Theoretical Computer Science 411 (2010) 3859-3866

o

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Reconstruction of interval graphs®

Masashi Kiyomi®*, Toshiki Saitoh?®, Ryuhei Uehara*

2School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
b ERATO MINATO Discrete Structure Manipulation System Project, JST, North 14, West 9, Sapporo, Hokkaido 060-0814, Japan

ARTICLE INFO ABSTRACT

Article history: The graph reconstruction conjecture is a long-standing open problem in graph theory.
Received 4 January 2010 There are many algorithmic studies related to it, such as DECK CHECKING, LEGITIMATE
Received in revised form 23 June 2010 DECK, PREIMAGE CONSTRUCTION, and PREIMAGE COUNTING. We study these algorithmic
Accepted 3 July 2010

problems by limiting the graph class to interval graphs. Since we can solve GRAPH ISOMOR-
PHISM for interval graphs in polynomial time, DECK CHECKING for interval graphs is easily
done in polynomial time. Since the number of interval graphs that can be obtained from an

Communicated by O. Watanabe

?ﬁﬁggﬁ reconstruction conjecture interval graph by adding a vertex and edges incident to it can be exponentially large, de-
Interval graphs veloping polynomial time algorithms for LEGITIMATE DECK, PREIMAGE CONSTRUCTION,
Polynomial time algorithm and PREIMAGE COUNTING on interval graphs is not trivial. We present that these three

problems are solvable in polynomial time on interval graphs.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a simple graph G = (V, E), we call the multi-set {G — v | v € V} the deck of G where G — v is a graph obtained
from G by removing vertex v and incident edges. The graph reconstruction conjecture by Ulam and Kelly' is that, for any
multi-set D of graphs with at least two vertices, there is at most one graph whose deck is D. We call a graph whose deck is
D a preimage of D. No counter-example is known for this conjecture, and there are many mathematical results about this
conjecture. For example, trees, regular graphs, and disconnected graphs are reconstructible (i.e. the conjecture is true for
these classes) [7]. Almost all graphs are reconstructible from three well-chosen graphs in its deck [1]. Rimscha showed that
interval graphs are recognizable in the sense that, by looking at the deck of G, one can decide whether or not G belongs
to interval graphs [14]. In the same paper, Rimscha also showed that many subclasses of perfect graphs, including perfect
graphs themselves, are recognizable, and some of the subclasses including unit interval graphs are reconstructible. There
are many good surveys about this conjecture. See for example [2,5].

Besides these mathematical results, there are some algorithmic results. We enumerate the algorithmic problems that we
address in this paper.

Given a graph G and a multi-set of graphs D, check whether D is a deck of G (DECK CHECKING).

Given a multi-set of graphs D, determine whether there is a graph whose deck is D (LEGITIMATE DECK).

Given a multi-set of graphs D, construct a graph whose deck is D (PREIMAGE CONSTRUCTION).

Given a multi-set of graphs D, compute the number of (pairwise non-isomorphic) graphs whose decks are D (PREIMAGE
COUNTING).

A preliminary version of this article was presented at COCOON 2009 [8].
* Corresponding author. Tel.: +8176151 1207.

E-mail addresses: mkiyomi@jaist.ac.jp (M. Kiyomi), t-saitoh@erato.ist.hokudai.ac.jp (T. Saitoh), uehara@jaist.ac.jp (R. Uehara).
1 Determining the first person who proposed the graph reconstruction conjecture is difficult, actually. See [5] for the detail.

