
Causality and Maximum 
Entropy Updating 

Daniel Hunter 
Northrop Research and Technology Center 

ABSTRACT 

This paper examines an objection to maximum entropy updating and argues that 
the problem arises from an inadequate representation of  causal information. The 
objection is that maximum entropy updating renders probabilistically dependent 
previously independent events when probabilistic information about an effect o f  the 
two events is presented. It is believed by many that such information should not 
render the events dependent. This paper accepts the view that independence should 
be preserved by maximum entropy updating, but argues that it indeed will be when 
the causal information is presented in an appropriate form. It is argued that 
presenting the causal information in the form of  conditional probabilities is 
inappropriate. An alternative way of  presenting such information, in terms of  
probabilities of  statements known as "'counterfactual conditionals, "' is described. It 
is shown that when the causal information is expressed by counterfactual 
conditionals, maximum entropy updating produces results that agree with intuitions 
shared by its critics and defenders alike about how such information should affect 
probabilities. An efficient algorithm is given for updating causal information in the 
form of  probabilities o f  counterfactuals. Finally, the theory of  probabilistic 
counterfactuals developed in this paper is applied to the interpretation of  empirical 
results concerning the way in which people reason under uncertainty. 

K E Y W O R D S :  maximum entropy inference, minimum information updat- 
ing, counterfactuals, causal reasoning, uncertain reasoning 

I N T R O D U C T I O N  

Maximum entropy updating (also known as "minimum information updat- 
ing") is a technique for the revision of probabilistic beliefs that has received a 
fair amount of attention from the uncertain reasoning community in recent years. 
Some have argued that maximum entropy updating (known hereafter as 
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MAXENT) is unnecessary, on the grounds that standard Bayesian conditioning 
will always give the same result when appropriate evidence events are 
introduced. A stronger objection to MAXENT is that it gives the wrong answer 
for certain problems. Judea Pearl, for example, has posed a challenge to 
MAXENT of this sort. He has given what he considers a counterexample to 
MAXENT in which MAXENT makes events dependent that should intuitively 
be independent. This paper argues for three claims about this putative 
counterexample: (1) that the problem arises from an inadequate representation of 
causal information; (2) that causal information can be formulated in terms of 
probabilities of certain types of statements called "counterfactuals"; and (3) that 
MAXENT gives the intuitively correct answer when given this causal 
information in the form of probabilities of counterfactuals. 

The next section explains MAXENT. The third section describes Pearl's 
counterexample to MAXENT. In the fourth section, counterfactuals are 
introduced, and their connection to causal notions is explained. The fifth section 
puts counterfactuals into a probabilistic framework and states a theorem 
concerning the application of MAXENT to probabilities of counterfactuals, a 
theorem that shows Pearl's objection to MAXENT to be unfounded and in 
addition suggests an algorithm for efficient MAXENT updating on causal 
information. The sixth section discusses an attempt to resurrect Pearl's puzzle 
and concludes that the attempt fails, the lesson being that our intuitions about 
dependency or independency of events cannot always be trusted. The penulti- 
mate section applies the theory of probabilistic counterfactuals developed in 
earlier sections to an explanation of some psychological results on how people 
actually reason about probabilities. The final section summarizes the argument 
of this paper, deals with possible objections, and notes some limitations of the 
approach taken. 

Although Pearl's objection to MAXENT does not succeed, it does show the 
importance of causal notions in probabilistic reasoning. (Pearl himself has led 
the way in understanding the role of causal notions in uncertain reasoning. See 
Pearl [15].) One practical upshot of this point is that designers of expert systems 
that deal with uncertainty must be aware of the causal structure of the problem 
domain and must be careful how they represent this causal structure. It will be 
shown, for example, that representing casual relations between events by means 
of conditional probabilities over those events is incorrect. 

MAXIMUM ENTROPY UPDATING 

MAXENT allows one to make estimates of probabilities on the basis of 
incomplete probabilistic information. A system for medical diagnosis, for 
example, rarely has sufficient data to specify the probability of a disease for all 
possible combinations of symptoms. Typically, there is statistical evidence of 
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correlations between a given disease and only a small subset of  the possible 
symptoms. Moreover,  some samples may be too small to support valid statistical 
generalizations. Nonetheless, the available data are not completely uninforma- 
tive, and some means should be found to make use of  them. MAXENT is a 
technique for extrapolating from partial probabilistic data to a total probability 
function. Thus in the medical diagnosis case, MAXENT will yield an estimate o f  
the probability of  each disease on each combination of  symptoms, even when 
direct statistical data for this probability are missing. Obviously the more 
statistical data available, the better MAXENT estimates the overall probability 
distribution. However,  reasonable estimates can be made with partial data, and 
these estimates can be updated as additional information accrues. 

The known probabilistic data .act as constraints on the set of  permissible 
probability distributions. However,  because the data are incomplete there are 
many, perhaps an infinite number, o f  probability distributions that satisfy those 
constraints. MAXENT picks from among the distributions satisfying those 
constraints the one that adds the minimal amount of  information (relative to the 
prior probability distribution), in the precise sense o f  " informat ion"  defined by 
the mathematical theory of  information. The rationale is that this is the least 
biased of  all the distributions satisfying the constraints, since it goes beyond the 
information present in the constraints and in the prior distribution to a minimal 
degree. The entropy of  a probability distribution is inversely related to the 
degree of  information in it, and hence maximizing entropy is equivalent to 
minimizing information. 

These notions can be made more precise as follows. Let P (  ) and Q(  ) be 
probability functions over the same space S = {xl, " " ,  Xn} (We assume 
throughout that the probability space is finite). The entropy of  Q relative to P ,  
written H ( Q ,  P),  is defined as 

_± [e x, l 
H ( Q ,  P ) =  Q(xi)  log L ~ d  

i = l  

The quantity - H ( Q ,  P)  is known variously as the discrimination informa- 
tion, directed divergence, I divergence, Kullback-Leibler number, and 
cross-entropy, of  Q(  ) with respect to P ( ) .  l _ H ( Q ,  P)  is often regarded as a 
measure of  the "d ivergence"  of  Q(  ) from P ( ) .  

To avoid confusion, the reader should be aware that some authors (e.g., Shore and Johnson [2]) 
use the term relative entropy synonymously with the terms just mentioned. Thus their relative 
entropy is the negative of relative entropy as defined in this paper. Other authors, however (e.g., 
Van Campenhout and Cover [3], define the term relative entropy in a manner consistent with the 
present definition. I prefer the definition given in this paper because the term maximum entropy 
inference is well established and denotes an inference method that is equivalent to maximum relative 
entropy updating, as here defined, when the prior is uniform. Thus maximum relative entropy 
updating seems to be the natural generalization of maximum entropy inference to cases in which 
prior information is available. 
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The principle of maximum (relative) entropy, or MAXENT for short, then 
says that given a prior probability function P (  ) over a space and new 
information in the form of constraints on the posterior for the same space, the 
posterior should be estimated by that probability function Q( ) which satisfies 
the constraints and whose entropy relative to P (  ) is maximal. Shore and 
Johr.son [2] give an axiomatic derivation of this principle and show that when the 
constraints are consistent there is a unique maximum entropy posterior. The use 
of MAXENT as a general inference principle was first proposed by Jaynes [4], 
and its use in expert systems explored by Cheeseman [1], Lemmer and Barth [5], 
Hunter [6], and others. 

The constraints for MAXENT are statements that pick out a subset of the set 
of all possible probability distributions over S, Typically, one is concerned with 
constraints of the form 

t aiP(x~) =p, ai, p E 61 
i= l  

which determine a closed, convex set of probability distributions. 
For our purposes, we may further restrict the constraints to those in which the 

coefficients are either zero or one. Hence a constraint is simply an assignment of 
probability to some subset of the set of primitive events. 

The problem of maximizing H subject to such constraints is a familiar 
optimization problem: Maximize a nonlinear function subject to a set of linear 
constraints. Lemmer [7] gave an efficient algorithm for maximum entropy 
updating, and Lemmer and Barth [5] applied this algorithm to updating in expert 
systems. 

