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Abstract 

The complexity of embedding a graph into a variety of topological surfaces is investigated. 
A new data structure for graph embeddings is introduced and shown to be superior to the 
previously known data structures. In particular, the new data structure efficiently supports all 
on-line operations for general graph embeddings. Based on this new data structure, very efficient 
algorithms are developed to solve the problem “given a graph G and an integer k, construct a 
genus k embedding for the graph G” for a large range of integers k and for a large class of 
graphs G. 

I. Introduction 

Graph embedding is a fundamental yet difficult problem, and it has many appli- 

cations in diverse problem domains. The most studied is graph planar embeddings. 

The well-known Hopcroft-Tarjan algorithm shows that a planar embedding of a planar 

graph can be constructed in linear time [21]. Graph planar embeddings have been stud- 

ied extensively in a variety of areas such as computational geometry [25] and graph 

drawing [ 1 11. 

On the other hand, the computational complexity of constructing embeddings of a 

graph into non-planar surfaces is not well understood yet. The complexity of the graph 

minimum genus problem remained as a basic open problem in Garey and Johnson’s 

list [18] for ten years until Thomassen proved that the problem is NP-complete [27]. 

Algorithms have also been developed for embedding a graph into a variety of surfaces. 

It is demonstrated by Furst et al. [17] that a maximum genus embedding of a graph 

can be constructed in time O(n4 log6 n). Filotti [13] described an O(n’) time algorithm 

for embedding cubic graphs of minimum genus 1 into the torus. Filotti et al. [ 141 

derived an O(n ock)) time algorithm that embeds graphs of minimum genus <k into 
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a surface of genus k, which was improved recently by Djidjev and Reif [12] who 

developed an algorithm of time 0(2 o(k)!no(‘)). Frederickson and others have considered 

the complexity of graph embeddings that give the minimum “hammock number” or 

minimum “face cover”, and studied their applications to other computational graph 

problems [15, 161. Recently, Mohar described a linear time algorithm for embedding 

graphs of crosscap number 1 into the projective plane [24], and Chen described a linear 

time algorithm for embedding graphs of bounded average genus [2]. Chen et al. have 

also studied approximation algorithms for graph minimum genus embeddings [IO]. 

An open problem posed by Furst et al. [ 171 is to determine the complexity of graph 

embeddings into a general surface. There are several theoretical and practical reasons 

why this problem should be studied. First, the distribution of graph embeddings into 

topological surfaces provides a very useful isomorphism heuristic [5-7, 191. Secondly, 

embedding a graph into a certain surface helps efficiently solving other computational 

graph problems [2, 4, 8, 15-17, 251. Finally, study of graph embeddings has direct 

applications in the areas such as circuit layout and VLSI design. 

In this paper, we will develop a number of efficient algorithms that embed a graph 

into a variety of surfaces. We start by introducing a new data structure for graph 

embeddings. We demonstrate that the new data structure is superior to the previously 

known data structures for graph embeddings. In particular, the new data structure ef- 

ficiently supports ull on-line operations for general graph embeddings. Based on this 

new data structure, we present an O(m logrz) time greedy algorithm that constructs 

an embedding of genus at least (m - n + 1)/S for a graph G of n vertices and m 

edges. Then we show how we can continuously move in time O(m log n) for a graph 

from one embedding to another embedding. This implies, in particular, that there is an 

O(nz log iz) time algorithm that, given a planar graph G of n vertices and ~12 edges and 

given an integer k <(WI - n + 1)/S, constructs an embedding of genus k for G. We will 

also study the complexity of embedding a graph into a surface of “average genus”, 

which is an important topological invariant of a graph [5-71. We present an O(m*) 

time randomized algorithm that, given a graph G and an integer k, either reports with a 

very small error probability that k is not equal to the average genus of G, or produces 

an embedding of genus k for G. These computational results demonstrate a very rich 

and interesting structure for computational complexity of graph embeddings. 

The paper is organized as follows. Section 2 is an introduction to the preliminaries 

and definitions for the theory of graph embeddings. The new data structure is described 

in Section 3. An efficient algorithm is presented in Section 4 to embed a graph into 

a high genus surface. Section 5 discusses the complexity of embedding a graph into a 

surface of genus k, for a variety of k. Concluding remarks are given in Section 6. 