0304-3975/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.07.006

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:mkiyomi@jaist.ac.jp
mailto:t-saitoh@erato.ist.hokudai.ac.jp
mailto:uehara@jaist.ac.jp
http://dx.doi.org/10.1016/j.tcs.2010.07.006

3860 M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866

Kratsch and Hemaspaandra showed that these problems are solvable in polynomial time for graphs of bounded degree, par-
tial k-trees for any fixed k, and graphs of bounded genus, in particular for planar graphs [11]. In the same paper they proved
many graph isomorphism(Gl)-related complexity results. Hemaspaandra et al. extended the results [6]. Note that the fact
that graph class € is reconstructible does not mean that there is a polynomial time algorithm of PREIMAGE CONSTRUC-
TION for €. For example, though disconnected graphs are reconstructible, it seems very hard to develop a polynomial time
PREIMAGE CONSTRUCTION algorithm for disconnected graphs, since we do not know any polynomial time isomorphism
algorithm for them. It is likely that a polynomial time PREIMAGE CONSTRUCTION algorithm on some graph class will gives
some hint to a proof of the graph reconstruction conjecture on the class. Interval graph is one of the large major graph class
for which we have an isomorphism algorithm, and thus we can consider reconstruction algorithms without bothering about
graph isomorphism.

There is a linear time algorithm for determining if given two interval graphs are isomorphic [13]. Thus, developing a
polynomial time algorithm for DECK CHECKING for interval graphs is easy.

Theorem 1. There is an O(n(n + m)) time algorithm of DECK CHECKING for n-vertex m-edge graph and its deck (or a deck
candidate) that consists of interval graphs.

We will give the proof in Section 3. Note that we require only graphs in the deck candidate to be interval graphs, and we
do not require the preimage candidate to be an interval graph. Thus this result is not straightforward from [11].

LEGITIMATE DECK, PREIMAGE CONSTRUCTION, and PREIMAGE COUNTING for interval graphs are solvable by almost the
same algorithm. In order to develop such an algorithm, we show that, given a set of n interval graphs D, there are at most
0(n?) graphs (preimages) whose decks are D. Further, we can construct such O(n?) preimage candidates. Our algorithm
checks these O(n?) candidates one by one whether its deck is D with DECK CHECKING algorithm. Our algorithm constructs
n preimage candidates from O(n) different interval representations of each interval graph in D by inserting an interval to
them. The key is that the number of preimage candidates is O(n?), while a naive algorithm which inserts an interval to an
interval representation may construct £2(2") candidates. (Consider the case that ® (n) intervals terminate at some point t,
and we insert a new left endpoint to t. The number of the ways of insertions is @ (2"), since there are @ (n) choices whether
the new interval intersects the old ones. Further, there may be many, say ® (2"), different compact interval representations
for an interval graph. Therefore, the number of preimage candidates will be very huge, if we construct the candidates from
all of them.)

The following is our main theorem.

Theorem 2. There are O(n®(n + m)) time algorithms for LEGITIMATE DECK and PREIMAGE CONSTRUCTION, and there is an
O(n*(n + m)) time algorithm for PREIMAGE COUNTING, for n interval graphs.

Note that m is the number of edges in the preimage. Kelly’s lemma [7] shows that we can compute m from the deck.

We state terminologies in Section 2, then explain about interval graphs in Section 3. In Section 3, we introduce many small
lemmas for those who unfamiliar to interval graphs. Most of these lemmas may be well known and/or basic for those who
familiar to interval graphs and the concepts of PQ-tree [3] and MPQ-tree [10]. However, these lemmas play important roles
in this paper. Then, we show that the number of preimage candidates is O(n?), and we present our algorithm in Section 4.
Finally, we make some remarks in Section 5.

2. Terminology

Graphs in this paper are all simple and undirected, unless explicitly stated. We denote by N;(v) the neighbor set of vertex
v in graph G, and we denote by Ng[v] the closed neighbor set of vertex v in graph G. “Closed” means that Ng[v] contains v
itself, i.e. Ng[v] = Ng(v) U {v} holds. We denote by deg(v) the degree of vertex v in graph G. We omit the subscript G, when
there is no confusion about the base graph. The sum of degrees of all vertices in graph G is denoted by degsum(G). Note that
degsum(G) is equal to twice the number of edges in G. We denote by G the graph obtained by adding one universal vertex
to the graph G such that the vertex connects to every vertex in G. Note that Gis always connected. Given two graphs G; and
G, we define the disjoint union G;UG, of G; and G, as (V;UV,, E;UE,) such that (V;, E;) is isomorphic to Gy, and (Vs, E,) is
isomorphic to G,, where U means the disjoint union.