Lemmer's algorithm is the following: Let the constraints for updating be 
Prob(X/) = Pi, i = I, . . ' ,  k, where {Xl, X2, " " ,  Xk} forms a partition of the 
probability space S (i.e., X/ tq  Xj is empty for i g: j and Xl U X2 U " "  O Xk 
= S).  If P (  ) is the current probability function over S, update P (  ) by 
multiplying the probability of each member of Xi by pi /P(Xi) .  It should be 
noted that this updating algorithm is essentially Jeffrey's rule, proposed by 
Jeffrey in Ref. 8. However, at the time Jeffrey proposed his rule, he was 
apparendy unaware that it is a form of maximum entropy updating. That the 
updating algorithm just described gives the maximum entropy update was 
proved by Lemmer [7]. 

Lemmer's algorithm can be extended to the case of updates on multiple 
partitions. The procedure is to apply the Lemmer algorithm to the constraints for 
each partition in succession, iterating this process until all the constraints are 
simultaneously satisfied. Results of Csiszar [9] guarantee that if the maximum 
entropy distribution for the given set of constraints exists, then this iterative 
procedure will converge to it. 
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PEARL'S PUZZLE 

Judea Pearl has given what he considers a counterexample to MAXENT. 2 I 
consider it a puzzle, rather than a counterexample, and so will refer to it by the 
title "Pearl ' s  puzzle." There is more than one version of Pearl's puzzle, but the 
version given in this section captures all the essential ingredients. 

The puzzle is this: Suppose you are told that three individuals, Albert, Bill, 
and Clyde, have been invited to a party. You know nothing about the propensity 
of any of these individuals to go to the party nor about any possible correlations 
among their actions. Using the obvious abbreviations, consider the eight-point 
space consisting of the events ABC, ABC, ABC, etc. (conjunction of events is 
indicated by concatenation). With no constraints whatsoever on this space, 
MAXENT yields equal probabilities for the elements of the space. Thus 
Prob(A) = Prob(B) = 0.5 and Prob(AB) = 0.25, so A and B are 
independent. It is reasonable that A and B turn out to be independent, since there 
is no information that would cause one to revise one's probability for A upon 
learning what B does. However, suppose that the following information is 
presented: Clyde will call the host before the party to find out whether Al or Bill 
or both have accepted the invitation, and his decision on whether to go to the 
party will be based on what he learns. AI and Bill, however, will have no 
information about whether or not Clyde will go to the part. Suppose, further, 
that we are told the probability that Clyde will go conditional on each 
combination of Al and Bill's going or not going. For the sake of specificity, 
suppose these conditional probabilities are the ones given in Table 1. 

When MAXENT is given these constraints, the result is the new probability 
assignment 

Event ABC ABC_. ABC ABC ABC flBC ABC .4B~ 
Probability 0.0197 0.177 0.1422 0.1422 0.1422 0.1422 0.1876 0.0469 

from this table, we may calculate that Prob(A) = 0.4811 and Prob(A IB) = 
0.4089. A and B are no longer independent! But this seems wrong: The 
information about Clyde should not make A ' s  and B's  actions dependent. 

The idea that the information about Clyde is irrelevant to whether or not A 
and B are dependent should not be confused with the claim that conditionalizing 
on what Clyde does should leave A and B independent. Clearly it should not, 
because if we know that Clyde went to the party, then the additional information 
that Bill went should substantially lower the probability that A1 went. The 

2 The example was given by personal communication and has been floating around the uncertain 
reasoning community for some time. Pearl informs me that the example was discovered by Norman 
Dalkey but was first taken as a counterexample to MAXENT by Pearl. 



92 Daniel Hunter 

Table 1. 

P(Cl"  ") 

AB 0.1 
A/~ 0.5 
AB 0.5 
AB 0.8 

intuition is rather that simply presenting information about how Clyde's 
behavior is dependent upon Al's and Bill's behavior, without giving any 
information about what Clyde actually does, should not cause us to change our 
probabilities for what AI and Bill do. 

The intuition that independence of A and B should be preserved when the 
information about Clyde is given can be strengthed by supposing that A and B 
are two different coins that Clyde flips and that Clyde uses the outcome of the 
two flips to pick a third coin with a particular bias, the outcome of whose 
flipping determines whether or not Clyde goes to the party. For example, if both 
A and B come up heads, this tells Clyde to pick a coin biased 9:1 in favor of 
tails, and Clyde will go to the party if and only if this third coin comes up heads, 
and so on. Here it seems clear that the information about Clyde's method of 
determining whether or not to go to the party should not make the flips of A and 
B dependent. This example differs in one important respect from the first one, 
however: In this example, independence is built in--we know that the outcomes 
of flipping two distinct coins are independent. In the first example, though, it 
was lack of information about any dependence between Al's and Bill's actions 
that led to probabilistic independence. Thus it would be consistent with the first 
example to later discover that A1 and Bill are roommates whose actions are 
probabilistically dependent. In what follows, the focus will be on probabilistic 
independence stemming from lack of information about dependence. 

Pearl's concern is over the disappearance of independence when information 
about an effect of two previously independent events is presented. However, the 
puzzle is really wider than that: A stronger claim is that information about an 
effect of two events should not change the marginal prior over those two events. 
But as can be seen from the tabulated probabilities, MAXENT applied to the 
constraints of Table 1 does change the prior over the events A and B. 

COUNTERFACTUALS 

Pearl presents his puzzle as a counterexample to MAXENT; his conclusion is 
that MAXENT gives the wrong answer. However, it is important to realize that 
a similar puzzle can be generated for other methods of updating. Bayesian 
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updating, for example, is subject to the same puzzle. 3 Modify the example so 
that our information about Clyde is that he will certainly not go to the party if 
both AI and Bill go. This information can be represented by the formula 

P rob(CIAB)  = 1 

which is equivalent to the formula 

Prob( ABC) = 1 

This allows Bayesian updating to be performed by conditioning on the statement 
ABC. The result is the following probability assignment: 

Event ABC AB~  ABC AB(? ABC flB(g ABC ,:tB~ 
Probability 0 1/7 1/7 1/7 1/7 1/7 1/7 1/7 

In this assignment, Prob(A) = 3/7, but Prob(A IB) = 1/3, so A and B are 
dependent in the posterior. 

The fact that Bayesian updating is subject to the same paradox should temper 
the inclination of some to put the blame on MAXENT. We need to stand back 
and take a fresh look at what's going on here. Maybe the problem is not in the 
method of updating used but resides somewhere else. 

One place to start looking for the problem is in the representation of the 
information. Do the conditional probabilities capture the information present in 
the examples? The example just given would suggest not. For the statement 
"Prob(~lAB) = 1,"  being equivalent to "'Prob(ABC) = 1,"  merely says that 
not all of A,  B, and C came to the party. The information that C 's  behavior is 
dependent upon that of  A and B is missing. In other words, there is important 
causal information that is not captured by the conditional probability. 

That conditional probabilities do not capture the direction of causality can also 
be seen by supposing that (~ stands for a causal factor in a disease (e.g., 
"absence of calcium") and A and B stand for symptoms of the disease (e.g., 
"anemia"  and "brittleness of  the bones").  Then "P rob (CIAB)  = p "  would 
represent the probability of a cause given its effects. In such a case, it is no 
longer obvious that independence of A and B should be preserved. 

Thus it is not surprising that MAXENT gives the wrong answer; information 
essential to getting the right answer has not been provided. Now the problem is 
how to provide that information. We have seen that conditional probabilities do 
not capture causal information. I suggest that one way to capture the required 
information is to employ counterfactual conditionals. A counterfactual condi- 
tional is a statement of the form " I f  A were the case, then C would be the 
case."  Theories of counterfactuals have been extensively debated and discussed 

3 This is not intended as a criticism of Bayesian updating. The only point is that a naive application 
of Bayesian updating produces the same counterintuitive result as does a naive application of 
MAXENT. 
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in the philosophical logic literature, and counterfactuals have recently come to 
the attention of the AI community (e.g., see Ginsberg [10]), as it has become 
apparent that they have important connections to such issues as nonmonotonic 
reasoning, belief revision, and, most important for the topic of this paper, causal 
reasoning. 