2. Preliminaries 

It is assumed that the reader is somewhat familiar with the fundamentals of graph 

embeddings. For further description, see [20]. 
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Unless stated explicitly, all graphs in our discussion are supposed to be connected 

simple graphs in which each vertex is of degree at least 3. This assumption does not 

lose any generality because “smoothing” a degree 2 vertex or removing a degree I 

vertex has no effect on topological properties of a graph [20]. An rmheddiny must 

have the “cellularity property” that the interior of every face is simply connected. 

A rotution at a vertex c is a cyclic permutation of the edge-ends incident on I’. A 

list of rotations, one for each vertex of the graph, is called a rotution .sq~.stem. 

An embedding of a graph G in an orientable surface induces a rotation system, 

as follows: the rotation at vertex z‘ is the cyclic permutation corresponding to the 

order in which the edge-ends are traversed in an orientation-preserving tour around I‘. 

Conversely, by the Heffter-Edmonds principle, every rotation system induces a unique 

embedding of G into an orientable surface [20]. This bijectivity enables us to study 

graph embeddings based on graph rotation systems, a more combinatorial structure. 

We will interchangeably use the phrases “an embedding of a graph” and “a rotation 

system of a graph”. 

Edge insertion and edge deletion are among the most important and fundamental 

operations for graph embeddings. Most proposed graph embedding algorithms [ 10. 13. 

14, 17, 211 are based on edge insertion and edge deletion. We first discuss the effect 

of inserting a new edge into an embedded graph. 

Let p(G) be an embedding of a connected graph G. If a subpath eta appears in 

the boundary walk of a face J’ in /l(G), where rt = (~1,~s) and e2 = (~a, rl) are two 

edges, then we say that elwe2 is a wrner of the face. If the content is apparent. we 

simply say that the vertex w is a corner of the face f’. 

Suppose that we insert a new edge e = (u.r) into the embedding p(G), where I( 

and c are vertices of G. There are two possible cases. 

If the edge-ends of e at u and I! are inserted between two comers of the same face ,f; 
then the new edge e splits the face J’ into two faces. More precisely, if the boundary 

walk around the face f in p(G) is of the form uxtl/ju, where 3: and /I are subwalks, 

then the new edge e splits the boundary walk of ,f into two walks: UCXIX~~ and cflztec. 

resulting in two new faces. In this case, the embedding genus remains the same. 

If the edge-ends of e at u and 1: are inserted between comers of two different faces 

,f’, and ,fl, then both these faces are merged by e into one larger face. In particular. 

suppose that the edge e runs from the comer of z/ in face boundary walk 11’~u of ,f; to 

the comer of 1’ in face boundary walk z;fltl of ,fi, then the merged face has boundary 

walk Z.KYY/II~YL~XII. In this case, the embedding genus is increased by 1. 

Edge deletion is the inverse operation of edge insertion. Let e be an edge to be 

deleted from the embedding p(G). If e is on the boundary of two different faces ze 

and e/II, where a and [j are subwalks, then deleting the edge e will merge these two 

faces into a larger face @’ and keep the same embedding genus. If the two sides of 

e are on the boundary of the same face exe/I, then deleting the edge e will result in 

two new faces c( and p and decrease the embedding genus by I. 

Data structures for sets from a universe with a total ordering have been studied 

extensively [l]. The discussions can be easily generalized to sequences from a universe 
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without a total ordering. Let $Y be a universe that may not have a total ordering. 

A sequence is an ordered list of elements from %?, in which each element of @ may 

appear more than once. Each element appearance in the sequence will be called a node. 

For each sequence, we also assume a root that contains the name of the sequence. 

With straightforward modifications in the discussion for data structures for sets from 

a universe with a total ordering [ 11, a sequence can be represented by a concatenable 

data structure, such as a 2-3 tree, which supports each of the following operations in 

time O(logn) on a sequence of IZ nodes: 

l S-INSERT(r, v,x): insert the element x immediately before the node u in the sequence 

rooted at r; 

l S-DELETE(r, u): delete the node u from the sequence rooted at r; 

l CONCAT(ri,r2): take as input the roots YI and r2 of the sequences L1 and L2, 

respectively, and output the root of the concatenated sequence LjL2; 

l SPLIT(r,n): here z: is a node in the sequence L rooted at Y such that L = Llz1L2. 

The output of this operation are roots of the two sequences LI and L2; 

l ROOT(v): return the root of the sequence containing the node v; 

and each of the following operations in 0( 1) time: 

l NEXT(v): return the node following the node v in the sequence containing r (the 

first node is supposed to follow the last node in a sequence); 

l PREC(v): return the node preceding the node v in the sequence containing v (the 

last node is supposed to precede the first node in a sequence). 

