, the remote procedure call abstraction
does not generally provide either, thus simplifying the transport level.

2.4 Compulsory and Optional I/O Functionality

To provide a uniform interface without restricting the interface to the lowest common denominator service,
the UIO interface defines certain functionality as optional. For example, not all servers implement InsertU-
ioBlocks and DeleteUioBlocks. 1 The UIO interface effectively defines an interface that is a superset of the

9Since the validity check requires network communication plus retransmission and timeout if the owner node has crashed,
several V servers do the owner validity checking in a separate helper process. This is relatively easy to do in V but might be a
greater complication in a system without lightweight processes.

10 Alternatively, these operations can be viewed as implemented uniformly across all servers since each operation is defined
to either perform a particular action or else retwn an error code indicating the reason. One possible error code is OPERA-

10

functionality naturally available from any of the I/O services we have considered.

The basic compulsory functionality of the UIO interface includes implementation of CreateUio, QueryUio.
ReleaseUio, ReadUio, WriteUio, SetUioOwner, SetUioPermissions and UioControl. With these procedures,
a service must support creation of at least one UIO object that can be either read or written sequentially
and released. Thus, the base level functiouality is a readable or writeable stream. For such UIO objects.
the run-time library knows to write to the next block number each time it writes out a block, such as when
flushing terminal output. For randomly accessible UIO objects, the current block is filled until it reaches
the block size, independent of the flush operations executed by the application. !! Without this attribute
being explicitly communicated, the run-time library would have to discover that the UIO was a stream by
having a write operation fail due to attempted non-sequential access.

As a final part of the compulsory functionality, the service must return standard error codes in response to
requests for functionality it does not support or problems with requests for functionality it does support. For
example, MODE_NOT SUPPORTED must be returned in response to a Createllio operation that specifies
a mode that is not surported by this module. This standardization allows error returns to be interpreted
by the I/O run-time in some cases, particularly in dealing with optional aspects of the UIO interface. For
example, a client that requests to read more data than the maximum amount supported by the server on a
multi-block read is guaranteed to receive the error return BAD BYTE_COUNT on return. Thus, the run-
time routines can detect this case easily and adjust the amount read or write accordingly, and not interpret
this error return as more serious than it is.

Beyond this level of functionality, the generic optional functionality available in each UIO object is
specified by its UIO attributes. The rest of this section describes some of the UIO attributes and their use.

Most of these are primarily motivated by the needs of I/O run-time library in implementing conventional
byte-stream I/0.

RESETTABLE : The stream can be reread or rewritten starting from the begirning, by simply starting
at block 0. Otherwise, access must be sequential.

RANDOM_ACCESS : The data blocks can be read and written (depending on the access mode) in any
order. RANDOM_ACCESS subsumes RESETTABLE and strictly sequential access.

STORAGE : Reading a block returns the last data written to that block. That is, it has storage semantics.
In particular, a block that is reread returns the same data as the previous read if there were no
intervening writes. A UIO with the RANDOM_ACCESS attribute may allow random access reading
yet not provide storage semantics. For example, the memory of a frame grabber attached to a video
camera may allow random access reading yet the contents of the frame grabber may change on each
new frame, independent of UIO activity.

FIXED LENGTH : The length of the UIO is fixed to that specified by the lastblock and lastbyte fields.
This is true of a disk file accessed for reading as well as a physical device such as the disk itself
independent of access mode. It is not necessarily true for stream I/O where the end may not be known
a priori, and it is not true for disk files open for writing, given that they may be extended by writing
past the last block. This attribute allows the run-time library to determine if it has reached the end
of file without an additional read operation past the end of file in common cases like reading disk files
while still allowing on-going reading of unbounded streams such as terminal input. For a UIO object
without the FIXED_LENGTH attribute, the lastblock and lastbyte fields indicate the current end of
the available data blocks. For example, with a UIO object representing the input portion of network
connection, the last block indicates the last block queued to be read from that connection and thus
how many blocks can be read without blocking for additional data. The semantics are similar for the

TION.NOT SUPPORTED.

! The flush operations referred to here are client 1/O run-time flush routines that simply write any modified data in the local
I/O buffer to the associated UIO object. Flushing as part of the UIO interface is provided as part of the ReleaseUio operation,
as described later.

11

read end of a pipe. When writing a non-FIXED_.LENGTH UIO object, a data block written past the

end of the last block is appended, making it the new last block. (This updated information can be
read from the server at any time using the QueryUio operation.)

MULTIBLOCK : The server supports multi-block reading and writing. The maximum amount supported
is not specified and is allowed to change between requests.

VARIABLE BLOCK : Blocks shorter than the full block size can be returned in response to read oper-

ations other than due to end-of-file or other exception conditions. Also, writing blocks less than the
UIO blocksize is handled properly.

INSERT DELETE : The InsertUioBlocks and DeleteUioBlocks operations are supported.

LOCKED, INTENT.LOCKED : The UIO has a file-level lock or intention lock, respectively. A UIO
that is intent-locked supports block-level locking, as described in Section 2.6.

SNAPSHOT : The UIO is a consistent snapshot of the data associated with this UIO at the time of the
UIO was created and will not change except by operations on this UIO.

RECOVERABLE : The UIO allows changes to be aborted as well as atomically committed and retained

independent of failure, as required for atomic update. This is only applicable if the UIO is WRITE-
ABLE.

REPLICATED : The underlying file for this UIO is replicated across multiple servers. Section 2.8 describes
how this is handled.

INTERACTIVE : The UIO represents a text line-oriented input stream on which a break or attention
handler can be defined (by SetBreakProcess). It has the connotation of supplying interactively (human)
generated input. This allows programs to tailor their behavior for interaction and for batch operation.

Other attributes suchas READABLE, WRITEABLE and APPEND.ONLY have obvious semantics. Clearly,
a large number of the combinations are not meaningful and therefore not used.

Some of the UIO attributes are known to the client creating the UIO by the nature of its request. For
example, if a UIO is created in READ mode, the UIO is READABLE unless ar error is returned. These
attributes are included in those specified by the server so the UIO attributes returned by a QueryUio oper-
ation are complete. Thus, a client, having been passed a UIO identifier can determine the same information
as available to the original creator by querying the server (using QueryUio).

2.5 Specification of the Desired I/O Service

For the I/O interface to be truly uniform, there needs to be a uniform way of specifying the desired I/0O
service despite the choice of a wide diversity of different types of I/O services with many different parameters
and options. For instance, with a network service, there are various different protocols, types of service and
destination endpoints. With a printer, there may be different printers, types of forms, priority and so on.
With a multi-window system, there may be different window sizes, data representations and formats. In
contrast, most applications simply take a string-name for a file, open the file and proceed to use the file,
fully ignorant of specialized options.

In the UIO interface, a new UIO object is specified by the parameters to the CreateUio operation.
namely: a character-string name and contert in which to interpret the name. !? All specialized options and
parameters for a new UIO object are handled in one of three ways. First, the string name (and context
identifier) can be used to refer to a directory entry which specifies the details of the UIO, including these

12The access mode is used only to specify variations of read or write access, not further aspects of the new UIO object.
Similarly, the transaction identifier is only used to associate the new UIO object with a transaction.

12

options. For example, the directory entry “/printers/mailinglabels” may specify all the information required
to direct output to a printer with the options for correctly printing mailing labels. This approach is used
in UNIX. For example, the indication of whether an open file representing access to a tape drive should use
800, 1600 or 6250 BPI is specified in the file name used in opening the file. The second way is for the name
to be an encoding of the required information. For example, “/net/tcp/36.8.0.8” describes a protocol and
a host address to use for creating a network connection corresponding to the requested UIO. Finally, the
UioControl operation can be used to set or modify various service-specific parameters controllirg the UIO
object after it has been created. This is only applicable to cases in which it is feasible to set these parameters
and options after the UIO object has been created and the application knows to set these parameters.

