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N-PROLOG: AN EXTENSION OF PROLOG 
WITH HYPOTHETICAL IMPLICATION. 
II. LOGICAL FOUNDATIONS, AND 
NEGATION AS FAILURE 

D. M. GABBAY 

0. INTRODUCTION 

This continuation paper investigates the logical properties of N-PROLOG and the 
way it relates to classical logic and the classical quantifiers. We shall also introduce 
negation as failure into N-PROLOG. We shall give practical examples of using logic 
to control the execution of programs in N-PROLOG and examine the vaUdity of the 
thesis. 

algorithm = logic -I- (control in) logic. 

We shall see that success in the N-PROLOG computation of a goal G from the 
database P means logically that P h G in intuitionistic logic. We will also introduce 
an additional computational rule called the restart rule (allowing one to replace, at 
any time of the computation, the current goal by the original goal). 

Success of an onginal goal G from a database P through a computation in 
N-PROLOG with the restart rule means that P I- G in classical logic. The restart 
rule can be modified to yield many logics intermediate between classical and 
intuitionistic logic. 

In my lecture notes [1], I use these ideas to present classical logic procedurally, in 
a PROLOG-hke way. My paper with K. Broda and F. Kriwaczek [2] describes a 
theorem prover based on these ideas and compares this theorem prover with SL 
resolution and other forms of resolution. Modal and temporal logics can also be 
represented in N-PROLOG in certain ways, and especially appUed to database 
deletion, temporal updating, and management. This will be dealt with in paper III of 
this series. 

1. COMBINATOMAL PROPERTIES OF PROPOSITIONAL N-PROLOG 

In this section we prove Lemma L3 of Section 3 of paper I of this series, namely, we 
show that: P ? ^ = 1 and P ? ( ^ ^ 5 ) = 1 imply P?fi = 1. Then we use this lemma to 
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prove a first completeness theorem for N-PROLOG. We need some definitions of 
the notions of complexity and depth. 

Definition Dl (An inductive definition of the complexity of N-clauses). 

(a) We define the complexity of N-clauses by induction: 

(al) An atomic proposition is of complexity 1. 

(a2) complexity(v4 -^ q) = complexity(^) + 1. 

(a3) complexity(^l A Al) = 1 + max(complexity(^/')). 

(b) Let P be a finite set of clauses. The complexity of P is defined as a function 
/ («) on natural numbers giving for each n the number /(«) of clauses in P of 
complexity n. Let | / | be the first natural number m such that [f{m)^0) and 
VA«'>m/(w') = 0]. 

Since P is finite, such an | /1 exists. 

(c) Given two finite sets of clauses PI and P2, let / I , /2 be their complexity 
functions. 

Define an ordering < on the functions as foUows: 

(1) / l < / 2 i f | / 1 | < | / 2 | . 

(2) If I / I I = I /21 = m, let A; < w be the largest natural number such that 
/1(A:)#/2(A:). Then / I < /2 if/1(A:)</2(A:). 

Note that the ordering on { / } is well founded. 

Theorem Tl. For any P, any Ai -* xi, and any atom q, conditions (a) and (b) below 
imply condition (c) below: 

(a) P+ {Ai-*xi\i<r}lq = l, 

(b ,0 P + Ai'!xi = l, 

(c) P?^ = l. 

PROOF. By induction on the depth m of the success tree of (a) (see definition D5 of 
Section 3 of paper I for the notion of a tree of a successful computation) and the 
complexity of the set [Ai^ xi}. Let ni be the complexity o{(Ai-> xi), and let / be 
the complexity function of {Ai^ xi). 

The induction is on the lexicographic ordering of the pairs (f,m). 

Case 1: m = l, ni arbitrary. In this case we must simply have qe^P+ {Ai-^ 
xi). So either ^ e P, or for some /, Ai = 0 (i.e. Ai does not exist) and q = xi. 
In either case P?^ = 1. 

Case 2: ni = l, m arbitrary. 

Subcase 2a: q unifies with a (Aj=i(Bj-* yj)-* q)^P. [Note: We shall not 
use the fact that ni = lm this subcase]. Since we are deaUng with a success tree 
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of (a), we get that for each j 

(a,y) [V + Bj]+{Ai^xi}1yj = \. 

We also get {b, i, j) from (b) and lemma LI of section 3 paper I: 

{h,i,j)[^ + Bj] + Anxi = \, 

and the success tree of (a, j) has depth w — 1 and the success tree for (b, /, j) 
has depth ni; hence by the induction hypothesis 

for each j , with a success tree {Oj, Tj, Vj)ot depth < m. Thus Plq succeeds 
with a success tree of the form 

OP?^ 

(Ol, Tl, VI)-•• {Oj, Tj, Vj) • • • (Ok, Tk, Vk) 

Subcase 2b: q unifies with {Ai -»xi) for some /. Assume / = 1. Since for all i, 
ni = 1, we have P + Ai Ixi succeeds in one step. This means that xi e P. Since 
q unifies with xi, this means xi = q, and hence P'!q = l with success tree of 
depth «/ < 1 — 1 + max(«/). 

Case 3a: m>l and some ni > 1 and q unifies with a Aj^iiBj ^ yj) ^ ^ G P. In 
this case the proof is the same as in subcase 2a; we have not used the fact that 
ni = 1 in the proof of subcase 2a. 

Case 3b: m > 1, some ni>l, and q unifies with AI -^ xl. This means that 
xl = q and A = h)^x{Bj -^yj), i.e., the clause AI -^ xl is Aj^iiBj ^yj) -^ q. 

The assumptions of the theorem are therefore: 

(a) P + A*_i(fi7 -^yJ)^q+{Ai -^xi\i>2}?q=l, 

(b, l ) P + A';.,(Bj^yj)lq=l, 

(b, /) P + Ai1xi = l, i = 2,...,r. 

(a) succeeds with a tree of depth m, and (b, /') have complexity ni. Since q unifies 
with A'^^iiBj -*yj)-* q in (a) and the success tree of (a) follows the unification 
process, we get that the following holds with success trees of depth w - 1, for each 
j=l,...,r: 

(a, j) [P + Bj] + A ) = i ( 5 / - ^ y j ) ^ q + { A i ^ x i | / > 2}lyj = 1. 

The following also succeeds by Lemma LI of Section 3, paper I: 

(b, 1, j) [P + Bj] + A)^,{Bj^yj)1q = 1 

(b, /, 7) [P + Bj] + Ai Ixi = 1 for / = 2 , . . . , r. 

Note that the complexity r remains unchanged. 
By the induction hypothesis we get 
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We also have {b, 1), namely 

k 

P+ MBj^yj)1q=\ 
j-i 

with complexities mj <nl-l. 
We can now use the induction hypothesis for the theorem. The case {f,m) is 

reduced to the case {f',m'), where / ' is the complexity of the set {Bj^yJ}. Now 
/ ' is smaller than / , since / '(«!) = 0 and /(«1)>1, nl being the complexity of 

From the induction hypothesis we get P'!q = l. This proves Theorem Tl. D 

Corollary T2. Pl(A^q)=l and PlA + 1 implies Plq = 1. 

PROOF. Let 

(1) A=A';,,iBj^yj). 

We have 

(a) P+{Bj-^yj}'>q = l, 

(b) P + 5/?>y = lforeach7, 

and hence by Theorem Tl we get P ?^ = 1. D 

Corollary T3. 

(a) For any P, A, G, 

PI A = 1 and P+ A'!G = 1 imply P?G = 1. 

(b) P need not be finite in (a). 

PROOF, (a): G has the form B -> q and hence we have 

P ? ^ = l andP + A + B1q = l, 

implying by the previous corollary that P + 5 ?^ = 1 and hence P?G = 1. 
(b): Since all computations are finite, there exists a large enough finite subset 

P O c P such that P0?^ = 1 and P0 + ^?G = 1, and thus P0?G = 1, and hence 
P ? G = 1 . D 

We saw in paper I that N-PROLOG is sound for classical logic, namely, that 
P ? ^ = 1 impUes P I- ^ in classical logic. What about the converse? Here is what we 
can get: 

Definition D2. Let ^ be a goal. Then the complement of A, denoted by Cop(^), is 
the following set of clauses: 

Cop(^) = [A -^x\x any atom of the language} 
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Lemma LI. For any database P and goal G such that P D Cop(C/) and for any goal A, 
conditions {a) and (b) below imply condition (c): 

(a) P + .4?C? = 1, 

(b) (PuCop( .4 ) )?G = l, 

(c) P?G = 1. 