3. Interval Graphs

Agraph G = (V,E) withV = {vq, vo, ..., v,} is an interval graph iff there is a multi-set 4 = {I,,, I,,,, ..., I,,,} of closed
intervals on the real line such that {v;, v;} € E if and only if I,, N I,; # ¥ for each i and j with 1 < i,j < n. We call the
multi-set 4 an interval representation of G. An interval graph may have infinitely many interval representations. We use a
tractable one called compact interval representation among them.

3.1. Compact representation and basic lemmas

Definition 1 ([15]). An interval representation { of an interval graph G = (V, E) is compact iff

e coordinates of endpoints of intervals in { are finite non-negative integers (We denote by K the largest coordinates of
endpoints for convenience. We sometimes call K the length of),

M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866 3861

|

T

|
0o 1 2 3 4 5

Fig. 1. A compact interval representation of an interval graph. Every interval graph has at least one compact interval representation. Vertices corresponding
to the enclosed intervals are end-vertex set.

e there exists at least one endpoint whose coordinate is k for every integer k € [0, K], and
e interval multi-set 4, = {I € 4 | k € I} differs from {; = {I € 4 |l € I}, and they do not include each other, for every
distinct integers k, [€ [0, K].

We show an example of a compact interval representation of an interval graph in Fig. 1. Note that there may still be
many compact interval representations of an interval graph. However, compact interval representations have some good
properties.

Lemma 3. Let § and g be compact interval representations of an interval graph G = (V, E), and let K; be the length of 4, and let
K, be the length of g. Then, the following holds.

f{ffegjoel},{leg|1el},....{led|Kiel}}={{leg|0ecl},{leg|l1el},....,{l e F|K, €l}}.

Proof. We denote by { the set of multi-set of intervals {{I e £ |0 e I}, {I e 4|1 €}, ..., {I € 1| K; € I}}, and we denote
by g the set of multi-set of intervals {({I € |0 el},{Ie g |1€l},...,{I € §|K, € I}}. The vertices represented by the
multi-set of intervals {; = {I € 4 | i e I} correspond to a clique in G. Assume that {; never appears in g for some i. Since J;
represents a clique C, there must be a set of intervals representing a clique C’ containing C in (otherwise, clique C cannot
be represented in ¢). Then for the same reason, J must contain a set of intervals representing a clique containing C’. This
contradicts the compactness of 4. O

From the proof of Lemma 3, the following lemmas are straightforward.

Lemma 4. Let 4 be a compact interval representation of an interval graph G = (V,E), and let K be the length of {. Then,
{l e d|iel}foreachie {0,...,K} corresponds to each maximal clique of G.

Lemma 5. The length of a compact interval representation of an n-vertex interval graph is at most n.
Note that the number of maximal cliques in an n-vertex interval graph is at most n (see [4]).
Lemma 6. All the compact interval representations of an interval graph have the same length.
Lemma 7. Intervals in different compact interval representations corresponding to an identical vertex have the same length.

From Lemma 7, lengths of intervals corresponding to a vertex that corresponds to an interval of length zero in some
interval representation are always (i.e. in any interval representation) zero. Such a vertex is called simplicial.

3.2. PQ-trees and MPQ-trees

In this subsection, we explain PQ-trees and MPQ-trees. We can get the other perspective for the lemmas in the previous
subsection with (M)PQ-trees, and it may be good for the understanding.

PQ-tree was introduced by Booth and Lueker [3]. We can use it for recognizing interval graphs. A PQ-tree is a rooted tree
T with two types of internal nodes, P- and Q-nodes. Each leaf of T is labeled with each maximal clique of the interval graph
G. The frontier of a PQ-tree T is the permutation of the maximal cliques obtained by the ordering of the leaves of T from left
to right. The definition that PQ-tree T corresponds to interval graph G is given as follows.

