
 Procedia Computer Science 57 (2015) 798 – 806

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 3rd International Conference on Recent Trends in Computing 2015 (ICRTC-2015)
doi: 10.1016/j.procs.2015.07.479

ScienceDirect
Available online at www.sciencedirect.com

Third International Conference on Recent Trends in Computing (ICRTC’ 2015)

Validating the Effectiveness of Object-Oriented Metrics for
Predicting Maintainability

Lov Kumara, Debendra Kumar Naikb, Santanu Ku. Rathc

aDept. of CSE, NIT Rourkela, India
bDept. of CSE, NIT Rourkela, India
cDept. of CSE, NIT Rourkela, India

Abstract

In this study, empirically investigates the relationship of existing class level object-oriented metrics with a quality parameter i.e.,
maintainability. Here, different subset of Object-Oriented software metrics have been considered to provide requisite input data to
design the models for predicting maintainability using Neuro-Genetic algorithm (hybrid approach of neural network and genetic
algorithm). This technique is applied to estimate maintainability on two different case studies such as Quality Evaluation System
(QUES) and User Interface System (UIMS). The performance parameters of this technique are evaluated based on the basis of
Mean absolute error (MAE), Mean Absolute Relative Error (MARE), Root Mean Square Error (RMSE), and Standard Error of
the Mean (SEM). The results reported that the identified subset metrics demonstrated an improved maintainability prediction with
higher accuracy.
c© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of Fourth International Conference on Selected Topics in Mobile &
Wireless Networking (MoWNet’2014).

Keywords: CK metrics suite; Maintainability; Genetic algorithm; Neurons; Metrics; QUES; UIMS

1. Introduction

Present day software development process emphasis’s the methodology based on Object-Oriented paradigm. It is
observed that the quality of Object-Oriented software can be best assessed by the use of different software metrics. A
number of metrics have been proposed by researchers and practitioners to evaluate the quality of software. Some of
the software metrics available in literature are as follows: Abreu MOOD metric suite1, Bansiya and Davis (QMOOD
metrics suite)2, Briand et al.3, Etzkorn et al. 4, Halstead5, Henderson-sellers6, Li and Henry7, McCabe8, Tegarden et
al.9, Lorenz and Kidd10 and CK metric11 suite, etc.

The usefulness of these metrics lies in their ability to predict the quality of the developed software. Software
quality attributes, identified by ISO/IEC 912612 are efficiency, functionality, maintainability, portability, reliability
and usability. In recent years, maintainability plays a high priority role for achieving considerable success in software

E-mail address: lovkumar505@gmail.com, debendrakunaik@gmail.com and skrath@nitrkl.ac.in

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the 3rd International Conference on Recent Trends in Computing 2015
(ICRTC-2015)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.479&domain=pdf

799 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

system and it is considered as an essential quality parameter. The ISO/IEC 912612 standard defines maintainability
as the capability of the software product to be modified, including adaptation or improvements, corrections of the
software to changes in environment and in requirements and functional specifications. In this paper, maintainability
is considered as the number of source of lines changed per class. A line change can be an ‘addition’ or ‘deletion’
of lines of code in a class7. In this proposed analysis of maintainability estimation, hybrid approach of ANN and
genetic algorithm i.e., Neuro-genetic (Neuro-GA)14 approach has been used for predicting software maintainability
on two software products available commercial such as Quality Evaluation System (QUES) and User Interface System
(UIMS). To train these models, Object-Oriented software metrics are considered as input data.

The remainder of the paper is organized as follows: Section 2 shows the related work in the field of software
maintainability estimation and Object-Oriented metrics. Section 3 emphasizes on mining of metrics values from data
repository. Section 4 briefs about the methodologies used to estimate the maintainability. Section 5 highlights on the
results for maintainability prediction, achieved by applying Neuro-GA approach. Section 6 gives a note (comparison)
on the performance of the designed models based on the performance parameters.In Section 7 threats to validity have
been discussed and Section 8 concludes the paper with scope for future work.

2. Related work

It is observed in literature that software metrics are used in design of prediction models which serve the purpose
of computing the prediction rate in terms of accuracy such as fault, effort, re-work and maintainability. In this paper,
emphasis is given on work done on the use of software metrics for maintainability prediction. Table 1 shows the sum-
mary of literature review done on the area of software maintainability, where it describes the applicability of numerous
software metrics used by various researchers and practitioners in designing their respective prediction models.