Conventional disk files can be regarded as an example of the first technique. The directory specifies the
file properties and contents '3 which are then associated with the UIO. For example, “/bin/emacs” names a
directory entry that describes the data blocks to be associated with a UIO created using this name. It also
implicitly specifies the access procedures to be associated with the UIO operations, namely the standard
ones incorporated into the file system. In general, the directory system can be regarded as a “dictionary”
that defines the attributes associated with a particular name. The CreateUio operation then creates a UIO
object matching the dictionary definition.

The use of a name parameter for UIO specification allows the CreateUio operation to be uniform across
all objects and forces the non-uniformity associated with different specific types of objects to be handled in
the name definition facility. 4 Since the name definition facility is used far less widely and less frequently
than the I/O access mechanisms, this simplifies the design of client applications and does not detract from
performance.

This design assumes that either the I/O servers implement the portion of the name space corresponding
to the objects they implement or else there is a private interface between the directory system and the
I/O server, not visible to the client. That is, either “/printers/mailinglabels” is interpreted by the printer
spooling when used in a CreateUio operation or else the directory system must pass all the information
associated with this name to the printer spooler. The former approach seems preferred because it eliminates
the need for these private interfaces, allows servers to specialize their directory information, distributes the
naming interpretation overhead, and requires less network overhead compared to when the directory system
and I/O server are not co-resident. This is especially true when the name references are largely local, which
tend to occur in systems providing a current working directory mechanism. However, it does mean that every
server needs to manage a portion of the (global) name directory. This decentralized approach to naming is
used in the V distributed operating system [7].

2.6 Locking

Lock support is included as part of the UIO interface, instead of as a separate service, for several reasons.
First, the I/O server is the most efficient point to locate lock management because it may be the only common
point of communication between two clients that need to synchronize. Second, locking and unlocking can be
handled as side-effects of I/O operations, minimizing the communication overhead for locking. For example,
a record can be locked as a side-effect of the read operation. Third, incorporating locking as part of the
I/O interface allows one to define interactions between locked and unlocked access to a file. For example,
an exclusive lock on a file may inhibit all other updates to the file data, whether or not these other accesses
request locks. Finally, locking and recoverability are tightly coupled to 1/0 atomic transactions are being
implemented. Since recovery management is most efficiently located as part of the I/O server !5, locking
seems best located there as well.

13This information is stored either directly in the directory entry or indirectly by a pointer in the directory entry to a
separately stored file descriptor record, as in the UNIX file system [34).

14Thjs is similar to the UIO handling of string-keyed record files, as described in Section 2.1. .

15This comment applies to recovery using logging or shadow pages. We do not consider the use of network logging of
communication {26}.

13

File Lock Mode
Reguest IShare | Share | IExcl | Excl | Share-IExc!
Share OK OK NO} NO NO
IShare OK OK OK | NO OK
Excl NO NO NO | NO NO
IExcl OK NO OK | NO NO
Share-IExcl OK NO NO | NO NO
Block-Share OK NO OK | NO NO
Block-Excl NO NO OK | NO OK

Table 1: Lock Compatibility Table

The UIO interface supports both file and block-level locking. The CreateUio operation inclu”c: twn flags,
LOCK and INTENTION _LOCK, that can be set in the mode parameter. When the LOCK flag alone is set,
the file is locked on open according to the access mode.

READ : Share lock. Other CreateUio operations are allowed only in READ mode, locked or otherwise.

CREATE, MODIFY : Exclusive lock. No other CreateUio operations are allowed other than in READ
non-locked mode. (Unlocked read access is used here to examine updates in progress and previous
versions of the file.)

APPEND : Share lock on existing file data and exclusive lock on appended data. Thus, the existing data,

but not the newly appended data, can be read by other clients and no other writing is allowed on the
file.

If the server does not support file-level locking, it returns an error message in response to the CreateUio.

A file-level lock restricts access to the same file according to the standard share/exclusive lock compat-
ibility. The notion of what is the “same file” is not defined in the protocol. However, intuitively, file-level
locking in CreateUio locks the data associated with the UIO to achieve the expected semantics of shared
and exclusive locks. For example, if the UIO represents a view of some portion of the database, then that
portion of the database is locked even though it may span multiple physical files and relations. Beyond this
basic semantics, 1/O servers are free to implement type-specific locking [30].

The INTENTION _LOCK flag indicates the intention to do block-level locking of the file. If the server
does not support block-level locking, it returns the appropriate error code. With the INTENTION _LOCK
flag set, the file is intention locked for sharing if the access mode is READ; otherwise an exclusive intention
lock is acquired. The intention locks on the file prevent the acquisition of a file-level lock that would interfere
with the modes of block-level locks that the client intends to acquire on this file and forces all clients that are
allowed to access the file to contend at the block level for locks. If both the LOCK and INTENTION_LOCK
flags are set, the file is locked with the shared lock as well as the intention lock !®. Table 1 shows the
compatibility between file-level intention locks on the file and requests for both file-level and block-level
locks, These compatibility rules are similar to that used in System-R [16]. In this table, IShare, IExcl and
Share-IExc! are the intention-shared, intention-exclusive and shared intention-exclusive modes respectively.
Intention locks are only used in READ and MODIFY modes. Use of the INTENTION_LOCK with the
CREATE or APPEND modes is an error.

Locks only provide synchronization between two different UIOs. Locks on the same UIO are always
compatible. Duplicate lock requests on the same UIO are ignored without error indication.

The ReadUio operation on an intention-locked UIO acquires a share lock on each blnrk it reads. Similarly,
WriteUio acquires an exclusive lock on each block it writes, with no writing taking pl... - i it fails to acquire

16 The two flags are only used in MODIFY mode.

14

the lock(s). Locking that does not fit this behavior must be performed explicitly using the LockUio operation
to set locks on specific blocks of the UIO data blocks. In particular, LockUio is used to convert a share lock
to an exclusive lock if that is needed before attempting the write.

All locks are released when the UIO is released, minimizing communication overhead for the common
case of two-phase locking [12]. In addition, the mode parameter in ReleaseUio allows one to release the
block-ievel locks associated with UIO without releasing the UIO itself. UnlockUio is also provided to unlock
specific blocks. However, it should be used with care since it unlocks a block independent of the number
of times the block was locked. In general, it is safest to use ReleaseUio for all unlocking nd to unlock only
at the point the client is completely finished with the UIO, thereby avoiding cascading aborts, premature
unlocking and the communication overhead of selective unlocking.

When a client requests a create, read, or write operation that is incompatible with a lock held by another
process, the operation is suspended for a maximum of the lockwaittime milliseconds, returning the error code
LOCKED if the incompatible locks are not released within this time period. The UIO instance variable
lockwaittime is set using the operation SetUioLockWaitTime. Using timeouts when waiting for locks avoids
the need for a global deadlock detection mechanism across all UIO servers. Placing timeouts on waiting for
locks rather than on the locks themselves (so they timeout after some period of inactivity) avoids requiring
the client to periodically interact with the server to prevent lock timeout. Note that, if the client crashes or
is deleted, the server detects the owner of the UIO to be invalid and the locks it holds are released when the
UIO is released.

The point of this section is to show how locking can be incorporated into a uniform I/O abstraction, not
to present a new form of locking. We claim that this locking abstraction satisfies three major requirements,
namely: (1) it minimizes communication overhead for locking, especially in the common two-phase locking
paradigm, (2) it is easily implementable by the server module, and (3) it provides an adequate basis for client
synchronization, including atomic transactions. The next section shows how the UIO interface provides for
atomic transactions.