Definition 2. PQ-tree T corresponds to interval graph G, if and only if, for every PQ-tree T’ obtained from T by applying the
following rules (1) and (2) a finite number of times, there is an interval representation of G in which the maximal cliques of
G appear in the same order of the frontier of T".

(1) arbitrarily permute the successor nodes of a P-node, or
(2) reverse the order of the successor nodes of a Q-node.

See for example Fig. 2. Booth and Lueker developed a linear time algorithm that either constructs a PQ-tree for G, or states
that G is not an interval graph.

3862 M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866

a d e
c
d
9 b h——
a e- f- g {a,b,c} {c,d}
b c f h

{d,e,h}{d,f,h}{d,g,h}

Fig. 2. An example of an interval graph, its interval representation, and its PQ-tree.

boolean function deck-checking(graph G = (V, E)) {
Let G’ be an empty graph.
for each vertexv € V{ G :=GU(G —v). }
if G’ is isomorphic to G;UG,U . .. UG/,
return True else return False.

Fig. 3. The deck checking algorithm.

MPQ-tree, which stands for modified PQ-tree, is developed by Korte and Méhring to simplify the algorithm for the PQ-tree
[10]. The MPQ-tree T* assigns sets of vertices (or intervals from the view of interval representation) to the nodes of a PQ-tree
T representing an interval graph G = (V, E).

Lemma 4 says that each {I € { |i € I} corresponds to a maximal clique. Therefore, it corresponds to a leaf of a PQ-tree.
Thus, Lemma 3 says that in every PQ-tree of an interval graph G, the set of leaves are identical. Lemma 5 says that in every
PQ-tree of an interval graph G = (V, E), the number of leaves are at most |V|. Lemma 6 says that in every PQ-tree of an
interval graph G, the number of leaves are the same. And, Lemma 7 says that in every PQ-tree of an interval graph G, the
number of leaves that a vertex v belongs are the same.

3.3. Deck checking

Now we prove Theorem 1. Our main algorithm enumerates the preimage candidates, and checks whether each candidate
is really a preimage of the input deck. Thus, the theorem is one of the basic parts of our algorithm. We first show a lemma
to prove Theorem 1.

Lemma 8. Given an interval graph G which can be connected or disconnected, Gis always a connected interval graph.

Proof. It is obvious that G is connected. Cor1~sider a compact interval representation { of G. Let K be the length of {. Then,
1 U {[0, K]} is an interval representation of G. Therefore, G is a connected interval graph. O

Proof of Theorem 1. Let G = (V, E) be a graph, where V is {1, 2, ..., n}, and |E| is equal to m. Let G;(i € V) be a graph

obtained by removing vertex i from G. Suppose that Gy, Go, ..., G, are interval graphs. It is clear that {G, G, ..., G} isa
deck of G if and only if the multi-set {él, 62, R G~n} is equal to the multi-set {G}, G}, ..., GN;I}. Hence, we can determine
whether or not the given multi-set D = {G], G,, ..., G,} is a deck of the input graph G by checking whether or not

G1UG,U ... UG, is isomorphic to G;UG,U . .. UG]. Since the disjoint union of two interval graphs is an interval graph, we
can use well-known linear time isomorphism algorithm [13] for this checking. We describe the algorithm in Fig. 3. Since the
number of vertices of G;U . . . UG, is O(n?), and since the number of edges of G;U . . . UG, is O(mn + n?), the time complexity
of this algorithm is O(n(n 4+ m)). O

Note that we cannot use GUG,U...UG, instead of G1UG,U. .. UG,. If some of Gy, G, ..., G, are disconnected,
G1UG,U ... UG, and G;UG,U . . . UG, can be isomorphic, even if {Gy, G, . .., Gy} and {G], G,, ..., G} are not identical. See
for example Fig. 4.

3.4. Non-interval graph preimage case

Our algorithm described in the next section outputs preimages that are interval graphs. However, it is possible that a
non-interval graph has a deck that consists of interval graphs, though it is exceptional. Since considering this case all the
time in the main algorithm makes it complex, we attempt to get done with this special case.