3. Data structures 

We will evaluate the performance of a data structure for graph embeddings based 

on the following graph embedding operations: 

l FACE-TRACE(f): output a boundary walk of the face f. 

l VERTEX-TRACE(v): output the edges incident on the vertex v in the (circular) 

ordering of the rotation at v. 

l COFACIAL(ci,cz): return true if the two face comers ci and cz belong to the same 

face of the current embedding and false otherwise. 

l INSERT(ci,c2,e): insert the new edge e between the face comers ci and ~2. 

l DELETE(e): delete the edge e from the current embedding. 

l GENUS(p(G)): report the genus of the current embedding p(G). 

A number of data structures have been proposed. Most of these data structures are 

only valid for planar embeddings of a graph. Tamassia [26] proposed a data structure 

that supports a special case of DELETE operation and each of the other operations in 

O(logn) time on planar embedded graphs. Very recently, Italian0 et al. [22] proposed 

a new data structure that supports each of the above operations in O(log2 n) time on 

planar embedded graphs. 

None of these data structures seems to generalize to general graph embeddings. 

Frequently, a rotation system of a graph is represented in the edge-list form, which for 
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each vertex c contains the list of its incident edges, arranged in the order according to 

the rotation at c. It is not difficult to see that this representation does not efficiently 

support many embedding operations. Another data structure, the douhl~~ connected rdqe- 

list (DCEL) that has been widely used in computational geometry [25], can be directly 

used for representing a rotation system of a graph. Suppose that G = ( V,E) is a graph 

and p(G) is a rotation system of G. A DCEL for p(G) is a table of I/Z e&e itmz.s. 

There is a one-to-one correspondence between edges of G and edge items in the DCEL. 

Each edge item consists of six fields Vr, 6, 4, Fz, PI, and PI. For an edge e, the 

fields e( V, ) and e( V,) specify the two endpoints of e, the fields e(fi ) and e(Fz) give 

the “right face” and “left face” of the edge e when we traverse the edge e from the 

endpoint e( 6) to the endpoint e(b). The field e(Pi ) (resp. e(P2)) points to the edge 

item in the DCEL for the edge that follows the edge e in the rotation at e( 6 ) (resp. 

e(6)) in p(G). 
Based on the DCEL structure, the operation FACE-TRACE(f) can be done in time 

linear in the size of the face .f, and the operation VERTEX-TRACE(c) takes time 

linear in the degree of the vertex L’ [25]. Moreover, the DCEL and the edge-list form 

of a graph rotation system can be converted from one to the other in linear time [25]. 

Unfortunately, the DCEL structure does not seem to support the operations INSERT 

and DELETE efficiently. An INSERT or a DELETE operation requires to update the 

fields F, and/or F2 for all edges on the boundary walks of the related faces, which 

may take time up to 0(n2). 

One possible modification is to ignore the fields F, and Fz in a DCEL structure. 

Indeed, a DCEL structure without the fields F, and Fl still gives a unique rotation 

system for a graph. However, the resulting structure then does not seem to efficiently 

support the operations COFACIAL and GENUS. 

We introduce a new data structure and show that the new data structure efficiently 

supports all the operations listed at the beginning of this section. 

Each face is given by a sequence of vertices and edges that corresponds to a boundary 

traversing of the face. The vertex appearances and the edge appearances in the sequence 

will be called certex nodes and edge nodes, respectively. The sequence is represented 

by a concatenable data structure (e.g.. a 2-3 tree). 

Definition. Let p(G) be an embedding of a graph G = ( V, E) with face set F. A ~/ouh& 

linked j&e-list (DLFL) for the embedding p(G) is a 4-tuple L = (,9, $ ‘, 8, y), where 

the face list 9 consists of a set of 1 Fl sequences, each corresponds to a face in the 

embedding p(G). Moreover, the roots of the sequences are connected by a circular 

doubly linked list. The vertex arraql Y‘ has 1 V 1 items, each YT[i] is a linked list of 

pointers to the vertex nodes of the sequences in S that are labeled by the corresponding 

vertex. The edge array & has lEl items, each &[i] consists of two pointers to the two 

edge nodes of the sequences in 9 that are labeled by the corresponding edge. The 

integer 9 is the genus of the embedding p(G). 

The following theorem shows the relationship between DLFL and DCEL. 
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Theorem 3.1. The DLFL structure and the DCEL structure of an embedding of a 

graph can be converted from one to the other in linear time. 