2.7 Atomic Transaction Support

The atomic transaction interface is an important abstraction of I/O access when an update must be indivisible
with respect to failures and other accesses. However, an atomic transaction protocol is logically separate
from the I/O interface since atomic transactions can include non-I/O operations and atomic transaction
operations operate on transactions and only indirectly on UIO objects. Thus, the UIO interface specifies
a means of including UIO operations in an atomic transaction (providing the server supports the atomic
transaction interface), but not the atomic transaction protocol itself.

In the UIO interface, a new UIQO is created as part of a transaction by specifying a non-zero transaction
identifier as part of the CreateUio operation. All subsequent operations on this UIO are considered as part
of the specified transaction. An I/QO server only accepts a CreateUio operation with a non-zero transaction
identifier if it supports the system atomic transaction protocol. Otherwise the operation returns an error
message. (The atomic transaction protocol in V consists of the operations CreateTransaction, PrepareTo-
Commit, CommitTransaction and AbortTransaction as well as various query and management operations.)
This approach allows UIO objects to be grouped into transactions with no additional operations. It also
allows servers to do a simple check at creation time to see whether or not the UIO object needs to be included
in a transaction.

Normally, a UIO that is part of a transaction is either locked or intention-locked. Without locking
specified, the server may presume that the client is handling concurrency control separately and need only
provide recoverability. A lock request on a UIO associated with one transaction may conflict with a lock
held as part of another UIO even though it is part of the same transaction. This prevents a transaction from
unknowingly performing conflicting updates.

The CreateUioVersion operation is provided to support nested subtransactions. It creates a UTIO object
corresponding to the current state of another UIO object. When the newly created UIO object is committed.

15

its changes are incorporated into the UIO object from which it was derived. If aborted, the changes to the
new UIO object do not affect the original one. Using CreateUioVersion, a subtransaction can abort without
undoing changes performed by its parent transaction.

2.8 Replication

Files are replicated for fault-tolerance and improved performance in a distributed system. A uniform I/0
interface should provide access to replicated files (and other services) in a uniform way so that replicated
objects are easy to access and the benefits of replication are available.

The UIO interface uses the read-any/write-all approach with the modification that “all” is defined as the
set of available sites [15]. All sites maintain a common notion of the set of available sites.

When a UIO object corresponding to a replicated object is created, it has the UIO attribute REPLI-
CATED. A UIO object created for READ access is handled by one of the available sites picked by the name
mapping mechanism, ideally the closest or least loaded server. Subsequent operations on the UIO proceed
the same as for the non-replicated case. If this site fails, the I/O run-time reopens the file at another site.
Thus, the reading a replicated file using the UIO interface takes advantage of the replication of the file for
both performance and fault-tolerance.

When a UIO object is created for MODIFY, CREATE and APPEND access, the server randomly selected
by the naming mechanism returns a uio-id representing the set of available copies plus a list of the available
servers. In V, for example, the uio-id is represented as the identifier for the process group [9] of available
servers plus a group-wide unique local UIO identifier. Each update operation is multicast to the group of
servers, with the client collecting responses from each server to acknowledge the operation, and thus ensuring
that the multicast was reliable. (In the absence of multicast, the list of available servers is used to make
a series of identical calls, one to each server, to simulate multicast.) Exclusive lock operations are handled
similarly. Read, shared lock and query operations can be directed to an individual server.

The 1/O run-time routines have mechanisms for handling replicated access, making it transparent to
applications that a file is replicated. In particular, the run-time routines handle the reliable multicast write
to the available sites with no change to the client interface.

To simplify failure modes, the update of a replicated file is best done as part of an atomic transaction
given that a lock conflict, server failure or communication problem at any point can endanger the consistency
of the replicated copies. In general, there needs to be a means to return all replicas to a consistent state if
a problem arises.

This design has the advantage (associated with read-any approach) of fast and simple read access. In
addition, assuming reasonable multicast support at the RPC or IPC level, this design allows efficient update
since the transmission of a write is done in one IPC operation, assuming packets are not lost. Moreover, the
handling of replication is transparent (o the application level. Recovery from failures in the case of reading
is transparent to the application except for the delay in reopening the file. Failure during writing is just
another reason for transaction abort.

2.9 Mapped I/O

Mapped I/0 normally refers to the binding of disk files into a virtual address space such that a reference to
that region of the virtual space is effectively a reference to the corresponding portion of the file. Mapped I/O
in this form allows the application to access data in files the same as data in memory. It also takes advantage
of the read-on-demand and write-if-modified facility of a demand-paged virtual memory mechanism, which
is important for random but “sparse” modifications to large files. That is, on first reference to a page in
such a bound region, the page fault handler copies the appropriate file data into a page frame and maps the
page frame into this portion of the virtual address space.

Mapped 1/0 can be provided in conjunction with the UIO interface by a binding mechanism that binds
the data blocks of a UIO to virtual addresses. The V mechanism for this binding is implemented by

16

BindRegion(pid, addr, len, uio, startblock, permissions)

which binds the specified UIO starting at startblock to the process address space, starting at addr for len
bytes. Any UIO can be so bound provided that it has the READABLE, WRITEABLE and STORAGE
attributes and not the VARIABLE_BLOCK attribute and that it supports reading and writing of data of
the size of the virtual memory page size. Thus, the UIO interface supports mapped I/O by providing an
object to bind and attributes with that object to indicate whether it can support mapped I/O, using to the
criteria above.

Another form of mapped I/0 arises as a performance optimization such as that used in Accent [13]. Data
requested in a conventional read operation is mapped into the address space instead of copying it providing
it satisfies alignment restrictions. (Writing is handled in a similar way.) The UIO interface does not provide
any explicit support for this optimization, relying on the run-time library to page-align buffers when possible
and the I/O services and virtual memory mechanism to take advantage of this optimization when feasible.

2.10 Handling Specialized Operations and Options

Many I/O facilities require service-specific operations as well as specialized options that, for example, modify
the behavior of read and write operations. For example, a multi-window system requires a service-specific
operation for changing the mapping of a window. Similarly, the TCP specification [11] calls for a “push”
flag and an “urgent” flag to be passed on each write operation. Also, a terminal read operation could use
flags indicating whether the input is be to echoed and line-edited.

To handle these specialized operations and options, the UIO interface defincs the TicControl operation.
The exact parameters and their interpretation is specific to each I/O server although there is some stan-
dardization on the format, such as the initial parameter being an operation code. For options that act on
a read or write operation, it is necessary to set them using a UioControl operation before issuing the read
or write operation (and potentially reset them afterwards). Although this requires additional operations
over including the options as part of the read or write operations, several techniques minimize the overhead.
First, the default setting of the options can be selected to the most commonly used values so the use of
these operations is minimized. Second, options that are typically set or cleared for a single operation can
be automatically reset after the next operation, thereby eliminating the need for an explicit reset operation.
For instance, in getting a password, echoing is normally turned off for just the next read operation. Thus.
the server can automatically reset the echo option after a read operation. (There can also be a way to turn
off echo without auto-reset.) With these techniques, we have yet to encounter a case in which the UioControl
operations constitute a significant overhead.