First of this subsection, we introduce a famous theorem below.

M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866 3863

_G1 _G2

>

_G’1

> >

Fig. 4. G; UG, is isomorphic to G;UG), though the multi-sets {G:, G} and {G}, G, } are different.

1T

Fig. 5. The forbidden graphs of interval graphs. The part described k contains k vertices (k > 1). Thus, (c) is a chordless cycle of more than three vertices,
(d) has more than five vertices, and (e) has more than five vertices.

Theorem 9 (Lekkerkerker and Boland [12]). Graph G is an interval graph if and only if G has no graph described in Fig. 5 as an
induced subgraph.

Note that we can easily prove that all the members in a deck of an interval graph are interval graphs.

Theorem 10. If n interval graphs Gy, G,, ..., G, have a preimage G that is not an interval graph, we can reconstruct G from
G1, Gy, ..., Gy in O(n?) time.

Proof. Assume that Gq, G,, ..., G, are the deck of G, and G is not an interval graph. Then, G must be one of the graphs
described in Fig. 5, since any graph that is obtained by removing a vertex from G is an interval graph (containing none in
Fig. 5). It is clear that Gy, G», . . ., G, have the same number of vertices, n — 1, and the number of vertices in G is n. Since the
number of graphs of size n in Fig. 5 is O(1), we can check if one of them is a preimage of the input graphs in polynomial time
with DECK CHECKING algorithm. The time complexity is O(n(n + m)) from Theorem 1, where m is the number of edges of
a preimage. Since the numbers of edges in (a), (b), (c), (d), and (e) are O(n), the time complexity is definitely O(n?). O

Therefore, we concentrate on an algorithm that tries to reconstruct an interval graph whose deck is the set of the input
graphs in the remaining sections.

4. Main algorithm

4.1. Connected preimage case

It is possible that there is no connected preimage interval graph but a disconnected preimage interval graph of given n
interval graphs. We consider this case later. Here in this subsection, we consider an algorithm for determining whether or
not there are connected preimage interval graphs, and if any, returns them.

First we define end-vertex set. The end-vertex set is intuitively a set of vertices whose corresponding intervals are at the
left end in at least one interval representation. Our algorithm adds a vertex adjacent to all the vertices in an end-vertex set
of an interval graph in the input deck. This enables us to avoid exponential times’ constructions of preimage candidates.

Definition 3. For an interval graph G = (V, E), we call a vertex subset S C V an end-vertex set iff, in some compact interval
representation of G, all the coordinates of the left endpoints of intervals corresponding to vertices in S are 0, and S is maximal
among such vertex subsets with respect to the interval representation.

3864 M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866

See Fig. 1 for example. It is clear from the definition of compact interval representations that an end-vertex set contains at
least one simplicial vertex.

We show some lemmas about end-vertex sets. We can estimate that the number of essentially different preimage can-
didates is O(n?) by these lemmas.

Lemma 11. Let S be an end-vertex set of an interval graph G = (V, E). If two vertices v and w in S have the same degree, then
N[v] is equal to N[w].

Proof. Since v and w are in S, on some compact representation of G, the interval corresponding to v is I, = [0, k,], and the
interval corresponding to w is I, = [0, k,,] for some k, and k,,. Assume that k, is not equal to k,,. We can assume that k, is
greater than k,, without loss of generality. Then, N[w] ¢ N[v] holds due to the definition of a compact representation. This
contradicts the fact that v and w have the same degree (see Fig. 1 for the better understanding). O

Lemma 12. A connected interval graph has at most O(n) end-vertex sets.

Proof. An end-vertex set of an interval graph G is in the form {I € { | 0 € I} for some interval representation J of G. Thus,
from Lemmas 3 and 5, there are at most O(n) end-vertex sets for G. O

Now we refer the well-known lemma about the degree sequence.

Lemma 13 (Kelly’s Lemma [7]). We can calculate the degree sequence of a preimage of the input n graphs in O(n) time, if we
know the number of edges in each input graph.