PROOF. Since PUCop(yl)?G = 1 and computations are finite, only a finite number 
of the elements of Cop(A) are used in the computation. Assume then that 

(b') P + iA-^xl)+ ••• +iA-*xn)lG=l. 

We now indicate how to construct a successful computation tree (the notion of 
computation tree was defined in Definition D5, Section 3, paper I) for PIG, by 
induction on the number of nested uses of (A ^ xi) in the tree. Consider the 
successful computation tree for (W): Go up the tree until you meet the last nodes in 
which any (A -* xi) is used in the computation. If no such nodes exist, then clearly 
PIG^l, since A -* xi are not used. Otherwise we have the following situation: 

Pi'! A t' s' PjlA 

Pilxi t s Pilxi 

\ / 
root 0 

Recall xi, xj are atomic. At nodes f or at j the current subgoal is xi from the 
current database Pi. 

Pi contains PU {A -^ xl,...,A-> xn},the clause A -* xi is used here for the last 
time, the next subgoal is Pi"!A, and in the computation of PilA no (A -^ xi) is 
used. This subgoal succeeds, of course, since we are dealing with a success tree. We 
thus have, since (A -* xi) is no longer used, 

Pi-{A^xi\i = l,...,n}lA = \. 

Also, since P + A'!G=l,we have Pi- {A ^xi\i = l,...,n}+A?G=1. Hence by 
Corollary T3, we have P / - {A -^ xi\i=l,...,n}'!G = l, and so we have Pr?G = 1, 
without using A -* xi, for any /. 

Therefore there exists a success tree Ti for G from Pi, without using {A ^ xi). 
We now ehminate the last use oi A -> xi in the success tree of (b'). We do this as in 
the diagram 

P i?G t' s' PjlG 

Pilxi t s PjUj 

rootO 

Instead of unifying with A -* xi taken from Pi, unify instead with (G^ xi)e.PQ Pi. 
[Recall that Cop(G) c P.] 
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At the point t', ask the goal Pi?G and follow the successful tree Ti. [A-^xi] are 
not used any more. We have thus eliminated one nested use of (yl -> xi), and we can 
use the induction hypothesis and get that P?G = 1. Thus Lemma LI is proved. D 

Theorem T3 (First completeness theorem for propositional A'̂ -PROLOG). For any P 
and any A, (a) is equivalent to (b) below: 

(a) P\-A in classical logic. 

(b) {PUCop{A))lA = l in N-PROLOG. 

PROOF. 

(1) Show (b) implies (a): Assume 

(PuCop{A))lA = l. 

Then by the soundness of N-PROLOG we get that PuCop(v4)l-^ in 
classical logic. Since the proof is finite, there is a finite set of the form 

[A -^ xl,..., A -»x«} 

such that 

P + (A->'xl)+ ••• +{A^xn)\-A. 

We show by induction on n that P I- ^. 

Case n = 1: 

P + iA^xl)\-A 

Hence P I- (^ -* xl) -^Ahy the deduction theorem. But since Pierce's law 

{iy->x)^y)-^y forany X, J' 

is a tautology of classical logic, we get 

Ph{{A->xl)-^A)^A. 

By modus ponens, 

P l - ^ . 

Case n > 1: We assume 

P + (A^xl)+ ••• +{A-^xn)\-A. 

Hence 

P + iA-*xl)+ ••• +{A^x{n-l))\-(A^xn)-*A 

Again by Pierce's law 

P + (A^xl)+ ••• +{A^x{n-l))\- A, 

and by the induction hypothesis 

P\-A. 

The above concludes the proof that (b) impUes (a). 
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(2) Show that (a) imphes (b): We prove that if 

P u C o p ( ^ ) ? ^ # l 

then Py- A in classical logic. Let 

PO = PuCop(yl) . 

We define a sequence of databases Pn, « = 1,2,..., as follows: Let 
Bl, B2, B3,... be an enumeration of all goals of the language. Assume 
P(n - 1) has been defined. We define Pn. If P(« -l) + BnlA¥= 1, let Pn = 
P(n - 1) + Bn. [Remember if Bn is a conjunction, we add all the conjuncts 
separately to P(« - 1).] Otherwise by Lemma LI, 

P ( n - l ) u C o p ( 5 n ) ? y l # L 

So let 

Pn = P ( n - l ) U C o p ( 5 n ) . 

Let P* = UnPn. Clearly 

P*1A*l. 

Define an assignment of truth values h on the atoms of the language by 

h(x)= true iff P * ? x = l . 

Lemma L2. For any B 

h(5) = true iff P*?B = 1. 

PROOF. By induction on B. 

(a) For atoms this is the definition. 

(b) The case of conjunction is immediate. 

(c) We check the case of (C -> 9), q atomic. 

(cl) If P * ? ( C - ^ ^ ) = 1 , then if P * ? C = 1 , then by Lemma LI also P * ? ^ = l . 
This means, by the induction hypothesis, that if h(C)=true then also 
h(^) = true, and hence h(C ^ ^) = true. 

(c2) If V*1{C^q)^\, then P* + Clq^l. Hence by definition h(^)= false, 
since certainly P* ?^ ^ 1. 

If h(C) = true, then we are finished, since this makes h(C -» ^) = false. We 
now show that indeed h(C) = true by showing that h(C) = false leads to a 
contradiction. Assume that h(C) = false. Then by the induction hypothesis 
P* ?C ^ L Thus certainly C ^ P* (if C G P* then P* ?C = 1). We have that 
C = Bn, for some n in the enumeration of wffs, and so since C^ P*, by 
construction C o p ( C ) c P * , in particular ( C ^ ^ ) e P * . Thus P * ? ( C - > ^ ) 
= I, which contradicts the assumption of our case (c2). Thus case (c) is 
proved and lemma L2 is proved. D 

We can now prove direction 2 of Theorem T3. Since P*1A=^1, we get h(/l) = 
false. Thus h is an assignment of truth values such that for any 5 e P*, and 
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certainly for any 5 e P U Cop(^), h(B) = true (since 5 G P* implies P* IB = 1) 
and h(A) = false. This means that P U Cop(A) t- ^ in classical logic. Thus (a) of 
theorem T3 impUes (b), as we showed that not (b) impUes not (a). 

This proves Theorem T3. D 

2. PROPOSITIONAL N-PROLOG, INTUITIOMSTIC PROPOSITIONAL 
LOGIC, AND CLASSICAL PROPOSITIONAL LOGIC 

We must present classical logic in a form ready for comparison with our 
N-PROLOG. We begin with the propositional calculus and use formulation with the 
connectives A, ->, and f (f for falsity). It is well known that A and V can be 
defined using -^ and f. In fact -, can also be defined using -^ and f, but we are 
essentially taking A and -^ as primitives, and defining the intuitionistic resolution 
for this fragment first. We then add f as a simple extension. 

Notice by contrast that N-PROLOG is really { A, ^ ) based, while the most 
widespread resolutions for classical logic are (V,-,} based. 

Definition Dl. Axioms for intuitionistic logic and for classical logic. 

Axioms: 

(nl) ^ -»( f i ->^) . 

(n2) {A-^{B^C))^{{A^B)^{A^C)). 

(n3) AAB-^A, 
AAB-^B. 

(n4) A-*{B^AAB), 

(n5) {{A^B)^A)-*A 

(n6) t^A. 

Rules: 

A, A-*B 

(Pierce's law), 

B 
The positive intuitionistic propositional calculus I + (with negation and without 
disjunction) is defined using the axioms and rules except (n5). If we take all the 
axioms and rules, including (n5), we get the classical propositional calculus C. In 
1 + , -,A is definable as 4̂ ^ f. Av B however is not definable. 

In C, AV B is definable as (A -* B)-* B, or equivalently as {B -^A)-*A, or 
equivalently as ((^ ^ f) A (B ^ f)) ^ f. 

Theorem Tl (Deduction theorem). In both logics, 

A,B^CiffA^B^C. 

Theorem T2 (Conjunction theorem). In both logics, 

Ai-BACiffA\-BandAi-C. 
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Theorem T3. In both logics, 

\- (A ^ (B ^ C))*^ {A A B -^ C), 

K ({A ^B)AiA^ C)) *^{A-*(BA C)). 

Definition D2. 

(a) A model is any function h assigning values 0, 1 to the atoms. We require 
thath(f) = 0. 

(b) Define < on models by 
h < h* iff for all atoms x, h{x) < h'(x). 

(c) A kripke model is any partially ordered set (T, < , hO) of models with hO < h 
for all h e r and hO e T. 