An alternative approach would be to provide a set of option flags as part of the ReadUio and WriteUio
operations. This approach has several disadvantages. First, it is not feasible to provide sufficient flags
and option fields to support all possible options so some modules would require the above solution anyway.
Second, if a given option field had a different interpretation depending on the UIO server module that
handled it, the I/O interface would no longer be uniform. For instance, there is no sensible meaning to a
“argent flag” on a tape drive yet there is the temptation to overload option flags in order to handle the many
different options that arise. In general, option flags on the main UIO operations seem like a poor idea. The
UIO interface has survived for over 5 years without reading and writing options despite numerous challenges
along the way.

To summarize this section, we have presented the key design issues in the UIO interface and the rationale
behind our design decisions. In doing so, we have tried to cover the issues that would arise with the design
of any such a u-‘form 1/O interface, particularly in an RPC-based distributed system. The combination
of this section plus the Appendix should provide the reauer with a fairly complete description of the UIO
interface. We now go on to describe our experience with using and implementing the UIO interface.

17

3 The UIO Interface in the V Distributed Operating System

The UIO interface is an abstraction of I/O services. The real test of any abstraction is how useful it is and
how implementable it is. The UIO interface has been used in the V distributed operating system for access
to all I/O-like services. In this section, we describe our experience with its use and implementation over the
past five years. We also draw on experience with an earlier version of the interface [4] that was used in a
version of Thoth [5] starting in 1980.

The V distributed system is based on the V kernel [6], a communication-oriented kernel that supports
an efficient request-response form of message passing tuned for remote procedure call behavior. The rest of
the system is structured as a set of server modules running at the process level plus application run-time
libraries that provides a standard application interface to system services. In particular, V has a standard
client I/O run-time library which provides the C “stdio” interface as an application I/O abstraction on top
of the UI?? interface. The UlO interface is mapped onto V messages according to the (so-called) V 1/0
protocol.

The following subsections describe the I/O server modules we have implemented, the client 1/O run-time
library and the performance of these components.

3.1 I/0 Services using the UIO Interface

In V, all services that are sufficiently close to the I/O paradigm use the UIO interface. Examples of servers
implementing the UIO interface currently in use in the V-System include:

Storage : A standard UNIX-like hierarchical file server (8] based on the Thoth file system [5], with some
extensions for atomic update. We are currently extending this server to support the complete atomic
transaction facility provided in the UIO interface.

Pipe : Implements UNIX-like pipes, i.e. a temporary file on which reading and writing by separate pro-
cesses are synchronized. The two UIO objects representing the two ends of the pipe have UIO attributes
VARIABLE BLOCK and READABLE or WRITEABLE. Zwaenepoel [36] gives a more extensive re-
port on this server and its performance.

Internet : Implements TCP connections as well as UDP and IP services. Access to one end of a TCP
connection is provided as two UIQ objects representing the read and write portions of the connection.

Display : Provides multiple overlapping windows and views on a single bitmap display. Each output
window 18 a single UIO. An input UIO can be optionally associated with a window. It uses the kernel
device server and mapped I/O to access the frame buffer. Further details on this server are described
elsewhere {23].

Device : Implements UIQ access to the serial line, frame buffer, network interface (6 different types of
Ethernet interfaces), disks, tape and mouse. Servers such as the display server, storage and internet
server use this device interface tc .mplement their higher-level abstractions.

Printer : A spooled printing server, which uses the file service of the storage server to temporarily store
spooled data and the device server to access the raw printer.

UNIX service : A UNIX user-level server program that implements the UIO interface to UNIX files as
well as the V inter-kernel protocol, allowing file (and program execution) services of a UNIX system
to be access from the network using the V protocols.

17The V 1/O protocol refers to the UIO interface described in this paper in terms of procedures plus the mapping of these
procedures onto messages. This mapping should be considered as part of a general presentation-level remote procedure call
protocol, in the ideal, automated by a remote procedure call stub generator. Thus, the V I/O protocol is not of direct interest
beyond the UIO interface described in this paper.

18

Cmd
Interpeter

Printer
Server

Device
Server
Figure 4: UIO Server Dependencies

In addition, a variety of servers use the UIQ interface to provide access to a logical directory of information
about their state or the obiects they are managing. Examples include the display server and its directory
¢f current windows, the program manager and its directory of executing programs, and Internet server with
its directory of connections.

Many services implement additional operations beyond the UIO operations. In fact, the main focus of
the service may lie outside the I/O paradigm. For example, the primary role of V program manager [33]
(also referred to as the team server) is to initiate and manage programs in execution. It implements the UIO
interface as a means for client, to read information about the currently executing programs.

A UIO server may also be a client to other UIO servers, allowing a hierarchical structuring of UIO
implementations. For example, the printer server implements printer UIO objects using UIO objects of
provided by the storage server that in turn implements its UIO objects in terms of the disk UIO objects
provided by the kernel device server. The dependency between some of our current I/O servers is illustrated
in Figure 4. An arrow from one server to another indicates that the first server uses a service provided by
the second server.

Most V services are implemented as one or more dedicated processes executing a service module, and
responding to client request messages. However, implementing these servers using RPC framework should
not significantly affect the implementation of the UIO interface or the performance, assuming efficient stub
routines.

In our experience, the UIO interface has worked out well for this diversity of 1/O services. The interface
is simple enough that it does not entail a significant amount of extra code compared to using a specialized
interface for each service. Moreover, the existence of multiple servers for the UIO interface provides both
a model and a source of software for the programmer when implementing a new server, minimizing the
programming cost of each new server. 18

In addition, we have implemented a command interpreter that provides much of the functionality of the
UNIX shell including I/O redirection and pipelining. With its sophisticated manipulation of I/O, a command
interpreter is a good test of any I/O interface. In our experience to date, the UIO interface is adequate in
this area.

Finally, our preliminary experience with the UIQ interface for mapped I/O in conjunction with a virtual
memory mapping mechanism is also favorable. We regard this form of I/O as an important facility for
efficient access to databases and so-called persistent memory [32].

In general, the UIO interface appears more than adequate to cover a wide range of I/O services, certainly
the ones we have encountered to date. With the addition of each new server, some design time is required to
map the services into the UIO interface. Inevitably, there is the temptation to add new operations or options.

18With an adequate stub generator, the sharing of code for parameter handling and invocation would be less relevant.
However, the shared code for handling the UIO interface would remain.

However, the interface, particularly the ReadUio and WriteUio operations has remained fairly stable despite
these pressures. Moreover, we have developed a better understanding of how to accommodate diversity of
services in the interface with experience. Finally, with the established functionality of the client I/O library

and the growing number of applications that use this library, the benefits of conforming to the UIO interface
are substantial.

3.2 Client I/O Run-time Library

The client 1/O run-time library supports the C stdio interface [22] plus various extensions for block-oriented
I/0. It has also been used to support Pascal I/O and could easily be modified to support other similar
I/O interfaces, including that defined for Ada. In general, the library provides a conventional byte-stream
and block I/O interface with only minor semantic and functional differences from conventional program
environments. Thus, applications are independent of the underlying UIO interface.

The basic I/O library for byte stream and block 1/0 is 997 lines of C code, of which 309 lines is header
information, that is message formats and manifest declarations. This compiles to 1696 bytes on the VAX.
An additional 1082 lines of code implements the C stdiv interface, compiiing to 49.0 bytes. Most of the
latter code is common to that required in a more conventional system such as UNIX. For example, over 3000
bytes of this code is for the prinif and scanf routines, which are built on the byte-stream mechanism and
thus independent of the use of the UIO interface. The library routines are machine-independent, currently
running on both the VAX and Motorola 68000 architectures.

Each local file structure requires 48 bytes of storage for local state information plus blocksize bytes for the
local buffer if used in byte-oriented mode. The number of open files an application may use is limited only
by the amount of memory it has for these descriptors, although an individual server may limit the number
of UIO objects it supports at any time.

