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Fluctuations of work from quantum subensembles: The case against
quantum work-fluctuation theorems
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We study how Thomson’s formulation of the second law of thermodynamicssno work is extracted from an
equilibrium ensemble by a cyclic processd emerges in the quantum situation through the averaging over
fluctuations of work. The latter concept is carefully defined for an ensemble of quantum systems, the members
of which interact with macroscopic sources of work. The approach is based on splitting a mixed quantum
ensemble into pure subensembles, which according to quantum mechanics are maximally complete and irre-
ducible. The splitting is done by filtering the outcomes of a measurement process. The approach is corroborated
by comparing to relevant experiments in quantum optics. A critical review is given of two other approaches to
fluctuations of work proposed in the literature. It is shown that in contrast to those, the present definitionsid is
consistent with the physical meaning of the concept of work as mechanical energy lost by the macroscopic
sources, or, equivalently, as the average energy acquired by the ensemble;sii d applies to an arbitrary nonequi-
librium state. There is no direct generalization of the classical work-fluctuation theorem to the proper quantum
domain. This implies nonclassical scenarios for the emergence of the second law.

DOI: 10.1103/PhysRevE.71.066102 PACS numberssd: 05.30.2d, 05.70.Ln

I. INTRODUCTION

A. Classical situation

The second law of thermodynamics was deduced in the
19th century, and formulated for a single closed system, in a
way resembling the laws of mechanicsf1–6g. It was, how-
ever, already the insight of Maxwellf7,8g and Gibbsf9g that
this law has in fact a statistical character, and refers to aver-
ages over an ensemble of identically prepared systems, rather
than to a single system. This viewpoint became widely ac-
cepted since the beginning of the 20th century, when the first
robust observations of fluctuations were made.1 Together
with the theoretical work of Boltzmann in the kinetic theory
of gases and of Smoluchowski, Fokker, Planck, and Einstein
in the physics of Brownian motion, they formed a consistent
picture of the second law as emerging from microphysics
through averaging over fluctuations. A detailed summary of
this activity is presented in the book by Epsteinf1g, while
Tolman f2g discusses theoretical aspects of the situation.
Since then, the statistical understanding of the second law
has entered several modern books of statistical physics and
thermodynamicsf3,4g. The current perspectives on the clas-
sical and quantum Brownian motion in the context of the
second law can be found in Refs.f13–15g.

At the end of the 1970s several groups independently
gave a derivation of Thomson’s formulation of the second
law f16–22g, no work can be extracted from an initially ca-
nonical equilibrium system by means of a cyclic thermally
isolated process, starting directly from quantum or classical
Hamiltonian equations of motion. The very possibility of
getting this thermodynamical result directly from equations
of motion is due to the fact that work is a transparent quan-

tity unambiguously defined both in and out of equilibrium
for any squantum or classicald system interacting with exter-
nal macroscopic work sources.2 As the main consequence,
Thomson’s formulation is the only one that is valid for both
finite and infinite systems which do start in equilibrium, but
can be driven arbitrarily far from it by external sourcesssee
f23g and Secs. II C and VII for more detailsd.

The standard understanding of the second law and fluc-
tuations is based on Einstein’s formula relating entropy to the
probability of a fluctuation around equilibriumf1–3,5g. This
suffices for the purposes of near-equilibrium thermodynam-
ics of macroscopic bodies, in particular, because all the for-
mulations of the second law are equivalent for them and
entropy is defined unambiguously. In the more general case
of finite systems and/or systems driven strongly out of their
initial equilibrium, relations between the second law and
fluctuations ought to be studied anew for each meaningful
formulation of the law separately.

The purpose of the present paper is to understand how
Thomson’s formulation of the second law in the quantum
situation emerges through the averaging over fluctuations.
More specifically, if thesaveraged work done on the initially
equilibrium ensemble during a cyclic process is always non-
negative, what are fluctuations of this work, and how do they
behave? There are definite answers to these questions in the
classical situation: the definition of fluctuations of work is
straightforward, and model-independent information on them
is given by an equality first derived by Bochkov and Kuzov-
lev in 1977f16g sBK equalityd. Later on, this equality, some-
times also called the work-fluctuation theorem, was extended
to noncyclic processesf24g, and has undergone various

1It was thus rather surprising to see recent claims on “violations of
the second law”f10g or “transient violations of the second law’’
f11g due to fluctuations; see in this context our commentf12g.

2These features of work are in contrast to those of entropy, whose
meaning is too closely tied to equilibrium states of macroscopic
bodies.
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generalizations.3 The basic messages of the classical BK
equality are recollected and reviewed in Sec. II E.

B. Quantum situation

While these developments concern the classical situation,
a number of recent works are devoted to quantum extensions
of the BK equalityf27–32g. The first definition of fluctua-
tions of work in the quantum situationsand a quantum ex-
tension of BK equalityd was proposed by Bochkov and Ku-
zovlev themselvesf16,18g. It is based on constructing a
certain operator in the Heisenberg representation, associating
it with an operator of work, and thus treating work as an
ordinary quantum mechanical observable pertaining to the
system and not to the work source.

Another extension was initiated by Kurchanf28g, based
on two-time measurements of energy. This second approach
is closely tied to the Schrödinger representation.

There are therefore two different approaches to the defi-
nition of fluctuations of work and to quantum extensions of
the BK equality; both of them attracted attention recently
f27,29–32g, and are reviewed below in Sec. VI. However, the
fact that in the quantum situation these two approaches for
defining fluctuations of work are differentf32g is already
calling for attention to the situation.4

C. General conditions on fluctuations of work

Our objective is to propose a third definition of fluctua-
tions of work, which is motivated by the fundamental phys-
ics of quantumssubdensembles. The definition is guided by
the following observation. Since the usual work is now pre-
sented as an average of a random quantity—for the moment
we leave unspecified whether this is a random classical quan-
tity or an operator—it is natural to require the following two
conditions on itssfluctuatingd realizations and on its average.

s1d Once the average work is unambiguously defined for
any quantum system starting in an arbitrary initial state and
interacting with a macroscopic source of work, the same
should hold for fluctuations of work. In particular, the gen-
eral definition shouldnot be restricted tosinitially d equilib-
rium states of the system, since one part of statistical
thermodynamics deals with work extraction from nonequi-
librium systemsf3,33g, and one should, of course, be able to
define fluctuations of work in this most general situation.

s2d Realizations of the random quantity work should have
the same physical meaning of mechanicalshigh-gradedd en-
ergy as the usualsaveraged work. In particular, if one hap-
pens to extract some work from a single realization, one

should be able—at least in principle—to use precisely this
amount for the standard purposes, e.g., for driving motors.
sBasic features of work are recalled in Sec. II B.d

Both these conditions are naturally satisfied by the classi-
cal definition, and in our opinion without them the very pro-
gram of studying the emergence of the second law in the
quantum situation becomes ill defined.

It appears to the present authors that, as we discuss below
in Sec. VI, neither of the existing two quantum
approaches—in the way they stand presently—can be
viewed as providing a proper definition of fluctuations of
work in the quantum situation. Both approaches fail out of
equilibrium sno first conditiond, while even for an initially
equilibrium state it is not clear that the second condition is
satisfied.5

D. A different approach to fluctuations of work in the
quantum situation

These are the reasons to introduce in the present paper a
possibleapproach to quantum fluctuations of work that will
satisfy the above two conditions. It starts with explicitly re-
specting the first condition, that is, always defining realiza-
tions of sthe random quantityd work as some average energy
given off by the macroscopic source of work. If the corre-
sponding ensemble of physical systems already consists of
subensembles, nontrivial realizations can be defined via the
average energy exchange of each subensemble with the
source.6 For a classical ensemble each single member com-
pletely characterizes a subensemble, and the classical defini-
tion of fluctuations of work follows naturally. In contrast, a
quantum equilibrium state is described by a homogeneous
quantum ensemble, the Gibbsian ensemble, which by itself
does not consist of subensembles. This prevents us from pro-
ceeding as such. First, the Gibbsian ensemble has to split
with the help of a selective quantum measurement into a set
of shomogeneousd subensembles. Thus, the initial Gibbsian
ensemble is transformed into an inhomogeneous ensemble
swith the same density overall matrixd which alreadyconsists
of the subensembles. The obtained structure of these suben-
sembles does depend on the type of measurement, and as a
consequence the resulting fluctuations of work in the quan-
tum situation appear to be context dependent. The role of
contextuality in quantum physics has been strressed over and
over again; see, e.g.,f34,35g. Second, systems from each
subensemble interact with the work source which realizes on
them the same process. Realizations of work are defined via
the average energy7 received by each subensemble. Each re-
alization has its probability naturally determined by the

3A rather complete account of various generalizations of the clas-
sical work-fluctuation theorem, as well as its relation with other
fluctuation theorems, e.g., those describing entropy production, is
given in Refs.f25,26g. Local versions of the fluctuation theorems
are also discussed there.

4The difference in viewpoints is not completely unexpected, since
the work as it appears in statistical thermodynamicsf2–5g is an
essentially classical quantitysmechanical energy transferred from a
classical source of workd.

5Neither of these points was discussed in papers which support
those definitions; see, e.g.,f16,18,27,28,30–32g.

6As with any exchange process, this is operationally characterized
by measurements at two different times.

7Normally this averaging is done either by letting many identi-
cally prepared systems interact with the work source, or by operat-
ing with a single system but repreparing its state after each interac-
tion period. Both these ways are feasible and are realized
experimentally; see Sec. III G for more details.
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weight of the corresponding subensemble in the overallsin-
homogeneousd ensemble.

Within this approach each realization of the random quan-
tity work is already a partially averaged quantity: it refers to
a subensemble rather than to a single system. Recall that
already in classical statistical physics there are two strategies
for studying fluctuationsf3g. In the first case, the studied
quantity se.g., energyd has a direct mechanical meaning. In
this situation it can be measured directly, and its fluctuations
are represented by outcomes that vary from one measure-
ment to another. In other cases the quantity of interestse.g.,
the temperatured has itself only a statistical meaning. Then
some averaging has to be done before realizations of this
random quantity can be obtained. In practice, it will often
happen that nature is doing this for us, for example, when we
measure the temperature of a liquid. There are cases, how-
ever, where the averaging has to be done by hand, which is
close to the typical coarse-graining done in sociological ex-
perimentsse.g., the height of persons being in a certain in-
tervald.

In quantum mechanics a similar situation shows up: when
measuring the energy of a particular member of an ensemble,
this member can be said to have that value of the energy after
the measurement, since quickly repeated measurements will
give the same answer. The approach of this paper will be to
put forward the idea that fluctuations of work in the quantum
situation have the same nature as fluctuations of temperature
in the classical situation: subensembles are needed to define
spartially averagedd values of work.

The presented approach, deduced from conceptual consis-
tency, appears to be related to certain quantum optical ex-
periments, whichsthough never interpreted in this wayd have
been realized by observing fluctuations of work; see Sec.
III G.

E. Implications for the emergence of the second law

As one of the main results of our approach, the second
law in Thomson’s formulation—whose statement reads in
the same way in both quantum and classical regimes—has in
those two situations rather different scenarios of emergence.
The basic qualitative difference is that, in contrast to classics,
the fluctuations of work in the proper quantum situation are
not controlled by any direct analog of the BK equality. More
specifically, in classics the structure of work as a random
quantity is such that there have to be realizations that provide
work si.e., that are actived. In the quantum case, however,
there need not be any active realizationsactive suben-
sembled.

We have taken the simplest situation that allows one to
study Thomson’s formulation of the second law and fluctua-
tions of work, that is, we consider a finite quantum or clas-
sical system interacting with external sources of work. The
restriction to finite—though possibly large—systems is at
any rate natural for studying fluctuations, and allows us to
focus on the conceptual issues connected to fluctuations of
work. The approach is generalized directly for systems
coupled to an environmentse.g., thermal bathsd, and under
certain natural conditions allows us to express fluctuations of

work via quantities referring to the open system onlyssee
Sec. III Fd.

F. Guidelines for reading this paper

The paper is intended to be self-consistent and is orga-
nized as follows. In Sec. II we recall the definition of fluc-
tuations of work in the classical situation and review the BK
equality and its consequences relevant for the emergence of
the second law. In Sec. III we present the definition of fluc-
tuations of work in the quantum situation. This is the central
section of the paper which addresses the definition of work
and physics of quantum ensembles, and finishes with a de-
tailed discussion of the physical meaning of the approach.
This section also outlines generalizations of the approach
and connects it to relevant experiments. The dispersion of
work is studied in Sec. IV. In Sec. V we show that fluctua-
tions of work in the quantum situation are not controlled by
any direct analog of the classical BK equality. An anticlassi-
cal scenario for the emergence of the second law in Thom-
son’s formulation is described in Sec. IV.

In Sec. VI we make a comparison with the two known
approaches on fluctuations of work in the quantum situation
sno preliminary knowledge of these subjects is assumedd.
These approaches offer different extensions of the classical
BK equality. We do not intend to imply that these approaches
do not have a physical meaning or that they cannot be useful
for their own sake. We only state that—in the way they stand
presently—they do not describe fluctuations of work in the
proper quantum situation. Sections III and VI can be read
independently from the rest of the paper.

We close with a summary of our results. Some details are
worked out in Appendixes.

II. CLASSICAL FLUCTUATIONS OF WORK AND BK
EQUALITY

A. The setup

Consider an ensembleE of identical classical systemsS
which are thermally isolatedf3,4g: they move according to
their own dynamics and interact with an external macro-
scopic work sourceW. This interaction is described via the
time dependence of some parametersRstd=hR1std ,
R2std , . . .j of the system’s HamiltonianHstd=HhRstdj; see
Refs.f3,4g.

The parameters move along a certain trajectoryRstd
which at some initial timet=0 starts fromRs0d, and ends at
Rstd at the final timet=t. Cyclic thermally isolated pro-
cesses are defined byRs0d=Rstd and thus

HhRstdj = HhRs0dj ; H. s1d

At the initial time the ensemble is in equilibrium, that is, the
common probability distributionPsx,p; t=0d;Psx,pd of all
its canonically conjugated coordinatesx=sx1, . . . ,xnd and
momentap=sp1, . . . ,pnd is given by the Gibbs distribution
with the initial Hamiltonian Hsx,pd and temperatureT
=1/bù0:
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Psx,pd =
e−bHsx,pd

Z
, Z =E dx dp e−bHsx,pd. s2d

This equilibrium distribution can be prepared by means of a
thermal bath coupled with the systemS for t,0. It is as-
sumed that for times 0ø tøt the systemS is decoupled
from the bath—an alternative assumption would be that its
coupling to the bath is so weak that it can be neglected in the
considered time interval—and the evolution of the ensemble
is described by the Liouville equation forPsx,p; td:

]tPsx,p;td =
]Hsx,p,td

]p

]Psx,p;td
]x

−
]Hsx,p,td

]x

]Psx,p;td
]p

.

s3d

B. Work

In statistical thermodynamics there are two alternative
definitions of work f2–4,6,36g. Both are necessary for the
proper understanding of its physical meaningf4,36,37g. The
first reads as follows. The workW is the average energy
gained byS during a thermally isolated system-work-source
interaction withW f3,4g:

W=E dx dpfPsx,p;tdHsx,p;td − Psx,pdHsx,p;0dg. s4d

Due to conservation of energy,W is equal to the average
energy lost by the work sourceW. This definition wassim-
plicitly d proposed by Caratheodoryf36g. A concise history of
various definitions of work is given inf38g, while various
perspectives of work in classical mechanics are reviewed in
f39g.

For cyclic processes Eq.s4d takes a simpler form,

W=E dx dpfPsx,p;td − Psx,pdgHsx,p;0d. s5d

There is a second, alternative definition going back to
Gibbs and Planckf36,38g: The negative work −W is the en-
ergy transferred to the work sourceW. Its distinguishing
feature with respect to other forms of energy is that it can, in
principle, be transferred with 100% efficiency to other work
sources via interactions of the system-work-source type. In
particular, it can be retransferred to collective degrees of
freedom that performclassical deterministicmotion gener-
ated by a suitable Hamiltonian. These degrees of freedom are
thus purely mechanical and serve as prototypes of macro-
scopic mechanical devicesssuch as a motor, piston, turbine,
etc.d. For them the differential work can be calculated in the
usual way of ordinary mechanics, that is, multiplying the
external force by the corresponding displacementf4g.

Both these definitions of work are expected to be equiva-
lent at least for sufficiently ideal work sourcesf4,36,37g.

There is yet another, equivalent formula for the workW:
the integral of the rate of energy change,

W=E
0

t

dtE dx dpPsx,p;td
]Hsx,p;td

]t
. s6d

To get from here to Eq.s5d one performs integration by parts,
uses the standard boundary conditions, that is,Psx,p; td de-
cays forx→ ±` or p→ ±`, and employs Eq.s3d. This for-
mula for W is more general and can be applied to processes
that involve an environment.

C. Fluctuations of work

Though the ensembleE is described by the probability
distributionPsx,pd, each single systemS from this ensemble
has at a given moment of time explicit values for all its
dynamical variables. These values may vary from one single
system to another due to the distribution of initial conditions.

Each single member of the ensemble is then coupled to
the external source of work that realizes on it a unique ther-
mally isolated processsthe same for all membersd. In other
words, the same parametersRstd of the Hamiltonian are var-
ied in the same way for each member. The motion of the
single system is described by Eq.s3d with now Psx,p; td
being a product of twod functions d(x−xstd)d(p−pstd),
which are probability densities concentrated at the solutions
of the canonical equations of motion:

ṗ = − ]xHsx,p;td, ẋ = ]pHsx,p;td. s7d

The trajectories generated bys7d, together with their initial
conditions distributed according to Eq.s2d, serve asrealiza-
tions of the random process given by Eq.s3d.