Table 1: Summary of Empirical Literature on Maintainability

Author Prediction technique
Li and Henry (1993)7 Regression based models
Paul Oman (1994) et al. 15 Regression based models
Don Coleman (1994) et al. 16 Aggregate complexity measure, Factor analysis, Hierarchical multidimensional as-

sessment model, polynomial regression models , principal components analysis.
Scott L. Schneberger
(1997)17

Regression based models

Binkley et al. (1998)18 Regression analysis
Bandi et al. (2003)19 variance, correlation, and regression analysis.
Van Koten et al. (2006)20 Bayesian Network, Backward Elimination and Stepwise Selection, Regression Tree.
Yuming Zhou and Hareton
Leung (2007)13

Artificial neural network, Multivariate linear regression, Multivariate adaptive regres-
sion splines, Regression tree, Support vector regression and

Jie-Cherng Chen and Sun-
Jen Huang (2009)21

Regression analysis

From the above table 1, it can be interpreted that many of the authors have used statistical methods such as re-
gression based analysis and their forms in predicting the maintainability. But keen observation reveals that very less
work has been carried out on using neural network models for designing their respective prediction models. Neu-
ral network models over the years have seen an explosion of interest, and their applicability across a wide range of
problem domains. Indeed, neural network models can be mainly used to solve problems related to prediction and
classification. Neural network models act as efficient predictors of dependent and independent variables due to its
character in modeling where in they posses the ability to model complex functions. In this paper, software metrics
have been considered for predicting maintainability by applying three artificial intelligence techniques.

800 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

3. Research background

The following subsections highlight on the metrics set used for computing maintainability. Data are normalized to
obtain better accuracy and then dependent and independent variables are chosen for maintainability estimation.

3.1. Metrics set and empirical data collection

Metrics suites are defined for different goals such as effort estimation, fault prediction, re-usability and mainte-
nance effort. In this paper, different set of CK metrics, Li and Henry metrics and size metrics have been considered
for predicting software maintainability i.e., the number of lines changed per class is considered as a criterion in de-
termining the maintainability of a class. A line change can be an ‘addition’ or ‘deletion’ of lines of code in a class7.
Classic-ADa metrics analyzer was used to gather metrics from Classic-ADa’s design and source code. Classic-ADa is
an Object-Oriented programing language that adds the capability of Object-Oriented programing to ADa by providing
Object-Oriented construct in addition to the ADa constructs7. Figure 1 depicts the flow chart to extract the change
i.e., altered lines of code in the developed software.

Source code of different versions are
collected over a given period of time

Classes are identified

Object-Oriented metrics of
each classes are computed

Change (Source line of code
(SLOC)) for each class is

computed

Fig. 1: Flow chart for extraction of change in a software product

3.2. Effectiveness of metrics

Once the software maintainability data values are determined, an attempt is made to establish a relationship between
the required software maintainability and the metrics. The maintainability ‘change’ is measure as “the number of lines
changed per class”7. Hence in this approach, change is considered as a dependent variable and each of the metric
group as a set of independent variables while developing the relation. Maintainability is thus assumed to be a function
of the used metrics. To analyze the effectiveness of the metrics used, in the paper the various metrics are categorized
into different groups as follows:

a. Analysis 1 (A1): CK metrics (WMC, DIT, NOC, CBO, RFC, and LCOM) are mostly used for evaluate the
quality of Object-Oriented software22 23. The important aspect of CK metrics suite is that it covers most of
the features of the Object-Oriented software i.e, size, cohesion, coupling and inheritance. WMC indicates size
or complexity of class, DIT and NOC indicate the class hierarchy, CBO and RFC indicate class coupling and
LCOM indicates cohesion. In this first category, CK metrics suite is considered for finding the maintainability.
CBO metric of the CK metrics suite has not been considered for computing maintainability as it measures “non-
inheritance related coupling”22. Maintainability may be modeled as a function of different CK metrics such as:

Maintainability = Change = f (WMC,DIT,NOC,RFC, LCOM) (1)

b. Analysis 2 (A2): In this second category, the combination of both CK metrics suite and that of Li and Henry
metrics (DAC, MPC and NOM) are considered for finding the maintainability. The relationship can be repre-
sented as follows:

Maintainability = Change = f (WMC,DIT,NOC,RFC, LCOM,MPC,DAC,NOM) (2)

801 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

c. Analysis 3 (A3): In this third category, the SIZE metrics along with the combination of CK metrics suite and
Li and Henry metrics are used for estimating the maintainability. The relationship is represented as follows:

Maintainability = Change = f (WMC,DIT,NOC,RFC, LCOM,MPC,DAC,NOM, S IZE1, S IZE2) (3)

d. Analysis 4 (A4): In the fourth analysis, only the SIZE metric is used in finding the effectiveness of predict-
ing software maintainability. The relationship between the size metrics and Maintainability can be shown as
follows:

Maintainability = Change = f (S IZE1, S IZE2) (4)

3.3. Case study

In this paper, order to analyze the effectiveness of the proposed approach, two Object-Oriented software data sets
published by Li and Henry (1993) are used as case studies7. Softwares such as User Interface System (UIMS) and
Quality Evaluation System (QUES) are chosen for computing the maintenance effort. The softwares systems viz.,
UIMS and QUES have 39 and 71 classes respectively. The data have been collected over the past three years. The
maintainability of a software is measured by the number of lines changed per class. Table 2 shows the Min, Max,
Median and Standard deviation values of the two software systems (UIMS and QUES). In this analysis, the derivative
of inheritance metric ‘NOC’ in QUES software product, has all its 71 classes with NOC values zero. This indicates
that there are no immediate sub-classes of a class in the class hierarchy and hence NOC is not considered in computing
maintainability in this analysis.

Table 2: Statistics of classes for UIMS and QUES

UIMS WMC NOC DIT RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE
Max. 69 8 4 101 31 12 21 40 439 61 289
Min. 0 0 0 2 1 1 0 1 4 1 2
Median 5 0 2 17 6 3 1 7 74 9 18
Mean 2.15 11.38 0.94 23.20 7.48 4.33 2.41 11.38 106.44 13.97 46.82
Std Dev. 15.89 2.01 0.90 20.18 6.10 3.41 4.00 10.21 114.65 13.47 71.89

QUES WMC NOC DIT RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE
Max. 83 0 4 156 33 42 25 57 1009 82 42.09
Min. 1 0 0 17 3 2 0 4 115 4 6
Median 9 NA 2 40 5 17 2 6 211 10 52
Mean 14.95 0 1.91 54.38 9.18 17.75 3.44 13.41 275.58 18.03 62.18
Std Dev. 17.05 0 0.52 32.67 7.30 8.33 3.91 12.00 171.60 15.21 42.09

4. Proposed work for predicting Maintainability

This section gives a brief note on the use of a hybrid approach on Artificial neural network (ANN) and genetic
algorithm (GA) i.e., Neuro-GA approach 14 for predicting software maintainability.

4.1. Neuro-GA Approach

In this approach, genetic algorithm is used for updating the weight during learning phase. A neural network with
a configuration of ‘l-m-n’ is considered for estimation i.e., the network consists of ‘l’ number of input neurons, ‘m’
number of hidden neurons, and ‘n’ number of output neurons. In this paper, for input layer, linear activation function
is used i.e., the output of the input layer is treated as input of the input layer. It is represented as:

Oi = Ii (5)

802 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

For hidden layer and output layer, sigmoidal function or squashed-S function is used. The output of hidden layer ‘O′h
for input of hidden layer ‘I′h is represented as:

Oh =
1

1 + e−Ih
(6)

and output of the output layer ‘O′o for the input of the output layer ‘I′o is represented as:

Oo =
1

1 + e−Io
(7)

The number of weights N required for this network with a configuration of ‘l-m-n’ can be computed using the
following equation:

N = (l + n) ∗m (8)

with each weight (gene) being a real number and assuming the number of digits (gene length) in weights to be d. The
length of the chromosome L is computed using the following equation:

L = N ∗ d = (l + n) ∗ m ∗ d (9)

For determining the fitness value of each chromosome, weights are extracted from each chromosome using the fol-
lowing equation:

Wk =

⎧⎪⎪⎨⎪⎪⎩−
xkd+2∗10d−2+xkd+3∗10d−3+....+x(k+1)d

10d−2 if 0 <= xkd+1 < 5

+
xkd+2∗10d−2+xkd+3∗10d−3+....+x(k+1)d

10d−2 if 5 <= xkd+1 <= 9
(10)

The fitness values of each chromosome is determined based on the derived fitness function. The algorithm for deriving
fitness function is as follows:

Let ¯(Ii, T̄i) ; i=1,2,3....,N where
Īi = (I1i, I2i, I3i,, Ili) and T̄i = (T1i, T2i, T3i,, Tni)
The fitness values of each chromosome is determined based on the derived fitness function. The algorithm for

deriving fitness function is as follows:
Let ¯(Ii, T̄i) ; i=1,2,3....,N where
Īi = (I1i, I2i, I3i,, Ili) and T̄i = (T1i, T2i, T3i,, Tni)
represent the respective input and output pairs of the neural network with a configuration of l-m-n. For each

chromosome Ci, i = 1, 2, 3,, p, belonging to the current population Pi whose size is P. The following algorithm
indicates the steps to find the fitness value of the individual chromosomes in the population.