In general, the space cost of supporting conventional I/O abstractions on top of the system-level UIQ
interface is modest. In the next section, the performance cost is also shown to be reasonable.

3.3 Performance of the V I/O System

The performance of V I/O can be decomposed into three components: the performance of the client I/O run-
time library, the performance of the communication facilities between clients and the I/O service modules, and
the performance of the I/O service modules themselves. The performance of the V communication facilities
has been studied and reported elsewhere [9,10]. We also list relevant IPC times with our measurements
given below. In our measurements, we determine the cost of byte-stream and block-level I/O to a server
incorporating the cost of the UIO interface, but no service-specific overheads such as disk overhead. All
measurements were made on Microvax II's running the V distributed system and include the costs for byte
stream and block-level reading to a local and a remote server. A local server executes on the same machine
as the client. A remote server executes on a separate machine, connected to the client machine by 10 Mb
Ethernet.

The client I/O run-time supports two abstractions: the byte stream and the block-level. The basic cost
of the byte stream over block-level I/QO is the cost of reading a byte at a time from a local buffer and checking
if the buffer is empty or writing a byte at a time to a local buffer, checking if the buffer is full. When the
local buffer is empty or full respectively, block level I/O is used to fill or empty it as appropriate.

Table 2 gives the performance for a client reading from the V storage server using the standard V I/O
library. The V storager server [8] is a disk-based file server that supports a UNIX-like file system. The get-
byte column lists the basic processing time for calling the V version of the UNIX getc to return 1024 bytes,
not including any filling or flushing of the local buffer. (This measurement works out to 160.5 kilobytes
per second or 6.08 microseconds per byte.) The next two columns give the elapsed time per kilobyte to
read using byte streams and blocks from the V storage server. Because of the way that the experiment
was conducted, all the data being read is resident in the file server buffer pool so our measurements do not
include disk access overhead. Otherwise, the time is indicative of the cost of file access in V. We chose to

20

Server Location || get-byte | Disk (bytes) [Disk (blocks) [IPC
Local 6.23 9.91 347 | 1.79
Remote 6.23 14.63 8.18 | 6.34

Table 2: Reading: Elapsed Time per Kilobyte on Microvax II (in milliseconds)

Server Location || Byte Stream | Block 1/O
Local 19.1 48.4
Remote 14.1 22.11

Table 3: UIO Overhead as a Percentage of Elapsed Time

factor out disk access costs because, with a large buffer pool (8 megabytes on our current file server), disk
access is infrequent in general and, with use of increasingly large buffer caches, the effect of disk overhead
can be expected to decrease even further [25]. Also, it is difficult to interpret measurements incorporating
disk overhead, given the variations on seek times, rotational latency and disk transfer rate. The IPC column
gives the elapsed time for the basic IPC primitives used as part of the I/O to the file system for each row in
the table.

The cost of getting 1024 bytes from a file a byte at a time, 9.91 milliseconds locally and 14.63 milliseconds
remotely, is composed of 6.23 milliseconds for 1024 calls to getc plus 3.47 milliseconds and 8.18 milliseconds
respectively for getting the file block into the local buffer from the file server, ieaving about 0.21 milliseconds
(both locally and remotely) for the I/O routines that map between getc and the block I/O routines. Similarly.
the block I/O read operation includes the basic IPC cost (1.79 milliseconds locally and 6.34 milliseconds
remotely) leaving roughly 2 milliseconds (1.68 milliseconds locally and 1.84 milliseconds remotely) for local
1/0 routine overhead and server processing time.

These measurements indicate that the cost of block I/O reading is dominated by the cost of the IPC
operation to transfer the data. We have shown elsewhere [6,10] that the performance of the V IPC operations
is dominated by the hardware time for data transfer, particularly for non-trivial amounts of data. Moreover,
with increasing block size, the client and server processing times remain almost identical but the IPC times
grow (more or less) linearly with the size of block transferred. In particular, the cost of a ReadUio operation
to a remote storage server increases by 2.8 milliseconds for each additional 1 kilobyte increase in the number
of bytes to be read and 2.52 milliseconds of this cost is due to the IPC overhead. Thus, the UIO interface
has a modest overhead with 1 kilobyte blocks and can be reduced further by using larger block sizes.

For byte-stream I/O, the I/O library and UIO interface overhead is dominated by the cost of get-byte
operations. Moreover, we argue that the cost of a getc is close to the minimum achievable by conventional
techniques because it is about 6 microseconds per byte on a Microvax II, a 2 MIPS machine, and it includes
little more than a test for empty buffer, an indexed byte reference (assigning the returned byte to a register),
and an increment to the Luffer pointer. Moreover, any techniques that would reduce this cost in other
get-byte implementations should also be applicable here. 19 Thus, excluding the get-byte operation time,
the overhead for the UIO client library and server overhead can be calculated as

overhead = elapsed-time - get-byte-time (if any) - IPC-time

As indicated in Table 3 this overhead is less than 25 percent of total time for all but local block I/O (and
this percentage decreases with increasing block size). Since all schemes would have a comparable cost for
get-byte, no I/O scheme can have significantly less overhead, assuming similar costs for the basic IPC or
RPC communication with the server module.

19 404c is executed as a (portable) macro for these measurements the same as in our standard J/O implementation.

21

Server Location || put-byte | Disk (bytes) | Disk (blocks) [IPC
Local 6.70 12.57 5.66 | 1.79
Remote 6.70 17.90 10.99 | 6.34

Table 4: Writing: Elapsed Time per Kilobyte on Microvax II (in milliseconds)

These measurements do not fully measure the UIO processing overhead when the server is remote since
both the client and server processor are then executing in parallel. However, the fact that the difference
between local and remote I/O times is almost entirely accounted for by the difference in IPC times and the
server takes the same action {or both local and remote requests indicates that this “invisible” overhead is
not significant when reading.

Table 4 gives the comparabie measurements for writing. The basic put-byte time is approximately the
same as for get-byte. The higher block I/O cost, and therefore byte-stream cost, is due in part to an extra
overhead in the storage server for writing. Currently, it copies each block it receives as part of a write
operation in a multi-block bufler in the disk buffer pool.

In summary, the UIO interface provides efficient I/O interface relative to the costs of communication
and byte-level operations. Moreover, we see considerable potential to further improve the performance,
particularly in the server implementations. Work on a faster version of the V storage server is in progress.

4 Related Work

There appears to be little other work that addresses the key focus of our work, namely the design of a
uniform I/O interface

In the operating system area, the need for uniform interfaces has been recognized but not studied to any
degree. The UNIX operating system interface [29] provides a familiar example of a uniform input and output
interface yet it has a number of deficiencies. First, the semantics of the I/O operations are incompletely
specified relative to that required by programs. For example, there is no guarantee that writing data to a
file and then reading the data back returns the same data. In fact, there is no guarantee that rereading the
same part of a file returns the same data, although this is the case with “normal” disk-based files. Programs
that use files as temporary storage need to be able to check that the I/O service to which they have bound
provides storage semantics to guarantee their correct behavior. The UIO interface clarifies the semantics of
I/O by allowing a program to determine that a UIO being used as a storage container, such as for a temporary
file, does in fact have storage semantics. Second, the UNIX interface does not support logical records in a
uniform way because it treats some cases, such as terminal input and raw network input in special ways and
treating others as transparent byte streams. Several years ago, Ritchie [28] observed the incompatibility that
can arise in UNIX between terminal and file I/O because of the lack of logical record support, and suggested
an extension similar to that provided in the UIO interface. The UIO interface allows one to preserve logical
record boundaries in a uniform way using the data block abstraction. Finally, the UIO block abstraction is
easier and more efficient to support in a distributed system than the byte stream abstraction defined by the
UNIX “read” and “write” system calls, especially if the local kernel does not contain the file system. With
the UNIX interface, the remote file server has to support arbitrary byte stream read and write operations;
it cannot treat read operations as idempotent; and it must maintain a “file pointer” for each open file. Even
in the local case, block I/O is more efficient, especially for applications like database management systems.
Overall, the UIO interface benefits considerably from the UN1X design yet makes several key improvements.