(d) Given kripke model (T, < ,hO), define the function Val(h, A), where h G J. 

(dl) V a l ( h , ^ ) = l i f h ( ^ ) = l. 

(d2) Val (h ,AAB)=l i f [ 
Val(h, A) = 1 and Val(h, B) = 1. 

(d3) V a l ( h , y i ^ 5 ) = l i f f 
Vh- e r (h < h' and Val(h', A) = l imply Val(h', B) = 1). 

(d4) A is semantically vahd in kripke models if for any {T, <,hO) we have 
hO(A)=l. 

(d5) A is a classical kripke tautology if for any kripke model of the form 
({h}, < , h ) , h ( . 4 ) = l . 

Theorem T4 (Completeness theorem). 

(a) ^ I A iff A is valid in all kripke models. 

(b) \- Q A iff A is a classical kripke tautology. 

The above semantics in kripke models is the temporal interpretation of the 
intuitionistic implication. We imagine a branching future, where there are several 
possibihties for what may happen. ^ ^ J9 is valid now if we now have a commit­
ment that no matter what happens, if A becomes true, B will be true. 

Thus imagine the following diagram: 

hi h2 h3 

\ I / 
hO == now 

hO is now, the present, hi, h2, h3 are alternative possible future events; 

h O ( ^ ^ f i ) = t r u e 

means that we know now that at any future event h/, if A is true [i.e. h l (^ ) = 1], 
then B is true [i.e. \ii{B) = 1]. 

For example, an insurance poUcy against fire {A ="my house burns down") 
assures me that 5 = "I get the house rebuilt". Thus A-^ B h what the insurance 
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policy says and is true from the moment the policy is bought. In fact, the bank may 
write to me and say that my mortgage will be approved (M) provided I have such an 
insurance policy. Thus we have the true statement (̂ 4 -> 5) -> M from the bank. 

The reading of the computation rule 

P'!(A^B)iSP + A'}B 

is simply the " testing" of the commitment A -^ B. We assume that A has happened 
and test for B. We test B from P + A. This means that there is a further assumption 
in our temporal interpretation of -». The assumption is that whatever is true now 
continues to be true in the future. This is the requirement h < h* whenever V is in the 
future of h. This assumption is possible because we have no negation. 

We shall deal with negation as failure in the next section and we shall see how 
problematic it is. 

Definition D3 (Clauses). 

(a) An atom or f is a clause. 

(b) If Ai are clauses and q is an atom then AAi -> q is a clause. 

Theorem T5. For both logics, any wff A is equivalent to a conjunction of clauses A'. 

Definition D4. The following are the quantifier rules which when added to 1+ or C 
turn them into quantificational logic: 

(1) 

(2) 

(3) 

(4) 

where 

^xA{x)^A{y), 

A{y)^lxA{x), 

A{x)^B 

3XA{X)^B' 

B-^A{x) 

B^\/xA{x)' 

x is not free in B. 

Theorem T6 (Soundness of propositional A -̂PROLOG relative to 1 + ) . 

(a) P ? yl = 1 implies P I- j+^. 

(b) If PQP' and PlA^lthenP'lA^l. 

(c) If A &P then PI A = I. 

PROOF. By induction on the computation of A. 
(a): We follow the rules of computation. The conjunction theorem for I + ensures 

the soundness of the rule for A. The deduction theorem for I + ensures the 
soundness of the rule for -^ . 

The soundness of the rule for atoms is obtained by induction on the length of the 
successful computation of the goal. We have P?^ = 1 iff either: 

(1) ^ G P, in which case clearly P\- q; or 
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(2) for some ^ ^ ^ G P , P ? ^ = l, in which case, by the induction hypothesis on 
the length of computation, we have P\-A, and since A->qGP, we get 
Ph-^ . 

(b) and (c) are proved by induction on A and on the length of the successful 
computation. 

Theorem T7 (Completeness of Propositioml Af-FROLOG). / / PO I- i+50 then 

P0?50 = l. 

PROOF. Assume P0?50 i= 1 (i.e., BQ does not succeed, either because it finitely fails 
or because it loops). We shall show that PO y- i+BO. 

Let S be the set of all finite databases P. Define a function Val(P, ^) for P e S 
and atomic q by letting 

(a) Val(P, ^ ) = 1 ifT (def.) P ? ^ = 1. From Theorem T6 (soundness) we know 
that if Val(P, ^) = 1 and P c P ' then Val(P', q) = 1. 

Extend the definition of Val to any wff B by induction on the structure of B, as 
follows: 

(b) Val(P, Bl AB1) = \ iff (def.) Val(P, Bi) =\, i = 1,2. 

(c) Val(P, A^B)=liS (def.) for all P ' D P , if Val(P', A) = 1 then Val(P', B) 
= 1. 

Lemma LI. For any clause B and P, Fa/(P, 5 ) = 1 (^ P ? 5 = 1. 

PROOF. By induction on B. 

(a) For B atomic the theorem is the definition. 

(b) Val(P, fil A 52) = 1 iff (def.) Val(P, 51) = Val(P, 52) = 1 iff (induction) 
P?51 = 1 and P ? 5 2 = 1 iff (def.) P?51 A 52 = 1. 

(c) 5 has the form A^ q. 

(cl) Assume P ? ( ^ ^ ^) = 1. We show that Val(P, A^q)=l. Let P ' 2 P and 
Val(P', A) = l. By the induction hypothesis 

V"IA = \. 

Since P?y4 -* ^ = 1 and P ' 3 P, we also have 

V"}A^q = l 

and so 

P'+A'>q=l. 

We therefore have 

P ' + ^ ? 9 = l, 

P ' ? ^ = l, 

and hence, by Theorem T5, P ' ? ^ = 1 and therefore Val(P',9)= 1. We have thus 
shown that for any P ' D P, if V a l ( P ' , ^ ) = l then Val(P',9) = l. This 
implies, by definition, that Val(P, A^ q)=l. 
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(c2) Assume P'}A^q¥=l. Then 

P + ATq¥=l; 

hence Val(P + .4,^)# 1. But P + ^ ? ^ = 1 by Theorem Tl, and by the induction 
hypothesis Val(P + ^, 4̂) = 1. Hence we found a P ' 2 P, namely, P ' = P + 
A^P, such that Val(P',^) = l and Val(P',^) = 0. Thus by definition 
Val(P, .4 -^ ^) = 0. 

This completes the induction and proves Lemma LI. D 

Corollary T8. 

(a) Val(P0,50) = 0. 

(b) Val(PO, A)=\forA&W. 

PROOF. By Lemma LI, since P0?50 ?t 1 and PO?^ = 1 for yl e PO. D 

The above construction of (S, c,PO) and of the function Val shows that if 
P0?50¥=l, then there exists a kripke model [namely (S, c,PO)] such that, by 
Corollary T8, PO is valid in the model and 50 is not vaUd in the model. Using the 
completeness theorem T4, we can deduce that PO y- j .̂fiO. However, since Theorem 
T4 is not proved in this paper, we prove Lemma L2 below and show directly that 
PO ĥ  ,+ JBO. 

Lemma L2. For any P and B, ifP\-i^B then Val{P, B) = \. 

PROOF. By induction on the length of the I + proof of B from P. We have P\- ^^B 
iff, by definition, there is a sequence of wfiFs DO, D\, ...,Dn = B such that each Di is 
either from P or a substitution instance of an I + axiom or is obtained from DJ, Dk, 
j , k < i, by the rule of modus ponens. 

If we verify (a), (b), (c) below, we get a proof of Lemma L2: 

(a) If D G P then Val(P, D)=\ 

(b) If D is an instance of an axiom of / + then Val(P, D) = 1. 

(c) If Val(P, D\) = 1 and Val(P, D\ -^D2) = l and Val(P, D2) = 1. 

(a) follows from Corollary T8. (b) and (c) can be verified directly. D 

PROOF OF THEOREM T7. We assume P01B0=^1 and we have constructed the set S 
with PO G S and Val(PO, BO) = 0. Then by Lemma L2 we cannot have that i'O h ,+ 
50. 

REMARK R2. Theorems T6 and T7 show that our computation characterizes I + . 
PI A succeeds ifT Ph^_^_A. Later in this paper we shall characterize C + , the 
classical prepositional logic without negation, by adding to N-PROLOG a special 
rule, called the restart rule. 

Example El. If P I- ,+ B, then the computation PIB either loops or finitely fails. 
Here are some examples: 

(a) {q-^q)lq loops. 

(b) 0 ?^ finitely fails. 