The work wsx,pd exchanged in each thermally isolated
process can then be calculated consistently with Eq.s5d:

wsx,pd = H„xstd,pstd;t… − Hsx,pd s8d

=H„xstd,pstd… − Hsx,pd, s9d

whereH(xstd ,pstd ;t) is the value of the Hamiltonian on the
trajectory that started att=0 from sx,pd, with xstd andpstd
being the corresponding solutions ofs7d. This work can be
observed as the energy decrease of the mechanical degree of
freedom of the macroscopic work source, or alternatively via
energy increase of the systemS. In this latter scenario the
energy ofS has to be measured twice, at the momentst=0
andt.

The workwsx,pd for a single system is a random quantity,
since it varies from one single system to another. It can be
positive or negative. Its probability distributionPswd is de-
termined byPsx,pd, since this is the probability with which
each single system enters in the ensemble:

Pswd =E dx dpPsx,pdd„w − wsx,pd…. s10d

There being used no special features of the initial equilib-
rium distribution function, the same definition for the work
in a single realization can be given for any initial ensemble.
It is seen that the two desired conditions for fluctuations of
work formulated in Sec. I are naturally satisfied: the initial
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distribution may be arbitrary and “work for a single realiza-
tion” has the same physical meaning as average work.

D. Derivation of BK equality

One now derives the BK equality in the classical situation
for a closed cyclef16,18,24g:

ke−bwl ; E dw Pswde−bw =E dx dpPsx,p;0de−bwsx,pd

=
1

Zs0d E dx dp e−bHsx,pd−bwsx,pd

=
1

Zs0d E dx dp e−bHsxstd,pstd;td

=
1

Zs0d E dxstddpstde−bH„xstd,pstd;t… s11d

=
Zstd
Zs0d

= 1, s12d

where we used the Liouville theoremdx dp=dxstddpstd and
Eqs.s2d, s9d, ands10d. The last equality in Eq.s12d is due to
the assumed cyclic feature of the process.

E. Qualitative messages of the BK equality

The BK equality is by itself an exact mathematical rela-
tion. Several important qualitative results can be deduced
from it.

1. The second law

As the exponential function is convex, one gets directly
1=ke−bwlùe−bkwl, and thenW=kwlù0, which is the state-
ment of the second law in Thomson’s formulation: no work
can be extracted from an equilibrium system by means of a
cyclic process. This formulation of the second law is well
known and has an independent and more general derivation
in both the classical and quantum situationsf16,19–22,40g.

2. Active realizations

To satisfy 1=ke−bwl directly leads to the following obser-
vation: for any cyclic thermally isolated process there are
realizations which are active, that is, for which work is ex-
tracted after the process:wsx,pd,0. The relative weight of
such active realizations can be estimated via the Cauchy in-
equality:

1 =SE dx dpÎPsx,pdÎPsx,pde−bwsx,pdD2

øE dx dpPsx,pd E dx dpPsx,pde−2bwsx,pd, s13d

which can be written as

ke−2bwl ù 1. s14d

A stronger relation is obtained using the generalized Cauchy
inequality ssee Appendix Ad

ke−2bwl ù 1 +
fŠsf − kflde−bw

‹g2

Šsf − kfld2
‹

. 1, s15d

where fsx,pd is an arbitrary integrable function in the phase
space, and where

kfl ; E dx dpPsx,pdfsx,pd. s16d

Equations15d is stronger than Eq.s14d, since nowke−2bwl is
strictly larger than 1. Equationss14d and s15d allow us to
understand how relevant the active realizations are with re-
spect to both their probability and the amount of extracted
work.

3. Dispersion of work

For sufficiently high temperatures one can make a cumu-
lant expansion

1 = expS− bkwl +
b2

2
skw2l − kwl2d + ¯ D s17d

which shows that for sufficiently high temperatures the ratio
of the dispersion of workkw2l−kwl2 and its average in-
creases with temperature:

kw2l − kwl2

kwl
= 2T. s18d

A detailed survey of various cumulant expansion-based
results derivable from the BK equality is contained in Refs.
f16–18g.

F. Noncyclic processes

For noncyclic processes there is an analog of the equality
s12d, which is derived in a similar way with the conclusion
f24g ke−bwl=e−bfFstd−Fs0dg, where Fstd=−T ln e−bHstd is the
corresponding free energy. This relation allows us to calcu-
late differences of free energy viasnonequilibriumd measure-
ments of work.8

This generalized equality is not directly relevant for our
present purposes, because here we are interested in the sec-
ond law in Thomson’s formulation which refers to cyclic
processes.

III. QUANTUM ENSEMBLES AND THE DEFINITION OF
FLUCTUATIONS OF WORK

A. The setup

The quantum setup for studying thermally isolated pro-
cesses is a straightforward extension of the classical one.
sWe denote all operators by a care.d

An ensembleE of identically prepared quantum systemsS
is described att=0 by a density matrixr̂s0d= r̂. The eigen-

resolutions ofr̂ and of the HamiltonianĤ read

8A number of issues related to this point were discussed in a
recent exchange of opinionsf41,42g.
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r̂ = o
k=1

n

pkupklkpku, s19d

Ĥ = o
k=1

n

«ku«klk«ku, s20d

wherehu«kljk=1
n andhupkljk=1

n with k«ku«ll=kpkupll=dkl are the

eigenvectors ofĤ and r̂, respectively, which form bases in
the n-dimensional Hilbert spaceH, and where«k andpk are
the corresponding eigenvalues.

Frequently, but not always, we will consider initially
Gibbsian density matrices:

r̂s0d = r̂ =
e−bĤ

Z
, Z = tr e−bĤ, s21d

pk =
e−b«k

o
k=1

n

e−b«k

, upkl = u«kl, k = 1, . . . ,n, s22d

where T=1/bù0 is the temperature of the ensemble. We

shall order the eigenvalues ofĤ as

«1 ø «2 ø ¯ ø «n. s23d

Then according tos22d, the eigenvalues ofr̂ will be ordered
as

p1 ù p2 ù ¯ ù pn . 0. s24d

For the Gibbsian density matrix all eigenvalues are strictly
positive.

Analogously to the classical case, the Gibbsian states21d
is prepared fort,0 by lettingS interact with a macroscopic
thermal bath, and then decoupling it from the bath, so that
the interaction is absent fort.0. There is, however, a rel-
evant difference between quantum and classical: in the quan-
tum situation the coupling ofS with the bath has to be weak
for the stationary state ofS to be Gibbsian.9 A detailed analy-
sis of this and similar differences between the Gibbs distri-
bution in quantum and classical situations is presented in
f14,15g.

At t=0 S starts to interact with an external macroscopic
work sourceW. The resulting evolution ofS is generated by

san effectived HamiltonianĤhRstdj, which is time dependent
via classicalsc-numberd parametersRstd.10 The evolution of
S is thus unitary and has the same general features of revers-
ibility as the dynamics of a completely isolatedS. It is well
known that in general a Hamiltonian evolution of the com-
plete systemS+W does not reduce to a Hamiltonian evolu-
tion for the state ofS. However, in the present case this is

achieved owing to themacroscopiccharacter ofW, as dis-
cussed inf4g.

A cyclic process at the momentt=t is defined in the same
way as in classics,Rstd=Rs0d, leading to

Ĥstd = Ĥs0d = Ĥ. s25d

The HamiltonianĤstd generates a unitary evolution:

i"
d

dt
r̂std = fĤstd,r̂stdg, s26d

r̂std = Ûtr̂s0dÛt
†, s27d

Ût = expQS−
i

"
E

0

t

ds ĤssdD , s28d

where expQ and expW denote time-ordered and time-antiordered
exponents, respectively.

B. Work

The whole discussion in Sec. II B directly applies in the
quantum situation, except thatS is now a quantum system,
and Eqs.s4d and s5d should be substituted by their quantum

analogssi.e., P→ r̂, H→ Ĥ, andedx dp→ trd. In particular,
the workW done by the external sourceW is identified with
the average energy changef3,4g

W= trfr̂stdĤ − r̂Ĥg = tr r̂V̂, s29d

where we denoted

V̂ ; Ût
†ĤstdÛt − Ĥ = Ût

†ĤÛt − Ĥ. s30d

Here Ût
†ĤstdÛt is the Hamiltonian operator in the Heisen-

berg representation at the end timet of the cyclic process.

This operatorV̂ is sometimes called the “operator of work”
f6,16,27g. We shall show, however, in Sec. IV A that it is not
clear whether it satisfies all criteria to deserve this identifi-

cation. Moreover, the much weaker interpretation ofV̂—by
analogy to the classical expressions8d—as the “energy dif-
ference operator in the Heisenberg representation” is also

incorrect in general; see Sec. IV A. In our approachV̂ will
always appear inside averages over density matrices as in the
definition of works29d; we do not need any particular inter-

pretation ofV̂.
The remarks we made after Eq.s5d for the classical situ-

ation are valid in the quantum case as well.W is equal to the
average energy decrease of the work sourceW. This is a
classical, mechanical energy which can be transferred with
100% efficiency to an other work source, and, in particular, it
can be transferred to another mechanical degree of freedom
performing classical deterministic motion. In that respect
both the classical and quantum definitions are consistent and
can be indistinguishable from the viewpoint of this mechani-
cal degree. This property is the underlying reason why phe-
nomenological thermodynamics, where nosquantum or clas-
sicald identification ofS is given, can and does exist.

9Due to weak coupling to the bath, the energy costs for switching
the interaction on and off become negligible. This holds in both the
quantum and the classical situationsf14,15g.

10Note that this time dependence is in the Schrödinger represen-
tation. To avoid confusion we do not deal with the implicit Heisen-
berg representation.
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The work is typically observed via suitablesclassicald
measurements done on the work source, or, alternatively, by
measuring the initial and final average energies on the en-
sembleE. Both these ways are routinely employed in prac-
tice, e.g., in NMR and ESR physics, where the systemS
corresponds to spin12 under the influence of external mag-
netic fieldsf43g.

Finally, the quantum analog of formulas6d reads

W=E
0

t

dt trSr̂std
dĤstd

dt
D . s31d

Equations29d can be recovered from this formula upon inte-
gration by parts and usings26d.

C. Quantum ensembles

The definition of fluctuations of work in the classical situ-
ation was based on the distinction between classical en-
sembles of systems described by a probability distribution
versus a single member of that ensemble. It should not be
surprising that fluctuations of work in the quantum situation
are closely tied to the meaning of what is a quantum en-
semble.

Thus, for our further purposes we need an account of
various features of quantum ensembles and their differences
with respect to the classical ones. There are several sources
in literaturef34,44–48g where this type of question is studied
with special attention.11

1. Statistical interpretation of quantum mechanics

Within this interpretation of quantum mechanics a quan-
tum “state” is described by a density matrixr̂ f34,44–48g.
Any state, including a pure stateuclkcu, describes an en-
semble of identically prepared systems. For instance, in an
ideal Stern-Gerlach experiment all particles of the upper
beam together are described by the wave functionu↑l or the
pure density matixu↑lk↑u. The description is optimal, in the
sense that all particles havesz= +1, but incomplete in the
sense thatsx andsy are unknown: upon measuring either of
them, one will get ±1 with equal probabilities.

This interpretation suffices for describing experiments, in-
cluding those done on a single systemf34,48,52,53g. As
compared to other interpretations of quantum mechanics, the
statistical interpretation is dealing more succesfully with a
number of conceptual problems, including the quantum mea-
surement problemf33,34,54g.

2. Homogeneous ensembles

In general, a density matrixr̂ can be applied to describe
two types of quantum ensembles,homogeneousandinhomo-
geneous.

For a homogeneous ensembleEsr̂d only the density ma-
trix r̂ is given and no further specification is made about a
single systemS from that ensemble. A typical example is an
ensemble prepared by thermalization, that is, by letting each
single systemS interact weakly with an equilibrium thermal
bath, and waiting sufficiently long until the equilibrium state
of S is established.

Let us study the features of homogeneous ensembles in
more detail. We start by comparing them to classical en-
sembles. In the classical situation, the description of an en-
semble by means of a probability distribution still implies
that each single system has definite values forall its vari-
ables. For a homogeneous quantum ensembleEsr̂d, only
those observablessHermitian operators existing in the Hil-

bert spaceHd Â that are dispersionless onEsr̂d,

ftrsÂr̂dg2 = trsÂ2r̂d, s32d

can be said to have definite values for all single systemsS
from Esr̂d. Indeed, it is shown in Appendix C that dispersion-
less observables satisfy

Âr̂ = ar̂, s33d

wherea is a c number. This implies trsÂmr̂d=ftr Âr̂gm, with
m=0,1,2,3. . ., and theabove statement follows. For a pure
stater̂= uclkcu, we return from Eq.s33d to the standard no-

tion of ucl being an eigenstate ofÂ.

Any other, nondispersionless observableB̂—even if it
commutes with the density matrixr̂—does not have a defi-
nite value in a single systemS from Esr̂d. It is true that for

fr̂ ,B̂g=0, Esr̂d can be prepared by mixing12 pure states en-
sembles hEsupklkpkudjk=1

n with probabilities hpkjk=1
n , where

hupkljk=1
n andhpkjk=1

n are, respectively, the common eigenvec-

tors of r̂ andB̂ and the eigenvalues ofr̂. If Esrd is knownto

be prepared in such a way, thenB̂ has indeed definite values
for each single member ofE. However, in general this need
not apply, since there aresinfinitelyd many other ways to
prepare the same ensembleEsr̂d via mixing N subensembles
with density matriceshucalkcauja=1

N and probabilitieshlaja=1
N .

They correspond to thesinfinitelyd many ways in which the
Hermitian operatorr̂ can be decomposed asf34,46–48g

11Though the theory of quantum ensembles is almost as old as
quantum mechanics itself, it still attracts lively discussions; see,
e.g.,f49–51g. It is interesting to note that the basic differences be-
tween classical and quantum ensembles were correctly understood
by Elsasser as early as in 1937f44g.

12Mixing ensemblesEsr̂1d andEsr̂2d with probabilitiesp1 andp2,
respectively, means that one throws a dice with probabilities of
outcomes equal top1 and p2, and depending on the outcome one
picks up a system fromEsr̂1d or Esr̂2d, keeping no information on
where the system came from. Alternatively, one can join together
Np1 systems fromEsr̂1d and Np2 systems fromEsr̂2d sN@1d, so
that no information is kept on where a single system came from.
Then any subensemble ofM systemssN@Md is described by the
density matrix r̂=p1r̂1+p2r̂2. Note that the restrictionN@M is
important, see, e.g.,f50g, and some confusion arose in the literature
by not taking it into account.
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r̂ = o
a=1

N

laucalkcau, la ù 0, o
a=1

N

la = 1, s34d

where ucal are some normalized—but in general not
orthogonal—vectors existing in the samen-dimensional Hil-
bert spaceH,13 and whereucalkcau are distinct.

The eigenresolutions19d is only a particular case ofs34d,
and if now the ensembleEsr̂d is prepared by one of the ways
corresponding tos34d with nonorthogonalucal, the constitu-
ents ofEsr̂d come from the subensembleshEsucalkcaudj and

the observableB̂ has in general no definite value for these
subensembles.

We conclude with three related features of a homoge-
neous ensemble:s1d The ensemble cannot be thought to con-
sist of definite subensembles;s2d a single system from such
an ensemble does not by itself define a subensemble;s3d
There are thus no homogeneous ensembles in classical sta-
tistical physics, since a single system is known to have defi-
nite values of all its variables.

3. Pure-state ensembles

The description of a homogeneous ensemble via pure den-
sity matrices,r̂2= r̂, has several special features.

First of all, it is seen from Eq.s34d that for a pure state
r̂= uclkcu in the right-hand sidesRHSd of representations34d
only one term shows up:uclkcu= uclkcu.14 Thus, pure-state
ensembles cannot be prepared via mixing of other ensembles
of the systemS, or, put differently, first, pure-state ensembles
are irreducible; and second, this description is the maximally
completeone possible in quantum mechanics.

The latter known thesis can be substantiated as follows.
First one notes from Eqs.s32d and s33d that for a fixedr̂
dispersionless observables form a linear space: if two opera-
tors are dispersionless, so is their sum, and multiplication by
a number conserves the dispersionless feature.

From Eq.s33d and Appendix C one sees that if the mixed
density matrix r̂ has k, 1økøn, nonzero eigenvaluessn
being the dimension of the Hilbert spaceHd, then the dimen-
sion of the linear space formed by the corresponding disper-
sionless observables is equal to

Nk = sn − kd2 + 1. s35d

This number is maximal fork=1, that is, for pure density
matrices. In other words, pure density matrices provide defi-
nite values for a larger set of observables than mixed density

matrices.15 For a mixed state all dispersionless observables
have to be degenerate.

Though the features of irreducibility and completeness
create a conceptual difference between pure and mixed den-
sity matrices, this should not be taken as an invitation to
prescribe pure density matrices to a single system, reserving
the mixed ones for ensembles; further reasons for this are
analyzed in Refs.f34,45–48,54g.16

4. Inhomogeneous ensembles

A mixed density matrixr̂ can also describe inhomoge-
neous ensembles. Such an ensembleEi is a collection of
homogeneous subensembleshEsr̂adja=1

N with probabilities
hlaja=1

N , so that each single system fromEi is known to be
taken from the ensembleEsr̂ad with probability la, a
=1, . . . ,N. Obvious cases are when the subensemblesEsr̂ad
are separated in space—as happens for the two beams of the
Stern-Gerlach experiment—or in time, or by means of some
other classical quantity.

Inhomogeneous ensembles are typically prepared by
means of selective measurements.17 In that case the above
classical quantity is the corresponding record of the macro-
scopic apparatus by which this measurement was done. Be-
low in Sec. III E we describe in detail how an initially ho-
mogeneous ensemble can be separated into subensembles by
means of a measurement.