The Alpine file system [24] provides similar file and block-level locking and atomic transaction function-
ality to that specified as part of the UIO interface. There are minor differences, such as the Alpine interface
does not release locks when a file is closed. However, a key difference is that the Alpine interface is designed
specifically for a file server whereas the UIO interface is intended to be far more general.

22

This work has been strongly influenced by the connectionless protocols and idempotency in the WFS
design [31]. In fact, an earlier version of our design [4] attempted to realize a uniform [/O interface with
no state. However, experience with I/O services such as terminal and network connections showed the
infeasibility of this approach.

Overall, the need for well-designed interfaces for services has been recognized by the operating system
area {21] but techniques for achieving uniformity across these interfaces have not significantly explored.

The work on abstract data types and classes has some relevance to our work. In particular, to first
approximation, the UlO interface can be regarded as specifying an abstract data type. However., some
established work in the area [18] places a very restricted definition on the notion of abstract data type which
precludes viewing UIO specification as an abstract data type. For example, the Guttag-Horning notion of
sufficient completeness of an abstract data type definition prohibits the semantic differences that can arise
between different UIO objects. Moreover, it is not apparent how to relax these definitions without significant
loss of results and admission of pathological cases.

Similarly, the Smalltalk [20,14] notion of class, subclass, abstract class and metaclass appear similar to the
UIO interface, which effectively defines a set of types with the commonality defined by the UlO operations
However, Smalltalk classes stress economy of representation, not semantics. That is, a class is implemented
as a subclass of another to avoid repeating the specification of instance variables and methods. It is free to
override the semantics of messages handled by its superclass with arbitrary semantics of its own, at least for
its own objects. In contrast, the UIO interface defines a class of types based on common generic semantics
with no consideration as to whence the representation of each individual type or I/O service originated.
In general, this distinction between economy of representation versus conformity of semantics separates the
work on type classes and type hierarchies [1] from the requirements of uniform interfaces.

5 Concluding Remarks

The U1O interface has been successfully used in a distributed system of considerable scale and diversity to
couple a range of applications and 1/O services. In this regard, it demonstrates the feasibility of a uniform
I/0 interface that reduces the complexity and increases the flexibility and function of a system. It also takes
a significant step beyond the func.ionality and semantic integrity of the C stdio interface and the UNIX
operating system interface.

The UIO interface and its design rationale are interesting on several points. First, the block abstraction
for data access is a departure from the more commonly espoused byte stream model. Second, the explicit
incorporation of state in the interface contrasts with the stateless approach advocated by some designers.
Third, the provision of ownership and protection information in the I/O state eliminates the need for the
communication system to support these functions, allowing the use of a pure RPC communication abstrac-
tion. Fourth, the distinction between compulsory, optional and service-specific operations in the interface
allows full access to functionality without excessive burden on restricted services and unnecessary restriction
on service functionality, and without excessive complexity for clients. In general, the UIO interface implicitly
identifies a number of generic classes of I/O behavior and function, imposing a taxonomy on the apparent
diversity of 1/O-like services. Fifth, the provision of attributes to describe UIO objects with respect to the
optional functionality and standard error returns simplifies the client software in dealing with the optional
aspects of the interface and also allows client behavicr to be more efficient. Sixth, the use of the name direc-
tory for handling options and specialized parameters avoids complicating the basic I/O interface. Finally.
we have pointed out some novel mappings of the record file access onto UIO data block model, showing
how structured file access can fit the UIO model. In general, the design focuses on efficient support of the
“common case” while identifying techniques that accommodate the other cases without loss of function.

Our work to date on the UIO interface leaves a number of research issues for future exploration. First,
there is the need to explore detailed aspects of the interface with a wider set of services and applications
Our experience with the interface in V is significant but far from complete. For example, the locking and
atomic transaction interface has only been implemented as part of a student project and not integrated

23

to date into the V software we use and distribute. Similarly, the replication portion of the design needs
further implementation experience. Moreover, several of the servers do not follow the protocol exactly as
described here, in some cases because of improper implementation; in others because the UIQ interface has
changed slightly since their original implementation. Although the create, release, read and write aspects
of the interface have been quite stable for five years, there have been additions and modifications along the
way. While our experience gives us confidence in the basic UIO design, further refinements in the exact
parameters and their semantics are expected. In general, there seems no prospect of “proof of optimality”
or its converse for this type of work. Confidence in this design can only come from further experimentation
and actual use.

There also needs to be more exploration of other approaches to the design of uniform interfaces~1/0 as
well as others. Quantitative trade-offs within the design need to be better understood. To a large degree,
the UIO interface simply represents the author’s current “best guess”, supported by some experience and (it
is hoped) convincing arguments.

Finally, the specification of a uniform interface raises a number of semantic and notational issues. For
example, different UIO objects may be sufficiently different that it would be impossible to regard them
as the same data type using conventional data type theory and semantics. This work also does not allow
instances of a type to have operations or semantics beyond that specified for the type, as arises with UIO
instances. A semantic theory and notation is required for generic abstract daia types in order to formally
describe the semantics of uniform interfaces like the UIO interface. The author has taken some tentative
steps in this direction, closely modeled after the work of Guttag and Horning [19,17]. However, developing a
formal replacement for the informal semantic descriptions used in this paper remains a significant challenge.
A more formal and complete specification is essential in reducing ambiguity and ensuring compliance, just
as with conventional standard protocols and interfaces. In fact, with the growing use of remote procedure
calls in distributed systems, the specification of interfaces, as opposed to protocols, becomes the focus of
distributed systems design at all but the transport and RPC presentation levels.

In general, we view that uniform interface design is a difficult yet critical aspect of large-scale system
design. Further research is required to understand how to design such interfaces and what issues are in-
volved. Concurrently, more examples of such interfaces are required along with credible experience with the
implementation and use of these interfaces in a diversity of real system contexts. We put the UIO interface
forward as but one candidate for such an interface and one step in this research direction.

6 Acknowledgements

Steve Deering, John Demco and Brent Hilpert contributed to the early development of these ideas. I am
indebted to the members of the Stanford Distributed Systems Group for the implementation of the UIO
interface in the V distributed system and the further refinement of the interface that resulted, particularly
Tim Mann, Ross Finiayson, Karen Lam and Joe Pallas. Finally, I am grateful to Michael Stumm and the
referees for helpful comments that greatly improved the content and the presentation.

References

{1] A. Albano.
Type hierarchies and semantic data models.
In Proc. SIGPLAN 83 Symp. on Programming Language Issues in Software Systems, pages 178-186,
ACM SIGPLAN, New York, 1983.
Also available in SIGPLAN Notices, Vol. 18, No. 6, 1983.
(2] F. Baskett, J.H. Howard, and J.T. Montague.
Task communication in DEMOS.

24

In Proceedings of the 6th Symposium vn Operating System Principles, pages 23-31, ACM, November
1977.
(3] A. Birrell and B. Nelson.
Implementing remote procedure calls.
ACM Trans. on Computer Systems, 2(1), February 1984.
(4] D. R. Cheriton.
A loosely-coupled I/O system for a distributed environment.