Stainaker's Theory of Counterfactuals 

This section describes a standard formal theory of counterfactuals developed 
by Stalnaker [11]. Stalnaker's theory is later extended to a probabilistic 
framework. 

Stalnaker's theory is posed in terms of the notion of possible worlds. A 
possible world is a maximally specific way the world might be. By "maximally 
specific" is meant that for any proposition and possible world, either the 
proposition is true in the world or it is false in that world, that is, the world has to 
specify everything. For our purpose we may take the notion of possible worlds 
to be relative to a language. If our language contains the atomic propositions Po, 
Pl,  P2, • ' ", a possible world may be thought of as a specification of the truth 
value of each of the Pi. If the number of atomic propositions is finite--of size n, 
for n a positive integer--then the number of worlds is also finite of size 2 ~. I 
make the simplifying assumption in what follows that the number of atomic 
propositions is finite. This is not an unreasonable assumption in the context of a 
computer implementation of possible worlds semantics. Another assumption that 
will be made, in keeping with traditional possible worlds semantics, is that 
propositions can be represented by sets of possible worlds; a proposition is 
identified with the set of worlds in which it is true. Note that there is a distinction 
between propositions and sentences: propositions are nonlinguistic entities; 
sentences are linguistic entities that express propositions. I will sometimes blur 
this distinction in what follows when nothing of importance turns on it (e.g., I 
will sometimes speak of the "antecedent" of a counterfactual when I mean "the 
proposition expressed by the antecedent"). 

The intuition behind Stalnaker's is that the counterfactual A ~ C is 
adjudged true if and only if the most similar world in which A is true is a world 
in which C is true. For example, to determine whether or not the counterfactual 
" I f  the match were struck, it would light" is true, we consider the world most 
similar to the real world in which the match is struck and see whether or not in 
that world it lights. If it does, we judge the counterfactual true; otherwise, we 
say it is false. The notion of similarity here is deliberately vague; different 
notions of similarity lead to different ways of evaluating counterfactuals. The 
notion of similarity to a given world is often linked to the notion of a "minimal 
revision" of a world. In this sense of similarity, the most similar world in which 
A is true is the one that results from adding A to the truths about the real world 
and then making a minimal revision of this set of statements so that A can be 
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consistently maintained. Again, there may be different views as to what counts 
as a "minimal"  revision, and different views produce different ways of 
evaluating counterfactuals. 

What matters for our purposes is that the formal theory of counterfactuals, 
the logic of counterfactuals, may remain the same regardless of how we flesh out 
the notion of similarity or minimal change. Stalnaker's formal theory begins by 
assuming that we are given a set W of possible worlds and a function f ,  called a 
selection function, that takes as arguments a proposition and a possible world 
and yields as value a possible world (intuitively, the most similar world to the 
argument world in which the proposition is true). For all worlds w and 
propositions A and B, f is stipulated to satisfy: 

(i) A is true in f (A ,  w), provided A is logically consistent. 
(ii) If  A is true in w, then f (A ,  w) = w. 

(iii) I f A  is true in f (B ,  w) and B is true i n f (A ,  w), thenf (A,  w) = f (B,  w). 
Stalnaker's definition of the counteffactual is: 

A I-d-* C is true at world w = af. If  A is consistent, 
then C is true at f ( A ,  w). 

Intuitively, the selection function selects, for each proposition and world, the 
most similar world to the given world in which the proposition is true. The 
above definition therefore says that a counterfactual is true if its consequent is 
true at the most similar world at which its antecedent is true, if there is such a 
world. If  the antecedent is inconsistent (so there is no most similar world at 
which it is true), then the counterfactual is vacuously true. 

Stalnaker's theory of counterfactuals has enjoyed wide acceptance. Alterna- 
tive theories have been developed, but the basic framework is still the one laid 
out by Stalnaker. One subject of dispute concerns the existence and uniqueness 
of a most similar world in which a given proposition is true. Stalnaker assumes 
that there is a unique most similar world, provided the proposition is consistent; 
others do not. Lewis ([12], pp. 19-21 and 77-83), for example, argues that there 
may be more than one maximally similar world in which a given proposition is 
true or there may be no such world even though the proposition is consistent. 

Modifications can be made to Stalnaker's theory to accommodate these 
varying intuitions. However, these modifications would not materially change 
the conclusions reached below and would make the analysis more difficult. For 
this reason, we will stick with Stalnaker's theory in its original form. 

Counterfactuais and Causality 

Many philosophers have recognized the connection between counterfactuals 
and causality (see the articles in Sosa [13], especially the one by Lewis [14]). 
The truth of  the counteffactual " I f A  were to occur, then B would occur,"  when 
neither A nor B in fact occurs, suggests a causal connection of some sort or 
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another between A and B; exactly what sort of causal connection is a subject of 
spirited debate. The indicative conditional " I f  A occurs, B occurs" does not 
seem to capture the causal connection between A and B: A might be the effect 
and B the cause, as in " I f  there's smoke, there's f ire."  Indicative conditionals 
often express evidential, rather than causal, relations between propositions; for 
example, a detective in a murder case might say " I f  the buffer didn't do it, the 
maid did" without implying a causal connection between what the buffer did (or 
did not do) and what the maid did. Note that if the buffer really did commit the 
murder, it would probably be false to say " I f  the buffer had not done it, the maid 
would have" (a counterfactual), but, in the absence of knowledge as to the 
murderer's identity, the indicative " I f  the buffer didn't do it, the maid did" is a 
perfectly reasonable statement to make. 

Nor do conditional probabilities capture causal connections between events in 
the way counterfactuals do. The probability that the maid committed the murder, 
conditional on the buffer's not having committed the murder, might be high 
without the buffer's having failed to commit the murder being a cause of the 
maid's committing the murder. However, if the counterfactual " I f  the buffer had 
not done it, the maid would have" has a high probability, this would indicate 
some kind of causal connection between the buffer's lack of action and the 
maid's action, such as a prior arrangement between buffer and maid that if one of 
them is unable to pull off the murder the other is to do the deed. 

Returning to the original problem, the suggestion is that the relations between 
Al's and Bill's actions on the one hand and Clyde's on the other are expressible 
as counterfaetual conditionals, that there is a certain probability that if AI and 
Bill were to go to the party, then Clyde would not go, and so on. The 
information to MAXENT should be probabilities of counterfactuals rather than 
conditional probabilities. However, this raises the question of how probabilities 
of counterfactuals are to be represented, which is the topic of the next section. 

PROBABILITY MEASURES OVER COUNTERFACTUALS 

One way to attach probabilities to counterfactuals would be to consider a 
probability function P (  ) over the set of worlds Wand take the probability of the 
counteffactual A [:1--* C to be Y~,,~ wP(w)x(A 0-* C, w), where x(B, w), for 
B a proposition and w a world, is one i f B  is true in w and zero otherwise. This 
method has the drawback that it does not allow uncertainty about counterfactuals 
when uncertainty about worlds has been removed. For example, let S stand for 
"The match is struck" and L for "The match lights." Consider the set W of 
worlds {SL, S£, SL, S£} and a particular selection function f .  Suppose it is 
known that the match is not struck and that it is not lit. Then P(S£)  = 1. What 
about P(S ~ L)? By the method for computing probabilities of counterfactu- 
als above, this probability will be either zero or one. Yet certainty about the 
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actual state of affairs should be compatible with uncertainty about what would 
happen if the match were struck. 

It should be noted that this problem arises because we have chosen to identify 
possible worlds with possible combinations of truth values of atomic formulas. 
In a more abstract formulation, it could be left open whether or not worlds that 
agree on all the atomic formulas are the same world. If  we distinguish worlds not 
just in terms of which atomic formulas are true in them, but in terms of which 
counteffactuals are true in them, then the problem mentioned above does not 
arise. However, such a method would exponentially increase the number of 
worlds, and so for reasons of computational efficiency we will stick to 
identifying worlds with combinations of truth values of atomic formulas. 