The inhomogeneous ensembleEi is still described by the
overall density matrixr̂=oa=1

N lar̂a, but in contrast to the
homogeneous situation this is not the full description. The
latter is provided by the list

hla,r̂aja=1
N . s36d

So more information is known about the inhomogeneous en-
sembleEi than onlyr̂. If the inhomogeneous ensemble is just
a combination of homogeneous ones, this is obvious. If the
inhomogeneous ensemble was prepared by means of a mea-
surement, then the above information results from the mea-
surement carried out and from selection of the outcomesssee
more details in Sec. III E belowd.

13Normalization and belonging toH are necessary forucalkcau to
describe some ensemble of the systemsS.

14This can also be deduced from a more general result: anyucal
that can appear in Eq.s34d is orthogonal to the linear space formed
by the eigenvectors ofr̂ corresponding to eigenvalue zero. Indeed,
let u0l be one such eigenvector, thenk0ur̂u0l=oalazk0ucalz2=0;
thus k0ucal=0 for la.0.

15For k=n we getNk=1, since in this case only operators propor-
tional to unity are dispersionless. Forn=2 and k=1, Nk=2: all
dispersionless observables for a two-dimensional pure density ma-
trix uclkcu can be represented asauclkcu+buc'lkc'u, where
kc uc'l=0, and wherea andb are two independent real numbers.

16Among the reasons we find convincing is the analysis of the
quantum measurement processf33,54g.

17These measurements need not be done on the systemS directly;
they can be indirect as well. Imagine an ensemble of two spin-1/2
particles described by pure density matrixuclkcu, where ucl
=s1/Î2dsu+l1 ^ u+l2+ u−l1 ^ u−l2d, and whereu± l1,2 are the eigen-
vectors ofŝz

s1,2d with eigenvalues ±1 for the first and second par-
ticle, respectively. One can now measureŝz

s1d, and keep both the
results of these measurements and the order of their appearance
sthus, one keeps a sequence of random numbers ±1d. For the sub-
ensemble of the second spin this amounts to preparation of inho-
mogeneous ensembleh1/2,u+l2 2k+u ;1 /2 ,u−l2 2k−uj.
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5. Prescribed ensemble fallacy

This fallacy rests on forgetting the difference between ho-
mogeneous and inhomogeneous ensemblesf47,55g, that is, it
rests on neglecting that the overallspostmeasurementd den-
sity matrix r̂=oa=1

N lar̂a is physically different from the one
before the measurement, even though it is mathematically
still the samesin a Stern-Gerlach experiment the initial beam
has been split into two partsd. The fact that many mathemati-
cal splittings are possible just agrees with the fact that many
experiments are possible in principle. “Switching to another
representation,” as is often done in theoretical considerations
that commit the prescribed ensemble fallacy, is by itself im-
possible, unless one makes a second measurement setup. In
any given situation; however, once the experimental setup is
determined, there is no choice; instead, the splitting is
unique, physical, and contextual.

In spite of explicit warningsf3g, the fallacy frequently
sredappears in applications and interpretations of quantum
statistical physics. Consider, for example, the basic tool of
statistical physics, the equilibrium ensemble described by the
Gibbsian density matrixs21d. It is typically obtained by ther-
malization process, that is, due to interaction with a thermal
bath. One sometimes hears with respect to this ensemble that
it represents the system being in states of definite energy
with the corresponding probabilitiespk. This is a valid de-
scription of the ensemble only after the measurement of en-

ergy Ĥ has been done, something which is not typical in
applications. Moreover, as we recalled above and below, one
can choose to make a different measurement, and then the
interpretation in terms of definite energies will be explicitly
wrong. The reason why some applications—though starting
from the above incorrect premise—do not lead to contradic-
tions is clear: they use this premise merely for “explanation
of what actually happens,” while in real calculations and
comparisons with experiment only the density matrixs21d is
employed.

D. Fluctuations of work

Once the properties of quantum ensembles are clarified,
we can proceed with the quantum definition of fluctuations
of work. The most reasonable way to define this concept in
the quantum situation is to proceed along the same lines as in
classics, taking into account when needed the differences
between quantum and classical ensembles.

It is convenient to separate the definition into the follow-
ing steps.

s1d The initial ensembleEsr̂d is homogeneous, since it
was prepared by means of a thermal bath. With help of a
suitable measurementssee Sec. III E for detailsd, one sepa-
rates Esr̂d into irreducible, maximally complete suben-
sembleshEsucalkcaudja=1

N with probabilitieshlaja=1
N , so that

the resulting inhomogeneous ensemble is still described by
the same density matrixr̂ and thuss34d is valid.

In the quantum situation irreducible, maximally complete
subensembles are described by pure density matricesuclkcu.
The important point is thatthese subensembles play here the
same role as the single systems for the classical definition of
fluctuations of work.

Note that once it is understood that the initial ensemble
Esr̂d is homogeneous and that measurements are anyhow
needed to make it inhomogeneous, we have to admit any
measurement which will produce pure-state ensembles, even
those with nonorthogonalucal’s.

Recall that the present step of preparing an inhomoge-
neous ensemble out of the initial homogeneous one is absent
in the classical situation, simply because there are no essen-
tially homogeneous classical ensemblessi.e., each single sys-
tem can be viewed as defining a subensembled.

s2d This step almost literally repeats its classical analog.
The single systems from each subensembleEsucalkcaud in-
teracts with the work source which realizes the same ther-
mally isolated process on each single system from each sub-
ensemble.

The evolution of the corresponding subensemble during
the cyclic process between times 0 andt is given by the von
Neumann equation

i"
d

dt
r̂astd = fĤstd,r̂astdg, r̂as0d = ucalkcau, s37d

r̂astd = Ûtr̂as0dÛt
†. s38d

s3d In analogy with the corresponding classical step we
define the workwa done on the subensemblea via Eq. s5d,
or alternatively via Eq.s31d:

wa = trsV̂ucalkcaud = kcastduĤucastdl − kcas0duĤucas0dl,

s39d

=E
0

t

dt trFr̂astd
dĤstd

dt
G . s40d

This is the average energy decrease of the mechanical degree
of freedom of the work source due its interaction with the
corresponding subensemble. Thuswa has the meaning of
work by itself, but it is a quantity that had to be averaged
over the subensemble. The probability ofwa is equal tola,
since, as seen from Eq.s34d, this is the probability by which
the corresponding pure subensemble enters the overall en-
semble described byr̂.

Thus we defined a randomc-number quantity of workw
with realizationswa and probabilitiesla:

w = hwa,laja=1
N . s41d

As follows from Eqs.s29d ands34d the work done on the
overall ensemble is equal to the weighted average over the
pure subensembles:

W= o
a=1

N

lawa. s42d

Equations42d remains true for any initial ensemble. This
definition of fluctuations of work can be applied to any initial
ensemble and not only to that described by the Gibbsian
density matrixs21d.

The fluctuations of work do depend on the pure en-
sembleshucalkcauja=1

N , which are defined uniquely once the
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measurement separating the overall ensemble into pure sub-
ensembles is specified. What we defined as fluctuations are
thus the ones between subensemblessintersubensemble fluc-
tuationsd.

If fr̂ ,Ĥg=0, then the ensemble described byr̂ is station-
ary: all sone-timed averages are time independent. Now note
that the stationary ensemble can be decomposed into nonsta-

tionary subensembles, since in generalfucalkcau ,ĤgÞ0.
This fact implies nothing pathologic, since work is defined
for any initial ensemble, not only for stationary ones. It is
checked from Eq.s39d that if there is no interaction with the
work sources, thenV;0, and all possible realizations of
work are zero.

s4d Note that for macroscopic systems it is not realistic to
have available measurements producing pure-state suben-
sembles, since the directly available measurements are only
those of macroscopic quantities which are typically degener-
ate. In this case we may need to apply a coarse-grained defi-
nition of fluctuations of work, where the initial mixed en-
semble is separated into mixed subensembles described by
density matricesŝg sŝg

2Þ ŝgd

r̂ = o
g

ngŝg, ng ù 0, o
g

ng = 1. s43d

The definition then proceeds as above, changingucalkcau
→ ŝg in Eq. s39d.

This is a coarse-grained definition, since the realizations

of work trsV̂ŝgd can be reduced to more fundamental ones,
i.e., each of them can be presented as a convex sum of

trsucalkcauV̂d. As a consequence fluctuations of work—as
quantified, e.g., by dispersion of work defined and discussed
in Sec. IV—are maximal for pure-state decompositions
smore details on this are found in Sec. IV Ad.

E. Separation of a homogeneous ensemble into pure
subensembles by filtering outcomes of a positive operator

valued measurement

1. Positive operator valued measurements

It is now our purpose to discuss how precisely one sepa-
ratesswith the help of measurements and subsequent filter-
ingd an initial homogeneous ensembleEsr̂d into a mixed en-
semble consisting of puresnecessarily homogeneousd
subensembles.

The most general type of quantum measurement that al-
lows to produce pure postmeasurement states corresponds to
a positive operator valued measuresPOVMd f34,47g defined

via N operatorsĜa—not necessarily orthogonal—existing in
the n-dimensional Hilbert spaceH and satisfying the com-
pleteness relation

o
a=1

N

Ĝa
†Ĝa = 1̂. s44d

The standard projective measurements of an observableÂ
living in the n-dimensional Hilbert spaceH and having non-
degenerate spectrumhaaja=1

n are included in Eq.s44d, since

now N=n andhĜaja=1
n =huaalkaauja=1

n , the latter being the set

of orthonormal eigenvectors ofÂ. If the spectrum ofÂ hap-
pens to have degeneracies, so that each eigenvalueaa has

multiplicity na, then Ĝa is the na-dimensional projector on
the subspace formed byna linearly independent eigenvectors

of Â which correspond to the eigenvalueaa. HereNøn is

equal to the number of distinct eigenvalues ofÂ.
If the measurement described by Eq.s44d is done on the

ensemble described by a density matrixr̂, then the resulta is
found with probability

la = trsĜa
†Ĝar̂d = trsĜar̂Ĝa

†d, s45d

wherelaù0 andoa=1
N la=1, due to Eq.s44d. After selecting

results of the measurements referring to the outcomea one
has thessubdensemble of systems described by a density ma-
trix

r̂a8 =
Ĝar̂Ĝa

†

trsĜa
†Ĝar̂d

. s46d

This subensemble occurs with probabilityla as given by
Eq. s45d, simply because this is the probability of the out-
come a. The overall postmeasurement inhomogeneous en-
semble thusconsists of Nsubensembles each of which has a
density matrixs46d and probabilitys45d. The density matrix
of the overall postmeasurement ensemble is18

r̂8 = o
a=1

N

lar̂a8 . s47d

POVMs are closely related to more usual projective mea-
surementsf34,47,56,57g. The detailed outline of this connec-
tion is given in Appendix D. Here we recall the main items.

s1d Assume that the systemS is coupled to another system
G initially in a pure state, and then somesHermitiand observ-
able pertaining toG is measured. From the viewpoint of the
systemS this then amounts to some POVM.

s2d Any given POVM can be realized in the above way,
upon the proper choice of the initial state ofG, the interac-
tion Hamiltonian, and the Hermitian observable pertaining to
G.

Note from Eq.s46d that provided the initial density matrix
r̂ is pure,r̂= uclkcu, the postmeasurement ensembles are de-

scribed by pure density matrices as well:r̂a8 =ĜauclkcuĜa
†. In

this sense a POVM measurement does not introduce noise
into the postmeasurement ensembles. More general, noisy
measurements are discussed in Appendix D.

2. Separation of mixed quantum ensemble

Applying a POVM measurement, one now wishes to
separate the mixed quantum ensemble described by the den-

18Let us stress again that a specific splitting has occurred by
choosing the measurement: In the ideal Stern-Gerlach situation, by
choosing the magnets in thez direction, the original beam is split in
the z direction with z components of the spins according to the
beams.
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sity matrix r̂ into pure subensembles. The density matrixr̂8
of the overall post-measurement ensembles should then co-
incide with r̂ given in s19d or s21d, while r̂a8 appearing in
s46d should be pure:

r̂a8 = ucalkcau. s48d

Then the density matrixs21d is decomposed as ins34d. It will
prove useful to writes34d in an equivalent way

r̂ = o
a=1

N

ucãlkcãu, ucãl ; Îlaucal, s49d

since it will allow us to focus onucãl, remembering that the

probabilitiesla can be recovered viala=kcã ucãl.
Let us first see whichhlaja=1

N andhucalkcauja=1
N can enter

in Eq. s34d, and then we shall discuss which specific mea-
surements should be done to achieve the separation. Accord-
ing to the classification theoremf58–61g, if one has

ucãl = o
k=1

n

Mak
Îpkupkl, s50d

la = kcã u cãl = o
k=1

n

uMaku2pk, s51d

where hpkjk=1
n and hupkljk=1

n are the eigenvalues and eigen-
functions of the density matrixr̂, and whereMak are com-
plex numbers satisfying

o
a=1

N

MakMa j
* = di j , k, j = 1, . . . ,n; s52d

then Eq.s49d becomesr̂=ok=1
n pkupklkpku, as it should.19 The

converse appears to be true as well: any decompositions49d
admits a representations50d with some complex numbers
Mak satisfying Eq.s52d.20

As seen from Eq.s52d, the very possibility of writing Eq.
s49d implies

N ù n, s53d

sinceMak can be viewed asn different N-component ortho-
normal vectors. The rectangular matrixhMakja=1

N , k=1
n can be

completed to a unitaryN3N matrix by adding suitable ele-
ments.

It is now straightforward to see which POVM achieves
the decompositions49d. Take, for example,

Ĝa =
ucãlkcãur̂−1/2

Îkcãucãl
= Îlau calkcaur̂−1/2, s54d

where ucal is defined in Eq.s49d. Note that the converse
appears to be true as well. For a given POVMs44d with

Ĝa
†Ĝa = upalkpau, s55d

and upal satisfying

1̂ = o
a=1

N

upalkpau, s56d

which need be neither orthogonal, nor normalized,21 one can
construct a representations49d and s34d of r̂ as

r̂ = o
a=1

N

r̂1/2upalkpaur̂1/2. s57d

Thus, we have seen how all possible decompositions of a
mixed ensemble into pure subensenbles can be constructed
via suitable measurements. We stress that the decomposition
into a specific set of subensembles is related to a physical
measurement, rather than to a mathematical choicespre-
scribed ensemble fallacyd.

3. Preparation versus measurements

To avoid possible confusions we recall once again that the
above separation procedure corresponds topreparation of
the inhomogeneous ensemblehla ,Esucalkcaudja=1

N with r̂
=oalaucalkcau, starting from the initial homogeneous en-
sembleEsr̂d. Though this preparation was based on a suitable
measurement process, we were not interested in some as-
pects usually associated with it. For example, we did not
keep track of the pointer variable of the measuring apparatus,
which obviously should be the main goal of any measure-
ment process studied for its own purposesf54g. We were
more interested by the influence of the measurement process
on the final state of the systemS, which is the basic charac-
teristic feature of the preparation process in quantum me-
chanicsf34g.

As we mentioned above, POVMs are related to more
usual projective measurements; seef34,47,56,57g and Ap-
pendix D for more details. Therefore, the main difference
between POVMs and projective measurements lies in the
aspect of the postmeasurement state preparation.

19Note that any vectorucãl havingkcã ucãl,1 and existing in the
Hilbert space formed by the eigenvectors ofr̂ corresponding to its
nonzero eigenvalues, can appear in at least one separations49d of r̂.
This follows from s50d.

20To prove this part of the statement, recall footnote 14, expand

ucãl over the eigenbaseupkl of r̂, ucãl=ok=1
n kpkucãlupkl, substitute

this into Eq.s49d, and then deduce Eq.s52d using the orthonormal-
ity and completeness of the above base in the Hilbert spaceH:

oa=1
N kpkucãlkcã upll=kpkur̂upll=dklpk. Thus, any decompositions49d

and s34d can be constructed via Eq.s50d and Mak=kpkucãl /Îpk

satisfying Eq.s50d. If some eigenvalues ofr̂ are equal to zero, then
the above construction should be restricted to eigenvectors ofr̂
corresponding to its nonzero eigenvalues.

21If one assumes in Eq.s56d that upal are normalized,kpa upal
=1, then this leads to orthogonality:kpb upal=dab. Indeed, denot-

ing P̂a= upalkpau, one getsoaÞb
N sP̂aP̂bd†sP̂aP̂bd=oaÞb

N P̂bP̂aP̂b

=P̂bs1−P̂bdP̂b=0. SincesP̂aP̂bd†sP̂aP̂bd is non-negative by con-

struction, one concludes thatP̂aP̂b=0 for aÞb.
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4. An example

For a realistic example illustrating POVM measurements
versus projective ones, let us consider a harmonic
oscillator—within the optical realization this is a single
mode of an electromagnetic field—with Hamiltonian

Ĥ = "vâ†â, fâ,â†g = 1, s58d

where â and â† are, respectively, annihilation and creation
operators, and wherev is the frequency. The corresponding
energy levels are«k="vk, k=0,1,2, . . ..Consider for this
system an initial homogeneous Gibbsian ensembleEsr̂d, de-

scribed by the density matrixs21d, r~e−bĤ, at temperatureT.
We shall outline two realistic ways to separate the initial

homogeneous ensembleEsr̂d into pure subensembles.

The first one amounts to measuring the energyĤ of the
oscillator. Within the optical realization this corresponds to
measuring the number of photonsâ†â. The postmeasurement
ensembles are described by pure density matriceshu«kl
3k«kujk=0

` , and the corresponding separation ofr̂ is given by
the eigenrepresentations19d.