Algorithm for fitness function: FITGEN()

Input: Īi = (I1i, I2i, I3i,, Ili)
Output: T̄i = (T1i, T2i, T3i,, Tni)
where Īi, T̄i represent the input and output pairs of the l-m-n configuration of neural network.

Step 1: Weights W̄i from Ci are calculated using equation 10.
Step 2: Considering W̄i as a constant weight, the network is trained for N input instances and the estimate value Oi

is found.
Step 3: Error E j for each input instance j is computed using following equation:

E j = (T ji − O ji)
2 (11)

Step 4: Root mean square error (RMSE) for the chromosome Ci is computed using the following equation:

Ei =

√∑ j=N
j=1 E j

N
(12)

where N is the total number of training data set.

803 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

Step 5: Fitness value for chromosome Ci using the following equation is found out as:

Fi =
1
Ei
=

1√∑ j=N
j=1 E j

N

(13)

Figure 2 shows the block diagram for Neuro-GA approach, which represent the steps followed to design the model.

Random
population of

‘n’
chromosomes
is generated

Weight set is
extracted

Weight for training
the network is fed

as input

Fitness value is
computed using

FITGEN()

Stopping
criterion

met ?

Model is used for
testing

Yes

Min fitness value
chromosome is

replaced with Max
fitness value
chromosome

Two-point cross
over is performed

No

Fig. 2: Flow chart representing Neuro-GA execution

5. Result and Analysis

Accuracy of Software maintainability estimation model designed by application of AI techniques is determined
by using performance evaluation parameters such as: Mean Relative Error (MRE)24, Mean Absolute Relative Error
(MARE)24, and Standard Error of the Mean (SEM)25. Parameters like True error (e) and Estimate of true error (ê) are
being used for evaluating models involving cross validation approach26.

5.1. Experimental setup

Following are the numerical values used in execution of Neuro-GA approach for predicting software maintainabil-
ity.

i. Initialization of chromosome: Let the population of size N=50 is considered, initially generated by random
process.

ii. Extraction of weight: Each chromosome contains the weight of input to hidden node and hidden node to output.
Weight is extracted using Equation 10.

iii. Computing fitness value: The fitness of individual chromosomes is found using the proposed algorithm FIT-
GEN. This algorithm is executed with an aim of minimizing the mean square error.

804 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

iv. Ranking of chromosomes: The chromosomes in the pool are ranked based on their fitness value. Minimum
fitness value chromosome is stripped of by Maximum fitness value chromosome.

v. Crossover: Two point cross-over approach is performed.
vi. Stopping criteria: The execution of the proposed algorithm terminates when 95% of the chromosomes in the

pool obtain unique fitness value, beyond this level the fitness value of chromosome get almost saturated.

5.2. Neuro-GA Approach

In this paper, 10-fold cross-validation concept has been considered in QUES and 5-fold cross-validation has been
considered in UIMS for comparing the models. True error and estimate of true error determine the suitable model to
be chosen for effort estimation. Figure 3 depicts the distribution of the hidden nodes of the suitable model in each
fold. The final model chosen for effort estimation is based on the median values of the hidden nodes in their respective
folds. Table 3, shows the obtained performance metrics for UIMS and QUES software.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

Fold No.

No
. o

f H
id

de
n

No
de

1 2 3 4 5
0

5

10

15

20

Fold No.

No
. o

f H
id

de
n

No
de

A1
A2
A3
A4

QUESUIMS

Fig. 3: NO of Hidden node in each fold

Table 3: Performance matrix for UIMS data set

UIMS QUES
r Epochs MAE MARE SEM r Epochs MAE MARE SEM

A1 0.8108 76 0.1553 0.5331 0.0288 0.8227 74 0.1480 0.4180 0.0200
A2 0.8105 86 0.1364 0.5465 0.0413 0.8643 72 0.1534 0.4744 0.0155
A3 0.8831 76 0.0831 0.3155 0.0525 0.8831 64 0.1296 0.3775 0.0134
A4 0.8872 82 0.1283 0.6134 0.0269 0.8839 68 0.1245 0.4588 0.0192

From Table 3, it can be concluded that the performance in estimating software maintainability was very poor when
SIZE metric was considered for QUES and UIMS software products. When the comparison is done for the A1 and A2
analysis, the performance is much similar for QUES and UIMS data sets. And when all the metrics (A3 analysis) are
considered, the performance is much better for QUES and UIMS but also the complexity of the model increased due to
increase in input nodes. The high value of ‘R’ shows the strong affinity between software metrics and maintainability.
Figure 4 shows the variance of number of chromosomes having same fitness value and generation number of UIMS
and QUES.