The problem is that we are working with a fixed selection function f .  We need 
some way of considering different possibilities for the selection function so as to 
reflect the uncertainty about counterfactuals that does not stem from uncertainty 
about worlds. 

The most direct way to allow variability in the selection function is to take the 
probability space to be W x F, where F is the set of all possible selection 
functions over W. However, we choose the more indirect route of considering 
the set of all linear orderings of members of W. Call this set ft. Thus an arbitrary 
member of fl is given by a sequence (wl, w2, "" ", wk) of members of  W such 
that there are no repetitions in the sequence and each member of W occurs in the 
sequence. We will show how both W and F can be extracted from ft. 

For each s in fl define: 

A ~ C is true at s iff (i) A is logically impossible or (ii) if w is the first 
element of  s such that A is true at w, then C is true at w. 

Note that if A is a tautology then the above definition implies that A [E~ C is 
true at s if and only if C is true at the first member of  s. Since A ~ C is 
equivalent to C when A is a tautology, this means that truth of  a noncounterfac- 
tual sentence at a sequence is truth at the first member of that sequence. 
Therefore a probability measure over fl induces a probability measure over W 
by taking the probability of a world w to be the sum of the probabilities of all 
sequences in which w is the first member. 

Each sequence represents an ordering of the possible worlds in terms of their 
similarity to the first world in the sequence. Since the same world may be the 
initial member of different sequences, this provides a means for representing 
different selection functions. The well-known fact that a selection function can 
be represented by a linear ordering of worlds follows from the properties of the 
selection function. Clearly a linear ordering of worlds determinesf(A, w) for w 
the first member of  the ordering--just take f ( A ,  w) to be the first world in the 
ordering at which A is true (or undefined if A is inconsistent). Conversely, a 
selection function f (  ) determines for each world w a linear ordering of worlds 
with w as first member of the ordering, as follows: For u, o, w E W, define u 
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-< v byf ({u ,  v}, w) = u. {u, v} is the proposition true just at the worlds u and 
v. The properties o f f (  ) ensure the truth of the following theorem: 

THEO~M 1. U <--w O is a linear order with w as least element.  

See the appendix for a proof of Theorem 1. 
It can easily be shown that if selection function f induces _ w, then A ~ C 

is true at w relative to f if and only if either A is impossible or else the first u 
under the ordering <_ w at which A is true is a world at which C is true. Hence the 
definition above is consistent with the original Stalnaker definition of the 
counterfactual. 

We may now define a probability measure over ft. Since counterfactuals are 
defined over fl, we can now meaningfully speak of the probability of 
counterfactuals. 

Returning to our original problem, the causal information in Pearl's 
counterexample to MAXENT can be expressed in terms of counterfactuals: 
Instead of the conditional probability Prob(CIAB) = p we use the counterfac- 
tual probability Prob(AB [:]--* (7) = p .  In the most general case, we would have 
a number of  such'counterfactual probabilities, one for each combination of 
causal factors on which C depends. 

The issue is whether or not giving MAXENT the information in the form of 
counterfactual probabilities results in an answer that agrees with the intuitions 
previously expressed about Pearl 's example. Happily, the next theorem says that 
it does. Theorem 2 shows that if MAXENT is given constraints in the form of 
probabilities for counterfactuals saying what would happen were a certain 
combination of causal factors to obtain, then it will leave the probability 
distribution over the causal factors unchanged, changing only the conditional 
probabilities of the effect given the causes. Hence if the causal factors were 
independent before the application of MAXENT, they will still be independent 
after its application. 

To state Theorem 2, we need the following definitions. Let A~, • • -, Ak be 
causal factors for C. Let Wbe  the set of all combinations of truth values of {At, 
• " ", Ak, C},  and let fl be the set of  all linear orderings of elements of  W. For 
each possible combination of truth values of the Ai, there is a formula that is true 
if and only if the Z i  have those truth values, namely the conjunction in which Ai  
occurs as a conjunct i fAi  is true and Ai occurs i f A i  is false (e.g., if all the A i  are 
true, the corresponding formula would be "AtA2 • • • Ak ,"  the conjunction of 
all the Ai) .  Call such a formula an a tom over {Al, "" ", A k  }. Let St,  " " ,  Sr be 
all the atoms over At,  "" "Ak. The Si stand for the various combinations of 
causal factors. Let P (  ) be a probability measure over { Sz, "" ", Sr} and extend 
P (  ) to fl by defining, for each s E fl, P(s)  to be P ( S i ) / N ,  where Si is true in s 
and N is the number of members of fl in which Si is true. Finally, where R ( ) is 
a probability measure and r is a set of probability constraints, let MAXENT (R, 
r )  be the posterior probability measure that results from applying MAXENT to 
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R( ) with the members of r as constraints. Then the following theorem holds: 

THEOREM 2. Let I' = {Prob(Si ~ C) = Pi: i = 1, " ' ,  r}. Then i f  Q = 
M A X E N T  (P, r ) ,  Q satisfies (i) Q(Si) = P(Si) and (iO Q(C]Si) = p~. 

Clause (i) of Theorem 2 says that applying MAXENT to the counterfactuals in I' 
leaves unchanged the marginal prior over the Si--that is, over the causal factors. 
Clause (ii) says that the probability of the effect, conditional on a particular 
combination of causal factors, is equal to the probability of the counterfactual 
that says that if that combination of causal factors were to obtain then the effect 
would obtain. 

These two facts completely determine the posterior distribution over W. Thus 
they imply that the updating could be performed entirely within W without 
invoking the sequence space ft. This is a relief from a computational point of 
view, since the size of the sequence space is 2n!, where n is the number of 
atomic propositions. This number is ridiculously large when there are more than 
a few atomic propositions (the exponential size of W in the number of atomic 
propositions is bad enough). Fortunately, a simple modification of the Lemmer 
algorithm allows updating to be done in the small space W: To update on the 
constraint Prob(Si [=]--* C) = Pi with respect tO probability function Qi-l over 
w, multiply the probability of each SiC world by pi/Qi_l(CISi  ) and the 
probability of each SIC-- world by (1 - pi)/Qi_ I ( C [  Si). Leave the probability of 
all other worlds unchanged. This updating method reaches the same posterior 
over W without going outside of W as would be achieved by applying 
MAXENT to fl and taking the marginal over {Al, " " ,  Ak, C}. 

To illustrate the modified Lemmer algorithm, suppose we replace the 
conditional probabilities in Table 1 with the corresponding counterfactual 
probabilities. Then the constraints become 

Prob(AB ~ C) = 0.1 

Prob(AB [:3--* C ) = 0 . 5  

Prob(/]B [3--* C ) = 0 . 5  

Prob(AB [:3--* C ) =  0.8 

Assume that the prior P (  ) on the space of atoms over {A, B, C} is uniform 
(thus each of the eight points in this space has probability 0.125). To update on 
the first constraint, we multiply the probability of the A B C  world by 

Prob(AB [:]--* C)/P(CIAB) = 0.1/0.5 = 0.2 

to get 0.025 and then multiply the probability of the ABC" world by 0.9/0.5 to 
get 0.225. The remaining constraints are handled in the same fashion. The 
resulting posterior distribution is shown. 
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Event ABC ABC ABC A B ~  t tBC f l B ~  .4BC f t B ~  
Probability 0.025 0.225 0.125 0.125 0.125 0.125 0.2 0.05 

Note that with only the counterfactual information as constraints and no prior 
information about the causal factors A and B, MAXENT yields a uniform 
distribution for the marginal over A, B, thereby making A and B independent. 
Thus MAXENT satisfies our intuitions about this case. 