The second one is equally well known, especially in quan-
tum opticsf34,48,56,57g. It consists of making a heterodyne
measurement described by POVMs44d with

Ĝa =
1

Îp
ualkau, E d Resadd ImsadĜa

†Ĝa = 1, s59d

whereual is the coherent state of the harmonic oscillator, and
wherea=Resad+ i Imsad is a complex index. The last rela-
tion in s59d is the continuous analog ofs44d. Recall that the
coherent states are not orthogonalf56g, zka ublz2=exps−ua
−bu2d, that is, the heterodyne measurement is a nontrivial
POVM. It is standardly realized by coupling the original
modesoscillatord with a probe mode, and then measuring a
Hermitian observable of the combined system; seef57g for
relevant details. The corresponding decomposition of the
equilibrium density matrixr̂ now readsf56g sthe so-calledP
representation of the thermal density matrixd

r̂ =
e−bĤ

Z
=E d Resadd Imsad

pn̄
e−uau2/n̄ualkau, s60d

wheren̄=se"vb−1d−1 is the average number of photons.
As for another example of physically realizable POVM,

note that for photon polarization—one of the simplest cases
of a two-dimensional Hilbert space—all POVM measure-
ments can be realized via linear optics elementsse.g., beam
splittersd f62g.

F. Fluctuations of work for a system coupled
to the environment

The above definition of fluctuations of work generalizes
straightforwardly to situations when in the relevant time in-
terval s0,td the systemS interacts with an arbitrary environ-
ment B se.g., thermal bathsd. While it is obvious that the
above definition can be applied directly to the whole system
S+B, our objective is to show that it can be applied in such

a way that realizations of work can be deduced by following
S only. This is one of the basic features of the average work,
and this feature is relevant, since by the very definition of the
environment, its state issat least partiallyd out of observation
and control.

The total Hamiltonian ofS+B now reads

ĤS+Bstd = Ĥstd + ĤB+I, s61d

whereĤstd is the Hamiltonian ofS describing its interactions

with the external fields, and whereĤB+I stands for the
Hamiltonian ofB and its interaction withS. Note that the
coupling betweenS andB need not be weak. The situation
whereB is a thermal bath, and where the action of the work
source is very slow, corresponds to thesusuald quasistatic
thermodynamical processes.

Assume thatS+B is initially in some sin general corre-
latedd stater̂S+B. One now applies to the systemS a POVM
measurement, for concreteness the one given by Eq.s54d.
The corresponding operatorsĜa generalize as

Ĝa = Îlaucalkcaur̂S
−1/2

^ 1̂B, s62d

where r̂S=trB r̂S+B, is the reduced density matrix ofS,
ucalkcau are some pure density matrices existing in the Hil-
bert space ofS, hlaja=1

N are the probabilities of various out-

comes of the measurement, and 1ˆB is the unity operator act-
ing in the space of the environment.

Once the measurement is carried out and the outcomes are
filtered, the postmeasurement states ofS+B read

ucalkcau ^ r̂a,B, r̂a,B =
r̂S

−1/2r̂S+Br̂S
−1/2

la

, s63d

with r̂a,B being the postmeasurement state ofB. In general it
differs from the premeasurement stater̂B=trS r̂S+B, due to
initial correlations betweenS andB.

Now the work source starts to act on each single system
from the subensembleEsucalkcau ^ r̂a,Bd. Though the source
is acting only viaS, as seen from Eq.s61d, it influences the
environment, since the latter couples toS. For the same rea-
son, the state ofS+B will sin generald not remain factorized
as in Eq.s63d. Still the work wa done on the subensemble
Esucalkcau ^ r̂a,Bd can be expressed via quantities referring
to S only: as follows from Eq.s31d,

wa =E
0

t

dt trFr̂a,Sstd
dĤstd

dt
G , s64d

r̂a,Sstd = trBfeQ−si/"de0
t ds ĤS+Bssdsucalkcau

^ r̂a,BdeWsi/"de0
t ds ĤS+Bssdg , s65d

where r̂a,Sstd is the state ofS at momentt, providedS+B
starts from the initial states63d. We recall that thesantidor-
dered exponents are defined by Eq.s28d.

Thus the work—done on the whole systemS+B through
the work source coupled toS only—was defined as a random
quantity with realizationshwaja=1

N and probabilitieshlaja=1
N .
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G. On the experimental demonstration of fluctuations of work

The above approach to fluctuations of work was based on
the standard knowledge of quantum statistical mechanics and
on a number of reasonable consistency requirements the
sought concept was supposed to satisfy. Later on we realized
that there were already several experiments in quantum op-
tics that quite closely correspond to the present scheme of
studying fluctuations of worksnot unexpectedly, the experi-
mentalists did not think in terms of fluctuations of workd.

Let us start with one example of such experimentsf52g. It
is especially interesting, since fluctuations of work are not
extracted as a by-product, but, on the contrary, the very ex-
periment is realized by their detection.

The experiment was carried out with a single199Hg+ ion
confined in a linear rf trap. The same experiment was re-
peated with manysfrom 5 to 400d independent ions in the
trap. 199Hg+ has spin1

2, and its ground state energy level is
split by hyperfine interactions into two levelsu«0l and u«1l,
«0,«1, having the total angular momenta 0 and 1, respec-
tively. The difference«1−«0 is of the order of the radio fre-
quency photon energy. The levels are stable: both the spon-
taneous decay and the magnetic dipole decayu«1l→ u«0l can
be neglected. There is also the third excited levelu«2l which
is highly unstable, and decays tou«1l by spontaneous emis-
sion of one optical photon.

A laser beam is applied in resonance to the transition
u«1l⇔ u«2l. The transitionsu«2l⇔ u«0l and u«1l⇔ u«0l can be
neglected: no dynamics is generated if the ion is initially in
the stateu«0l si.e., it belongs to the ensemble described by the
density matrixu«0lk«0ud. In contrast, if the ion is initially in
the stateu«1l, the dynamics is that of two energy levelsu«1l
and u«2l driven by the classical laser fieldswork sourced and
interacting with vacuum electromagnetic modes which in-
duce spontaneous transitionu«2l→ u«1l sweakly coupled
zero-temperature thermal bathd.

If after some time the laser field is turned offscyclic pro-
cessd, the ion is back to the stateu«1l, and the work has gone
from the source of the laser field to the bath. It is propor-
tional to the total intensity of the spontaneously generated
radiation, and can be observed via measuring this quantity
with help of a photodetector. This work can also be calcu-
lated via Eq.s64d, wherer̂1,Ss0d= u«1lk«1u, and wheret is the
duration of the laser field action. It is important to note that
during the driving by the laser the ion is repeatedly prepared
in the state u«1l, due to the spontaneous transitionu«2l
→ u«1l. If the laser field acts sufficiently long, thesingle ion
simulates the behavior of the ensembleEsu«1lk«1ud.

Assume that initially the single ion belongs to the en-
sembleEsr̂d,

r̂ = p0u«0lk«0u + p1u«1lk«1u, p0 + p1 = 1. s66d

Such states are stable and can be prepared by optical pump-
ing. After switching the laser field on and off, one of two
values for the intensity of the spontaneously generated
radiation—thus one of two valuesw1.0 and w0=0 of
work—is observed: a nonzeroszerod value corresponds to

the energy level«1 s«0d, and is realized with probabilityp1

sp0d upon repeating the experiment with other single systems
from the same ensembleEsr̂d. The measurement of the en-
ergy

Ĥ = «0u«0lk«0u + «1u«1lk«1u s67d

is thus deduced via observing fluctuations of workf52g. Its
fluctuating values arew0=0 with probabilityl0=p0 and w1
.0 with probability l1=p1. Thus the average work isW
=p1w1.

22 Later we shall pay attention to the dispersion of
work. Here it equalsdw2=p1s1−p1dw1

2. Notice that there is
no ‘active’ subenemble withwa,0, as would have to occur
classically, see section II E. As we explain further on, such
indeed needs not occur in the general quantum situation.

The second experiment is worth discussing, since it real-
ized the first master devicesthe ammonia-beam maserd ever
to be operatedf78g. The ammonia molecule NH3 has two
closely located low-lying energy levelsu«0l and u«1l—with
the gap«1–«0 being 23 870 MHz—which form an effective
two-level system.

Initially one starts with a high-temperature beamsen-
sembled of ammonia molecules, such that the above two lev-
els are almost equally populated. The members of this en-
semble are then let to interact with an analog of the Stern-
Gerlach measuring device: An energy measurement is
realized with help of a strong dc quadrupole electric field.
The resulting subensembles described by the density matri-
cesu«0lk«0u and u«1lk«1u are separated in space: the first sub-
ensemble is lost, since it was not interesting for the purposes
of the experiment, while the second ensemble is directed to
high-Q microwave cavity resonant at«1–«0=23 870 MHz. A
resonant emf field of the cavity realizes ap-pulse, such that
the state of the subensemble at the exit of the cavity is
u«0lk«0u and the resulting energy«1–«0=−w1 per molecule
has been transferred to the emf field thereby amplifying it.
This corresponds to one realizationw1 of the random
quantity work. Since no work was exchanged with the first
subensemble, the corresponding realization isw2=0.

H. Discussion

There are several questions on the physical meaning of
the proposed definition of fluctuations of work that we de-
cided to discuss separately. Some of these questions were
asked by ourselves, while others came from our colleagues.

Question 1. Among all decompositionss34d of the Gibb-
sian density matrixr̂, there is a unique onesup to accidental
degeneracies of the spectrumd given by the eigenvectors ofr̂

and realized via measurement of the HamiltonianĤ. Then
the energy has a definite value on each subensemble. Should
not one therefore restrict the definition of fluctuations of
work to this separation only?

Answer 1. There are at least two reasons why the answer
is no. First, even if the energy has a definite value initially, it

22This work can be calculated theoretically with the help of quan-
tum optical master equations; see, e.g.,f48g for solution of similar
problems.
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will in general not have any definite value at the final mo-
ment, since an eigenvector of the initial Hamiltonian may
evolve into a superposition of eigenvectors. Second, more
general separations are anyhow necessary to define fluctua-
tions of work for an arbitrary ensemble, which cannot be
decomposed into subensembles with each of them having a
definite value of energy.

Question 2. Is the orthogonal separation not special by the
fact that various ensembles are described by orthogonal pure
density matrices, and can thus be discriminated unambigu-
ously?

Answer 2. By definition any POVM is connected with an
unambiguous descrimination of its different outcomes. This
can be additionally clarified by looking at the example of the
projective realization of a POVM presented in Appendix D,
where various subensembles constructed after the measure-
ment are seen to be described by orthogonal wave functions
in the composite Hilbert spaceH ^ H8. The above question
mixes the present situation with a different one, where one is
given a single system coming from one of two ensembles
having nonorthogonal density matrices, and is requested to
determine by means of a measurement from which ensemble
it is coming. Then, indeed, no measurements can ensure un-
ambiguous discriminationf47g.

Question 3. Can an experimentalist come up with a con-
crete realization for a nontrivial POVM measurement? Mea-
surements are something you have to do in a real life, not
just mathematically.

Answer 3. As we discussed around Eq.s59d, in quantum
optics at least one nontrivial POVM is routinely realized and
employed. More generally, manyindirect projective mea-
surement corresponds to a POVM, as far as the postmeasure-
ment preparation of the target system is concernedsthe as-
pect we are mainly interested ind; seef34,47,48,56,57g and
Appendix D for more details.

Question 4. The authors prescribe the viewpoint that even
pure density matricesswave functionsd describe an ensemble
of quantum systems and not a single system, as some people
like to think. How will the proposed definition change, if one
wished to insist on the latter interpretation of quantum me-
chanics?

Answer 4. The necessity of prescribing even the pure den-
sity matrices as ensembles of quantum systems was stressed
in f34,45–47g. In particular, it is needed for the consistent
solution of the quantum measurement problemf34,54g. But
it is also known that with respect to certain aspects of quan-
tum theory the prescription of pure density matrices to a
single system is relatively harmless.23 We do not have space
to discuss in detail what are those aspects and what precisely
is meant by “relatively harmless.” We may mention that the
definition of fluctuations of work remains then basically un-
changed, but even becomes conceptually closer to its classi-
cal analog, since now in defining fluctuations of work one
assumes operations with single systems in both quantum and
classical situations.

Question 5. Is the above ensemble interpretation consis-
tent with the very idea of thermodynamical fluctuations?
When we talk of fluctuations in thermodynamics we think of
fluctuations of temperature or pressure of the single object in
front of us—changes in time.

Answer 5. We mentioned alreadysin particular, when dis-
cussing experimental realizationsd that the ensemblesor sta-
tisticald interpretation is capable of describing experiments
with single systems, which are viewed as members of an
ensemble. A single system is even capable of simulating the
behavior of the whole ensemble provided it is reprepared in
the same initial state in the course of this evolution.

As for the second question, let us imagine we are inter-
ested by fluctuations of energy of a single system in front of
us. Upon measuring the energy of this system we find a
definite result, but the subsequent measurements of energy
will record the very same value. If we are interested in the
energy statistics of the system in the original state, we either
have to have an ensemble of identically prepared systems, or
we have to reprepare the system after each measurement. In
this sense the use of ensembles seems to be inevitable.

Question 6. How natural is it that the fluctuations of work
are not uniquely defined, since the very separation of a
mixed ensemble into pure subensembles is not unique?

Answer 6. To repeat: a homogeneous quantum ensemble
described by a mixed density matrixr̂ does not consist of
pure subensembles. One needs some measurements to
achieve its separation—that is, to gain some knowledge on
single systems—and this is a specific physical process per-
formed on the ensemble. Fluctuations of work are contex-
tual, since they depend on the type of measurement em-
ployed.

Question 7. The presented definition of fluctuations of
work refers tointersubensemblefluctuations, i.e., to a ran-
dom quantity which changes from one subensemble to an-
other. Should not a reasonable definition of such fluctuations
refer to a random quantity which changes from onesingle
system to another?

Answer 7. Let us start with a general remark. In statistical
physics there are two types of fluctuating quantitiesf3g.
Fluctuations of quantities having a direct mechanical mean-
ing, e.g., energy, are defined straightforwardly. These fluc-
tuations are indeed something whichsin the quantum cased
changes from one measurement done on a single system to
another measurement done on another single system from
the same ensemble. In contrast, the definition of fluctuations
of quantities such as entropy and temperature is far less
trivial. Indeed, the very notion “temperature of a single sys-
tem,” so natural in the everyday life, is based on neglecting
fluctuations, which allows us to identify an ensemble with its
single member. Strictly speaking, both temperature and en-
tropy characterize the ensemble and not a single system.
Consistent definitions proposed in the theoretical literature
f3g—and for fluctuations of temperature confirmed by ex-
periment f63g—employ a finite ensemble of systems such
that the standard thermodynamic relations can still be

23The price to pay is that the relevant information can anyhow be
obtained only by doing measurements on an ensemble of identically
prepared systems. Ensembles enter anyhow.
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applied.24 In this way, the fluctuating temperaturesor en-
tropyd has the same standard meaning.

Continuing our answer, we recall that it is the necessity to
keep the physical meaning of work that led us to a definition
of its fluctuations which has an intersubensemble character.
It remains to stress that within the standard quantum theory
we do not know how to define fluctuations of work inside of
an irreducible subensemble. There were in the literature
some attempts in this direction, which are described in Sec.
VI. However, they do not satisfy the natural conditions on
fluctuations of work, as outlined in the Introductionsarbi-
trary initial state; proper physical meaningd. In particular,
this concerns the approach based on the operator of work.25

IV. DISPERSION OF WORK

In Eq. s39d we defined the workwa=trsV̂ucalkcaud done
on the subensembleEsucalkcaud. Here we study how the re-
alizationswa of the random quantity work are spread around
their meanW=oa=1

N lawa. The most direct quantity that char-
acterizes this spreading is thesintersubensembled dispersion

dw2 = o
a=1

N

lafkcauV̂ucal − trsV̂r̂dg2 s68d

=o
a=1

N

laswa − Wd2 = o
a=1

N

lawa
2 − W2. s69d

In contrast toW, this quantity depends explicitly on the sub-
ensembles used to definewa in s39d. So it depends explicitly
on the physical process that separated the initial ensemble
into subensemblesscontextualityd.

It is useful to determine the maximaldwmax
2 and the mini-

mal dwmin
2 values ofdw2 over all possible decompositions

hucalkcau ,laja=1
N corresponding to the fixed density matrix

r̂=oa=1
N laucalkcau. According to Eq.s57d these extremiza-

tions can be carried out over all possible decompositions of
unity in our n-dimensional Hilbert space,

o
a=1

N

P̂a = 1̂, P̂a = upalkpau, s70d

wherehupalja=1
N have in general to be neither normalized nor

orthogonal. The practical realization of the above extrema
would require rather specific measurement setups.

Note that dispersions similar tos68d, with V correspond-
ing to some other relevant observable, where introduced and

studied in quantum opticsf66g, where separation of an en-
semble by means ofscontinuousd measurements are well
known and were studied both experimentally and theoreti-
cally; seef48g for a review. The results we present below on
the minimal and maximal values of the dispersiondw2 do not
depend on the details ofV and can thus be useful in general.

A. Maximal dispersion of work

The maximization ofdw2 over all possible separations

s34d ands70d for given r̂ andV̂ is carried out in Appendix G.
The result reads

dwmax
2 = o

i,k=1

n
2pipk

pi + pk
zkpkuV̂upilz2 − W2 s71d

=2E
0

`

dstrfsV̂r̂e−sr̂d2g − W2. s72d

This maximum is reached on the sethupalja=1
n , the eigenvec-

tors of the Hermitian operator being

X̂ = o
i,k=1

n
2pipkkpiuV̂upkl

pi + pk
upilkpku, s73d

wherepk and upkl are the eigenvalues and eigenvectors ofr̂,
as defined by Eq.s19d.

Only whenr̂ and V̂ commute,fr̂ ,V̂g=0, does the maxi-
mal dispersions71d reduce to the more usual expression

trfr̂V̂2g−ftrsr̂V̂dg2. This and related questions are discussed
in more detail around Eqs.s112d and s113d.