In A. West and P. Janson, editors, Local Networks for Computer Communica?:on, North-Holland,
Amsterdam, August 1980.

IFIP WG 6.4 International Workshop on Local-Area Networks, Zurich Switzerland.
(5] D.R. Cheriton.

The Thoth System: Multi-process Structuring and Portability.
American Elsevier, 1982.

(6] D.R. Cheriton.
The V kernel: a software base for distributed systems.
IEEE Software, 1(2):19-42, April 1984.
{7] D.R. Cheriton and T. Mann.
A Decentralized Naming Facility.
Technical Report STAN-CS-86-1098, Computer Science Department, Stanford University, April 1986.
Also available as CSL-TR-86-298.
[8) D.R. Cheriton and P. Roy.
Performance of tne V storage server: a preliminary report.
In ACM Computer Science Conference, March 1985,

[9] D.R. Cheriton and W. Zwaenepoel.
Distributed process groups in the V kernel.
ACM Trans. on Computer Systems, 3(2), May 1985.

(10] D.R. Cheriton and W. Zwaenepoel.
The distributed V kernel and its performance on diskless workstations.
In Proceedings of the 9th Symposium on Operating Systems Principles, ACM, 1983.

{11] DARPA.
DOD Standard Transmission Control Protocol.
Technical Report IEN-129, Defense Advanced Research Projects Agency, January 1980.

{12] K.P. Eswaran, J.N. Gray, R.A. Lorie, and I.L. Traiger.
The notions of consistency and predicate locks in a database system.
Commun. ACM, 19(11):624-633, November 1976.

[13] R. Fitzgerald and R.F. Rashid.
The integration of virtual memory management and interprocess communication in Accent.
ACM Trans. on Computer Sys., 4(2):147-177, May 1986.

[14] A. Goldberg and D. Robson.
SmallTalk-80: the language and ils implementation.
Addison-Wesley, 1983.

[15] N. Goodman, D. Skeen, A. Chan, U. Dayal, S. Fox, and D. Ries.
A recovery algorithm for a distributed database system.
In Proc. 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Sys., March 1983.

(16] J. Gray.
Notes on database operating systems.

25

In R. Bayer, R.M. Graham, and G. Seegmueller, editors, Operating Systems: An Advanced Course,
chapter 3, pages 393481, Springer-Verlag, New York, 1979.

(17} J. Guttag and J.J. Horning.
Formal specification as a design tool.
In Seventh ACM Symp. on Principles of Programming Languages, January 28-30 1980.
Las Vegas, also Xerox PARC Tech. report CSL-80-1.
{18] J.V. Guttag and J.J Horning.
The algebraic specification of abstract data types.
Acta Informatice, 10(3):27-52, 1978.

[19] J.V. Guttag, J.J. Horning, and J.M Wing.
The Larch family of specification languages.
IEEE Software, 2(5):24-36, September 1985.

[20] D. Ingalls.
The Smalltalk-76 programming system.
In 5th Annual Symp. on Principles of Programming Languages;, pages 9-16, ACM
SIGACT/SIGPLAN, 1978.
[21] AK. Jones.
The object model: a conceptual tool for structuring software.
In R. Bayer, R.M. Graham, and G. Seegmueller, editors, Operating Systems: An Advanced Course,
chapter 2, pages 7-16. Springer-Verlag, New York, 1979.
[22] B. W. Kernighan and D. M. Ritchie. N
The C Programming Language.
Prentice-Hall Software Series, Prentice-Hall, New Jersey, 1978.

[23) K.A. Lantz, D.R. Cheriton, and W.I. Nowicki.
Third Generation Graphics for Distribuied Systems.
Technical Report STAN-CS-82-958, Computer Science, Stanford University, 1982.
(24] K.N. Kolling M.R. Brown and E.A. Taft.
The Alpine file system.
ACM Trans. on Computer Sys., 3(4):261-293, 1985.
[25] J. Ousterhout, H. Da Coseta, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson.
A trace-driven analysis of UNIX 4.2 BSD file system.
In 10th Symp. on Operating System Principles, ACM SIGOPS, 1985.
(26] M.L. Powell and D.L. Presotto.
Publishing: a reliable broadcast communication mechanism.
In Proc. 9th ACM Symposium on Operating Systems Principles, ACM, 1983.
[27) R. Rashid and G. Robertson.
Accent: a communication oriented network operating system kernel.
In Proceedings of the 8th Symposium on Operating Systems Principles, pages 64-75, ACM, December
1981.
(28] D. Ritchie.
The UNIX timesharing system: a retrospective.
The Bell System Technical Journal, 57(6), July-August 1978.

(29] D. M. Ritchie and K. Thompson.
The UNIX timesharing system.
Commaunications of the ACM, 17(7):365-375, July 1974.

26

[30] P.M. Schwartz and A.Z. Spector.
Synchronizing shared abstract data types.
ACM Trans. on Computer Sys., 2(3):246-250, 1984.
(31] D. Swinehart, G. McDaniel, and D. Boggs.
WFS: a simple file system for a distributed environment.
In Proc. 7th Symp. Operating Systems Principles, 1979.
(32] S. Thatte.
Persistent memory: storage architecture for object-oriented databases.
In Proc. Int. Workshop on Object-Oriented Database Systems, ACM, New York, September 1986.
Pacific Grove, California.
[33] M.M. Theimer, K.A. Lantz, and D.R. Cheriton.
Preemptable remote execution facilities in the V-system.
In 10th Symp. on Operating System Principles, ACM SIGOPS, 1985.
{34] K. Thompson.
UNIX implementation.
The Bell System Technical Journal, 57(6), July-August 1978.
[35] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system.
In Proceedings of the Ninth Symposium on Operating Systems Principles, pages 49-70, ACM, October
1983.
[36] W. Zwaenepoel.
Implementation and performance of pipes in the V-System.
IEEE Trans. on Computers, C-34(12):1174-1178, December 1985.

A UIO Interface

The UIO interface is specified as a set of procedures including, for each procedure, the syntax of the call,
the data types of the parameters and return values, and the generic semantics of the procedure. For brevity,
the following description omits some of the details. However, this description together with the main body
of the paper should communicate the key points of the design.

(uio-desc,error) := CreateUio(name, context, mode, transact-id) - creates a UIO object accord-
ing to the name in the specified contezt and in the specified mode, associated with the transaction
identified by transact-id, if non-zero. It returns a uio-desc of the new UIO, or else returns a reason for
failure. The mode indicates the way the object is be used, namely:

READ : Data associated with the object are to be read but not changed.

CREATE : A new sequence of data blocks is to be created by the client and associated with the
object, discarding any previously associated data.

APPEND : Data are to be appended to the current sequence of data blocks. Data previously
associated with the object remains unchanged.

MODIFY : Existing data are to be modified and possibly appended to.