Generating Dependence 

It is interesting to consider what would happen were we to learn of some 
common causal factor for A and B. Imagine that we learn that A1 and Bill are 
both enamored of a certain lady whom we will call Diane. If Diane goes to the 
party, there is a high probability that A1 will go and a high probability that Bill 
will go; if she does not go, then the probability of either of them going is low. 
Let's say that our information about Diane's influence over AI and Bill is 
captured by the following probabilistic counterfactuals: 

Prob(D ~ A )=  Prob(D [:3--, B ) =  0.9 

and 

Prob(/)  ~ A ) = Prob(/)  ~ B) = 0.1 

Then applying MAXENT to the uniform prior with the above counterfactuals as 
constraints results in the following distribution over the atoms of {A, B, D} 

Event ABD AB19 ABD ABD ABD ABD ft[tD ,4B19 
Probability 0.405 0.005 0.045 0.045 0.045 0.045 0.005 0.405 

Note that these probabilities result from the application of the modified Lemmer 
algorithm first to the uniform distribution over the atoms of {A, B, C} with 
constraints Prob(D El--+ A)  = 0.9 and Prob(/) ~ A) = 0.1 and then to the 
new distribution with constraints Prob(D ~ B) = 0.9 and Prob(/) ~ B) 
= 0 . 1 .  

From the probabilities tabulated above, we can calculate that Prob(A) = 
Prob(B) = 0.5 and Prob(BlA ) = 0.82, so that A and B are rather strongly 
dependent in the MAXENT distribution. This is as it should be, for learning of 
the existence of B is very good evidence that the cause D obtains and the 
obtaining of D is good evidence for the obtaining of A. However, A and B 
become independent when the cause is known with certainty. That is, A and B 
are conditionally independent under both D and/9, for from the above values 
we have 

Prob(BIAD) = Prob(B I D)  = 0.9 
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and 

Prob(B [ A/ ) )  = Prob(B I L) ) = O. 1 

It is often taken as a mark of one event's being a cause of others that knowledge 
of the occurrence or nonoccurrence of that event makes the other events 
probabilistically independent. When the links in Pearl's Bayesian networks [15] 
are interpreted causally, the algorithm for computing probabilities for such a 
network embodies the assumption that effects are conditionally independent with 
respect to their causes. Whether this assumption is in general true is doubtful. 
However, in the special case in which our knowledge concerns only the 
probabilistic relation between the cause and each of its effects singly, the above 
result shows this assumption to be justified. 

PARADOX REGAINED? OR A LESSON IN CAUTION 

The previous section showed that MAXENT agrees with our intuitions about 
independence of causes when the information is presented in the form of 
counterfactuals whose antecedents are mutually exclusive ways in which the 
causal factors might be combined. However, there are ways of formulating the 
causal information that render the causes dependent. In particular, if the causal 
factors mentioned in the antecedents of the counterfactuals are not mutually 
exclusive, then they may become dependent in the posterior resulting from 
updating on those counterfactuals. For example, consider the probability 
statements 

Prob(A ~ C ) = 0 . 9  and Prob(B [S]-~ C ) = 0 . 8  

We might learn, for example, that it is 90% certain that if A1 were to go to the 
party then Clyde would go too and 80% certain that Clyde would go were Bill to 
go. If we apply MAXENT to these probability statements (starting with a 
uniform prior), we end up with the following marginal over A, B, and C. 

Event ABC AB(? ABC ABC: ABC ABC f tBC AB(? 
Probability 0.295 0.015 0.202 0.028 0.168 0.062 0.115 0.115 

From this table we may calculate that the probability of A is approximately 0.54, 
but the probability of A conditional on B is about 0.57--a small difference, but a 
difference nonetheless. It might be thought that this result resurrects Pearl's 
puzzle; for why should the information given produce even a small correlation 
between A and B?. 

As before, however, the suspicion that MAXENT is to blame can be laid to 
rest by considering what would happen if Bayesian conditioning were used 
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instead. Suppose the constraints this time are 

Prob(A [S]-* C ) =  1 (1) 

and 

Prob(B [S]-~ C ) =  1 (2) 

That is, we learn that C would certainly go if A were to go and C would 
certainly go were B to go. We can therefore use Bayesian conditioning to update 
on these two counterfactuals, and the resulting marginal over A, B, and C is 

Event ABC ABC ABC ABC ,4BC AB~  ABC ABe" 
Probability 0.4 0 0.2 0 0.2 0 0.1 0.1 

here Prob(A) = Prob(B) = 0.6, but Prob(A IB) = Prob(B[A) = 0 . 6 6 6 " . - .  
So in this case also there is a slight correlation between A and B. 

We face a conflict between intuition and the results of an analysis in terms of 
counterfactuals. As in the case of  the previous analysis in terms of conditional 
probabilities, we have the escape route of saying that the analysis in question 
somehow misrepresents the given information, But in this case it is not at all 
clear what is an alternative to the counterfactual analysis. Perhaps a different 
escape route can be found; intuitions can be mistaken. Is there any reason to 
think our intuitions have misled us in this case? 

Yes, there is. Consider the following pair of counterfactuals: 

A El---' C and B ~ 

The first says that if A1 were to go, then Clyde would go, and the second says 
that if Bill were to go then Clyde would not go. I f  we knew these two 
counterfactuals to be true, then surely A and B would be dependent: I f A  is true, 
then B could not be true, and vice versa. But now generalize this observation to 
the probabilistic case. Consider these probabilities of counterfactuals: 

Prob(A [3--* C ) = 0 . 9  

and 

Prob(B ~ C) = 0.1 

In this case also, it is plausible that A and B turn out to be dependent. For 
learning A means that C is highly probable, which in turn implies that B is 
highly improbable. Thus if one of these counterfactuals has a high probability 
and the other a low probability, it is natural that their antecedents become 
dependent. 

The only issue, then, concerns that case in which the two counterfactuals 
either both have a high probability or both have a low probability. Even here an 
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argument can be made that dependence is the right result. Consider the case 
already discussed in which both counterfactuals have probability one--we know 
both A ~ C and B ~ C with certainty. Why should A and B end up 
dependent in this case? 

One way to understand the matter is to consider a strong and a weak sense of 
counterfactual implication. Both counterfactuals say that C is counterfactuaUy 
implied by some antecedent causal factor. There is a strong sense of 
counterfactual implication in which to say that C is counterfactually implied by 
X is to say that if X were to happen, then no matter what other antecedent 
events occurred, C would happen. One thing that may be producing the paradox 
in this case is that we take the counterfactuals to express the strong sense of 
counterfactual implication. If the strong sense is meant, then we are really 
asserting the counterfactuals 

A B  ~ C A B  ~ C and / ]B E3--, C 

But then the antecedents of the counterfactuals are mutually exclusive, so 
Theorem 2 guarantees that independence of A and B will be preserved. 

Suppose the strong sense of counterfactual implication is not what is meant. 
Then what we assert is compatible with these two counterfactuals: 

and 

AB U]--, C (3) 

AB ~ ~ (4) 

But if (I)-(4) are jointly true, then the following two counterfactuals will also be 
true: 

A ~ B (5) 

and 

B ~ A (6) 

This follows from the valid rule of inference "(~ ff]--, X, 4~X ~ ~b; therefore 
4~ ~ ~b." For either A is inconsistent or A is consistent. If A is inconsistent, 
then it counterfactually implies everything, including B. If A is consistent, then 
it cannot counterfactually imply/] ,  since if it did, A ~ / ]  and A/~ ~ 
would entail A ~ C, contradicting (1). But either A ~ B or A D-* B, and 
since A ~ /] is false, A ~ B must be true. A similar argument shows that 
(6) follows from (2) and (4). 

But that means that given (1) and (2), (3) and (4) imply that A and B are 
positively correlated, that is, they are no longer independent. Now if you 
consider other possibilities for how the various combinations of truth values of A 
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and B counterfactually imply a truth value for C, you will find that some imply 
no correlation, positive or negative, between A and B; some imply a positive 
correlation; while others imply a negative correlation (e.g., if we have A B  

C, then the truth of A ~ C and B ~ C requires the truth of  both A ~ / ~  
and B ~ ,4). However, it turns out that the cases in which there is a positive 
correlation "outweigh" the cases in which there is a negative correlation 
between A and B. That is, if  we condition on A ~ C and B ~ C, the 
former cases will have greater probability than the latter. Therefore, on balance, 
A and B will have a slight positive correlation after A ~ C and B [S]-~ C are 
conditioned upon. 