1. Coarse-grained situation

The maximal dispersions71d and s72d provides an upper
bound for the dispersion of work defined in a coarse-grained
way; see the discussion around Eq.s43d. Indeed, according
to that discussion the coarse-grained dispersion of work de-
fined with respect to separation ofEsr̂d to mixed-state sub-
ensembles reads

dwcg
2 = o

g

ngftrsŝgV̂d − Wg2. s74d

Note the decomposition ofŝg into some set of pure-state
subensembles,ŝg=oama

sgduca
sgdlkca

sgdu, wherema
sgd are the cor-

responding probabilities withoama
sgd=1. One now finds that

the dispersiondw2 defined as in Eqs.s68d and s69d, that is,
via the separation of the ensembleEsr̂d into pure-state sub-
ensemblesr̂=oa,gngma

sgduca
sgdlkca

sgdu, is never smaller than
dwcg

2 :

dw2 − dwcg
2 ù o

a,g
ngma

sgdskca
sgduV̂uca

sgdl − Wd2 − dwcg
2

= o
a,g

ngma
sgdSkca

sgduV̂uca
sgdl

− o
b

mb
sgdkcb

sgduV̂ucb
sgdlD2

ù 0. s75d

24This is not the only definition of temperature fluctuations. The
one proposed inf64g follows a different idea, but again refers to an
incomplete ensemble.

25Thus if these fluctuations exist, and we assume they do, their
description seems to be outside of today’s theories. It might be of
some interest to see whether more detailed definitions of fluctua-
tions of work can be given in theories of subquantum mechanics,
e.g., Bohmian or Nelsonian mechanics. A rather natural situation
seems to exist in stochastic electrodynamics, but so far this theory
has its own problemsf65g.
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2. The behavior of the maximal dispersiondwmax
2 for high and

low temperatures

With r̂ given by the Gibbs distributions21d, s19d, and
s22d, one gets from Eq.s71d

dwmax
2 → 0 for T → 0, s76d

whereT is the temperature of the Gibbsian ensemble. This is
a natural result, as for a finite systemS andT→0 one gets
r̂→ u«0lk«0u, where according to Eqs.s20d and s19d, u«0l is

the common eigenvector ofr̂ and Ĥ corresponding to the
lowest energysassuming that the latter is not degenerated. As
no separation of a pure state into subensembles is possible,
the work can take only one value. It is obvious that this is a
general feature: by construction, the random quantity work
as defined by Eq.s39d does not fluctuate if the initial en-
semble is pure. In the same way as in classics, fluctuations of
work are present for mixed ensembles only. In this respect
the dispersion of work is similar to the von Neumann en-
tropy SvN=−tr r̂ ln r̂, which is also equal to zero for pure
density matricesr̂.

For very high temperatures, wherer̂. 1̂/n so that pi
.1/n, one gets from Eq.s71d susing thatW→0d

dwmax
2 =

1

n
trsV̂2d. s77d

It is seen that for high temperatures the maximal dispersion

may beOs1d, provided that thespositived eigenvalues ofV̂2

are finite and do not scale withn.

B. The minimal dispersion of work vanishes

Here we show that there are decompositions into suben-
sembles such that for anya=1, . . . ,N,

wa = kcauV̂ucal = o
b=1

N

lbwb = W, s78d

that is, the work does not fluctuate at all. In particular, this
means that the dispersiondw2 attains its minimal value equal
to zero. This fact is in contrast to the classical situation,
where according to pointsb andc in Secs. II E 2 and II E 3,
wsx,pd should be negative at least for some values ofsx,pd,
and the dispersion of work is large at least for sufficiently
high temperatures.

Recall that due to the parametrizations55d, s57d, ands70d,
Eq. s78d states that for eacha

kpaur̂1/2V̂r̂1/2upal
kpaur̂upal

= trsr̂V̂d, s79d

wherehupalja=1
N with Nùn have to satisfy Eq.s70d. This is

equivalent to

0 = kpauŶupal, s80d

Ŷ ; r̂1/2V̂r̂1/2 − trfV̂r̂gr̂, s81d

where Ŷ is Hermitian andsin generald nondiagonal in the
eigenrepresentation ofr̂ and traceless:

tr Ŷ = 0. s82d

We now intend to show that in the Hilbert spaceH there

are orthonormal baseshupilji=1
n which for the givenŶ do

satisfy Eqs.s78d and s80d.

1. Some concepts from majorization theory

To this end, let us recall some concepts from the math-
ematical theory of majorizationf67–70g. For two real vectors
x=sx1ù ¯ ùxnd and y=sy1ù ¯ ùynd, with their compo-
nents arranged in nonincreasing way,y is said to majorizex,

x a y, s83d

if the following conditions are satisfied

o
i=1

k

xi ø o
i=1

k

yi, k = 1, . . . ,n − 1, s84d

o
i=1

n

xi = o
i=1

n

yi . s85d

Due to Horn’s theoremf67–70g, Eq. s83d implies the exis-
tence of ann3n unitary matrixQij such that

xi = o
k=1

n

yjuQij u2. s86d

The proof of this statement is recalled in Appendix F. This
proof is constructive, since it allows us to determineQij ,
starting from givenx andy.

2. The minimal dispersion of work is zero

Now denote bysy1ù ¯ ùynd the eigenvalues of the Her-

mitian matrixŶ arranged in a nonincreasing way. Denote by
huyilji=1

n the corresponding eigenvectors. As follows from
Eqs.s82d, s84d, ands85d

sy1, . . . ,ynd s s0, . . . ,0d. s87d

According to Eq.s86d there exists a unitary operatorQ̂ in the
Hilbert spaceH such that

0 = o
j=1

n

yjzkyjuQ̂uyilz2 = kyiuQ̂†ŶQ̂uyil. s88d

By denoting

Q̂uyil = upil, i = 1, . . . ,n, s89d

and identifying labelsi anda, we see that Eq.s88d and the
desired statements80d are equivalent.

C. Dispersion of work averaged over all possible separations
of the ensemble

We have obtained the maximal and the minimal values of
the dispersion of workdw2. It is useful to have a third char-
acteristic value ofdw2, the dispersion of work for a randomly

A. E. ALLAHVERDYAN AND Th. M. NIEUWENHUIZEN PHYSICAL REVIEW E 71, 066102s2005d

066102-16



chosen separation of the initial ensemble described byr̂ into
pure subensembles. Such a quantity will not depend explic-
itly on the specific measurement used for separationsi.e., it
relates to all measurements that could possibly be doned, and
thus will help to understand how typical are the maximal and
the minimal values ofdw2.

Note from Eqs.s50d and s52d that for a given separation
of r̂, that is, for a given representations34d, the pure density
matrices ucalkcau are expressed via elementsMai of an
N3N unitary matrixM fsee the remark after Eq.s53dg. We
shall define the average dispersiondwav

2 by assuming thatM
is random, and then integratingdw2hMaij over all possible
unitary N3N matrices. Since there are no reasons for intro-
ducing a priori biases, we shall assume for the above inte-
gration the most uniform, unitary-invariant measuresHaar’s
measured:

dwav
2 =

E p
i,a=1

N

d ReMaid Im MaiQhMaijdw2hMaij

E p
i,a=1

N

d ReMaid Im MaiQhMaij

,

s90d

whereQhMaij comes due to the unitarity constraint

QhMaij = p
a=1

N

dFo
i=1

N

uMaiu2 − 1G p
a,b

N

dFo
i=1

N

MaiMbi
* G .

The rowssor, equivalently, the columnsd of the matrixM are
thus assumed to be a set ofN orthonormalized, uniformly
random vectors. The quantitydwav

2 is calculated in Appendix
H:

dwav
2 =E

0

`

dsFp
k=1

n
1

1 + spm
GFo

i=1

n Spik«iuV̂u«il
1 + spi

D2

+ So
i=1

n
pik«iuV̂u«il

1 + spi
D2G − W2. s91d

Note thatdwav
2 sfortunatelyd depends neither onN nor on the

off-diagonal elementsk«iuV̂u« jl of V̂. sRecall thatN is the
number of pure subensembles constructed from the original
homogeneous ensemble, that can be chosen at will, whilen
is the fixed number of nonzero eigenvalues ofr̂.d

For r̂ having the Gibbsian forms21d, s19d, ands22d, dwav
2

has the following features for low and high temperaturesT. It
goes to zero forT→0 for the same reasons asdwmax

2 does. In
contrast, for very high temperatures, wherer̂.1/n, one has
from Eq. s91d

dwav
2 =

1

nsn + 1doi=1

n

k«iuV̂u«il2. s92d

Under the same natural condition that we adopted for study-
ing the high-temperature behavior ofdwmax

2 , that is, if the

k«iuV̂u«il are finite and do not scale withn, we see that
dwav

2 ~1/n for n@1, which is a typical behavior for disper-

sions of fluctuating macroscopic quantities in statistical
physicsf3g. Note that even in this limit there is a difference
betweens92d and the high-temperature behaviors77d of the
maximal dispersion.

D. The maximal and the average dispersion of work
illustrated for a two-level system

Let us give concrete expressions ofdwmax
2 anddwav

2 for a
two-level systemS. Two-level systems are of interest both
experimentallysmany applicationsd and theoreticallyssim-
plest cased. The initial Gibbsian density matrix is now a
232 diagonal matrix with eigenvaluesp1 and p2øp1 as
given by Eq.s19d. The most general matrix form of the trace-

less and Hermitian operatorV̂ in this two-dimensional situ-
ation is

V̂ = Sv x

x* − v
D . s93d

Equationss71d and s91d produce then the following expres-
sions fordwmax

2 anddwav
2 , respectively:

dwmax
2 = v2s1 − x2dS1 +

uxu2

v2 D , s94d

dwav
2 = v2s1 − x2dF1 −

1

x2 −
1 − x2

2x3 ln
1 − x

1 + x
G , s95d

where

x ; p1 − p2 ù 0, 1ù x ù 0, s96d

is a monotonically decreasing function of temperature, as
follows from Eq.s22d. As seen from Eqs.s94d ands95d, both
dwmax

2 and dwav
2 are monotonically increasing functions of

temperatureT. It is obvious thatdwmax
2 .dwav

2 , except for the
zero temperature situationx=1, where they are both equal
to zero. For very high temperatures, that is, forx→0,
dwav

2 =v2/3 in agreement with Eq.s92d, while dwmax
2 →v2

+ uxu2. Note that off-diagonal elements ofV̂ increasedwmax
2 ,

while dwav
2 does not depend on them at all.

V. THERE IS NO DIRECT ANALOG OF THE CLASSICAL
BK EQUALITY IN THE QUANTUM SITUATION

The discussion in Sec. IV B implies already that, in con-
trast to the classical case, the fluctuations of work in the
quantum situation are not controlled by anydirect analog of
the classic BK equalitys11d. In the present section we give
another illustration of this fact.

Assume for concreteness that the Gibbsian density matrix
r̂ in Eq. s21d was separated into pure subensembles by means

of the measurement ofĤ, that is, the subensembles are de-
scribed by the pure density matriceshu«llk«lujl=1

n , where
hu«lljl=1

n are eigenvectors ofr̂.
According to Eq.s39d one has for the realizations of the

random quantity work

wl = k«luÛt
†ĤÛtu«ll − «l s97d
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=o
k=1

n

Ckl«k − «l, l = 1, . . . ,n, s98d

where

Ckl = zk«kuÛtu«llz2, s99d

is a double-stochastic matrix:

o
k=1

n

Ckl = o
l=1

n

Ckl = 1. s100d

Eachwl has probabilitypl given by Eq.s22d. One constructs

ke−bwl ; o
l=1

n

ple
−bwl =

1

Z
o
l=1

n

expS− bo
k=1

n

Ckl«kD , s101d

that is, one averagese−bw directly as was done in the classi-
cal situation. It is shown in Appendix B that

1 −
b2D

2Z
e−b«min ø ke−bwl ø 1 −

b2D

2Z
e−b«max, s102d

D ; «Ts1 − CCTd« = o
k=1

n

fk«kuĤu«kl2 − k«kuÛt
†ĤÛtu«kl2g,

s103d

where«T=s«1, . . . ,«nd is the vector of eigenvalues ofĤ, Z is
defined in Eq.s21d, and where«min and«max are the minimal
and maximal ones amongs«1, . . . ,«nd. Since all the eigenval-
ues n of the product of a double-stochastic matrix and its
transpose satisfy 0ønø1,26 one has

D = «Ts1 − CCTd« ù 0. s104d

Thuske−bwl is strictly smaller than unity. As compared to our
discussion of the classical situation in Sec. II E, the result
ke−bwl,1 does not in general permit us to draw quantum
analogs of the classical features in Secs. II E 2spresence of
active realizationsd and II E 3sshape of the dispersion at high
Td.

VI. COMPARISON WITH OTHER APPROACHES

In the present section we study two approaches known in
the literature. The purpose is to understand whether they
have the proper physical meaning for describing fluctuations

of work. Since they both allow us to generalize the classical
BK equality sthough in different waysd, the adoption of ei-
ther of them will mean that there is no major qualitative
difference in the behavior of quantum and classical fluctua-
tions of work. It should perhaps be stressed that our concern
is the applicability of these approaches for describing fluc-
tuations of work under conditions formulated in the Intro-
duction; their usefulness for other purposes is not put into
question.

A. Observable of work

Recall from definitionss29d and s30d that for any initial

ensemble described byr̂, the average ofV̂ is equal to the
work done on the corresponding ensemble.

The approach goes on by statingf6,16,27,32g that the op-

eratorV̂ is the “observable of work” in the standard sense of

quantum observables,27 i.e., the quantity trfr̂V̂2g−ftrsr̂V̂dg2

is to be interpreted as the dispersion of work for anyr̂.

However, while trfV̂r̂g happens to be equal to the average
energy lost by the work sourceW, simply due to conserva-
tion of the average energy during the system-work-source

interaction, this alone is, of course, not sufficient to regardV̂
as an operator of work. In fact, such an interpretation relies

on the analogy between the definitions30d of V̂ and the
classical expression for the energy differences8d. Such
analogies are widespread in general, and once it is accepted

that V̂ represents the proper energy difference operator, the
extension of its interpretation toward the operator of work
seems natural.

Let us, however, recall from our discussion in the Intro-
duction that we expect for a proper approach to fluctuations
of work to apply in arbitrary nonequilibrium situation. It is

then possible to argue that in generalV̂ does not have the
proper meaning of energy difference operator, let alone its
meaning as the operator of work.

Let the ensembleEsr̂d have a density matrixr̂s0d= u0lk0u,
such thatu0l is an eigenstate ofV̂; Ût

†ĤÛt−Ĥ with eigen-
value zero:

V̂u0l = 0. s105d

Recall that Ût
†ĤstdÛt=Ût

†ĤÛt is the Hamiltonian in the
Heisenberg representation at timet, while the Schrödinger

picture relationĤstd=Ĥ is due to the assumed cyclic feature
of the process. In general,

26For any double-stochastic matrixCik, consider the matrixCCT,
whereCT is the transpose ofC, and letai be an eigenvector ofCCT

corresponding to asnecessarily non-negatived eigenvalue n:
ok,l=1

n CikClkal =nai. One has uok,l=1
n CikClkalu= unaiu=nuaiu

øok,l=1
n CikClkualu, and thennoi=1

n uakuøok=1
n uaku, that is,nø1, since

by defintion an eigenvector should be diffferent from zero. In the
same way one proves that for all eigenvaluesl of a stochastic
matrix Sikù0, oiSik=1, one hasuluø1. Such a matrix has always
an eigenvalue equal to 1, since it has a left eigenvectors1, 1,…, 1d
corresponding to this eigenvalue, and the spectrum is the same for
both the left and the right eigenresolutions.

27OnceV̂ is given an independent meaning as a quantum observ-
able, there arises a question on its measurability, since the standard
theories of quantum measurements, see, e.g.,f34,47g, operate in the
Schrödinger representation. We shall not pursue this problem here,
but rather take as working hypothesis that this measurement can be
carried out.
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fÛt
†ĤÛt ,Ĥg Þ 0, s106d

so thatu0l is neither an eigenstate ofÛt
†ĤÛt , nor an eigen-

state ofĤ.
According to quantum mechanics, Eq.s105d should be

interpreted as follows: the operatorV̂ has on the ensemble
Esu0lk0ud a definite value equal to zero, that is, if it is inter-
preted as the operator of energy change, then forall single
systemsfrom Esu0lk0ud the energy does not change during
this thermally isolated process.

However, there are concrete examplesssee Appendix Id
showing that Eq.s105d can be consistent with

k0ufÛt
†ĤÛtgmu0l Þ k0uĤmu0l for m. 2. s107d

This shows that the energydoes change, since some of its

moments do. In other words, the interpretation ofV̂ as the
energy difference operator is in general unsupportable. Note
that the noncommutativity feature as expressed by Eq.s106d
is essential for this conclusion, but it is a fact of life.

1. Restricted interpretation ofV̂

A more restricted interpretation ofV̂ can be given in the
light of the definition of fluctuations of work discussed in

Sec. III. This will also show that ifr commutes withV̂ sa
semiclassical assumptiond, our approach is consistent with
that of the observable of work.

Let the eigenresolution ofV̂ be

V̂ = o
k=1

n

vkuvklkvku. s108d

Note that forV̂ to have the meaning of the operator of
work it is necessary thatsid its eigenvalueshvkji=1

n have the
meaning of work by themselves, i.e.,vk should have both the
meaning of average energy lost by the work sourceW and
the average energy gained by a quantum ensemble, as we
discussed in Sec. III D;sii d probabilities of these realizations
of work done on the initial ensembleEsr̂d should be given as
hkvkur̂uvkljk=1

n .

Now, if r̂ andV̂ commute,

fr̂,V̂g = 0, s109d

then their eigenvectors can be chosen the same, and, by mea-

suring V̂, r̂=ok=1
n pkuvklkvku can be separated into suben-

sembles hEsuvklkvkudjk=1
n with probabilities pk=kvkur̂uvkl.