Proof. Let p(G) be an embedding of a graph G with n vertices and m edges. Let the 

faces of p(G) be fi, fi, . . . , fh, with sizes nt , n2,. . . , nh, respectively. 

Suppose that p(G) is given by a DCEL structure. Then for each i, in time O(tii), 

we can construct a boundary walk for the face fi [25]. It is also well known that 

in time O(n) we can construct a concatenable data structure for the boundary walk 

of fi. The vertex array and the edge array in the DLFL structure for p(G) can also 

be constructed during the face traversing. The genus of p(G) can be easily computed 

using Euler’s equation. Therefore, the time needed to construct a DLFL structure from 

a DCEL structure for the embedding p(G) is bounded by 0( Et, ni) = O(m). 

Conversely, suppose that p(G) is given by a DLFL structure. Then traversing the 

boundary walk for each face f; can be obviously done in time O(q) because the 

operation NEXT on a sequence can be done in time 0( 1). By traversing boundary 

walks for all faces in p(G), we can decide for each edge e of G the fields 6, K,Ft, F2, 

Pt , and PI in the DCEL structure for p(G). For example, suppose that ele2 is a subpath 

on the boundary walk of a face f in p(G), where et = (v, u) and e2 = (u,w) are two 

edges in G, then we can assign ei( 6 ) = L’, el( I$) = u. Once the fields et( 6) and 

et( 6) are decided, we have immediately et(Fl ) = f and el(Pz) = e2. In this way, all 

fields of the DCEL will be filIed out after the boundary traversing of all faces in p(G). 

Therefore, the DCEL structure for p(G) can be constructed in time 0(x;=, ni) = O(m) 

from the DLFL structure for p(G). 0 

Corollary 3.2. A DLFL structure for an embedding of a graph can be built in linear 

time and requires linear storage. 

For those operations that are supported by the DCEL structure efficiently, the DLFL 

structure has equally good performance. 

Theorem 3.3. Based on the DLFL structure, the operation FACE-TRACE(f) can be 

done in time linear to the size of the&&e f, and the operation VERTEX-TRACE(v) 

can be done in time linear to the degree of the vertex v. 

Proof. Let v be an arbitrary node in the sequence for the face f in a DLFL structure 

for p(G). Using the NEXT operation on the sequence, which can be done in time 

0( 1 ), we can easily traverse the boundary walk of f in time linear to the size of the 

face f. 

Now we consider the operation VERTEX-TRACE(v). Let eavel be an arbitrary face 

corner in the embedding p(G), which can be found in constant time from the vertex 

array of the DLFL structure for p(G). Note that we must have ei = (v, W) for some 

vertex W. Start from this edge ei incident on a. From the edge array of the DLFL struc- 

ture, we can find in constant time the other edge node labeled el and the corresponding 



face corner et~‘e2. Therefore, the edge e2 must be the edge following the edge er in 

the rotation at the vertex 2:. Now apply the same technique to find the edge following 

the edge e2, and so on, until we come back to the edge er. Since in constant ttme 

we can move from the current edge to the next edge, we conclude that the operation 

VERTEX-TRACE(r) can be done in time linear to the degree of the vertex I’. 9 

It is obvious that the operation GENUS(o(G)) can be done in constant time based 

on a DLFL structure because a DLFL structure keeps the value of the genus for 

the embedding p(G). Now we show that the DLFL structure also supports the other 

embedding operations efficiently. 

Theorem 3.4. The DLFL structure supports the operations COFACIAL. INSERT, 

und DELETE in loyarithrnic tinle. 

Proof. Let o(G) be an embedding of a graph G. First note that since the size of a 

face in p(G) cannot be larger than twice of the number m of edges of the graph G. 

the logarithm of the size of a face in p(G) is always bounded by O(logrn). 

Also note that a circular rotation xcp 4 @tl of the sequence cctlp, where x and 11 

are subsequences and L’ is a node, can be done in time O(log I~tc/jl) when the node I: 

is given. In fact, the circular rotation can be implemented by the SPLIT operation of 

the sequence ;tc@ on the node L: to produce two sequences x and p, followed by the 

CONCAT operations on the sequences p, r, and 1‘. 

For the operation COFACIAL(ct, cz), where cl = eirrel, and ~‘2 = e,1>+$ are two 

face corners in p(G), we apply the operations ROOT( z’i ) and ROOT(t.2) to find the 

roots rl and ~1 of the corresponding sequences in the DLFL structure, respectively. 