Proof. Let Gy, G,, ..., G, be the input graphs. Assume that graph G has a deck {Gq, G, ..., G,}. There are vertices vy,
vy, ..., Uy such that G; is obtained by removing v; from G for eachiin {1, 2, ..., n}. Thus,

degsum(G;) = degsum(G) — 2deg(v;)

holds for eachi € {1, 2, ..., n}. Hence, we have

n
Z degsum(G;)

degsum(G) = =
n—2
Therefore, we can easily calculate the degree sequence of G, i.e., (degsum(G) — degsum(Gy))/2, (degsum(G) — degsum
(G2))/2, ..., (degsum(G) — degsum(G,))/2.
We can calculate degsum(G;) in constant time, provided we know the number m; of edges in G;, for degsum(G;) is equal to
2m;. Thus, the time complexity to calculate degsum(G) is O(n), and the total time complexity to obtain the degree sequence
of GisalsoO(n). O

Now we present an algorithm for reconstructing a connected interval graph. Suppose that an n-vertex connected interval
graph G has a deck of interval graphs {G;, G,, ..., G,}. Let 4 be a compact interval representation of G. There must be an
indexi € {1, ..., n} such that G; is obtained by removing a simplicial vertex s in the end-vertex set S corresponding to {. We
show that we can reconstruct G from G;. Moreover, we can check whether or not G; is G; for every j € {1, ..., n}. Therefore,
we can reconstruct G by checking if G; is the desired G; for everyj € {1, ..., n}.

There are two cases about the number of simplicial vertices in S.

(i) S has only one simplicial vertex s.
(ii) S has at least two simplicial vertices.

In the case (ii), S \ {s} = Ng(s) is still an end-vertex set of G;. In the case (i), S \ {s} is contained by vertices corresponding to
{I € 4] 1 € I} which is an end-vertex set of G;. In both the cases, we thus have to add a simplicial vertex to an end-vertex
set of G; in order to reconstruct G. We denote the end-vertex set of G; by§ (S\ {s} C S holds). Since there are O(n) end-
vertex sets of G; by Lemma 12, checking if each end-vertex set S’ in G; is S takes O(n) times iterations. Checking whether an
end-vertex set S’ is S is simple. Since if S’ is S, we can reconstruct G, we simply try to reconstruct G. If we can reconstruct G,
S’ is S, and we of course obtain G. Otherwise, S’ is not S. _

Now we explain how to reconstruct G from S’ that is a candidate of S. Let 4’ be an interval representation of G; whose
corresponding end-vertex set is S’. Note that 4 is easily obtained in O(n+m) time by using the data structure MPQ-tree [10].
(Construct an MPQ-tree of G; in linear time, and then, apply the operation (1) and (2) described in Section 3.2 to move
the leaf corresponding to S’ to the left end. From the MPQ-tree, we can easily obtain the corresponding compact interval
representation.) Since S \ {s} C S holds, S \ {s} C S’ holds, if S’ is S. Hence, we can obtain an interval representation of G by
extending intervals corresponding to vertices in S \ {s} C S’ to the left by one and adding an interval [—1, —1]. However,
how to specify S \ {s} C S’ ? If we know S \ {s}, we can obtain G, since G has the interval representation obtained from J{ by
extending intervals corresponding to vertices in S \ {s} to the left by one and adding an interval [—1, —1]. In order to specify
S\ {s} in the polynomial time, we show the following lemma.

M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866 3865

foreachGi(i=1,2,...,n){
for each end-vertex set S’ of G; {

Let £’ be an interval representation of G;
whose corresponding end-vertex set is S'.

Compute the degree sequence (dq, ..., d)) of S\ {s}.

Let S* be a subset of S’ whose degree sequence in G;is (dy — 1, ...,d; — 1).
If there does not exist such S*, go to the next iteration.

Let G* be an interval graph

whose interval representation is obtained from £’

by extending interval corresponding to vertices in S* to the left by one

and adding an interval [—1, —1].

if deck-checking(G*) = True
output G*.
}

}

return No if the algorithm has output no graph.
Fig. 6. The algorithm for reconstructing connected interval graphs.