The work done on each subensembleEsuvklkvkud equalsvk

=kvkuV̂uvkl, and one can admit the restricted interpretation

of V̂ as an operator of work.
Conversely, ifr̂ can be separated into subensembles,

r̂ = o
k=1

n

lkucklkcku, s110d

and if each of them is allowed to interact with the work
sourceW such that

vk = kckuV̂uckl, lk = kvkur̂uvkl, s111d

then three conditionss110d, s111d, ands108d imply s109d.
To show this we proceed in an indirect way, which is

useful by itself. It can be noted that the dispersion

trfr̂V̂2g − ftrsr̂V̂dg2 = o
k=1

n

kvkur̂uvklsvk − Wd2 s112d

of the operatorV̂ provides an upper bound for the maximal
dispersiondwmax

2 of work given by Eq.s71d:

trsr̂V̂2d − W2 − dwmax
2 =

1

2 o
i,k=1

n
spi − pkd2

pi + pk
zkpkuV̂upilz2 ù 0.

s113d

The equality in the RHS of Eq.s113d is realized only ifr̂ and

V̂ commute, that is, eitherkpkuV̂upil is zero for i Þk, or for

some pairi Þk one haskpkuV̂upilÞ0, but the corresponding
eigenvalues ofr̂ are degenerate:pi =pk. Thusdwmax

2 can be

equal to trsr̂V̂2d−W2 only if fr̂ ,V̂g=0.
Now note that if Eqs.s110d, s111d, ands108d are assumed

to be valid, they imply trsr̂V̂2d−W2−dwmax
2 ø0 simply due

to the definition of the maximal dispersion. This is consistent

with Eq. s113d only for trsr̂V̂2d−W2−dwmax
2 =0, which im-

plies fr̂ ,V̂g=0, as we saw above. We conclude that Eqs.
s110d, s111d, ands108d imply Eq. s109d, as was promised.

Thus, whenfr̂ ,V̂gÞ0, V̂ does not qualify as the operator
of work even in the restricted sense. We also conclude that
though the approach does predict an upper bound fordw2,
this bound is not reachable.28

2. Generalization of the classical BK equality

ThoughV̂ does not have the meaning of the operator of
work—except in a restricted sense and under condition
s109d—there is an operator generalization of Eqs.s11d and
s12d which was proposed by Bochkov and Kuzovlev in
f16,18g:

tr e−bV̂−bĤ

Z
=KexpW F−E

0

b

ds e−sĤV̂esĤGL s114d

;trSexpW F−E
0

b

ds e−sĤV̂esĤGr̂D = 1. s115d

We recall its derivation in Appendix E.29 A similar relation
was derived inf27g.

Let us work out some consequences of Eq.s115d. As com-
pared to the classic case, the matters are complicated by the

28Note that the difference trsr̂V̂2d−W2−dW2

=oa=1
N laskcauV̂2ucal−kcauV̂ucal2dù0 is by itself always non-

negative for any separation ofr̂ into subensembles.
29For the equilibrium ensembles21d, the Thomson formulation of

the second law can be derived from Eqs.s114d and s115d upon the
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presence of anti-time-ordering and the integrale0
b in Eqs.

s114d and s115d. If one insists on not having them, then the
equality s114d and s115d can still be converted into an in-
equality. By applying the Thompson-Golden inequality

f71g,30 trfeÂeB̂gù tr eÂ+B̂, valid for any Hermitian operators

Â and B̂ sthe equality sign is realized here if and only if

fÂ,B̂g=0d, one gets

ke−bV̂l ; trfr̂e−bV̂g = o
k=1

n

kvkur̂uvkle−bvk ù
1

Z
tr e−bV̂−bĤ = 1,

s116d

whereuvkl andvk are eigenvectors and eigenvalues ofV̂ as
defined by Eq.s108d.

If now we could interpretV̂ as the operator of work, that

is, if the eigenvaluesvk of V̂ have the meaning of work by
themselves, we would note thatkvkur̂uvkl is the probability

of observing the eigenvaluevk upon the measurement ofV̂
on the stater̂, and then Eq.s116d would allow us to study
fluctuations of work exactly in the way we did in Sec. II E
for the classical situation. We would then draw the same
general conclusions, and the fact thats116d is an inequality
would only strengthenthese conclusions as compared to the
classical situation. However, as we saw above, it is impos-

sible to identifyV̂ with the operator work, and thus fluctua-
tions of work cannot be studied on the basis ofs116d, except

for the special casefr̂ ,V̂g=0, where Eqs.s114d–s116d reduce
to the usualsessentially classicald BK equality.

B. Approach based on two-time measurements of energy

Yet another, different approach to fluctuations of work
and extension of the classical BK equality was proposed in
Refs.f28–30g. We shall present it in a more extended form,
since that is necessary for understanding its proper physical
meaning. On the other hand, in order not to dwell on unnec-
essary technical details, we shall assume that the spectrum of

the HamiltonianĤ is nondegeneratefcompare with Eq.s23dg

«1 , «2 , ¯ , «n. s117d

At the time t=0 one measures energyscorresponding to

the operatorĤd for the ensemble described by the Gibbsian
density matrixs21d. The probability to get an eigenvalue«l

of Ĥ is seen from Eqs.s21d and s20d to be

psl uM0d = k«lur̂u«ll s118d

=pl . s119d

Equations118d is the general quantum formulasBorn’s ruled,
while Eq. s119d follows from the Gibbsian forms21d, s19d,
and s22d of r̂. The symbolM0 in Eq. s118d reminds us that
the probability is conditional and refers to the measurement

of Ĥ done att=0. The necessity of such explicit notations
will be seen below. Formally it is always allowed, sinceany
probability is conditional.

According to Wigner’s formula for multitime probabilities
in quantum mechanicsf72g, the subsequent measurement of
the energy at the timet—represented by the same Hamil-

tonian Ĥ due to the cyclic feature of the considered
process—will then produce a result«k with the conditional
probability

pskul,Mt ,M0d = zk«kuÛtu«llz2. s120d

There are three conditionals for the probability in the LHS of
Eq. s120d: M0 andMt stand for the measurements done at
t=0 andt=t.0, while the indexl indicates the result«l of
the first measurement. The meaning of Eq.s120d is that the
ensemble of systems which during the first measurement at
t=0 produced the result«l is described fort.0 by u«llk«lu.
The members of this ensemble couple to the work sourceW,

the state evolves toÛtu«llk«luÛt
† at the timet=t, and is then

subjected to the second measurement.
Thus the total probability for having the result«l at the

momentt=0 and the result«k at t=t is given by

psk,l uM0,Mtd = pskul,Mt ,M0dpsl uM0,Mtd s121d

=pskul,Mt ,M0dpsl uM0d. s122d

When passing from Eq.s121d to Eq. s122d, we used the
obvious relationpsl uM0,Mtd=psl uM0d scausality, no de-
pendence on the futured. It is to be noted that

pskuM0,Mtd = o
l=1

n

psk,l uM0,Mtd

= o
l

plk«kuÛtu«llk«luUt
†u«kl, s123d

that is, the probability to have the result«k in the second
measurement is for a general initial density matrixr̂ not
equal to

pskuMtd = k«kuÛtr̂Ut
†u«kl, s124d

which is the probability to get the resultk in a different
context, where no first measurement was done. Such an

equality is valid, though, ifr̂ commutes withĤ, which is the
case with the Gibbsian density matrixs21d. Let us first re-
strict our attention to this case.

1. Another generalization of the classical BK equality

One notes from Eq.s120d the double-stochastic feature of
psku l ,Mt ,M0d:

application of the Peierls-Bogoliubov inequalitysrecalled in Appen-

dix Ed: e−b trfr̂V̂gø s1/Zdtr e−bV̂−bĤ=1. From this it follows once

again thatW=trfV̂r̂gù0.
30The Thompson-Golden inequality is a particular consequence of

the submajorization relationlseÂ+B̂dawlseÂ/2eB̂eÂ/2d, wherelsÂd is

the eigenvalue vector of a Hermitian operatorÂ; seef69g for the
definition of submajorizationaw and for more details.
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o
k=1

n

pskul,Mt ,M0d = o
l=1

n

pskul,Mt ,M0d = 1, s125d

and calculates using Eqs.s19d, s22d, s119d, ands125d:

ke−bs«k−«ldl0,t ; o
k,l=1

n

psl uM0dpskul,Mt ,M0de−bs«k−«ld

=
1

Z
o

k,l=1

n

pskul,Mt ,M0de−b«k = 1. s126d

This is the equality obtained in Refs.f28–30g as a gener-
alization of the classical BK equality.

Note that for the density matrixs21d the average

o
k,l=1

n

psl uM0dpskul,Mt,M0ds«k − «ld = W s127d

is equal to the work as defined by Eq.s29d. The statement of
the second law,Wù0, can once again be deduced from Eq.
s126d by employing convexity of the exponent.

2. Critique of the approach

If we were now able to associate the work with a random
variable having realizationsh«k−«ljk,l=1

n and the correspond-
ing probabilitieshpsku l ,Mt ,M0djk,l=1

n , it would be possible
to study fluctuations of work on the base of Eq.s126d, and to
draw essentially the same conclusions as we did in Sec. II E
for the classical case. It is, however, not difficult to see that
the same criticisms we brought in Sec. VI A with respect to
the “observable of work” applies here, too.

Keeping in mind our discussion after Eq.s120d, note that
if the ensemble initially described byu«llk«lu couples to the
work sourceW, its mechanical degree of freedom loses at
the timet=t the energy

trsV̂u«llk«lud = trsĤÛtu«llk«luÛt
†d − «l . s128d

Since the final density matrixÛtu«llk«luÛt
† need not commute

with Ĥ, the energy need not have any definite value at that
time, and Eq.s128d does in general not reduce to«k−«l with
any fixedk. Such a reduction takes place, however, when

trsĤÛtu«llk«luÛt
†d = o

k=1

n

Ckl«k = «psld for l = 1, . . . ,n,

s129d

whereCkl is defined via Eq.s99d, and where(ps1d , . . . ,psnd)
is some permutation of the sequences1, . . . ,nd. Equation
s129d can then be rewritten as

o
k=1

n

C̃kls«k − «ld = 0, s130d

where the matrixC̃=CP the product ofC and the corre-
sponding permutation matrixP, and where we noted that
once the matricesC and P are double stochasticfsee Eq.

s100d for definitiond, so is C̃. Note, with help of Eq.s117d,

that for l =n all terms withkÞn in Eq. s130d are negative

unlessC̃kÞn=0, which via the double-stochastic feature ofC̃

implies thatC̃nÞk=0 andC̃nn=1. Continuing along the same
lines for l ,n, one gets that Eq.s129d can take place only

when C̃ reduces to unity matrix, or, equivalently,C reduces
to a permutation matrix

Ûtu«llk«luÛt
† = u«psldlk«psldu. s131d

Thus, in general it is the expressions128d and not«k−«l
itself that can be interpreted as the work occurring with prob-
ability pl, and this is precisely the point from which we de-
parted in Sec. III.

It is also straightforward to see that the approach does not
apply out of equilibrium. The reasons for this are even more
straightforward than for the previous approach.

Recall from the Introduction that the proper definition of
fluctuations of work is expected to apply to any nonequilib-
rium initial ensembleEsŝd with density matrixŝ not com-

muting with Ĥ:

fŝ,Ĥg Þ 0. s132d

In particular, the work averaged over those fluctuations
should be equal to the one done on the ensemble.

The present approach is generalized uniquely for arbitrary
initial state: the definitions ofpsl uM0d and psku l ,Mt ,M0d
in Eqs. s120d and s118d remain unaltered: one substitutes
thereŝ instead ofr̂.

It is now straightforward to see from Eq.s132d that, due
to nondiagonal terms in ŝ, the average
ok.l=1

n psl uM0dpsku l ,Mt ,M0ds«k−«ld is not equal to the

work trsŝV̂d done on the overall ensemble:

trsŝV̂d − o
k.l=1

n

psl uM0dpskul,Mt ,M0ds«k − «ld

= trfÛt
†ĤÛsŝ − u«llk«luŝu«llk«ludg Þ 0. s133d

This agument shows again that this approach does not pro-
vide a good definition for fluctuations of work.

C. The approaches based on the “observable of work” and on
two-time measurements of energy are different

This difference is seen already by comparing Eq.s116d
with s126d. Still, we want to understand this difference in
more detail. More precisely, even though for the initial den-

sity matrix commuting withĤ, the first and the second mo-
ments generated by the two approaches are equal:

trfr̂V̂pg = o
k,l=1

n

psl uM0dpskul,Mt ,M0ds«k − «ldp, p = 0,1,2,

s134d

already the third moments are in general different,even

thoughfr̂ ,Ĥg=0. Indeed, assuming validity of the latter con-
dition, one gets
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trfr̂V̂3g − o
k,l=1

n

psl uM0dpskul,Mt, M0ds«k − «ld3

= trsV̂fV̂,r̂gĤd = trsr̂fĤ,V̂gV̂d. s135d

The RHS of Eq.s135d vanishes only iffr̂ ,V̂g=0, or

equivalentlyfĤ ,V̂g=0, in addition tofr̂ ,Ĥg=0, so thats135d
does not vanish in general.

For the two-level example of Sec. IV Dswith nondiagonal

V̂d the RHS of Eq.s135d reads

trsr̂fĤ,V̂gV̂d = sp1 − p2ds«1 − «2duxu2, s136d

where V̂ is given by Eq.s93d, and wherepk and «k are

eigenvalues ofr̂ and Ĥ, respectively. For the Gibbsian den-
sity matrix r̂, the RHS of Eq.s136d has negative sign.

Finally, let us point out that differences between the two
approaches were recently studied inf32g in a different con-
text.

D. Summary of the discussion of the two approaches

We have discussed two approaches known in the litera-
ture, and argued that in the proper quantum domain they do
not describe fluctuations of work. Work is a rather particular
form of energy having several specific features we discussed
in Sec. II B. The approaches miss those features, since, as we
argued, they do not ensure that realizations of the claimed
random quantity or operator of work have themselves the
physical meaning of work. They still allow different gener-
alizations of the classical BK equality which makes them
operationally close to the classical situation. These generali-
zations might be useful for their own sake, but not for dis-
cussing fluctuations of work.

VII. CONCLUSION

The second law has a statistical character as it is both
formulated and valid for ensembles of identically prepared
systems. It is therefore of interest to investigate this statisti-
cal aspect in more detail. For the entropic formulation of the
second law, this analysis is by now a standard chapter of
statistical thermodynamicsf1–3g.

In the present paper we studied how Thomson’s formula-
tion of the second law—no work from an equilibrium en-
semble by a cyclic process—emerges through averaging over
fluctuations of work in the quantum situation. It will be use-
ful at this moment to recall the special role of Thomson’s
formulation, and then to proceed with concluding remarks on
our results. Recall that a detailed discussion of our approach,
including several pertinent questions on its physical mean-
ing, was given by us in Sec. III H.

A. The main features of Thomson’s formulation
of the second law

sad The formulation uses the concept of work which is
unambiguously defined both conceptually and operationally,
both in and out of equilibrium. In this respect work is con-

trasting to entropy, which is well defined only insnearlyd
equilibrium states of macroscopic systems.

sbd Thomson’s formulation is valid for anyfinite31 or in-
finite f20g, quantum or classical system interacting with mac-
roscopic sources of work. Not all formulations of the second
law have such a universal regime of validity. While all for-
mulations are equivalent in the standard thermodynamical
domain, that is, forsnearlyd equilibrium states of macro-
scopic systems, some of them have definite limits when con-
sidered for finite systemsf23g or for low temperaturessquan-
tum domaind f14,15g.

scd In its literal form Thomson’s formulation does not
imply any irreversibility, since the dynamics of the system
coupled to work source is unitary and thus formally revers-
ible: if some work was put into the initially equilibrium sys-
tem it can in principle be extracted back. The irreversibility
with respect to work transfer comes into existence when one
takes into account that in practice no work source can inter-
act with all possible degrees of freedom. In particular, if the
system was subjected to a thermal bath after it had interacted
with the work source, the system relaxes back to its Gibbsian
state and the work which had been put into it cannot be
recovered byany work source acting on the system onlysa
similar argument is presented inf6g, Chap. 5d.

sdd It should perhaps be stressed that Thomson’s formula-
tion does not refer to all aspects usually associated with the
second law, e.g., by itself it does not explain how a sub-
system of a proper macroscopic systemsthermal bathd re-
laxes toward a Gibbsian equilibrium state On the basis of
Thomson’s formulation it is only possible to argue that—
under several assumptions the main of which is the
additivity32—the Gibbsian state is the only one which forbids
work extraction viaany cyclic thermally isolated process
f20,21g. The property of relaxation toward a Gibbsian state is
to be viewed as an independent issue of statistical physics;
its standard classical understanding was reshaped in litera-
ture various times; see, e.g.,f14,15,73,74g.

B. What appeared to be problematic in defining fluctuations
of work in the quantum situation

As we saw in Sec. VI, due to noncommutativity of vari-
ous quantum observables, there are different quantities
which, in the classical limit, coincide with the random quan-

31In this context one sometimes hears that the second law must
refer to macroscopic systems, and there is no sense in applying it
for finite systems. This opinion is not correct, as instanced by
Thomson’s formulation. If it were not valid for a finite system
coupled to work sources, its very application to macroscopic sys-
tems would be endangered, because the initial Gibbsian ensemble
s21d is prepared under weak interaction with an equilibrium thermal
bath; see, e.g.,f4g: any cycle violating the formulation for a finite
system can be repeated to achieve a violation for the bath.

32Additivity means that for two noninteracting systems with

HamiltoniansĤ1 andĤ2, the corresponding density matrices factor-

izes: r̂sĤ1+Ĥ2d= r̂sĤ1d ^ r̂sĤ2d. This feature is satisfied for the

Gibbsian case:r̂sĤ1d~e−bĤ1.
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tity work. As often, classical reasoning alone is of no help for
defining fluctuations of work.