(c) {q^a)^q1q finitely fails. 
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Definition D5 (Propositional Af/?-PROLOG: prepositional A^-PROLOG with the 
restart rule). Let NR-PROLOG be the extension of N-PROLOG with the following 
restart rule RS: 

RS: In the course of the computation if a query of the form P^q, q atomic, we may 
happen to be trying to succeed with a current subgoal la, a atomic. If there 
are no clauses with heads a, it is permissible to continue the computation with 
the original goal Iq, instead of the subgoal la, and success of Iq will be 
considered a success of la. 

The above rule is a strengthening of the computation procedures because in the 
course of the computation the database P increases, and so by replacing the current 
la by ?9, we may now succeed. 

To give a formal definition of a successful computation tree in NR-PROLOG of a 
goal GO from a database PO, we add a clause to Definition D5 of Section 3 in paper 
I. (Definition D5 defines the notion of a successful computation tree in N-PROLOG.) 
The extra clause is (g3) for the current atomic subgoal q computed at node t from 
the current database P: 

(g3) t has exactly one immediate successor s in the tree with V{s) = (P, GO). 

Example E2. 

(1) We saw that in N-PROLOG (q^a)-^qlq fails. In NR-PROLOG the 
above query succeeds. Let us check the NR-computation: 

{(q^a)^q}'!q. 

We unify with the first clause and ask 

{(q-*a)^q,q}'>a. 

We have no clauses with a as head; we are allowed by rule RS to ask q 
again. If q succeeds now it will be considered that la succeeded: 

{(q'^a)->q,q}?q. 

The query now succeeds. Hence the entire computation succeeds. 

(2) (q-»d)-*qlqA{q-^a) fails in NR-PROLOG. Let us try it. First try q: 

{{q^a)^q}1q. 

q will succeed; now ask {q -> a). We therefore add q and ask a; we have 

{(^q-*a)^q,q]la. 

There are no clauses with heads a. We can ask instead of a either {q-* a)ov 
the original query, namely, q A(q^a). In either case we shall fail. Of 
course we must not keep on asking the original query again and again if we 
do not want to loop. 

Theorem T9 (Soundness and completeness of Propositional NR-?KOhOG). P1G = l 
in NR-PROLOG iffP\- cG. 

PROOF. 

(a) Assume P I- c<J and show P?G = 1 in NR-PROLOG. By Theorem T3 we 
have (PuCop(G))?G = l in N-PROLOG, where Cop(G)= (G-» x | x 
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atomic}. Therefore, there exists a successful computation tree {T, < ,0, F ) 
of G from P U Cop(G) in N-PROLOG. We now show that there exists a 
successful computation tree in NR-PROLOG of G from P. In fact we just 
modify the tree (T, < , 0 , F ) itself. Let VI be defined on (T, < ,0 ) as 
follows: 

If V{t) = (Pit), Git)) then let Vl{t) = (P(t) - Cop(G), G{t)). 
We claim that (T, < ,0, F l ) is a successful computation tree of G from P in 
NR-PROLOG. By Definition D5, Section 3 of paper I, each node of the tree 
must satisfy one of the conditions of that definition. By taking Cop(G) out 
of the data we may be violating condition (g2) of the definition, namely, we 
may have 

t {P{t),x), X atomic 

5 (P(0,G) 

and the justification for this node is the fact that 

( G ^ x ) G C o p ( G ) c P ( ? ) . 

In the new tree (G -> x) is taken out. However, the new tree is supposed to 
be a tree in NR-PROLOG. Since G is the original goal, the above node is 
justified by clause (g3) of Definition D5, namely, the restart rule. 

(b) Assume P?G = 1 in NR-PROLOG, and show that P I- ^ G. In this case we 
modify the computation tree of G from P in NR-PROLOG in the other 
direction. Assume (T, < ,0, Fl ) is a successful computation tree of G from 
P in NR-PROLOG. Let F be defined as follows: 

If Vl{t) = (P{t),G{t)) then let F ( 0 = (P(OuCop(G),G(0) . We claim 
(T, < ,0, F ) is a successful computation tree of G from P in N-PROLOG. 
We have to show what happens to nodes of the tree of the form: 

t (P(0> x), X atomic 

s (P(t),G) 

which are justified by the restart rule in(T, < , 0, Fl) . In N-PROLOG we do 
not have the restart rule, but since in (/, < ,0, F ) the nodes are 

t (P{t)uCopiG),x) 

s (P(OuCop(G),G) 

the justification is the fact that (G -> x) e Cop(G). 

Theorem T9 is proved. D 

3. THE COMPLETENESS OF QUANTIFICATIONAL QN-PROLOG 

We want to study the soundness and completeness of quantificational QN-PROLOG 
relative to the intuitionistic predicate logic. We shall also formulate the restart rule 
for quantificational QN-PROLOG and study its soundness and completeness rela­
tive to the classical predicate logic. First recall Definition D4 of the previous section. 
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It lists the quantifier atoms to be added to the axioms of propositional intuitionistic 
or classical logic in order to obtain the corresponding predicate logic. There is 
nothing special about these axioms: they are the same standard quantifier axioms 
used for many logics, to pass from the propositional axiomatic formulation to the 
predicate axiomatic formulation. 

The two predicate logics, however (j.e. intuitionistic and classical) have different 
quantificational properties. This is due to the effect of the different propositional 
properties of the systems. One such property is the so-called existential property. 
This property is of importance to us. We explain it by an example. 

Example El. Consider an Herbrand universe with the only constants a and b, and 
the unary predicate P(x). Then in classical predicate logic the following holds: 

(a) ^lx{P{a)yP{b)^P{x)), 

but in intuitionistic predicate logic the above is not provable. 
In classical logic, we can push the existential quantifier inside the formula and get 

the equivalent formula 

(b) l -P ( a )VP(Z) )^3xP(x ) . 

Obviously (b) is provable, (b) is also provable in intuitionistic logic, but in intuition­
istic logic (a) and (b) are not equivalent, (a) is stronger than (b); it proves (b). 

Although (a) is provable in classical logic, there does not exist a substitution 0 for 
X such that in classical logic 

(a') P{a)yP{b)-^P{x)e. 

6(x) can be either x = a or x = b, and in neither case is (a') provable. In intuitionis­
tic logic, however, whenever \-3xA(x), for some wff A, then there exists a 0 into 
the Herbrand universe of A such that 

\-A(x)0. 

This is a serious, computationally meaningful difference between the two logics. 

In intuitionistic logic it is also true that 

H ^ V ^ i i r h - ^ o r \- B 

for yl, B closed wffs. 

Theorem TI (Existentialproperty). If I- 3xA(x) in intuitionistic logic, then for some 0 
over the Herbrand universe of A we have 

Y-A{x)e. 

Note that the analog of this theorem for classical logic is a version of Herbrand's 
theorem, namely 

Theorem T2 (Herbrand). If \- 3xA{x) in classical logic, then for some $i, i=l,...,n, 

I-yftfl V yf (92 V ••• yAOn. 

We are now in a position to study the soundness and completeness of QN-PRO-
LOG. We need to use a previous theorem, Theorem T2, which we proved in Section 
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4 paper I. The theorem dealt with the connection between the prepositional and 
quantificational computations in N-PROLOG. Given a database P, which we shall 
represent schematically as P(«, x), with u the universal variable (VAR 1) and x the 
free choice variable (VAR 2), and given a goal G(x, z) (jc, z both VAR 2 variables), 
then success in the computation of P?G in quantificational QN-PROLOG meant 
that there exists a 0 such that {P0)*1Gd succeeds in propositional N-PROLOG. 
(Pfl)* was defined in paper 1, Section 4 as the propositional freeze of ¥6, namely, as 
the conjunction of all the results of the substitutions of all possible Herbrand terms 
for the VAR 1 variable in P^. (Ptf)* is really equivalent to V«(P^), where V« 
symboUses schematically the universal closure (over VAR 1 variables) of P^. 

We can now prove: 

Theorem T3 (Soundness and completeness of QN-PROLOG relative to the intuitionistic 
predicate logic). PIG succeeds in QN-PROLOG if and only if in intuitionistic logic 
we have 

I - (3VAR2)[ (VVAR1)P^G] , 

where (3VAR 2) indicates the existential closure over all VAR 2 variables, and 
(VVAR 1) indicates the universal closure over all VAR 1 variables. 