Thus a good argument can be made that Al 's and Bill's actions should n o t  

remain independent after conditionalization on A ~ C and B [:3--, C. A 
similar argument can be made for the case in which it is learned that these 
counterfactuals have a high probability. 

The above discussion shows that there is danger in one suggested strategy for 
dealing with causal information. It has been suggested that one way to get the 
right result in Pearl's puzzle, without appealing to counterfactuals, is to a s s u m e  

independence when there is no information about dependence. The problem with 
this strategy is that is is not always obvious when there is a lack of information 
about dependence. Our intuitions can mislead us here. We have seen that 
although it is very easy to assume that the two counterfactuals A [3--, C and 
B [3--, C provide no information about any dependency between A and B, this 
assumption is wrong. What is needed is a systematic theory of how causal 
information should be assimilated, a theory that allows us to compute what 
dependencies are implied rather than relying on our sometimes faulty intuitions. 
The theory of probabilistic counterfactuals presented in this paper is such a 
theory. 

CAUSAL VS. D I A G N O S T I C  R E A S O N I N G  

An important distinction in uncertain reasoning is the one between causal and 
diagnostic reasoning. The distinction is roughly the same as between reasoning 
from causes to effects as opposed to reasoning from effects to causes. The 
difference between these two directions of reasoning is sharply brought out in 
Pearl's Bayesian networks [15], where the parameter r is a measure of  causal 
support and the parameter h is a measure of  diagnostic or evidential support. 
Psychological studies (Tversky and Kahneman [16]) of these two methods of 
reasoning purport to show that people are biased in favor of causal reasoning that 
is, that people find it easier to reason from a cause to an effect than from an 
effect to a cause, even when the degree of informativeness of the cause about the 
effect is the same as the degree of informativeness of  the effect about the cause. 
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A more general result of this same sort is that people are more comfortable 
reasoning from a strong indicator of a cause to a weak indicator of a cause even 
though probabilistically such an asymmetry is unjustified. Some researchers 
have concluded from these results that people reason irrationally in the presence 
of causal information. 

This section applies the theory of counterfactuals and causality developed in 
the previous sections to the question of whether or not people are reasoning 
irrationally when they treat causal and diagnostic information asymmetrically. It 
will be argued that depending on what question is being asked, such an 
asymmetrical treatment may not be irrational and, furthermore, that instances 
where such asymmetrical treatment is irrational can be explained by supposing 
that people are confusing a noncausal question with a causal or counterfactual 
one. Tversky and Kahneman [16] report on an experiment in which subjects 
were asked to state which, if either, of the following events is the more probable: 

(a) That a girl has blue eyes if her mother has blue eyes. 
(b) That the mother has blue eyes if her daughter has blue eyes. 

Sixty-nine subjects said that (a) is more probable, only 21 felt that (b) is more 
probable, and 75 said that the two events are equally probable. 

Tversky and Kahneman point out that since the a priori probability of the 
daughter's having blue eyes is equal to the a priori probability of the mother's 
having blue eyes, the conditional probability of the daughter's having blue eyes 
given that the mother has blue eyes must equal the conditional probability of the 
mother's having blue eyes given that the daughter has blue eyes. This follows 
from the definition of the conditional probability P ( X  I Y )  as P ( X Y ) / P ( Y ) ,  
which implies that if P ( X )  = P ( Y ) ,  P ( X  I Y )  = P ( X Y ) / P ( Y )  = P ( X Y ) /  
P ( X )  = P ( Y I X ) .  

One problem in evaluating this study is that (a) and (b) were phrased in 
ordinary English and, at least in Ref. 16, no information was presented as to 
whether or not the subjects understood the probabilities of (a) and (b) to be 
conditional probabilities as standardly defined in probability theory. Perhaps 
Kahneman and Tversky thought there was no other way to understand (a) and 
(b), but if so they were mistaken. One alternative possibility is that at least some 
of the subjects interpreted (a) and (b) as counterfactuals, so that their 
probabilities were probabilities of counterfactuals, not conditional probabilities. 

Although (a) and (b) are phrased in the indicative mode and counterfactuals 
are normally expressed in the subjunctive, it is plausible to think that 
conditionals in the indicative mode are sometimes given a counterfactual 
interpretation. For example, the conditional "This dissolves if it is put in water" 
seems to convey the same information as " I f  this were put into water, then it 
would dissolve." Therefore one possible interpretation of (a) and (b) is as the 
following counterfactuals: 
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(a ' )  If  the mother were to have blue eyes, the daughter would too. 
(b ' )  I f  the daughter were to have blue eyes, then so would the mother. 

The question is whether or not the probabilities of (a ' )  and (b ' )  must be equal if 
the probabilities of their antecedents are equal. More generally, is 

P ( A ) = P ( C )  ~ P (A  ~ C ) = P ( C  ~ A )  (7) 

a valid implication? 
Now many students of counterfactuals have noted that a conditional 

probability need not equal the probability of the corresponding counterfactual 
conditional (e.g., Lewis [12], pp. 71-721). So the fact about conditional 
probabilities cited by Tversky and Kahneman provides no support for (7). 

In fact, counterexamples to (7) are easy to generate. For example, within the 
framework for probabilistic counterfactuals developed in this paper, suppose we 
update on the constraints P(A Vq~ C) = 1 and P(A ~ C) = 1. Then no 
world in which A is true could be a world in which C is false, and no world in 
which A is false could be a world in which C is true. Therefore, P ( A )  = P(C).  
Does it follow that P(C El--, A)  = 1? Not at all. For updating on the previous 
two counterfactuals essentially involves eliminating all sequences in which these 
two counterfactuals are false and renormalizing over the remaining sequences. 
But sequences in which C [2]--' A is false are among the remaining sequences. 
For example, the sequence (AC, AC, AC, AC)  is not eliminated (since both A 
[2-, C and A [ ~  C are true in it), yet C ~ A is false in this sequence. 
Hence P( C ~ A )  < 1. 

For a more intuitive example, consider the following urn model: There are 
two urns, U~ and U2. UI contains 90 black balls and I0 white balls, while U2 
contains 10 black balls and 90 white balls. A ball is to be randomly drawn from 
one of the urns, which urn it is drawn from being determined by the flip of  a fair 
coin. Let B stand for " A  black ball is drawn." Then P(B),  the probability of a 
black ball being drawn, is equal to P(UOP(B[ UO + P(U2)P(BIU2) = 
0.5(0.9) + 0.5(0.1) = 0.5. Since P(UO is also 0.5, we have P(UO = P(B).  
However, the probability that a black ball would be drawn were U~ chosen is not 
equal to the probability that U~ would be chosen were a black ball to be drawn. 
The first probability is clearly 0.9. But the second probability is equal to the 
probability of  U~, since the assumptions of the example entail that B E3-~ U~ is 
equivalent to U~, as the following argument shows: Suppose U~ is in fact chosen. 
Then it would certainly be true to say that if a black ball were drawn, U~ would 
(still) have been chosen. If, however, U~ is not chosen, then it would be false to 
say that if a black ball were drawn then U~ would have been chosen. All this can 
be known from the description of the case. Hence P((B ~ UD ~ U0 = 1, so 
P(B ~ U1) = P(UO = 0.5. 

The above urn model not only invalidates (7) but also illustrates an asymmetry 
between cause and effect in the evaluation of counterfactuals. Choosing a 
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specific urn has a causal influence on what the color of the drawn ball will be, 4 
whereas the color of the drawn ball in no way affects which urn is chosen. As the 
urn model shows, when the probability of the cause is less than the probability of 
the effect given the cause, as will typically be the case, the probability of the 
counterfactual saying that if the cause were to occur then the effect would occur, 
is higher than the probability of  the counterfactual saying that if the effect were 
to occur then the cause would have occurred, even when cause and effect have 
equal prior probabilities. This asymmetry between cause and effect perhaps also 
accounts for the responses of the 69 subjects in the esperiment who thought 
statement (a) more probable than statement (b). For the subjects would 
presumably believe that the mother's eye color has a causal influence on the eye 
color of the daughter, but not vice versa. 