Figure 5 shows the Pearson residual boxplots for all four analysis (A1 to A4) for the normalized data of UIMS
and QUES data set, allowing a visual comparison. The line in the middle of each box represents the median of the
Pearson residual. In case of UIMS and QUES data set, A1, A2 and A3 analysis have a median residual close to
zero but in A4 analysis it is observed that median residual is slightly greater then zero. It interprets that the data is
slightly underestimated. Of all the analysis, A3 analysis has the narrowest box and the smallest whiskers, as well as
the few number of outliers. Based on these boxplots, it is evident that A3 analysis gave best estimation accuracy as
compared to other three analysis i.e, A1, A2 and A4. Hence it is observed that the model designed by combining
all the three metrics (CK metrics suite, Li and Henry metrics and SIZE metrics) yields better maintenance accuracy
value in comparison with the result obtained on the basis of analyzing them individually.

805 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

Generation No.

N
o

.
 o

f
c

h
ro

m
o

s
o

m
e

 h
a

v
in

g
 s

a
m

e
 f

it
n

e
s

s
 v

a
lu

e A1
A2
A3
A4

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Generation No.

N
o

.
o

f
c

h
ro

m
o

s
o

m
e

 h
a

v
in

g
 s

a
m

e
 f

it
n

e
s

s
 v

a
lu

e A1
A2
A3
A4

QUESUIMS

Fig. 4: No. of chromosomes contain same fitness value VS Iteration
No.

A1 A2 A3 A4

−0.6

−0.4

−0.2

0

0.2

0.4

Pe
ar

so
n

Re
si

du
al

s

A1 A2 A3 A4

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Pe
ar

so
n

Re
si

du
al

s

UIMS QUES

Fig. 5: Residual boxplot for UIMS and QUES

6. Comparison of models

Apart from the comparative analysis done to find the suitable model which can predict the best software maintain-
ability, this paper also makes the comparison of the proposed work with the work done by Yuming Zhou et al. 13 and
Van Koten et al. 20. Yuming Zhou et al. 13 and Van Koten et al. 20 have used same dataset i.e., UIMS and QUES for
predicting maintainability based on different regression and neural network models . They have considered ‘MMRE’
as a performance parameter to compare the models designed for predicting maintainability of Object-Oriented soft-
ware systems. Table 4 shows the MMRE value of the proposed work and the work done by Yuming Zhou et al. 13 and
Van Koten et al. 20. From Table 4, it can be observed that, in case of QUES software MMRE value is almost same but
in case of UIMS software, the proposed approach obtained better prediction rate for maintainability.

Table 4: Performance based on MMRE for UIMS and QUES

MMRE
Author Technique UIMS QUES
Van Koten et al. 20 Bayesian Network 0.972 0.452

Regression Tree 1.538 0.493
Backward Elimination 2.586 0.403
Stepwise Selection 2.473 0.392

Zhou et al. 13 Multivariate linear regression 2.70 0.42
Artificial neural network 1.95 0.59
Regression tree 4.95 0.58
SVR 1.68 0.43
MARS 1.86 0.32

Proposed Work Neuro-GA 0.3155 0.3775

7. Threat to Validity

Several issues affect the results of the experiment are:

• Two Object-Oriented systems, i.e., UIMS and QUES used in this study are design in ADA language. The
models design in this study are likely to be valid for other Object-Oriented programing language, i.e., Java or
C++. further research can extend to design a model for other development paradigms.
• In this study, only eleven set of software metrics are used to design a models. Some of the metrics which are

widely used for Object-Oriented software are further considered for predicting maintainability.
• we only consider AI techniques for designing the prediction models to predict maintainability. Further, we can

extend the work to reduce the feature using feature reduction techniques, i.e., PCA, RST, statistical test etc..