One therefore has first to state what basic physical fea-
tures the fluctuations of work are expected to have, as we did
in Sec. I. Once these features are recognized, the definition
of fluctuations of work presented in Sec. III follows natu-
rally.

C. What is similar and what is different in classical and
quantum definitions of fluctuations of work?

In both situations the definition of work as a random
quantity employs the same idea: the initial homogeneous en-
semble of identically prepared systems is separated into irre-
ducible sand homogeneousd subensembles. Both in quantum
and classical situations these irreducible subensembles are
described maximally completely. In classics they correspond
to a trivial subensemble of identical copies of the same sys-
tem sso that within a subensemble no fluctuations are
presentd, and they are described via phase-space points and
trajectories. In quantum mechanics these subensembles, de-
scribed by pure density matricesswave functionsd, provide
definite snonfluctuatingd values for the largest possible,but
nonexhaustive, set of observables, since the pure-state sub-
ensemble is not trivial.

In classics the irreducible subensembles of the initial en-
semble obviously exista priori, that is, without need of any
measurement. In the quantum situation the very structure of
subensembles does depend on the measurement applied for
the actual separation, or, in other words, for the preparation
of an inhomogeneous ensemble. Thus, we need this initial
preparationalmeasurement, a step which is absent in clas-
sics. The above context dependence goes hand in hand with
the impossibility of achieving a complete description of in-
dividual systems in any subensemble. As the main conse-
quence, the separation of a mixed ensemble is not unique,
and thus the random quantity work iscontextualin the quan-
tum situation.

In the second step, systems from each irreducible suben-
semble interact with the same macroscopic source. Realiza-
tions of the random quantity work are then defined as the
average energy increase of the work source when interacting
with each subensemble, while the probability of each real-
ization is given by the weight of the corresponding suben-
semble in the initial mixed ensemble.

In this way the full physical meaning of work is kept, and
the approach can be applied to any nonequilibrium initial
state of a system interacting with its environment. Indeed,
there are experiments in quantum optics which realize obser-
vation of fluctuations of work; see Sec. III G.

It remains to mention that the idea of the presented defi-
nition of quantum fluctuations of work agrees with the gen-
eral strategy of studying classical fluctuations for quantities
se.g., temperatured which do not have a direct mechanical
meaningf3g. Recall that realizations of the random quantity
temperature as proposed inf3g—and checked experimentally
in f63g—refer to finite subensembles, such that the physical
meaning of temperature is kept.

D. Dispersion of work

The most direct quantity that characterizes fluctuations of
work is the dispersion of work we studied in Sec. IV. Al-

though the work is a contextual random quantity and de-
pends on the measurement that was done to separate the
initial mixed ensemble into pure subensembles, one can de-
fine two reasonable quantities—maximal dispersion and the
dispersion for a randomly chosen separation on the initial
ensemble—that depend solely on the internal features of the
system, that is, on its initial state and its time-dependent
Hamiltonian. These quantities were calculated explicitly for
any finite quantum system and studied in Sec. IV.

E. Nonexistence of the direct generalization of classical BK
equality

In the classical situation fluctuations of work in an ini-
tially equilibrium state are controlled by the BK equality
f16,24g. This equality allows one to draw a number of
model-independent statements on fluctuations of work which
we summarized in Sec. II E. In contrast, thedirect generali-
zation of the BK equality to the quantum domain—which
would allow one to draw similar qualitative conclusion on
fluctuations of work—does not exist; see Sec. V. As we dis-
cussed in detail in Sec. VI, there are quantum generalizations
of the BK equality, but they refer to quantities that describe
fluctuations of work only if some classical features are
present, e.g., those implied by Eq.s109d. As the main conse-
quence, fluctuations of work in the quantum situation can
have features which are impossible in classics, e.g.,sinter-
subensembled fluctuations can be absent completely.
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APPENDIX A: DERIVATION OF EQ. (15)

Here we recall fromf75g a generalization of the Cauchy
inequality used in Eq.s15d.

Denote byG=sx,pd the phase space point. Assume that all
the integrals over the phase space used below are finite. The
desired inequality reads: ifasGd, bsGd, xsGd are some func-
tions satisfying

E dG asGdxsGd = 0, E dG bsGdxsGd = 1, sA1d

then

E dG x2sGd

ù

E dG a2sGd

E dG a2sGd E dG b2sGd − FE dG asGdbsGdG2
.

sA2d

To prove this, define
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A =E dG a2sGd, sA3d

B =E dG b2sGd, sA4d

C =E dG asGdbsGd, sA5d

ysGd =
AbsGd − CasGd

AB− C2 , sA6d

and note that

E dG x2sGd ùE dG y2sGd, sA7d

due to

E dG xsGdysGd =E dG y2sGd, sA8d

which is valid by constructionssA3d–sA6d. EquationsA2d
follows from Eq.sA7d. To get from here Eq.s15d one iden-
tifies xsGd=ÎPsGd, b=ÎPsGde−bwsGd, a=ÎPsGdsfsGd−kfld.

APPENDIX B: DERIVATION OF EQ. (102)

Let fsxd be a smooth function,hxiji=1
n be n points, and

x̄ = o
k=1

n

lkxk, lk ù 0, o
k=1

n

lk = 1. sB1d

Apply the incomplete Taylor expansion tofsxid:

fsxid = fsx̄d + f8sx̄dsxi − x̄d +
f 9sjid

2
sxi − x̄d2, sB2d

whereji lies betweenxi and x̄. Denote byxmax andxmin the
maximal and the minimal numbers amongxi. This implies
xmaxùjkùxmin. Now assume thatf 9sxd is monotonically de-
caying:

f 9sxmaxd ù f 9sjid ù f 9sxmind. sB3d

Then using Eqs.sB2d and sB3d one has

o
k=1

n

lkfsxkd − fsx̄d =
1

2o
k=1

n

f 9sjkdlksxk − x̄d2, sB4d

f 9sxmind
2 o

k=1

n

lksxk − x̄d2 ù o
k=1

n

lkfsxkd − fsx̄d

ù
f 9sxmaxd

2 o
k=1

n

lksxk − x̄d2. sB5d

To derive Eq.s102d, start from Eq.s101d, and take in Eq.
sB5d the convex functionf =e−b«, b=1/T.0, and identify

xi =«i, lk=Ckl for each fixedl. The desired Eq.s102d is then
recovered upon the summation overl.

APPENDIX C: MAXIMAL DIMENSION OF
DISPERSIONLESS OBSERVABLES

Let trsÂ2r̂d=ftrsÂr̂dg2 be valid for some Hermitian opera-

tor Â and density matrixr̂. In the main text we called such
operators dispersionless with respect to the ensemble de-
scribed by the density matrixr̂.

In the Cauchy inequalityutrsÂB̂du2ø trsÂÂ†dtrsB̂B̂†d, which

is valid for any operatorsÂ and B̂, while the equality is

realized forÂ=aB̂†, wherea is a number. Thus the equality

ftrsÂÎr̂Îr̂dg2 = trsÂ2r̂dtrsr̂d sC1d

implies

ÂÎr̂ = aÎr̂. sC2d

Now insert the eigenresolutionÎr̂=ok=1
n Îpku«klk«ku into Eq.

sC2d and multiply it from the right byupml, to obtain

ÎpmÂupml = aÎpmupml. sC3d

It is seen either that only one among the eigenvaluespk’s is
nonzero and then the corresponding eigenvector is also an

eigenvector forÂ, or, more generally, thatÂ acts as~1̂ in the
Hilbert space formed by eigenvectors ofr̂ corresponding to

its nonzero eigenvalues. In both cases the measurement ofÂ
on the stater̂ always produces definite results.

Thus any operatorÂ that is dispersionless on the density
matrix r̂ has to have the following block-diagonal matrix
representation:

Â = Sa1̂k3k 0

0 B̂
D , sC4d

wherea is a real number, 1ˆ
k3k is thek3k unity matrix in the

k-dimensional Hilbert space formed by eigenvectors corre-

sponding to nonzero eigenvalues ofr̂, and finally B̂ is an
arbitrary sn−kd3 sn−kd Hermitian matrix on the space or-
thogonal to the zero eigenvalues. It hassn−kd2 free param-

eters, and another free parameter ofÂ is coming with the real

numbera. Thus,Â has

sn − kd2 + 1

free parameters.
Note finally that various operators that are dispersionless

on a pure density matrix need not be mutually commuting.
As one of the simplest examples consider

Ĉ = 11 0 0

0 0 0

0 0 1
2, D̂ = 10 1 0

1 0 0

0 0 e
2, ucl = 10

0

1
2 ,

wheree is real. It is seen thatĈucl= ucl andD̂ucl=eucl, but

fĈ,D̂gÞ0.

A. E. ALLAHVERDYAN AND Th. M. NIEUWENHUIZEN PHYSICAL REVIEW E 71, 066102s2005d

066102-24



APPENDIX D: RELATION BETWEEN POVMS AND
PROJECTIVE MEASUREMENTS

We outline how a POVM given by Eqs.s44d–s46d can be
connected with the usual projective measurements.

The general strategy is to couple the systemS with an-
other auxiliary systemG. The initial states ofS and G are,
respectively,r̂ sliving in an n-dimensional Hilbert spaceHd
and r̂G existing in anN-dimensional Hilbert spaceHG. The
initial state of the overall systemS+G is thusr̂ ^ r̂G.

Let now the composite system evolve in time under some

interaction, and letÛ be the corresponding evolution opera-
tor. The final state is thus

Ûr̂ ^ r̂G Û†. sD1d

Let also

r̂G = o
a=1

N

hauhalkhau, khauhbl = dab, sD2d

o
a=1

N

ha = 1 sD3d

be the eigenresolution of the density matrixr̂G.
One now measures for the systemG any Hermitian opera-

tor with a nondegenerate spectrum having an orthonormal set
of vectors

hugalja=1
N sD4d

as its eigenbase. The probability for obtaining the resulta,
and the postmeasured state ofS obtained upon conditioning
on the resulta read, respectively,

la = trkgauÛr̂ ^ r̂G Û†ugal = o
b=1

N

hbtrsr̂Ĝa
sbdĜa

sbd†d, sD5d

r̂a8 =
1

la

kgauÛr̂ ^ r̂G Û†ugal =
1

la
o
b=1

N

hbĜa
sbdr̂Ĝa

sbd†,

sD6d

where by definition

Ĝa
sbd = kgauÛuhbl, sD7d

o
a=1

N

Ĝa
sbd†Ĝa

sbd = khbuÛ†Ûuhbl = 1. sD8d

If now the initial stater̂G is pure, then only one term
survives in the summations overb in Eqs. sD5d and sD6d,
and we return to POVM measurements as given by Eqs.
s44d–s46d. The situation is only slightly different for the gen-
eral case when the initial stater̂G of G is mixed. Here we get
a convex sum of ordinary POVMs which corresponds to a
noisy snonideald measurement, since the postmeasurement
ensembles of the systemS are now described by mixed den-
sity matricesr̂a8, even if the premeasurement ensemble was
described by a pure density matrix.

We have shown above how to generate some POVM mea-
surement. Here we discusssmore or less following
f34,47,56,57gd how to generate a specificsgivend POVM,

that is, given operatorsĜa existing in the Hilbert spaceH
and satisfying Eq.s44d, one should constructs1d an initial
stater̂G; s2d a projective measurement basesD4d for G; s3d an

evolution operatorÛ; such that one gets for an arbitraryr̂

Ûr̂ ^ r̂G Û† = o
a=1

N

Ĝar̂Ĝa
†

^ ugalkgau. sD9d

Then the POVM s44d–s46d accounts for what is
happening—after the interaction and after the selective mea-
surement in the basesD4d—with the initial ensemble de-
scribed byr̂.

To this end let us select two arbitrary orthonormal bases

huukljk=1
n , hugalja=1

N sD10d

in H and in HG, respectively. Let the initial state ofG be
chosen as the pure state

r̂G = ug1lkg1u. sD11d

Assume that the interaction betweenS and G is chosen

such that the corresponding unitary evolution operatorÛ in
the composite Hilbert spaceH ^ HG results in

Ûuukl ^ ug1l = o
a=1

N

Ĝauukl ^ ugal. sD12d

Note that due to the completeness relationoa=1
N Ĝa

†Ĝa=1̂,
as given by Eq.s44d, one has from Eq.sD12d

kg1u ^ kukuÛ†Ûuull ^ ug1l = o
a,b=1

N

kgaugblkukuĜa
†Ĝbuull = dkl,

sD13d

becausekga ugbl=dab.

The specification ofÛ is not yet complete. To complete

the definition ofÛ in the composite Hilbert spaceH ^ HG
one should define its action on

uukal = uukl ^ ugal, sD14d

for a=2, . . . ,N in addition to Eq.sD12d. This will suffice,
sincehuuk,aljk=1,a=1

n, N is an orthonormal base in the composite
Hilbert H ^ HG.

This completion is possible and one can do that in many
different ways, because it amounts to completing the set ofn
orthonormal vectors

QW k = ˆhkuluĜauukljl=1
n
‰a=1
N , k = 1, . . . ,n, sD15d

to an orthonormal basesin H ^ HGd containingN3n vec-

tors. Then the columnssor equivalently the rowsd of Û in the
base uuk,al will be a set of ofN3n orthonormal vectors,

which is equivalent toÛ being a unitary matrix.

On the other hand, for a given unitary matrixÛ there is a

Hermitian operatorĤov such thatÛ=expfsit /"dĤovg with
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some time parametert. Thus,Ĥov can serve as a Hamiltonian
realizing the needed interaction.

APPENDIX E: DERIVATION OF EQS. (114) and (115)

One notes from Eqs.s21d and s28d that

Ût
†r̂Ût =

expf− bÛt
†ĤÛtg

Z
=

e−bV̂−bĤ

Z
, sE1d

where we used the definitionV̂=Ût
†ĤÛt−Ĥ of V̂.

Note the standard equality

e−bV̂−bĤ = expW F−E
0

b

ds e−sĤV̂esĤGe−bĤ, sE2d

where expW means a time-antiordered exponent. The easiest
way to derive Eq.sE2d is to differentiate both sides of it with
respect tob, and note that they both satisfy the same first-
order differential equation and have the same boundary con-
dition at b=0.

One now gets

Ût
†r̂Ût = expW F−E

0

b

ds e−sĤV̂esĤGr̂. sE3d

Tracing out both sides, one finally obtains Eqs.s114d and
s115d.

In footnote 29 we used the Peierls-Bogoliubov inequality.
The simplest way to derive this inequality from Eqs.s114d
and s115d is to note the well-known extremal feature of the
free energy:

− T ln tre−bĤ−bV̂ = minhtrfr̂sĤ + V̂dg + Ttrsr̂ ln r̂dj,

where the minimization is taken over all possible density
matrices. This can alternatively be written as

tr e−bĤ−bV̂ = max exph− btrfr̂sĤ + V̂dg − trsr̂ ln r̂dj.

sE4d

The desired Peierls-Bogoliubov inequality is then obtained

by inserting the particular density matrixr̂=e−bĤ /Z in the
RHS of Eq.sE4d.

APPENDIX F: PROOF OF HORN’S THEOREM

We intend to prove that given two vectorsxT=sx1ù ¯

ùxnd andyT=sy1ù ¯ ùynd with the following majorization
relation ssee Sec. IV B 1 for definitionsd:

x a y, sF1d

there is a real orthogonal matrixO=sOijd such that

xi = o
j

Oij
2yj ⇔ x = diag†O diagfygOT

‡. sF2d

Here diagfyg means then3n diagonal matrix formed by the
vector y, while diag[O diagfygOT] is the vector formed by
diagonal elements of the matrixO diagfygOT, andOT means

transposition:sOTdkl=Olk. Note that for any orthogonal ma-
trix Oij , the matrix Oij

2 is always double stochastic:oiOij
2

=o jOij
2 =1, though the converse is not truef67g.

For a given orthogonal matrixOij there are many unitary
matricesQij such thatOij

2 = uQij u2; e.g.,Qij =eif jOij , wheref j
are arbitrary phases.

The following proof is adopted from Ref.f70g and will be
realized in two steps.

First, one shows that Eq.sF1d implies that

x = T1T2 ¯ Tn−1y, sF3d

where the matricesT are the so-called T transform defined as
follows. Any T transformTsm, l ; td has three parametersm
, l and t, wherem and l are natural numbers between zero
and n, and where 0, t,1. Its action on any vectory, yT

=sy1, . . . ,ynd, is defined as

z= Tsm,l ;tdy, sF4d

where the elementsyl andym are mixed in a linear way:

z= „y1, . . . ,ym−1,tym + s1 − tdyl,ym+1, . . . ,yl−1,s1 − tdym

+ tyl,yl+1, . . . ,yn…
T. sF5d

To get the matrix ofTsm, l ; td starting from then3n unity

matrix 1̂, one proceeds as follows:

s1̂dmm= 1→ „Tsm,l ;td…mm= t,

s1̂dll = 1→ „Tsm,l ;td…ll = t,

s1̂dml = 0→ „Tsm,l ;td…ml = 1 − t,

s1̂dlm = 0→ „Tsm,l ;td…lm = 1 − t, sF6d

while all other elements of the unity matrix are left un-
changed.