The above considerations suggest that what have been characterized as 
"errors of reasoning" in judging the probabilities of statements such as (a) and 
(b) may not be errors at all. The putatively erroneous judgments may very well 
be correct if they are judgments about the probabilities of counterfactuals rather 
than judgments of conditional probability. And even if the judgments are clearly 
erroneous, counterfactuals can still shed light on what is going wrong. Some of 
Tversky and Kahneman's examples are phrased directly in terms of conditional 
probabilities, using standard mathematical notation for conditional probability, 
or they are phrased in terms of predicting one event on the basis of information 
about another event, where it seems clear that the basis for prediction should be 
the conditional probability of the first event given the second. Tversky and 
Kahneman report finding the same biases in judgment (in favor of reasoning 
from cause to effect or from a strong indicator of cause to a weak indicator of 
cause) in these sorts of examples as in the examples discussed above. But this 
bias in judgment can be explained if we suppose that the subjects mistakenly 
translate conditional probabilities into probabilities of counterfactuals. Such a 
mistaken translation is plausible because evaluating the counterfactual A ~ C 
and evaluating the conditional probability P(CIA) both can be done by 
hypothetically adding proposition A to one's set of beliefs and then making some 
kind of minimal revision of beliefs to restore consistency. The difference is that 
different types of revisions are performed (in the one case, conditionalization; in 
the other, shifting the probability of a world to its most similar A world). The 
close similarity between the two processes of  evaluation makes it plausible that 
one process could be wrongly substituted for the other. 

Of course, much more needs to be done to develop a theory based on 

4 More precisely,  the event  of  choosing a specific urn has a causal influence on the events 
described by "Whicheve r  ball  is drawn is white (b lack) . "  The event  of choosing a specific urn does 
not have a causal influence on an event  such as "Ba l l  number  38 is wh i t e , "  where the balls are first 
numbered and then randomly assigned to the urns. 
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probabilistic counterfactuals that explains people's specific judgments about the 
probability of such statements as (a) and (b). This section was meant merely to 
open up discussion on this topic by pointing out that whether or not such 
judgments are correct often depends on whether the probability in question is 
interpreted as the probability of a conditional or as a conditional probability. 

DISCUSSION 

It has been shown that MAXENT can be applied to causal information and 
that the resulting posterior leaves the prior over the causes unchanged, affecting 
only the conditional probability of  the effect given a particular combination of 
causes. This fact answers Pearl's objection to MAXENT that it eliminates 
independence of events when information about an effect of those events is 
given. The problem was seen to lie, not with MAXENT, but with the attempt to 
express causal information in terms of conditional probabilities, which, as was 
shown, are inadequate to express certain causal notions that are better expressed 
in terms of counterfactual statements. 

One way to accomplish the same result as MAXENT applied to counterfactu- 
als, without actually using counterfactuals, would be to apply MAXENT to the 
given conditional probabilities together with constraints that fix the probabilities 
of the combinations of causes to their prior probabilities. It might be suggested 
that for this reason the whole excursion into counterfactuals was unnecessary. 
This is misguided, not just for the reason given earlier that our intuitions about 
dependence or independence are sometimes wrong, but also for the following 
more fundamental reason: The alternative just described neglects the distinction 
between the case in which the prior is known and the case in which it is simply a 
best estimate, based on incomplete information about the prior. For example, in 
the version of the puzzle involving coin tossings, the prior over the causes (the 
tosses of the two coins A and B) may very well be known to us. I f  we know that 
the two coins are fair and physically independent of one another, this forces the 
prior over the coin tosses to be the uniform prior, and it is therefore reasonable, 
upon receiving information about an effect of the coin tosses, to take as a 
constraint that the marginal probability over the coin tosses be uniform. 
However, it is different when the prior over the causes is based on a lack of 
information, as in the case of the invitees to the party, A1 and Bill. In this case, 
we make Al's and Bill's actions probabilistically independent because we lack 
information about any connection between them, not because we know that their 
actions are not connected in any way. In such a case, it is ad hoc to take 
independence or uniformity as a constraint, and we should want our updating 
rule to preserve independence without such a constraint. It is not clear how a 
strict Bayesian could preserve independence in such cases without making 
independence an assumption. 
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Another advantage of MAXENT over the Bayesian approach to this problem 
is that MAXENT can work with incomplete information about causal 
connections. It is not necessary that the constraints cover all the possible 
combinations of causes. I f  S stands for some combination of causes such that the 
probability of S ~ C is unknown, then applying MAXENT to a set of 
constraints that does not include a constraint for that counterfactual is equivalent 
to applying MAXENT to the same set of  constraints plus the constraint that the 
probability of that counterfactual is 1/2. Hence the results of Theorem 2 apply 
also to the case in which the Si are not exhaustive, with Q(CI s) = 1/2 for each 
missing combination of causes S. 

Another misgiving that some might have about my analysis is the issue of 
whether or not counterfactuals provide a noncircular analysis of  causality. As 
noted in the section on counterfactuals and causality, the exact nature of the 
connection between counterfactuals and causal notions is a matter of contro- 
versy. Ginsberg [10], for example, presents counterfactuals in which the relation 
between the antecedent and the consequent seems to be the same as between 
effect and cause or in which there seems to be no causal relation between 
antecedent and consequent. 

One of Ginsberg's examples of a counterfactual going in the "wrong"  
direction is this one: 

" I f  the result of the test had been positive, then the organism 
would have been rodlike." 

Clearly, the test's coming out positive would not cause the organism to be 
rodlike nor would the test's not coming out positive cause it not to be rodlike. 

One response to Ginsberg is to deny that the above counterfactual is true. If 
the organism is not rodlike, instead of asserting the above counterfactual, one 
might instead assert: 

" I f  the result of the test had been positive, then the test 
would have been faulty." 

What is important for our purposes, however, is not that Ginsberg's reading be 
ruled out, but that the causal reading, the one in which the counterfactual is 
false, be an allowable one. Counterfactuals are irremediably vague, but a logic 
of counterfactuals is still useful if it remains correct under different ways of 
resolving the vagueness of counterfactuals. 

This last point connects with the issue of whether or not counterfactuals can be 
used to give an analysis of  causality. The worry is that for counterfactuals to give 
an analysis of causality, the similarity relation between worlds has to be 
understood in a certain way, but explaining how the similarity relation is to be 
understood would require recourse to causal notions. 

This worry need not bother us. For it is not important for the purposes of this 
paper that eounterfactuals be able to provide a noncircular analysis of causality. 



110 Daniel Hunter 

All that is important is that there be the right sort of connection between 
counterfactuals, for some choice of the similarity relation, and causality. Then 
the formal properties of counterfactuals can be used to prove the sort of results 
that have been proved in this paper. 

Finally, we note some limitations of  the modified MAXENT updating rule. 
That applying this rule in the small space W gives the same result as doing 
straight MAXENT in the large space fl depends, if one examines the proof of  
Theorem 2, upon the fact that each member of Wis  neutral with respect to any 
counterfactual not entailed by that member. That is, we start off with a 
probability measure P (  ) such that if i :/: j ,  P(Si  [2]--' CISjC) = P(Si  
C] SiC) = 1/2. I f  this neutrality did not hold, then the posterior marginal over 
the causes would differ from the prior marginal over the causes, and the 
difference could not be determined by looking only at the space W. However, it 
is not unreasonable to suppose that this type of neutrality holds if the 
counterfactual constraints are all that is known about the causal connections 
between the Ai and C. 

A P P E N D I X  

The well-known result that a Stalnaker selection function determines a linear 
ordering of the worlds with respect to each world (assuming the selection 
function to be defined on propositions, i.e., sets of  worlds) can be proved as 
follows. Let f (  ) be a selection function for the set of worlds W, and let u, o, and 
w be members of  IV. Define u -<w v by: 

f ( { u ,  u}, w) = u,)({u, v} is a proposition true just in the worlds u and v. 

Then we have the following theorem: 

THEOREM 1. U <-~ O is a linear order with w as least element. 