PROOF. The -* direction foUows immediately. Assume that P?G = 1 in QN-PRO­
LOG. By Theorem T2 of Section 4, paper I, there exists a 0 such that Gd succeeds 
in propositional N-PROLOG from (P0)*, the propositional freeze of P0. By the 
completeness of N-PROLOG for the intuitionistic propositional logic, we get that 
(Pd)* I- GO. By the quantifier rules of our logic we get (VVAR 1)P^ I- G6 and hence 
h (3VAR 2)[(VVAR 1)P ^ G]. 

For the other direction assume that 

f- (3VAR 2)[(VVAR 1)P -> G]. 

Then by Theorem Tl, for some 6, (VVAR 1)P6 \- G6. Hence for the propositional 
freeze (P^)*, 

(Pey \- GO; 

hence by completeness, 

(Pfl)*?Gfl = l 

and hence P?G = 1 in giV-PROLOG 
This concludes the proof of theorem T3. D 

We now define the restart rule for QN-PROLOG and thus obtain QNR-PRO-
LOG, namely, QN-PROLOG with restart. 

Definition DL 

(a) The Restart rule for QN-PROLOG states that if in the course of the 
computation for the original goal G(xi), where xi are all the VAR 2 variables 
of G, we reach an atomic head Q as the current subgoal, then we may 
replace the atom Q by the new current goal G(xi), which is a copy of the 
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original goal with completely new (to the computation so far) VAR 2 variables 
xi. 

(b) Let G{xi) be a goal with xi the VAR 2 variable of G. Then the complement 
of G, denoted by Cop(G), is defined by 

Cop(G) = [G{ui)^ Q\Q IS any atomic wff of the language with VAR 2 terms in it, 
and G{ui) is a fixed copy of G{xi) with VAR 1 variables ui replacing xi). 

Theorem T4. For any database P and any goal G on QN-PROLOG, the following 
three conditions are equivalent: 

(a) In classical logic 

I- (3VAR 2)[(VVAR 1)P -^ G]. 

(b) P U cop(G) ? G = 1 /n QN-PROLOG. 

(c) P?G = 1 in QNR-PROLOG (i.e. in QN-PROLOG with the restart rule). 

PROOF. The proof that (c) is equivalent to (b) is similar to the proof of the same 
theorem in the propositional case. We concentrate now on the proof that (a) is 
equivalent to (b). 

Assume that P U cop(G)?G = 1. Then by the soundness of QN-PROLOG we get 
that for some $ 

( W A R l)[Pe U cop(G)e] h GO 

in intuitionistic logic, and hence certainly in classical logic. We claim that in classical 
logic, -,(3vAR 1)G I- cop{G)d, where (3VAR 1) G is obtained from G by replacing all 
VAR 2 variables of G with corresponding VAR 1 variables and existentially quantify­
ing them. The above is true in classical logic because all elements in cop(G) have the 
form 

and certainly 

-,(3vAR 1)G I- G -> Q, 

because -,(3VAR 1 ) G A G is a contradiction. Thus we get 

(VVAR l)Pe A -,(3VAR 1 ) G t- GO; 

hence 

(VVAR 1 ) P ^ h (3VAR 1 ) G V GO; 

hence 

(3VAR 2)[(VVAR 1)P ^ G V (3VAR 1)G], 

which is classically equivalent to 

I- (3VAR 2)[(VVAR 1)P -^ G]. 

This proves that (b) impHes (a). 

We assume now that 
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PUcop(G)?G^l 

and show that in classical logic 

If 3VAR 2[(VVAR 1)P ^ G]. 

To show this we proceed in a way similar to what we have done in the prepositional 
case. We prove a lemma like Lemma LI of Section 1 of this paper and follow the 
construction of a model as in the proof of Theorem T3 of Section 1. Although the 
proofs need to be checked in detail, we don't think it is worth while doing so in this 
paper. D 

4. NEGATION AS FAILURE IN N-PROLOG 
It is possible, natural, and very useful to add negation as failure to N-PROLOG. 
One must do that carefully, however, with a full understanding of the logical nature 
of the negation involved. The addition of negation as failure to N-PROLOG is not a 
simple matter from the logical point of view, because N-PROLOG is a much more 
expressive language than PROLOG. We begin with two simple examples to illustrate 
the nature of the difficulty. In ordinary PROLOG, the theorem of Clark, Lloyd, 
et al. logically characterizes negation as failure. Formulated for the propositional 
case, it states that for any set P of data without negation, there exists a uniform way 
of extending P to a bigger set, called Com(P) (the completion of P), such that for 
any goal B the following holds: 

B finitely fails from P iff Com(P) I- -,fi. 

The above shows that negation as failure in ordinary PROLOG has a sound logical 
meaning. 

In fact, Keith Clark goes as far as to say that when we specify P, we are really 
specifying Com(P). 

Example El. Consider the following data P of N-PROLOG: 

and the goal ?a. It is easy to verify that P?a finitely fails. However, in classical 
logic, we have P I- a [i.e., ({a^b)^a)-*a is a classical tautology]. Thus no 
Com(i') 3 P can prove -,a. Thus the analog of the Clark theorem cannot hold for 
N-PROLOG. 

This example is not as disappointing as it may first seem. If we recall that success 
in a computation in N-PROLOG (i.e. P?a = 1) means intuitionistic provability, then 
failure (or finite failure) implies intuitionistic unprovabiUty. Thus that P?a finitely 
fails will imply PV-a in intuitionistic logic. But P i - - ,a is much stronger in 
intuitionistic logic than Py- a, and it is quite possible and not surprising at all that 
we can have both conditions below true in intuitionistic logic: 

{(a->b)^a}y-a, 

{(a -»fc) -> a] U {-,0 } is inconsistent. 

What we possibly need is another kind of completion. We do not expect Com((a -» 
Z>) -»a) I- -ifl in intuitionistic logic, but maybe in another logic, or maybe something 
like Com*(P) I- "a is not true now" in the temporal logic interpretation of -». 
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Another problem associated with negation as failure appears already in ordinary 
PROLOG. Consider the following well-known example: 

Example E2. Consider the database 

P^r, 

-^P^r, 

-^r-*q, 

P?9 loops. 

However, 

Com(P)l--n^. 

Examples of this sort are known to Clark and Lloyd and show that their theorem 
cannot be extended to allow negations in P without further modification. 

The first possible modification which comes to mind is to avoid loops. Thus the 
simple-minded first approximation would be something like P (with a good loop 
checker) ?5 finitely fails iff Com*(/')l- - , 5 . Here we can allow -, in clauses in P, 
and allow for a good loop checker, and even allow for a possible different 
completion of P, denoted by Com*(P). This is not enough, unfortunately. Consider 
the following example: 

Example E3. Take the database 

a-^ C, 

^C-*a. 

Let the goal be ?C. The above database is logically equivalent to C. 
Written in disjunctive clauses, the data become 

^ a V C , 

CVa. 

If we want to keep the PROLOG Horn clause flavor of the computation and not 
rewrite everything as resolution clauses, we must leave the data in their present 
syntactic form and try to make ?C succeed and make ?« fail via some loop 
checking means. This however is not possible. Since ?C can succeed only through 
a -» C, the two goals la and ?C either succeed together or fail together. Therefore, 
unless we rewrite the data or have a special loop checker or add data, we cannot 
force -, to behave like classical negation. 

The above shows that negation as failure is a tricky sort of negation, and it is our 
task in this section to add negation as failure to N-PROLOG and to understand its 
logical nature. 

Let us now introduce negation as failure formally into N-PROLOG. We deal, as 
we have done in previous sections, with prepositional N-PROLOG. The quantifiers 
will be dealt with in a special section at the end of the paper. 

The language contains, besides conjunction A and impUcation -*, the negation 
symbol -,. As in ordinary PROLOG, we want to allow negations only in the body of 
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clauses and not in heads. Thus a datum 

6 A -,a -* b 

is acceptable, but not 

q-*-,C. 

However, if we have a clause like 

(-.C^a)-*b, 

then when asked ?6, we shall have to add -,C to the database, which is not allowed. 
We thus need a proper inductive definition of a goal-with-negation and a clause-
with-negation. 

Definition Dl (Clause and goals in the'language with negation). 

(a) Any atomic q is both a clause and a goal. 

(b) If A is a goal then -^A is a goal. 

(c) If A and B are goals then A AB is a goal. 

(d) If A is a goal and q atomic, then A-^ q is a clause. 

(e) IfAi are clauses and q is atomic, then AAi -*q is a goal. 

Definition D2 (Computation tree for propositional AT-PROLOG with negation as 
failure). A tree {T, <. ,0, V) is a (success or finite failure) computation tree of the 
goal GO from PO iff the following conditions are satisfied: 

(a) (T, <,0) isa tree with root 0. 