EquationsF3d can now be proven by induction. It is ob-
vious for n=2. Assume it holds forn−1. As seen from Eqs.
sF1d, s84d, and s85d, one hasynøx1øy1, so there exists an
index k such that

yk ø x1 ø y1. sF7d

This implies

x1 = ty1 + s1 − tdyk sF8d

for some 0ø tø1. Define a T transformTs1,k; td via

Sx1

ȳ
D = Ts1,k;tdy, sF9d

where

ȳT = „y2, . . . ,yk−1,s1 − tdy1 + tyk,yk+1, . . . ,yn…. sF10d

It is straighforward to show that

ȳT s sx2, . . . ,xnd. sF11d

Since we assumed that the implicationsF1d ⇒ sF3d is valid
for n−1, there is a product of T transforms such that
sx2, . . . ,xnd=T2¯Tn−1ȳ

T.
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Thus this implication is proven by induction.
Let us finally prove the implicationsF1d ⇒ sF2d. Note

that with any T transformTsm, l ; td one can associate an
orthogonal matrixVsm, l ; td by reshaping Eq.sF6d as fol-
lows:

s1̂dmm= 1→ „Vsm,l ;td…mm= Ît,

s1̂dll = 1→ „Vsm,l ;td…ll = Ît,

s1̂dml = 0→ „Vsm,l ;td…ml = − Î1 − t,

s1̂dlm = 0→ „Vsm,l ;td…lm = Î1 − t. sF12d

Then Eq.sF4d is equivalent to

z= diag†Vsm,l ;tddiagfygVTsm,l ;td‡. sF13d

To prove the implicationsF1d ⇒ sF2d one again proceeds by
induction. It is obviously valid forn=2. One assumes its
validity for n−1. This means Eq.sF11d can be rewritten as

sx2, . . . ,xndT = diag†Ṽ diagfȳgṼT
‡, sF14d

whereṼ is some orthogonal matrix. To complete the proof,
define an orthogonal matrix

O = S1 0

0 Ṽ
DV, sF15d

where the matrixV corresponds to the T transformT defined
in Eq. sF9d fvia the correspondence described in Eq.sF12dg,
and rewrite Eqs.sF11d and sF9d as

x = diag†O diagfȳgOT
‡. sF16d

This proves the implicationsF1d ⇒ sF2d.
Let us realize explicitly the construction given by Eqs.

sF1d and sF2d for an example withn=3:

x = s0,0,0d, y = s2,1,− 3d. sF17d

It is obvious thatxay. For the indexk and for the parameter
t mentioned before Eq.sF7d one has

k = 3, t =
3

5
. sF18d

EquationsF3d reads explicitly

10

0

0
2 = 11 0 0

0 1
2

1
2

0 1
2

1
2

21
3
5 0 2

5

0 1 0
2
5 0 3

5

21 2

1

− 3
2 . sF19d

Finally the orthogonal matrixO in Eq. sF16d reads for the
present example:

O = 1
Î3

5 0 − Î2
5

− Î1
5

Î1
2 − Î 3

10

Î1
5

Î1
2

Î 3
10

2 . sF20d

APPENDIX G: DERIVATION OF EQ. (71)

Here we find the maximum of

kw2l = o
a=1

N

lawa
2 = o

a=1

N kcãuV̂ucãl2

kcãucãl
, sG1d

where the maximization is taken over all possible decompo-
sitionss34d of the mixed stater̂ into pure states. Using Eqs.
s55d and s57d one writes equivalently

kw2l = o
a=1

N
ftrsr̂1/2V̂r̂1/2P̂adg2

tr r̂P̂a

, sG2d

where

P̂a = upalkpau. sG3d

The maximization in Eq.sG2d is taken over all decompo-
sitions of unity

o
a=1

N

P̂a = 1̂, sG4d

where operatorsP̂a exist in then-dimensional Hilbert space
H.

The general idea of the following method was adopted

from f76g. Introduce an operatorX̂ via

r̂1/2V̂r̂1/2 = Resr̂X̂d ;
1

2
sr̂X̂ + X̂r̂d; sG5d

then

trsr̂1/2V̂r̂1/2P̂ad = Re trsP̂ar̂X̂d. sG6d

Recall the Cauchy inequality

utrsÂB̂du2 ø trsÂÂ†dtrsB̂B̂†d, sG7d

which is valid for any operatorsÂ and B̂, with the equality
being realized for

Â = aB̂†, sG8d

wherea is a number.

Applying first Eq. sG5d and then Eq.sG7d with Â

=P̂a
1/2r̂1/2, B̂= r̂1/2X̂P̂a

1/2, one gets

ftrsr̂1/2V̂r̂1/2P̂adg2 ; fRe trsP̂ar̂X̂dg2 ø utrsP̂ar̂X̂du2

sG9d

;utrsP̂a
1/2r̂1/2r̂1/2X̂P̂a

1/2du2 ø trsP̂ar̂dtrsr̂X̂P̂aX̂d,

sG10d

one gets for Eqs.sG2d and sG3d

o
a=1

N
ftrsr̂1/2V̂r̂1/2P̂adg2

tr r̂P̂a

ø o
a=1

N

trsr̂X̂P̂aX̂d sG11d

=trsr̂X̂2d = trsr̂1/2V̂r̂1/2X̂d. sG12d

FLUCTUATIONS OF WORK FROM QUANTUM… PHYSICAL REVIEW E 71, 066102s2005d

066102-27



EquationsG9d is realized as an equality for

Im trsP̂ar̂X̂d = 0, sG13d

while the Cauchy inequalitysG11d becomes an equality for

r̂1/2X̂upal = aar̂1/2upal, sG14d

whereaa are some numbers.
Both conditionssG13d and sG14d are realized simulta-

neously by takinghupalja=1
n and haaja=1

n as, respectively,

eigenvectors and eigenvalues of the Hermitian operatorX̂.

The representations73d for X̂ follows from Eq. sG5d. The
desired equations71d for the maximal work dispersion is
obtained from Eqs.sG11d and sG12d sthe substracted term
W2 is triviald.

APPENDIX H: DERIVATION OF EQ. (91)

Here we calculate the averagehkw2ljav of kw2l, given by
Eq. sG1d, over the measures91d. Using Eq.s50d it is straight-
forward to see that all the terms in the summation in the RHS
of Eq. sG1d produce the same average. Thus,

hkw2ljav

N
=

E DM dFo
i=1

N

uMiu2 − 1GfhMij

E DM dFo
i=1

N

uMiu2 − 1G , sH1d

where we denoted

DM = p
i=1

N

d ReMid Im Mi sH2d

and where one notes from Eq.s50d

fhMij = U o
j ,k=1

n

MjMk
*Îpjpkk«kuV̂u« jlU2

. sH3d

Passing to polar coordinates

E DM =E
0

2p

p
i=1

N

dwiE
0

`

p
i=1

N

uMiuduMiu sH4d

one gets

hkw2ljav

N
= o

j ,k=1

n

pjpkk« juV̂u« jlk«kuV̂u«kl
I ij

I0
, sH5d

where

I jk =E
0

`

p
i=1

N

dzidFo
i=1

N

zi − 1G zjzk

o
l=1

n

plzl

, sH6d

I0 =E
0

`

p
i=1

N

dzidFo
i=1

N

zi − 1G . sH7d

These integrals are calculated forj ,k=1, . . . ,n by the
same method. For example,

e−rrNI j j =E
0

`

p
i=1

N

dyidFo
i=1

N

yi − rG yj
2e−r

o
l=1

n

plyl

,

GsN + 1dI j j =E
0

`

p
i=1

N

dyiyj
2

expS− o
i=1

N

yiD
o
l=1

n

plyl

, sH8d

=E
0

`

p
l=1

n

dylyj
2

expS− o
l=1

n

ylD
o
l=1

n

plyl

,

=E
0

`

dsE
0

`

p
i=1

N

dyiyj
2 e−ol=1

n ylsspl+1d sH9d

where when passing from Eq.sH8d to Eq. sH9d we changed
the integration variablezi =yi / r and integrated overr from 0
to `.

Further calculations are straightforward and lead to Eq.
s91d. For dealing with this equation the following formula is
useful:

E
0

`

dsp
k=1

n
1

um + s
= o

k=1

n

ln ukp
lÞk

n
1

ul − uk
, sH10d

where theuk’s are some positive numbers.

APPENDIX I: DERIVATION OF EQ. (107)

Here we give an example of the situation discussed
around Eqs.s105d–s107d. The effect announced there exists
neither for two-level systems—simply because for a 232

traceless matrixV̂ a zero eigenvalue impliesV̂=0—nor for
three-level systems. The proof of this last fact requires some
calculations which will be omitted.

The simplest situation that supports the effect is thus a
four-level system. The following example was inspired by
f77g. Consider a four-level system with Hamiltonian

Ĥ = SÂ 0

0 B̂
D , sI1d

whereÂ and B̂ are 232 matrices:

Â = Sa b

b d
D, B̂ = Sa b

b c
D , sI2d

with a, b, c, andd being some real numbers.

Assume that the unitary operatorÛt is given as an ex-
change interaction:
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Ût = S0 1̂

1̂ 0
D , sI3d

where 1̂is the 232 unit matrix.

The HamiltonianÛt
†ĤÛt in the Heisenberg representation

at timet then reads

Ût
†ĤÛt = SB̂ 0

0 Â
D . sI4d

As follows from Eqs.sI1d, sI2d, andsI4d, the matrixV̂,

V̂ =1
0 0 0 0

0 c − d 0 0

0 0 0 0

0 0 0 d − c
2 , sI5d

has a doubly degenerate eigenvalue equal to zero, and the
corresponding eigenvectors can be taken as

u01l =1
1

0

0

0
2, u02l =1

0

0

1

0
2 . sI6d

It is now obvious that though

k01ufÛt
†ĤÛtgmu01l − k01uĤmu01l = 0 for m= 1,2,

one still has

k01ufÛt
†ĤÛtg3u01l − k01uĤ3u01l = b2sc − dd Þ 0,

k01ufÛt
†ĤÛtg4u01l − k01uĤ4u01l = 2ab2sc − dd + b2sc2 − d2d

Þ 0. sI7d

These relations were used in Eq.s107d.

f1g P. S. Epstein,Textbook of ThermodynamicssWiley & Sons,
New York, 1937d.

f2g R. C. Tolman,The Principles of Statistical MechanicssOxford
University Press, London, 1938d.

f3g L. D. Landau and E. M. Lifshitz,Statistical Physics IsPerga-
mon Press, Oxford, 1978d.

f4g R. Balian,From Microphysics to MacrophysicssSpringer, Ber-
lin, 1992d, Vol. 1.

f5g F. Schlögl, Probability and Heat sVieweg, Braunschweig,
1989d.

f6g G. Lindblad,Non-Equilibrium Entropy and IrreversibilitysD.
Reidel, Dordrecht, 1983d.

f7g J. C. Maxwell, NaturesLondond 17, 257 s1878d.
f8g H. S. Leff and A. F. Rex,Maxwell’s Demon: Entropy, Infor-

mation, ComputingsPrinceton University Press, Princeton, NJ,
1990d.

f9g J. W. Gibbs,Elementary Principles in Statistical Mechanics
sYale University Press, New Haven, 1914d.

f10g G. M. Wanget al., Phys. Rev. Lett.89, 050601s2002d.
f11g F. Ritort, Ann. Henri Poincare2, 63 s2003d.
f12g A. E. Allahverdyan and Th. M. Nieuwenhuizen, e-print cond-

mat/0207587.
f13g K. Sekimoto, F. Takagi, and T. Hondou, Phys. Rev. E62, 7759

s2000d.
f14g A. E. Allahverdyan and Th. M. Nieuwenhuizen, Phys. Rev.

Lett. 85, 1799s2000d; J. Phys. A36, 875s2003d; Phys. Rev. E
64, 056117s2001d.

f15g Th. M. Nieuwenhuizen and A. E. Allahverdyan, Phys. Rev. E
66, 036102s2002d.

f16g G. N. Bochkov and Yu. E. Kuzovlev, Sov. Phys. JETP45, 125
s1977d.

f17g G. N. Bochkov and Yu. E. Kuzovlev, Sov. Phys. JETP49, 543
s1979d.

f18g G. N. Bochkov and Yu. E. Kuzovlev, Physica A106, 443

s1981d; 106, 480 s1981d.
f19g I. M. Bassett, Phys. Rev. A18, 2356s1978d.
f20g W. Pusz and S. L. Woronowicz, Commun. Math. Phys.58,

273 s1978d.
f21g A. Lenard, J. Stat. Phys.19, 575 s1978d.
f22g W. Thirring, A Course in Mathematical Physics 4: Quantum

Mechanics of Large SystemssSpringer, Vienna, 1983d.
f23g A. E. Allahverdyan and Th. M. Nieuwenhuizen, e-print cond-

mat/0401548; e-print cond-mat/0408537.
f24g C. Jarzynski, Phys. Rev. Lett.78, 2690s1997d.
f25g G. E. Crooks, Phys. Rev. E61, 2361s2000d; 60, 2721s1999d.
f26g C. Maes, Ann. Henri Poincare2, 29 s2003d.
f27g S. Yukawa, J. Phys. Soc. Jpn.69, 2370s2000d.
f28g J. Kurchan, e-print cond-mat/0007360.
f29g H. Tasaki, e-print cond-mat/0009244.
f30g S. Mukamel, Phys. Rev. Lett.90, 170604s2003d.
f31g W. De Roeck and C. Maes, e-print cond-mat/0309498.
f32g T. Monnai and S. Tasaki, e-print cond-mat/0308337.
f33g A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen,

Europhys. Lett.66, 419 s2004d.
f34g W. M. de Muynck,Foundations of Quantum Mechanics: An

Empirist ApproachsKluwer Academic, Dordrecht, 2002d.
f35g A. Khrennikov, J. Math. Phys.45, 902 s2004d; 44, 2471

s2003d; 43, 789 s2002d.
f36g P. Perrot,A to Z of ThermodynamicssOxford University Press,

London, 1998d.
f37g A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen

sunpublishedd.
f38g G. Laufer, Am. J. Phys.51, 42 s1983d.
f39g A. J. Mallinckrodt and H. S. Leff, Am. J. Phys.60, 356

s1992d.
f40g A. E. Allahverdyan and Th. M. Nieuwenhuizen, Physica A

305, 542 s2002d.
f41g E. G. D. Cohen and D. Mauzerall, J. Stat. Mech.: Theory Exp.

FLUCTUATIONS OF WORK FROM QUANTUM… PHYSICAL REVIEW E 71, 066102s2005d

066102-29



2004, P07006.
f42g C. Jarzynski, J. Stat. Mech.: Theory Exp.2004, P09005.
f43g A. Abragam and M. Goldman,Nuclear MagnetismsClaren-

don, Oxford, 1982d; A. Abragam,Principles of Nuclear Mag-
netismsClarendon, Oxford, 1961d.

f44g W. M. Elsasser, Phys. Rev.52, 987 s1937d.
f45g J. L. Park, Am. J. Phys.36, 211 s1968d; Philos. Sci.35, 205

s1968d.
f46g B. D’Espagnat,Veiled RealitysAddison-Wesley, Reading, MA,

1995d.
f47g A. Peres,Quantum Theory: Concepts and MethodssKluwer

Academic, Dordrecht, 1995d.
f48g H.-P. Breuer and F. Petruccione,The Theory of Open Quantum

SystemssOxford University Press, Oxford, 2002d.
f49g O. Cohen, Phys. Rev. A63, 016102s2001d.
f50g D. R. Terno, Phys. Rev. A63, 016101s2001d.
f51g K. A. Kirkpatrick, e-print quant-ph/0405058; B. d’Espagnat,

e-print quant-ph/0111081.
f52g W. N. Itanoet al., Phys. Rev. A47, 3554s1993d.
f53g G. C. Hegerfeldt, e-print quant-ph/9710027.
f54g A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen,

e-print cond-mat/0408316.
f55g P. Kok and S. L. Braunstein, Phys. Rev. A61, 042304s2000d.
f56g C. W. Helstrom,Quantum Detection and Estimation Theory

sAcademic, New York, 1976d.
f57g C. M. Caves and P. D. Drummond, Rev. Mod. Phys.66, 481

s1994d.
f58g E. Schrödinger, Proc. Cambridge Philos. Soc.32, 446 s1936d.
f59g E. T. Jaynes, Phys. Rev.108, 171 s1957d.
f60g L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A

183, 14 s1993d.
f61g A. Bassi and G. Ghirardi, Phys. Lett. A309, 24 s2003d.
f62g S. E. Ahnert and M. C. Payne, e-print quant-ph/0408011.
f63g T. C. P. Chuiet al., Phys. Rev. Lett.69, 3005s1992d.
f64g B. Mandelbrot, Phys. Today42s1d, 71 s1989d.
f65g L. de la Peña and A. M. Cetto,The Quantum Dice: An Intro-

duction to Stochastic ElectrodynamicssKluwer, Dordrecht,
1996d.

f66g K. Molmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B10,
524 s1993d.

f67g A. W. Marshall and I. Olkin,Inequalities: Theory of Majoriza-
tion and its ApplicationssAcademic, New York, 1979d.

f68g P. M. Alberti and A. Uhlmann,Stochasticity and Partial Order
sReidel, Dordrecht, 1982d.

f69g R. Bhatia,Matrix AnalysissSpringer, Berlin, 1997d.
f70g T. Ando, Linear Algebr. Appl.118, 163 s1989d.
f71g S. Golden, Phys. Rev.137, B1127s1965d; C. J. Thompson, J.

Math. Phys.6, 1812s1965d.
f72g E. P. Wigner, Am. J. Phys.31, 6 s1963d; C. W. Gardiner,

Quantum NoisesSpringer, Berlin, 1996d.
f73g P. Bocchieri and A. Loinger, Phys. Rev.114, 948 s1959d.
f74g H. Tasaki, Phys. Rev. Lett.80, 1373s1998d.
f75g D. S. Mitrinović, Analytical InequalitiessSpringer, Berlin,

1970d.
f76g C. A. Fuchs and C. M. Caves, Open Syst. Inf. Dyn.3, 1

s1995d; e-print quant-ph/9604001.
f77g M. Ozawa, e-print quant-ph/0310072.
f78g A. E. Seigman,Introduction to Lasers and MaserssMcGraw-

Hill, New York, 1971d.

A. E. ALLAHVERDYAN AND Th. M. NIEUWENHUIZEN PHYSICAL REVIEW E 71, 066102s2005d

066102-30