806 Lov Kumar et al. / Procedia Computer Science 57 (2015) 798 – 806

8. Conclusion

In this paper, an attempt has been made to use subset of class level object-oriented metrics in order to predicting
software maintainability. Neuro-GA approach was used to design a model by employing 10-fold and 5-fold cross-
validation technique for QUES and UIMS software. Four analysis approaches of different metrics sets were considered
for estimating the software maintainability for QUES and UIMS software. These techniques have the ability to predict
the output based on historical data. The software metrics are taken as input data to train the network and estimate
the maintainability of the software product. From this analysis it can be concluded that Neuro-GA approach obtained
promising results when compared with the work done by Van Koten et al. and Zhou et al. Also the results reported
that the identified of subset metrics demonstrated an improved maintainability prediction with higher accuracy.

Further, work can be replicated in estimating the maintainability of the software products by combining neural
network with other techniques such as Particle swarm optimization, Fuzzy logic, Clonal selection algorithm etc.

References

1. F. B. E. Abreu and R. Carapuca. Object-Oriented software engineering: Measuring and controlling the development process. In Proceedings
of the 4th International Conference on Software Quality, volume 186, 1994.

2. J. Bansiya and C. G. Davis. A hierarchical model for Object-Oriented design quality assessment. ACM Transactions on Programming
Languages and Systems., 128(1):4–17, August 2002.

3. L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relationships between design measures and software quality in Object-
Oriented systems. The Journal of Systems and Software, 51(3):245–273, May 2000.

4. L. Etzkorn, J. Bansiya, and C. Davis. Design and code complexity metrics for Object-Oriented classes. Object-Oriented Programming,
12(10):35–40, 1999.

5. M.H. Halstead. Elements of Software Sciencel. Elsevier Science, New York, USA, 1977.
6. B. Henderson-Sellers. Software Metrics. Prentice-Hall, UK, 1996.
7. W. Li and S. Henry. Maintenance metrics for the Object-Oriented paradigm. In Proceedings of First International Software Metrics Sympo-

sium, pages 52–60, 1993.
8. Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2(4):308–320, December 1976.
9. D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi. A software complexity model of Object-Oriented systems. Decision Support Systems,

13(3):241–262, 1995.
10. M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice-Hall, NJ, Englewood, 1994.
11. S. R. Chidamber and C. F. Kemerer. A metrics suite for Object-Oriented design. IEEE Transactions on Software Engineering, 20(6):476–493,

June 1994.
12. Ho-Won Jung, Seung-Gweon Kim, and Chang-Shin Chung. Measuring software product quality: A survey of iso/iec 9126. IEEE software,

21(5):88–92, 2004.
13. Yuming Zhou and Hareton Leung. Predicting object-oriented software maintainability using multivariate adaptive regression splines. Journal

of Systems and Software, 80(8):1349–1361, 2007.
14. C.J. Burgess and M.Lefley. Can genetic programming improve software effort estimation. Information and Software Technology, 43:863–873,

2001.
15. Paul Oman and Jack Hagemeister. Construction and testing of polynomials predicting software maintainability. Journal of Systems and

Software, 24(3):251–266, 1994.
16. Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate software system maintainability. IEEE Computer,

27(8):44–49, 1994.
17. Scott L Schneberger. Distributed computing environments: effects on software maintenance difficulty. Journal of Systems and Software,

37(2):101–116, 1997.
18. Aaron B Binkley and Stephen R Schach. Validation of the coupling dependency metric as a predictor of run-time failures and maintenance

measures. In Proceedings of the 20th international conference on Software engineering, pages 452–455. IEEE Computer Society, 1998.
19. Rajendra K. Bandi, Vijay K. Vaishnavi, and Daniel E Turk. Predicting maintenance performance using object-oriented design complexity

metrics. IEEE Transactions on Software Engineering, 29(1):77–87, 2003.
20. Chikako Van Koten and AR Gray. An application of bayesian network for predicting object-oriented software maintainability. Information

and Software Technology, 48(1):59–67, 2006.
21. Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software development problem factors on software maintain-

ability. Journal of Systems and Software, 82(6):981–992, 2009.
22. Shyam R Chidamber and Chris F Kemerer. Towards a metrics suite for Object-Oriented design, volume 26. ACM, 1991.
23. V. R. Basili, L. C. Briand, and W. L. Melo. A validation of Object-Oriented design metrics as quality indicators. IEEE Transactions on

Software Engineering, 22(10):751–761, October 1996.
24. Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4):679–688,

2006.
25. Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort estimation. IEEE Transactions on Software

Engineering, 32(11):883–895, 2006.
26. Kim and Ji-Hyun. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics

and Data Analysis, 53(11):3735–3745, 2009.