(b) V is a labeling function. For each t&T, V(t) is V(t) = iP{t),G(t),x(ty), 
where P(t) is a database, G{t) a goal, and x is a number, 0 to 1. 

(c) F(0) = (PO, GO, x{0)), where x(0) = 1 for success and x(0) = 0 for finite 
failure. 

(d) Let t be any node in the tree such that 

K(0 = (P(0,G(0,^(0) 

and assume that 

G(t)=Gl(t)AG2it). 

Then the following holds: 

(dl) ; c (0=l . 

In this case t has exactly two immediately succeeding points in the tree, s\ and 
si, as shown: 

s\ si 
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such that 

Visi) = (P(0, Giit), 1) for i = 1, 2, and 

(d2) x{t) = 0. 
In this case t has exactly one immediate succeeding point in the tree, as shown: 

s 

t 

and 

Vis) = {P(t),Gi{t),0) 

where i is either 1 or 2, i.e. i e {1,2}. 

(e) Let t be a node such that 

V(t) = iPit),^G{t),xit)) 

Then t has exactly one immediately succeeding point s in the tree as shown: 

s 

t 

andVis) = iP(t),G(t),l-x{t)). 

(f) Let t be a node such that V{t) = (P(0, G{t) -^ Q(t), x(t)). Then t has exactly 
one immediately succeeding point s in the tree as shown: 

t 

andV(s) = (Pit) + Git),Q{t),xit)). 

(g) Assume that t is a node with 

F ( 0 = (P(0, q, x(t)), for q atomic. 

Then the following holds: 

(gl) x{t) = 1 and t is an endpoint of the tree. In this case, 

q^P(t). 

(g2) x(t) = 0 and t is an endpoint of the tree. In this case, 

q is not head of any clause of P{t). 

(g3) x{t) = Q and t is not an endpoint of the tree. Then for some m>\, there exists 
exactly m immediately succeeding points si to t in the tree as shown: 

j l • •• sm 

and there exist exactly m clauses in P{t) with heads q of the form 

Bi -> q, / = ! , . . . , m. 
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such that for /' = 1,..., w, 

Visi) = (P(t),Bi,0). 

(g4) / / x(t) = l and t is not an endpoint of the tree, then t has exactly one 
immediately succeeding point s in the tree 

andV{s)={V{t),B,l). 

Example E4. Let 

(1) {C^a)^C, 

(2) {-.b^{b^C))^a, 

and consider the goal G with 

This database and goal present us with a serious puzzle. The reason is that the 
following are all true: 

(*1) P?(C-^a) = l, 

(*2) P ? ( C ^ a ) ^ a = l, 

but 

(*3) P?fl = 0. 

Tree for (*1): 

(P + C,6,0) 
t 

(P + C,-,Z>,1) 
\ 

(P+C, 

Tree for (*2): 

T 
T 
t 1 

T 

T 

(P,C-^ 

(P + ( C - , 

(P + C -* a 

(P + ( C - , 

(P + (C-», 

(P + ( C - , 
(P , (C^a) 

(P + C + /),C,1) 
t 

(P+C,f t -*C1) 
/ 

•a,l) 

a) + C,C,l) 

+ C,a,l) 
a),C^a,V, 

8),C,1) 
a), a,l) 

^ a , l ) 
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Tree for (*3): 

(P + b,C,b,l) 

(P + b + C,^b,0) 

iP + b+C,-.bA{C-*a),0) 

(P + b + C,a,Q) 

(P + fe,C-^a,0) 

{P + b,C,0) 

(P,b^C,0) 

{P,^bA{b^C),0) 

(P,a,0) 

Example E5. Here is a very simple example: 

(1) {-.b^ 0)10 = 1, 

(2) ((~,b->a) + a)1b-^a = l, 

(3) (-^b->a)lb^a = 0. 

Examples E4 and E5 are a problem, because they mean that negation as failure is 
not logical. They show that we can have a situation where 

PTA + 1, 

P + A1B = l, 

and 

P?fi = 0. 

Thus we cannot generate lemmas (namely ^4) and use them in further computations 
(namely B). 

We now have to worry about two points. First, does the same happen in ordinary 
PROLOG with negation as failure? We know Clark's theorem is available for 
ordinary PROLOG, but we don't allow negations in the body. Lemma LI below 
shows that this problem does not arise in ordinary PROLOG with negation allowed 
in clauses. 

Second, do we have the correct and coherent notion of negation as failure for 
N-PROLOG? 

We examine the second point later. Let us prove: 

Lemma LI. Let P be an ordinary PROLOG database, G be an ordinary PROLOG 
goal, and a atomic. Then (a) and (b) imply (c) below: 

(a) P ? a = l, 

(b) P + a?G = Jc, 

(c) P1G = x. 
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PROOF. By induction on G and on the length of the computation of G. 

(a) Let G = G1A 02. 

If x = l then P + a?Gj = l, / = 1,2, and by the induction hypothesis 
P?G/ = 1 and hence P?G = 1. 

If X = 0, then either P + a?G1 = 0 or P + a?G2 = 0. By the induction 
hypothesis P? Gl = 0 or P? G2 = 0, and hence P? G = 0. 

(b) If G = -,G', then the case reduces to the case of Gl and x' = 1- x. 

(c) U G = b,b atomic. 

(cl) If X = 1 then P + alb = 1. If b = a then P?ft = 1, which is what we want to 
show. If b¥=a, then for some clause C -> Z) e P, P + a ? C = 1. By the induction 
hypothesis, since C has a shorter computation tree, P ? C = 1 and hence P?Z) = 1. 

(c2) If jc = 0, then clearly a¥=b, and either b is not the head of any clause in P, 
in which case P?Z) = 0, or for all clauses of the form C - » 6 e P , P + a ? C = 0. By 
the induction hypothesis P ? C = 0 and hence P?Z» = 0. 

This proves Lemma LI. D 

We see that the source of the problem is the impUcation ->, which makes the 
database increase. It may have occurred to the reader that if we start a computation 

P?G 

and in the course of the computation the database increases, we should still read any 
negation -,^4 as failure relative to the original database. Thus for example when we 
have 

we ask 

and then ask 

{-nb^a) + b'>-nb = l, 

but now -iZ» is failure from the original database (namely -ib^ a) and not the 
current database [namely (-,6 -* a) + b]. 

This approach seems to give -,A a. meaning independent of the changes in the 
database and may even be free of our previous difficulties. However the notion is not 
coherent. We can ask 

PI A = 1; 

we can also ask 

0?(AP-*y4) = l. 

These two queries must be the same. However, all -, in P are evaluated relative to P 
in the first instance and relative to 0 in the second. We lose coherence in our notion 
of negation. 
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We are thus forced to discover the "logic" of our present notion of negation. It is 
a very useful and practical notion and allows us to have control of our programs. If 
we can pin it down, we shall have a powerful tool at our disposal. 

Another option open to us is to syntactically restrict the use of negation in such a 
way that it remains both useful and logical. • 

Let us look at some more examples and see how negation as failure works in 
N-PROLOG. 

Example E6. We saw that we can name clauses in N-PROLOG by suffixing a 
special atom in front of the clause. Thus to name clause A we can write 

{A ^ name) -* name. 

Consider the following database P: 

(a) (y4 A ^^name l)^name 2, 

(b) (J9-^name 2)A-,^^name 1. 

We can ask for two goals here: 

Gl ={{A AB)-* name 1) -^ name 1, 

G2 = {{A A 5 ) ^ name 2 ) ^ name 2. 

Gl succeeds and G2 finitely fails. Gl says start the computation from clause (b), and 
G2 says start the computation from clause (a). The computation of Gl or of G 2 does 
not depend on the operation of the performing machine. It is completely determined 
by the data and the goal. 

Let us see now if the goal Gl, which succeeds, would still succeed when -, is 
interpreted as classical negation. In other words, we check whether P I- Gl. The 
answer is no, i.e., P tf Gl. 

Let 

name 1 = false, 

name 2 = true, 

A = false, 

B = false, 

q = true. 

The only way to understand the role of negation as failure in this program is to look 
at the temporal sequence of execution. If we ask ? name 1 first, we are starting with 
clause (b). If we ask ? name 2 first, then we are starting from clause (a). 

We try to save the concept of negation by in effect delaying the computation of 
any negation -iq until the largest database is reached. This notion, which we have 
not made precise yet, may be coherent. 

It makes no diflference whether we ask P?G or 0 ?P ^ G. The largest database 
reached is always the same. 