This can be done in time O(logm). Now the two comers c’t and c2 belong to the same 

face in i)(G) if and only if rt = r2. 

Now consider the operation INSERT(ct,cz,e), where e is an edge to be inserted 

between the face comers ct = eicie{ and c2 = ezrzei. We first apply the operations 

ROOT(ct ) and ROOT(Q) to find the roots rl and ~2 of the sequences in the DLFL 

structure that contain the comers ct and ~‘2. There are two possible cases. 

If ~1 = ~2. then the comers cl and ~‘2 belong to the same face f‘ so mserting the 

edge r will split the face ,f into two faces and unchange the embedding genus. More 

precisely, suppose that the boundary walk of face j’ is B, = ae,cle~jk~c~e~, where 

x and p are subwalks, then inserting the edge e will result in two faces with the 

boundary walks B; = xel clec2ei and B;’ = Bezczeule{, respectively. After a possible 

circular rotation in O(logm) time on the sequence for the face ,f‘ in the DLFL struc- 

ture, we obtain the sequence B,. Now the two sequences B; and B;’ can be obtained 

as follows: first we apply SPLIT to the sequence Bf on node e{ to produce two sub- 

sequences relzll and pelu2ei. Apply another SPLIT to the sequence /je,l,lei on node 

ei to produce a sequence flero2. Then the sequence B; can be obtained by apply- 

ing the operation CONCAT on the sequences rel~‘t, e, ~‘2, and pi, and the sequence 

B;’ can be obtained by applying the operation CONCAT on the sequences Per1.2, t’, 
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~1, and e{. The other updatings on the DLFL structure are straightforward. Since we 

have only applied a constant number of sequence operations, each taking time at most 

O(logm), we conclude that in this case, the INSERT operation can be done in time 

O( log m). 

If ~1 # ~2, then the face corners ci and c2 belong to different faces cteivie{ and 

/3ezuzei, where a and B are subwalks. Therefore, inserting the edge e will merge these 

two faces into a larger face 

and increase the embedding genus by l-. The sequence for this larger face can be ob- 

tained by first applying the operation SPLIT on the sequences aelvle/l and pezv2ei to 

produce sequences Xelvi and fle2u2, then applying the operation CONCAT to concate- 

nate the sequences aei vi, e, ~2, ei, Pe2v2, e, ~1, and e{. Since only a constant number of 

sequence operations are applied, each taking time O(logm), in this case the INSERT 

operation can also be done in time O(logm). 

The DELETE(e) can be done similarly. Given the edge e to be deleted from the 

embedded graph, we first get from the edge array of the DLFL structure the two edge 

nodes labeled e and use ROOT operation to check whether the two edge nodes belong 

to the same face in the embedding. If the two edge nodes belong to different faces 

ae and De of the embedding, then deleting the edge e will merge the two faces into 

a single face KP with the embedding genus unchanged. The sequence for this new 

face can be obtained by a constant number of SPLIT and CONCAT operations on 

the sequences ae and be. If the two edge nodes labeled e belong to the same face 

Geye, then deleting the edge e will break the face into two faces 6 and y and decrease 

the embedding genus by 1. The sequences for these two faces can be obtained by a 

constant number of SPLIT operations on the sequence heye. Therefore, the operation 

DELETE(e) can be done in time O(logm). 

This completes the proof of the theorem. 0 

4. Embeddings on high genus surfaces 

The problem “given a graph G and an integer k, construct for G an embedding 

of genus k” in its general form is NP-hard [27]. In fact, even for planar graphs, it 

is unclear how an embedding of genus k > 0 can be constructed. In this section, 

we present an efficient algorithm that, given a graph G of n vertices and m edges, 

constructs for G an embedding of genus at least p( G)/4, where P(G) = m - n + 1 is 

the cycle rank of the graph G. Note that by our assumption that every vertex of G 

has degree at least 3, the cycle rank j?(G) is at1 least as large as n/2 + 1. We will use 

this result in the next section to show how an embedding of genus k is constructed 

for a large class of graphs and for a large range of integers k. 

Let u be a vertex of degree d in a graph G. We say that we spfit the vertex o into 

two vertices 01 and 02 of degree d’ + 1 and d - d’ + 1, respectively, if we replace 
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the vertex 1’ in the graph G by two adjacent new vertices ~‘1 and ~‘2 such that the 

vertex ~‘1 is of degree d’ + 1 and adjacent to c2 and d’ of the original neighbors of c, 

and that the vertex ~‘2 is of degree d - d’ + 1 and adjacent to cl and the rest d - d’ 

original neighbors of 2’. Note that a splitting operation on a vertex of a graph does not 

change the cycle rank of the graph. The inverse operation of vertex splitting is edge 

contruction which deletes an edge e = {u, LI} as well as the two vertices u and I‘ and 

adds a new vertex IV that is adjacent to all original neighbors of u and I’. 