Proof The selection function f ( )  is stipulated to have the following 
properties: 

(i) A is true in f ( A ,  w), provided A is logically consistent. 
(ii) If  A is true in w, then f ( A ,  w) = w. 

(iii) I f A  is true in f (B ,  w) and B is true i n f (A ,  w), thenf(A,  w) = f ( B ,  w). 

That w is a least element follows from the fact that by clause (ii), f ({w,  v}, w) 
W, 

That u ---w v is reflexive follows from the fact that f ({u ,  u}, w) = u, by 
clause (i). 

u _<~ v is antisymmetric: I f f ( { u ,  v}, w) = u andf({u,  u}, 14,) = o, then 
clearly u = v. 

u ___,~ o is transitive: First note that i rA is true i n f (C ,  w) and B is true i n f (D ,  
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w), then A tO B is true i n f ( C  tO D, w), since clause (iii) entails tha t f (C  U D, 
w) is either f (C,  w) or f (D,  w). Therefore 

{u, v} is true i n f ( {u ,  v} U {o, x}, w)=f({u,  o, x},  w). 

Since {u, v, x} is true in f ({u ,  v}, w), clause (iii) implies that 

f ( {u ,  v, X}, w)=f({u,  v}, w)=u. 

Therefore {u, x} is true in f ({u ,  v, x}, 2). Since {u, v, x} is true in f ({u ,  x}, 
w), clause (iii) yields 

f ({u ,  x},  w)=f({u,  v, x}, w). 

a e n c e f ( { u ,  x}, w) = u. [] 

To prove Theorem 2, we need some definitions and a lemma: Si, • • ", Sr are 
the atoms over {AI, " " ,  Ak} (the set of causal factors) and P (  ) is a probability 
function over {$1, "" ", Sr}. W is the set of all atoms over {SI, "" ", St, C} 
(where C is a possible "consequence" for each combination of causal factors 
Si), and fl is the set of all sequences of members of W. P (  ) is extended to fl by 
defining, for each s in fl, P(s) to be P(SJN),  where Si is true in s and N is the 
number of members of fl in which Si is true. MAXENT (p ,  c), where p is a 
probability function and c is an assignment or set of assignments of probability to 
a subset or subsets, of p ' s  space, denotes the result of applying maximum 
entropy updating to p with c as constraint. Now we may state the following 
lemma: 

LEMMA 1 
over fl by 

Define the sequence Qo, Q1, "" ", Qr o f  probability measures 

Q 0 = P  

Qi = MAXENT(Q/_I, Prob(Si [:3-* C) = pi) 

Then for  each i, 0 <- i <_ r: 

Qi(Sj)=P(Sj), 1 <_j<_r (1) 

If i>0 ,  Qi(Si []--" C)=Qi(C[Si)=pi (2) 

If i>0 ,  Qi(Si [=]-" C)=Qi(ClSi)--Qi-~(c[sj) ,  j--/:i (3) 

Proof The proof is by induction on i. 

Basis case: Equations (2) and (3) are vacuously true for i = 0. By definition, 
Q0 = P,  so Eq. (1) holds for i = 0. 

Inductive step: Assume (1)-(3) for all m < i, where i > 0. First we show that 

Qi-l(Si ~ C)--Qi-l(Si ~ ClSy)= l/2. 

Partition each of the Sj by the possible combinations of truth values of Si ~ C, 
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• " ", Si- 1 ~ C. Let A be an arbitrary member of the partition of an arbitrary 
Sj. By the Lemmer algorithm, all members of A have the same probability in 
Qi- l (e.g., if A corresponds to all of $1 [:}-" C, . . . ,  Si- 1 [:]-" C being true, 
then for each member s of A, 

P(Sj) k=i-I.iT Pk 
Qi- , ( s )=  

N ~ Qk-l(Sk ~ C) 

Si ~ C is true in exactly half the members of A. (since for any sequence in A 
in which Si & C occurs before Si & C there is a sequence in the same partition in 
which the order of these two worlds is switched). Hence Qi-l(Si ~ C[ Sy) = 
1/2. Therefore, 

Qi-l(Si ~ C)= ~ Qi-l(Si ~ C[Sh)Qi-l(Sh) 
h=l 

= 1/2 ~ Qi-l(Sh)= 1/2. 
h=l 

By the Lemmer updating algorithm 

Qi-l(Sj(Si ~ C))pi Qi-l(sj(si ~ c ) ) ( 1 - P i )  Q~(Sj) = 
Qi-l(Si ~ C) Qi-l(Si ~ C) 

=piQi-l(SjIS~ [2-, c)+(1-pi)Qi-l(Sy[Si ~ C). 

From the fact proved above that Qi-l(Si ~ C) = Qi-l(Si ~ C[Sy), it 
follows that 

Qi_~(SjIS~ D-~ C)=Q,_, (Sj IS ,  2_~ O)=O~_~(sj). 

Hence Qitsj.) -- p iQi - l (S j )  + (1 - Pi)Qi- I (S j )  and (1) follows by induction. 
In Eq. (2), the identity Qi(Si ~ C) = Pi holds trivially [since Qi results 

from updating on the constraint Prob(Si ~ C) = Pd- Qi(C[Si) = Qi(C & 
Si)/Qi(Si) = [by Eq. (1)] Q~(C & Si)/Qi-1(Si). By the Lemmer updating 
algorithm, Qi(C• Si) = Qi_l(CSz. Si)pi/Qi_l(S i ~ C) --- [by the inductive 
assumption for Eq. (3)] Qi-l(C & Si)pi/Qi-l(C[Si)  = Qi-i(Si)pi. Hence 

Qi( C [ Si) = Qi_ l ( Si)pi/  Qi_ l(Si) = pi 

To prove Eq. (3), consider again the set of all possible combinations of truth 
values of $1 ~ C, . - . ,  Si-i ~ C. As in the proof of (1), we use these 
combinations to partition a subset of t~--in this case, the subset corresponding to 
the formula Sj ~ C. Some subsets in the partition may be empty; for example, 
if j _< i - 1, then every combination of truth values of the given counterfactuals 
in which Sj [2]-, C is false will result in the empty set when applied to that 
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counterfactual. However, for each non-empty subset in the resulting partition, 
we observe, as we did in the proof of (1), that the members are equiprobable 
under Qi- l and that Si [3--* C is true in exactly half of them (remember that j is 
assumed to be distinct from i) .  Thus 

Q~_,(S, ~ CIS  j K]--* C ) =  1/2. 

By parallel reasoning, we may establish that 

Qi-i(Si ~ CISj ~ C ) = 1 / 2 .  

Hence Qi-l(Si ~ C) = 1/2. Thus Si [:]'-* C is independent of Sj U]--* C 
under Qi-1, from which it follows that Qi(Sj ~ C) = Qi-l(Sj [:]-* C). A 
similar argument establishes that Qi(CISj) = Qi- l(ClSj) .  Now i f j  = i - 1, 
(2) implies that Qi-l(Sj ~ C) = Qi_I(CISj). so that in this case, 

Q,(Sj [B-, C)=O,_ , (S j  [2--* C)=Q,_ , ( c I s j ) = Q~ ( CI S A .  

Assume, then, that j  ~ i - 1. Then the inductive assumption for (3) implies that 
Qi-l(Sj ~ C) = Qi-l(  C[Sj), from whichagain we getthat Qi(Sy [3--* C) = 
Q,( Cl Sj). [] 

We can now prove Theorem 2. 

Trmo~M 2. Let  I' = Prob(Si K]--* C) = Pi: i = 1, . . . ,  r}. Then i f  Q = 
M A X E N T  (P, I'), Q satisfies (i) Q(Si) = P(Si) and (ii) Q(ClS i )  = pi. 

Proof Qr = MAXENT (P,  F), since by Lemma 1, Eqs. (2) and (3), the/th 
constraint will be satisfied in Qi and will remain satisfied thereafter. By Eq. (1) 
of Lemma 1, Q,(Si) = Q(Si) = P(S~). By Eqs. (2) and (3) of  1.emma 1, 
Qr(ClS3  = Q(ClS i )  = [] 
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