Lemma 14. Let G be an interval graph. Let S be an end-vertex set of G, and let § be an compact interval representation of G whose
corresponding end-vertex set is S. Let Sy and S, be subsets of S such that the degree sequence of vertices in S; and the degree
sequence of vertices in S, are the same. Let Gy be a graph whose interval representation is obtained from { by extending interval
corresponding to Sy to the left by one and adding an interval [—1, —1], and let G, be a graph whose interval representation is
obtained by J extending interval corresponding to S, to the left by one and adding an interval [—1, —1]. Then, G, is isomorphic
to G,.

Proof. The neighbor sets of S; and S, are the same due to Lemma 11. Hence, G; and G, are isomorphic. O

Since we know the degree sequence of G;, and we can know the degree sequence of G by Lemma 13, we can know the
degree sequence of S \ {s}. We denote the degree sequence by (di, dy, ..., d;). Now we can specify S \ {s} € S’; S\ {s} is
the subset of S’ such that whose degree sequence in G;is (d; — 1,d, — 1, ..., d; — 1). Note that there may be exponentially
many subsets of S’ whose degree sequences in G; are (d; — 1,d, — 1, ..., d; — 1). However, Lemma 14 guarantees that any
of such subsets can be S \ {s}, i.e. all the graphs reconstructed under the assumption that some subset of S’ whose degree
sequenceis (d; —1,d, —1,...,d;— 1) are S\ {s} are isomorphic to each other. Therefore, we can specify S \ {s} in S’. To be
more precise, if we can find such S \ {s}, S’ is the desired S, and we can thus reconstruct G. The whole algorithm is described
in Fig. 6.

Now we consider the time complexity of this algorithm. For each G;, calculating an MPQ-tree of G; in O(n + m) time
helps us to list each S” and 4’ in O(n) time. Computing the degree sequence (d1, d», .. ., d;) takes O(nlog n) time, since we
can obtain {dq, da, . .., d;} in O(n) time from Lemma 13, and we can sort them in O(n log n) time. Since obtaining S* needs
also sorting, it requires O(n log n) time. It is clear that reconstructing an interval graph from its interval representation takes
O(n + m) time, if the endpoints of intervals are sorted. DECK CHECKING algorithm costs O(n(n + m)). Therefore, the total
time complexity of this algorithm is O(n((n+m)+n(n+m+nlog n+n(n+m)))) = 0(n®(n+m)). Note that we have to check
every output preimage is not isomorphic to each other for PREIMAGE COUNTING. Since the number of output preimage may
be O(n?), we need O(n*(n 4+ m)) time for this checking. If the graph reconstruction conjecture is true, the time complexity
of this checking can be omitted.

Theorem 15. There is a polynomial time algorithm that lists up connected interval graphs that are preimages of the input n

interval graphs. The time complexity for outputting one connected interval graph is O(n®(n + m)), and that for outputting all is
o(n*(n 4+ m)).

4.2. Disconnected preimage case

Consider the case that the input graphs G, G, ..., G, have a disconnected preimage G. Then, from the argument in
the Theorem 10, G must be an interval graph. Further, it is proven that the graph reconstruction conjecture is true in this
case [7] (note that this fact does not imply that the reconstruction can be done in polynomial time). Lemma 8 and the fact
that {Gq, G, ..., Gy} is a deck of G if and only if {G~1, Gy, 6n} U {G} is a deck of G simplify our algorithm in this case.

Since we can know the degree sequence of G by Lemma 13, we can know the degree sequence of G by Lemma 13. Thus,
we can obtain G by the algorithm described in the previous subsection. Note that we do not know G, thus, in fact, we cannot

3866 M. Kiyomi et al. / Theoretical Computer Science 411 (2010) 3859-3866

use the algorithm itself. However, we can omit the case that G; in the algorithm is G, since every interval graph has at least
two end-vertex sets and so does G. Further, we can omit checking if G is in the deck of G. If the new algorithm (omitting
checking if G is in the deck of G) returns some G, we can construct G from it. Then now we can check if G is a preimage of
G, ..., G,. Therefore, we have the theorem below.