Our notion is therefore the following (intuitively defined). Negation as persistent 
failure is a binary notion, for the form T'1(G, q). Its meaning is that G succeeds and 
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at no step of the computation does q succeed. Unfortunately it is not coherent, 
because a?T\{a, q) succeeds, but (q-* q)-* a'^Tl (a,q) fails, and (q -^ q) ^ a is 
the same as a. This notion is similar in technical form to a loop checker. We 
compute the goal, and at no step of the computation do we repeat ourselves. 

Let us examine again the reasons for our difficulty. Negation as failure is known 
to be nonmonotonic, even in the case of ordinary PROLOG. If P?a succeeds and 
the database is increased to P ' 3 P, we do not expect P'?a also to succeed. It may 
succeed, or it may not. For example 

succeeds, but 

{a,b)'}^b 

finitely faUs. 
In N-PROLOG the database changes all the time, and this is the source of our 

difficulty. The equation P ? ^ = 1 means that A succeeds from the database P. The 
equation P + A1B = 1 means that B succeeds from the database P + A. What 
knowledge do the two equations above give us about the success or failure of (P?5)? 
Why should we expect B to succeed from P ? 

We do want a comfortable notion of negation in N-PROLOG: a notion for which 
some reasonable form of the "modus ponens" lemma holds. To achieve that we can 
proceed in two alternative ways: 

(a) Leave negation as failure as it is, in Definition D2, but make sure that we 
always have means of saying which goal succeeds from exactly which 
database, and thus find a way to deal with Examples E4 and E5. 

(b) Adopt a stronger notion of negation, one which can survive changes in the 
database (as an extreme example, we can always use classical negation), and 
thus have proper modus ponens, and lemma generation. 

We shall examine each of these alternatives. This paper will adopt the first alterna­
tive, namely, use the notion of negation as failure we already have. A variant of the 
second alternative is developed for ordinary PROLOG itself in our paper on 
Negation as Inconsistency [3]. 

Let us try and make sense of the first alternative, namely, of leaving negation as 
failure as it is in Definition D2. The problem is that when we see a -,9 in the middle 
of a clause in a program P, the meaning of -,^ depends on the order of the execution 
of the program. As our database increases during the computation, -,q can mean: 

(1) q fails from PI, the current database, 

and then if we encounter -,q again, possibly after some backtracking, -,q could 
mean: 

(2) q fails from P2 a different database, which happens to be current at the 
moment. 

This problem does not arise in ordinary PROLOG, because the original database is 
fixed and does not change, and hence -,q has one fixed clear-cut meaning. 
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We can now formulate exactly the notion of lemma generation. Suppose P ? ^ = 1, 
i.e., A succeeds from P. We want to add to P the lemma that A succeeds from P, so 
that when we have a new computation, say of P ? 5 , and in the course of the new 
computation we encounter the subgoal P ' ? ^ , we can use the lemma, and we do not 
have to recompute goal A. 

The way we tried to add the lemma was to add A to P. This is wrong. We know 
that P?yl = 1, but we do not know that e.g. P + ^ ?^ = 1, because P + ^ is a larger 
database. 

Suppose we ask P ? 5 . In the course of the computation of B from P we may 
encounter the subgoal P'lA, where P ' 2 P is a possibly larger database. If P ' = P, 
then we know that A succeeds, and we can use the lemma and there is no need to 
continue the computation of A. But if P ' = P + ^, there is no guarantee that A 
succeeds, and we cannot use the lenrnia. 

Yet, if we add A toP, A will succeed from any extension P ' containing P + A. 
Thus the addition of 4̂ to P is equivalent to saying VP' 3 P(P'?^ = 1), and is much 
stronger than the mere lemma P?v4 = 1, which we want. Thus the possible lemmas 
should be either lemma L2 or Lemma L3 below: 

Lemma L2. 

V P ' D P ( P ' ? V 4 = 1 ) and P + A1B = 1 

implies P ? 5 = l. 

Lemma L3. 

P'>A = 1 and (P + [fact that PI A = 1])?B = 1 , 

implies P ? 5 = l. 

How do we write an N-PROLOG clause which expresses the fact that ( P ? ^ = 1)? 
We really want to say, whenever the current goal is A and the current database is P, 
then A succeeds. To be able to express this fact we need a new predicate, which we 
call NData (X) (new data X). 

Definition D3. Consider a computation for an original database P and goal G, i.e. 
for P?G. Let NData {X) be the predicate with the intended meaning that the 
current addition to the original database is X (i.e. the current database is P + X). 
Thus 

P?NDATA(A' )=1 

iff 

A ' = P ' - P . 
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If X is just a variable, then X will be instantiated as P ' - P. If A' is just a 
database, then the VAR 2 variables (the free choice variables) in P ' and in X will be 
instantiated (via a substitution 6) in such a way as to allow, if possible, for 
(P' - v)d = xe. 

Let G be a goal. Assume that G = AjiAi -* ai), ai atomic. 
P?G = 1 is cleariy equivalent to the conjunction on / of P + ^/ ?a/ = 1. Thus the 

information that G succeeds from P can be expressed by the following clauses, using 
NData: 

NData (.40 ^ ai. 

Thus Lemma L3 becomes: 

Lemma L3. (a) and (b) below imply (c): 

(a) P'!AXAi^ai) = l. 

(b) (P + (NData ( ^ 0 ^ a i } ) ? 5 = 1-

(c) P ? 5 = L 

Before we consider the proof, let us see what happens with Examples E4 and E5, 
which gave us all the trouble before. Let us see whether they violate the above 
Lemma L3. 

Example E4. P is 

(1) {C^a)^C, 

(2) (-.bA{b^C))^a. 

We know that 

P ? ( C ^ a ) = l. 

We therefore want to add to P the clause 

NData (C) -* a. 

Let us see whether la succeeds from this new database. If ?a indeed succeeds, then 
we still have a counterexample to our Lemma L3, since P?a is known to fail. Let us 
check then: The new database is PI given by 

(1) ( C ^ a ) - ^ C , 

(2) {^bA{b-*C))^a, 

(3) N-Data (C) -^ a. 

The goal is ?a. The question is: Does ?a succeed from this database PI? Checking 
the computation, we find that la finitely fails from PI. 

Below we have the failure tree of this computation. Notice that in this tree 
(Pi, NData (C),0) succeeds (i.e. is an endpoint), because nothing was added to PI 
and hence PI?NData (C) = 0. On the other hand (PI + Z) + C,NData (C),0) 
succeeds because too much (more than exactly C) was added to PI and hence 
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P l + Z) + C?NData(C) = 0: 

(Pl + /) + C,NData(C),0):, 

(Pl,NData(C),0):-

({Pl + b+C,b,l) 

{Pl + b + C,^b,0) 

{Pl + b + C,^bA{b^C),0) 

{Pl + b+C,a,Q) 

iPl + b,C^a,0) 

{Pl + b,C,0) 

[{Pl,^bAib^C),0) 

{{Pl,a,0) 

Example E5*. We now check Example E5. This was 

^b^ala = l. 

Hence we add to the database NData ( 0 ) -* a to form PI. We now check whether 
P\1b^a = \. 

The answer is no. Here is a failure tree: 

{PI+ b,b,\) 

( P I + *, NData (0),O) {Pl + b,^b,Q) 
\ 

{PI+ b,a,0) 

{Pl,b-^a,Q) 

We thus see that neither counterexample works. We can now try to prove Lemma 
L3. 

Suppose we have a computation of ai from P + NData {Ai) -^ ai. If we never use 
the additional clause, then clearly P1B = V. 

Suppose we do use the additional clause. Consider any stage of the computation 
in which the clause was successfully used. The goal was lai at that stage. Hence we 
have at that moment the database and goal 

P '?a/ = 1. 

Hence we use the clause NData {Ai)^ ai and ask: 

P ' ?NData (v4 / )= l . 

This goal succeeds exactly if at the moment of use, the current database was 
P' = P -\- Ai. But then we know that P + Ai1ai = \, and hence we can replace the 
successful computation of P'lai via the rule Data(v4/) -^ ai by the actual successful 
computation of P -'r Ai^.ai. Thus Pib can succeed directly from P, without any use 
of the additional clauses NData {Ai) -> ai, because their use can always be replaced. 

We have thus managed to make negation as failure acceptable, at the cost of 
using the predicate NData (X). We must show that NData (X) is a logical predicate, 
i.e., we need a proper semantics for it. This is possible to do. 
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We shall have to talk more about the predicates suspend, and restore, mentioned 
in paper I, and also about NData. These are really modal operators, and they will be 
studied at length in paper III, when we use N-PROLOG for database updating, for 
expressing temporal phenomena in databases, and generally as a language for 
handUng databases. 