The edge contraction operation can be extended to an embedding of the graph G. 

Let p(G) be an embedding of the graph G such that the rotations at the two ends ~1 

and I’ of the edge r are 

u:c,u~.Li2 . ...) IAs and 2::u,vt,7~2 ,..., Go 

respectively. The contraction of the edge e in the embedding p(G) is an embedding 

of the graph from the graph G by contracting the edge e in which every vertex 

has the same rotation as in p(G) except the new vertex IV, whose rotation is I+: ~1,. . , u,. 

~‘1,. . , 0,. It is easy to see that edge contraction operation does not change the embed- 

ding genus. 

The following definitions apply as well to disconnected graphs in which vertex degree 

may be less than 3. An adjacency mutching in a graph H is a partition of edges of H 
into groups of one or two edges such that if two edges are in the same group then they 

have an endpoint in common. A muximum adjacency matching in H is an adjacency 

matching that maximizes the number of two-edge groups. A maximal suspended chuin 

C in H is a simple path in H such that all interior vertices of C have degree 2 in H 

and both end-vertices of C have degree not equal to 2. 

Let G be a 3-regular graph and H a spanning subgraph of G. For each degree 2 

vertex c in H, the unique edge in G -- H that has L’ as an endpoint will be called “the 

edge associated with u”. 

The algorithm is presented in Fig. 1. The correctness of the algorithm is established 

based on the following lemmas. 

Lemma 4.1. The graph Ho in Step 4 has u one-fuce embedding p(Ho) whose genus 

is equal to the number of two-edge groups in the ma.\-imum adjacency mutching -/ii. 

Proof. Let Q = {et,ei,. , e,,ei}, where ei and e( are in the same two-edge group in 

the matching I 4’. We start with an arbitrary embedding of the spanning tree T, which 

is a one-face embedding. We then inductively insert the two edges eI and e: in each 

two-edge group in -42 into the one-face embedding such that the first edge r, splits the 

face into two faces, and the second edge e: merges the two new faces into a single 

large face and increases the embedding genus by 1. This is always possible since after 

inserting the first edge ei that splits the single face, the two sides of the edge e, must be 

on the boundary of the two new faces. Thus, at each endpoint of the edge ei, there are 

at least two face corners that belong to different faces. Now the second edge ei shares 

a common endpoint U, with ei. Thus, after an arbitrary insertion of the other endpoint 
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Algorithm 1. 

Input: A graph G of n vertices and m edges. 

Output: An embedding for G of genus at least (m - n + 1)/4. 

5. 

6. 

7. 

a. 

Use vertex splitting to convert the graph G into a 3-regular graph H; 

Construct a spanning tree T of II; 

Construct a maximum adjacency matching M in the co-tree H - T. 

Let Q be the set of all edges that are in the two-edge groups in the 
matching M. Construct a one-face embedding p(&) for the graph 

Ho =T+Q; 
Let L: = {Ci,Cz,..., Ch} be the list of all maximal suspended chains 
in Ho; 

for each maximal suspended chain Ci in the list C 

case 1. Ci has at most two interior vertices. 
If there is a way to insert the edges associated with the 
interior vertices of C; and increase the embedding genus, 
then insert the edges and increase the embedding genus. 
Let Hi and p(Hi) be the resulting graph and embedding, 
respectively 
Otherwise, let Hi = Hi-1 and p(Hi) = p(Hi-1). 
case 2. Ci has more than two interior vertices. 
Pick the first three consecutive interior vertices v, u, and w 
on the chain C, such that the vertex 21 is between the vertices 
v and w on the chain. Insert the edge associated with u. If 
inserting u does not increase the embedding genus, insert 
one of the edges associated with v and w to increase the 
embedding genus. Let Hi and p(H;) be the resulting graph 
and embedding, respectively. 
If any of the above edge insertion breaks a maximal sus- 
pended chain C,, i < j, in the list t, then replace the chain 
C, in the list L: by the two shorter chains and increase h by 
1. 

Arbitrarily insert the edges of H that are not used in Step 6. Let the 
resulting embedding of the graph H be p(H). 