Theorem 16. There is a polynomial time algorithm that outputs a disconnected interval graph that is the preimage of the input
n interval graphs, if there exists. The time complexity of the algorithm is O(n®(n + m)).

Therefore, we have the main theorem (Theorem 2) from Theorems 10, 15 and 16.

5. Concluding remarks

The algorithms which we described do not help directly the proof of the graph reconstruction conjecture on interval
graphs. The conjecture on interval graphs remains to be open. Our proof shows that there are at most O(n?) preimages for a
deck of interval graphs. We hope that this fact will shed light on a proof of the graph reconstruction conjecture on interval
graphs.

The complexities of graph reconstruction problems are strongly related to those of graph isomorphism problems. To
develop a polynomial time algorithm for a graph reconstruction problem restricting inputs to be in GI-hard graph class seems
very hard. Since graph isomorphisms of circular-arc graphs are polynomial time solvable, circular-arc graph reconstruction
problem may be a good challenge. Recently, we developed a polynomial time reconstruction algorithm for permutation
graphs [9].

References

[1] B. Bollobas, Almost every graph has reconstruction number three, Journal of Graph Theory 14 (1990) 1-4.
[2] J.A. Bondy, A graph reconstructor’s manual, in: Surveys in Combinatorics, in: London Mathematical Society Lecture Note Series, vol. 166, 1991,
pp. 221-252.
[3] KS.Booth, G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, Journal of Computer
and System Sciences 13 (1976) 335-379.
[4] D.R. Fulkerson, O.A. Gross, Incidence matrices and interval graphs, Pacific Journal of Mathematics 15 (1965) 835-855.
[5] F. Harary, A survey of the reconstruction conjecture, in: Graphs and Combinatorics, in: Lecture Notes in Mathematics, vol. 406, 1974, pp. 18-28.
[6] E.Hemaspaandra, L. Hemaspaandra, S. Radziszowski, R. Tripathi, Complexity results in graph reconstruction, Discrete Applied Mathematics 152 (2007)
103-118.
[7] PJ. Kelly, A congruence theorem for trees, Pacific Journal of Mathematics 7 (1957) 961-968.
[8] M. Kiyomi, T. Saitoh, R. Uehara, Reconstruction of interval graphs, in: COCOON 2009, in: Lecture Notes in Computer Science, vol. 5609, 2009,
pp. 106-115.
[9] M. Kiyomi, T. Saitoh, R. Uehara, Reconstruction algorithm for permutation graphs, in: WALCOM 2010, in: Lecture Notes in Computer Science, vol.
5942, 2010, pp. 125-135.
[10] N.Korte, R.H. Mohring, An incremental linear-time algorithm for recognizing interval graphs, SIAM Journal on Computing 18 (1989) 68-81.
[11] D.Kratsch, L.A. Hemaspaandra, On the complexity of graph reconstruction, Mathematical Systems Theory 27 (1994) 257-273.
[12] C.G. Leckerkerker, J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fundamenta Mathematicae 51 (1962) 45-64.
[13] G.S. Lueker, K.S. Booth, A linear time algorithm for deciding interval graph isomorphism, Journal of the ACM 26 (1979) 183-195.
[14] M. von Rimscha, Reconstructibility and perfect graphs, Discrete Mathematics 47 (1983) 283-291.
[15] R.Uehara, Y. Uno, On computing longest paths in small graph classes, International Journal of Foundation of Computer Science 18 (2007) 911-930.

	Reconstruction of interval graphs
	Introduction
	Terminology
	Interval Graphs
	Compact representation and basic lemmas
	PQ-trees and MPQ-trees
	Deck checking
	Non-interval graph preimage case

	Main algorithm
	Connected preimage case
	Disconnected preimage case

	Concluding remarks
	References