These modes are further modified by LOCK and INTENTION_LOCK flags. The LOCK flag alone
causes the file to be locked in shared or exclusive mode, depending on the access mode. The INTEN-
TION_FLAG causes the lock to be an intention lock, providing for block-level locking. The combination
of the LOCK and INTENTION_LOCK flags used with MODIFY mode provides a shared file lock plus
an intention-exclusive lock on the file. The server returns the error LOCKED if the file is already locked

27

in a mode incompatible with that requested. The server returns the error MODE NOT.SUPPORTED
if a mode of access is requested that the server does not support, e.g. locking. Similarly, if transact-id is
non-zero and the server does not support the atomic transaction protocol, it returns an error message.
The uio-desc record consists of the following fields:

uio-id - the system-wide unique UIQ identifier, normally structured as 1/O server identifier and local
identifier.

owner - the process owner of the UIO, initially the creating client process.

authdomain - authorization domain for access to the UIO.

uio-perms - access permissions on the UIO. The possible permissions are read and write for those in
the authorization domain specified by authdomain.

uio-attributes - bit flag attributes describing the UIO, including READABLE, WRITEABLE, AP-
PEND_ONLY, RESETTABLE, RANDOM_ACCESS, STORAGE, VARIABLE_ BLOCK, MULTI.BLOCK,
FIXED LENGTH, INSERT.DELETE, SNAPSHOT, RECOVERABLE, LOCKED, INTENT_LOCKED,
REPLICATED, and INTERACTIVE.

lockwaittime - maximum time an operation can suspend waiting for a lock to be available before
returning an error indication.

blocksize - maximum data block size that can be read or written with this UIO object.

nextblock - block number of the first block in the UIO array of data blocks.

lastblock - block number of the last block in the UIO array of data blocks.

lastbytes - number of valid byes in the last block.

uio-servers - list of the servers that implement this object. This is only returned when the file is
REPLICATED and accessed for update.

(uio-desc,error) := CreateRelatedUio(uio-id, mode) - creates a UIO object that is the related UIO
object to the specified UIO, typically corresponding to the other direction on a bi-directional stream.

{(uio-desc,error) := CreateUioVersion(uio-id, mode, transact-id, ptransact-id) - creates a UIO
object that is a version of the specified UIO object in the specified access mode as part of the specified
transaction, with parent transaction specified by ptransact-id.

(uio-desc, error) := QueryUio(uio-id) - returns an uio-desc record describing the specified UIO, as
describe above.

error := ReleaseUio(uio-id, releasemode) - completes the updates performed using this UIO object
if any, releases any locks associated with this UIO object and invalidates the object identifier, reclaiming
the resources associated with this UIO. Service-specific actions may be involved with completing the
updates and reclaiming resources. For example, on a file server, buffered data may be flushed to disk
and possibly to a log. A mode of 0 specifies the default normal action. The release mode consists of
three bit flags that control the three actions of release, as follows:

ABORT_.CHANGES : Do not complete, but undo if possible the changes reflected in this UIO.

HOLD_LOCKS : Do not release tiie locks held by this UIO object. This is only legal if the following
flag is not set.

RETAIN_UIO : Do not invalidate this UIO object or release any resources associated with it.

Using combinations of these flags, ReleaseUio can be used for creating savepoints, just releasing the
locks associated with a UIO object and aborting changes made using this UIO, if RECOVERABLE.

28

o

(count, error) := ReadUio(uio-id, blkno, buffer, count) - transfers count bytes to the client’s buffer
from the UIO object starting at the specified block and returns the number of bytes read and the error
reason for reading fewer bytes than requested if appropriate. If the UIO object has the STORAGE
attribute, the data bytes read match those last successfully written to that block, providing the op-
eration succeeds and a successful write operation has occurred to this block of this object during its
lifetime. The operation returns the END_OF FILE code if the object is FIXED_LENGTH (see below)
and the block number is larger than the lastblock field or it is equal and the byte count is greater than
lastbyte. A share lock is acquired on the data blocks read if the UIO is intention locked.

(count, error) := WriteUio(uio-id, blkno, buffer, count) - transfers count bytes from the client’s
buffer to the UIO object starting at the specified block and returns the number of bytes written
and the error reason for writing fewer bytes than requested, if appropriate. If the UIO object is
FIXED_ LENGTH, the data written must fit within the existing data sequence. After a successful
write operation, the lastblock and lastbyte values are updated as necessary to include the data written.
An exclusive lock is acquired on the data blocks written if the UIO is intention locked.

(count, error) := InsertUioBlocks(uio-id, blkno, buffer, blkcount) - creates new blocks numbered
blkno through to blkno + blkcount - 1, renumbering the blocks currently assigned this range of number
to consecutively follow the new data blocks. The server returns an error code if the UIQ does not have
the INSERT_DEL™TE attribute.

(count, error) := DeleteUioBlocks(uio-id, blkno, blkcount) - deletes the specified range of blocks
from the UIO, renumbering the remaining blocks so they form a consecutive sequence. The server
returns an error code if the UIO does not have the INSERT_DELETE attribute. However, the server
for a UIO with the STORAGE attribute and not the FIXED_LENGTH attribute is expected to support
deletion from the end of the block sequence at minimum, i.e. truncation.

(oldowner,error) := SetUioOwner(uio-id, newowner, authdomain, perms) sets the owner of a
UIO to the specified new owner, authorization domain and permissions. This can only be executed by
a process in the same authorization domain as the UIO owner.

(error, oldauthdomain, oldperms) := SetUioPermissions(uio-id, authdomain, newperms) - sets
the access control on the UIO to the specified new authdomain and permissions and returns the pre-
vious authdomain and permissions. This can only be executed by a process in the same authorization
domain as the UIO owner.

(error, oldbreakprocess) := SetUioBreakProcess(uio-id, newbreakprocess) - set the new break
process for this INTERACTIVE UIO object and return the previous break process. The break process
for a UIO object receives a signal or exception when a user-generated break or attention occurs on this
UIO.

(oldtime, error) := SetUioLockWaitTime(uio-id, newtime) sets the lock wait time of a UIO to
newtime, returning the previous value of this parameter. This can only be executed by a process in
the same authorization domain as the UIO owner.

error := LockUio(uio-id, lockmode, blkno, blkcount) -lock the specified range of data blocksin the
specified UIO in the given lockmode, SHARED or EXCLUSIVE. An LOCKED error code is returned
if the request is in conflict with an existing lock after waiting for lockwasttime seconds.

error := UnlockUio(uio-id, lockmode, blkno, blkcount) - unlock the specified number of data blocks
in the specified UIO to the given lockmode, starting at blkno.

(error, returnrec) := UioControl(uio-id, parameters) - perform a query or modification to the UIO
specific to this type of UIO according to the service-specific parameters, returning an error code and
the return record.

29

Except for QueryUio, SetUioOwner, SetUioPermissions, LockUio and UnlockUio, these operations may also
have specific semantics supplied by the service-specific module implementing the object. Consider as an
example the implementation of a printer spool file. When this specific type is used, besides creating a UIO
object, the CreateUio operation creates a disk “spool” file into which the data can be stored temporarily
and associates this with the new UIO object. Logically (and perhaps in practice), a WriteUio operation on
this object simply invokes the corresponding operation on the disk file to append the new data to the disk
file. A ReleaseUio operation with a 0 release mode queues the disk file to be printed by a printer daemon.
With an ABORT.CHANGES mode, it aborts the printing by discarding the disk file. In general, the specific
semantics are only constrained to be consistent with the generic UIO semantics.

An important aspect of this uniform I/O interface is uniformity in the error return codes, since they
must be interpreted by the I/O run-time, and not just passed back to the user in a print statement. In the
interests of brevity, we only list a sample of the error returns we have used in V.

OPERATION.NOT_SUPPORTED - the request operation is not supported by this service module.
MODENOT . SUPPORTED - mode in the CreateUio operation is not supported by this server module.

UNDEFINED BLOCK - attempt to read a block that has never been written, such as in reading a
so-called sparse file or reading beyond the end of file.

BAD BYTE_COUNT - attempt to read or write a larger amount than that supported by the server. The
server should read or write the maximum it does support, as indicated in the returned bytecount.

BAD BLOCK NUMBER - attempt to read or write non-sequentially on a stream UIO.
LOCKED - The file or block is already locked in a way that is inconsistent with the request lock.

END_OF FILE - the read operation received the end of the file, i.e. read the last byte in the last block.
This return code can also be generated on a terminal input stream.

30