In the embedding p(H), contract those edges resulted from the vertex 
splitting operations in Step 1. The resulting embedding is an embed- 
ding for the graph G. 

Fig. I. Constructing an embedding on a high genus surface. 

of ei, we can always properly insert the endpoint Vi of ej so that the two endpoints of 

e( are inserted into face comers belonging to different faces. Consequently, the second 

edge ei merges the two new faces into a single large face and increases the embedding 

genus by 1. After the insertions of all the edges in the set Q in this way, we end up 

with a one-face embedding p(Ho) of genus q for the graph HO = T + Q. I7 
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Lemma 4.2. The graph Hh constructed bqj Step 6 in Algorithm 1 is a spanning .sub- 

graph of H in which no vertex has degree 1. Moreotier, ,for each degree 2 t1erte.x in 

Hh, ut most one qf its neighbors is of degree 2. 

Proof. First observe that since the graph G is simple, the 3-regular graph H is also a 

simple graph. The graph Hh is a spanning subgraph of H because Hh contains T + Q 

as a subgraph and T is a spanning tree of the graph H. 

Suppose that 2: is a degree 1 vertex in Hj,. The vertex P cannot have a selfloop 

because the graph H is simple. Let et and e2 be the two distinct edges in H - Hh that 

share 2: as a common endpoint. Note that et and e2 are not contained in the set Q. 

Thus, the two-edge groups in ,K plus the pair {er,e2} would form a larger adjacency 

matching in the co-tree H - T, contradicting the definition of .i4. 

Finally, as done by case 2 in Step 6, for every three consecutive interior vertices 

on a maximal suspended chain in the list 9, at least one associated edge is inserted, 

thus at least one of these three vertices has degree 3 in the graph Hh. Also note that 

each edge inserted in Step 6 is a maximal suspended chain without interior vertices. 

In conclusion, the graph Hh contains no maximal suspended chain with more than two 

interior vertices. 0 

We need to verify the validity of case 2 in Step 6. Let er.e,,, and e,,. be the three 

edges associated with the three vertices c.u, and IV, respectively, in case 2 of Step 6. 

Lemma 4.3. In case 2 of Step 6 in Algorithm 1, either N proper insertion of the edcge 

e,, increases the embedding genus, or an insertion of the edge e, jkllo~r~ed bj, N proper 

insertion of one of the edges e,- and e,, increases the embedding genus. 

Proof. Since CL is a maximal suspended chain in the graph Hi-l, we can talk about 

the two “sides” of the chain Ci in the embedding p(H,_,). If the two sides of the 

chain Ci belong to different faces in the embedding p(H,_, ), we can insert the edge 

e,, so that the embedding genus increases. On the other hand, if the two sides of the 

chain C, belong to the same face of the embedding p(H,_ 1) and inserting the edge 

e,, does not increase the embedding genus, then the edge e,, must split a face in the 

embedding p(H,_l) into two new faces f 1 and f 1 such that one side of the chain Ci 

is split by e,, into two subwalks WI and W2, where W, belongs to the boundary walk 

of the new face j;, i = 1,2, and that each of the subwalks W, and Wz contains one 

of the vertices L‘ and w (note that the other endpoint of the edge e, can be neither 

I‘ nor u’ because the graph H is a simple graph). See Fig. 2. On the other hand, the 

Fig. 2. Inserthg the edge e,, splits a face. 
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entire other side of the chain Ci still belongs to the same face in the new embedding. 

Therefore, for at least one of the vertices v and w, its two comers in the new embedding 

belong to different faces. Thus, we can insert the associated edge for this vertex properly 

to increase the embedding genus. 0 

Lemma 4.4. The embedding p(H) of the graph H constructed by Step 7 of Algo- 

rithm 1 has genus at least fl(H)/8. 

Proof. Suppose that the graph H has no vertices. We count how many edges are not 

inserted in Step 6. By Lemma 4.2, the graph Hh is a spanning subgraph of H with no 

degree 1 vertices. 

Since the graph H is 3-regular, every vertex in the graph Hh has degree either 2 or 

3. Let n2 and n3 be the number of vertices of degree 2 and 3, respectively, of the graph 

HJ,. Then n2 + n3 = no. We say that a degree 2 vertex v in Hh is covered by a degree 

3 vertex w in Hh if z’ and w are adjacent in Hh. By Lemma 4.2, in the graph Hh, 

each degree 2 vertex is adjacent to at most one degree 2 vertex. Thus, every degree 

2 vertex in Hh is covered by at least one degree 3 vertex. Since each degree 3 vertex 

in the graph Hh can cover at most three degree 2 vertices, we have n3 >n2/3. Thus, 

no >n2 + q/3. This gives 3no/4 3n2. Since each edge in H - Hh is associated with 

exactly two degree 2 vertices in the graph Hh, we conclude that the number of edges 

in H - Hh is bounded by 3n0/8. In other words, the cycle rank fi(Hh) of the graph Hh 
is at least P(H) - 3no/8. 