Before we conclude, let us say a few words about the second approach to 
negation, i.e. about N-PROLOG with strong negation. This approach is to make the 
notion of negation more absolute, more strong, and less dependent on the database. 
The obvious way to proceed is to Ust in the database itself which atoms are to be 
negated. 

The closed world assumption assumes automatically that any atom q which is not 
the head of any clause is negated. We can reUnquish this principle and say that we 
shall Ust exphcitly the atomic q 's to be negated. If the database increases, the hst 
remains. Negation of atoms becomes a more positive notion. Thus 

a?-,fc will fail because -,b is not hsted in the database, (a,fe}?-,Z) also 
fails, 

but 

{a,-,b]'>-,b succeeds. 

We now ask what happens if we have the following query: 

(*) {^b}U^a. 

Following the rule for -*, we have to ask 

(**) {^b,b}U. 

We have two alternatives: 

(1) Decide that {—ib,b] can imply anything, as done in classical logic, and 
hence the original query succeeds. 

(2) Decide that we do not allow inconsistent databases, and hence step (**) is 
not allowed, and hence the query fails. 

The first alternative leads to some form of classical negation in N-PROLOG. This 
approach is studied for the case of ordinary PROLOG in our paper on Negation as 
Inconsistency [3]. The second alternative is also interesting and merits examination. 

The next section discusses the use of metalanguage features within QN-PROLOG 
itself. Negation as failure will also be considered a part of QN-PROLOG, and the 
role of negation will become clearer within the metalanguage framework. 

5. METALANGUAGE FEATURES OF QN-PROLOG 

We saw in paper I of this series that the imphcation -> of QN-PROLOG has a 
metalanguage meaning. If Demo{A, B) reads "B succeeds as a goal from the data 
A" then Demo(v4, B) can be represented in QN-PROLOG by 

Suspend A (^ -> fi) A Restore. 
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We further saw how the properties of -» can be utilized for metalanguage naming 
of clauses and control. We also used negation by failure for control purposes and 
expressed operations such as conditional deletion of clauses. 

The purpose of this section is to use the metalanguage features of -^ in an 
organized and systematic way, similar in scope to the way that Godel numbers and 
provabiUty predicates are used in classical arithmetic. This will enable us to use 
negation as failure in a controlled logical way and thus will also help us solve some 
of the puzzles of the previous section. 

In paper I, the clauses and goals of QN-PROLOG were defined. Data clauses can 
contain two types of variables: VAR 1 variables, read universally, and VAR 2 
variables, playing the role of free-choice variables. The goals of QN-PROLOG 
contain only VAR 2 variables. The atomic predicates and the function symbols were 
arbitrary, nothing special, as in ordinary predicate logic. 

For the purpose of encoding metalanguage features in QN-PROLOG, we must 
add to the language of QN-PROLOG special variables and predicates. These we 
describe now. 

First we need to name clauses systematically. In previous examples, such as the 
ones in paper I, we use constants name 1, name 2, etc. We use now special predicate 
symbol T(k, t), where k is a. name variable and Ms a control parameter, whose role 
will become clear later. 

The most convenient field for names is the integers, and so for example k can 
range over the integers and integers can be hnked to clauses via some system of 
numbering. We shall define one later. 

We also need a special unary predicate called Cancel(A:, t), whose field are names 
k and t. Its meaning is deletion. We also need a three place relation g(x, y, z) 
yielding names z for each pair of names x and y. We also allow g to take (y, z) 
alone as arguments, if x is not important. The parameter / ranges over integers. It is 
a control counter, counting the sequential steps of the QN-PROLOG procedural 
computation. It is well known that sequences of natural numbers can'be coded as 
natural numbers. Let S'(r) be another special predicate saying that r is a sequence of 
numbers, and let Length(/) be the function giving the length of the sequence /. 
Tl{t, i) will give the iih number of the sequence t, for / < Length(r). We also write 
(t,i) for Tl(t,i). 

The above coding is done using numbers, but any coding domain can be used, 
provided the appropriate functions for sequencing are available. 

Before we go on, let us consider an example. Recall Example E6 of the previous 
section. Let us rewrite this example in our notation. 

Example El. Consider the following clauses: 

(a) {A A Cancel(2,t) ^ T{g{l,2), / + l ) A -,Cancel(l, t) -^ T{1, t)). 

(b) {B^ T{g{2,1),; + 1)) A ^Cancel(2, t) -^ 7(2, 0-

Here g has only two arguments. 
The name of the first clause (a) is 1. The name of the second clause is 2. T(l, t) is 

the head allowing us to use clause 1 at any time /. The computation checks whether 
clause 1 is canceled, and if not, it will add A to the database, cancel clause 2, and 
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continue with the goal T(2, t + 1) [since g(l, 2) holds], which says: go to clause 2 and 
the time now is t + 1. 

We need one more clause, which specifies the goal. The goal is A A B in our 
example, and so we put 

(c) AAB-^T(k,0). 

We ask for ^(l.O) if we want to compute from clause 1 at time 0, and we ask for 
goal T(2,0) if we want to compute from clause 2 at time 0. 

We have to add one more clause to all programs, namely, 

Cancei(A:, t) -^ Cance!(A:, t + 1). 

We now check whether the goal T{2,0) succeeds. This means that we want at time 
0 to compute the goal A A B from clause (b), whose name is 2. 

Step 0: Unify with clause (b), add B, and ask for T{1,1). 

Step 1: Unify with clause (a), add A, and cancel clause (b); ask for 7(2,2). 

Step 3: Unify with clause (c), and ask for A A B and succeed. 

Let k code the sequence (1,2,1,2). Thus what is provable is 

3k[S(k) A (V/ < Length(A:)) g(ik, i),(k, i + 1)) A 

A (universal closure of clauses) -» 7(1,0)], 

which also gives meaning to any instance of negation as failure which may appear in 
the clauses of the program. 

Definition Dl. Add to the language of QN-PROLOG the special predicates 
Length(jc), T{x, y), S(x), Tl(x, y) [also written (x, y)], Cancel(jc, y), and the 
functions g(x,y,z) and g(x,z) (g is both three place and binary). Let x, y 
range over numbers. 

(1) The notion of QN-clause and goals are defined as in paper 1 of this series. 

(2) We define the notions of QN-ready-for-metalanguage clauses and goals, 
which we refer to as m-clauses and m-goals. This is a subset of the set of all 
clauses and goals. 

(a) Any atomic predicate is a w-clause and m-goal. An w-goal is required to 
contain VAR 2 variables only. These clauses have arbitrary names. 

(b) Let Ai be w-clauses with names ki. Here ki is a code name for Ai; it is a 
natural number. Ai contains certain variables from VAR 1 and VAR 2. Let k 
be a totally new name which has not been used. Let Ci be finite sets of 
w-clause names which have already been used. Then the following is an 
w-clause with name k: 
A,[v4J A Aj^ci CancelO) ^ ng(ki, k, z), t + 1)] 

A-,Cancel()t)->r(A;,0, 
where t is totally new VAR 1 variable. The above clause says: At time t, you 
can use me, the clause named k, if I haven't been canceled. If you use me, 
then in parallel, add clauses Ai to the database and go to any clause named 
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z such that g(ki,k,z) is in the database, but in this computation cancel 
every clause named in Ci. 

(c) The set of clauses is obtained by performing the definition (b) a double 
infinity of times, w • w, where the ground case is (a) above and where when 
we apply (b) we use all possible Ai, Ci available at that stage. We need to 
iterate w • w times to compensate for the fact that when we use a new name 
k we can refer only to clauses already defined. In the next w-round we can 
refer to clauses which will be defined in the present to-round. 

(d) An m-goal is any conjunction of w-clauses containing VAR 2 variable only. 

(e) An w-database (or w-program) is any set of w-clauses containing the 
following additional, possibly ordinary clauses: 

Axiom 1. Cancel(x, t) -* Cancel(x, / + 1), x, t from VAR 1. 

Axiom 2. Coding axioms relating to S, Length, Tl, etc. 

Axiom 3. A possibly empty selection of control information such as 

Tikl,t + l)^Tik,t). 

Axiom 4. An additional set of data of the form g{a, b, c) or of the form 
Ajgiai, bi, ci) -»g{a, b, c). 

Paper III of this series will deal mainly with the handling of time phenomena, i.e. 
temporal PROLOG. 
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