By Lemma 4.1, the genus of the embedding p(H0) is equal to the number of two- 

edge groups in the matching J&‘. Moreover, according to Step 6 of Algorithm 1, the 

embedding genus is increased by at least 1 by inserting at most two edges in H -HO. 
Therefore, the genus of the embedding p(Hh) is at least half of the cycle rank p(Hh). 

Since the embedding p(H) constructed by Step 7 of Algorithm 1 has genus at least 

as large as that of the embedding p(Hh), we conclude that the genus of the embedding 

p(H) is at least P(Hh)/2>P(H)/2 - 3no/16. Since the graph H is 3-regular, P(H) = 

no/2 + 1. Thus, the embedding p(H) has genus at least no/16 + i, which is larger than 

B(H)/8. 0 

The above analysis enables us to derive the following theorem, which claims that 

given a graph, an embedding of high genus for the graph can always be constmcted 

efficiently. A number of applications of this theorem will be demonstrated in the next 

section. 

Theorem 4.5. Algorithm 1 runs in time O(m logn) and constructs for a given graph 
G an embedding of genus at least P(G)/8. 

Proof. Since vertex splitting does not change the cycle rank of a graph, the 3-regular 

graph H constructed in Step 1 has the same cycle rank as the graph G. Moreover, 

since edge contraction on an embedding does not change the embedding genus, the 



embedding for the graph G constructed in Step 8 of Algorithm 1 has the same genus as 

the embedding p(H). By Lemma 4.4, the embedding of G constructed by Algorithm 1 

has genus at least fl(G)/S. 

Now we study the complexity of Algorithm 1. First note that the number of edges 

in the graph H is bounded by O(m), where nz is the number of edges in the graph G. 

Steps 1 and 2 can be easily done in time O(m) under any reasonable data structure 

for graphs. To construct a maximum adjacency matching in the co-tree H ~ T, note 

that since H is 3-regular, each connected component in H - T is either a simple cycle 

or a simple path. Moreover, it is easy to see that an adjacency matching in H ~ T 

is maximum if and only if it leaves at most one edge in a one-edge group for each 

connected component in H ~ T. Thus, the maximum adjacency matching // can be 

constructed in linear time. 

To construct the embedding given by Step 7, we start with an arbitrary embedding 

of the spanning tree T, which can be constructed in linear time. Now insertion and 

deletion of an edge in Steps 4-7 takes time O(logn) using the data structure DLFL 

introduced in Section 3. Also note that in Step 6, there are only four possible ways to 

insert an associated edge since each endpoint of the edge has degree 2 in the current 

embedding. Therefore, the conditions in Step 6 can be tested in O(logf7) time. In 

conclusion, each associated edge can be checked by case I at most twice and each 

checking takes time O(logn), and case 2 inserts at least one associated edge in time 

O(logn) for each execution of the for loop body in Step 6. 

The edge contraction in Step 8 is particularly easy if we adopt the data structure 

DLFL: we only need to traverse all faces in the embedding and contract the edges 

resulted from Step 1 on the boundary of each face. 

This completes the proof that the time complexity of Algorithm 1 is bounded by 

O(m log 17). n 

Algorithm 1 constructs an embedding for a graph on a high genus surface. In fact, 

this embedding is a good approximation of a maximum genus embedding of the graph. 

Proof. By Euler’s formula, the maximum genus of a graph G is bounded by fi(G)/2. 
-- 
11 

5. Embeddings on the surface of genus k 

Using the new data structure introduced in Section 3 and the efficient algorithm 

developed in Section 4, we will show in this section that, in contrast with the general 

NP-hardness of the graph minimum genus problem, for a large range of integers k 
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Algorithm 2. 

Input: Embeddings pr (G) and pz(G) and an integer y between y1 and yz, 
where y1 and yz are genera of pi(G) and pz(G), respectively. 

Output: An embedding p(G) of G of genus y. 

1. If 7 < min{w , 72) or y > max{yr, yz}, Stop. 

2. If y = y1 then output pi(G) and Stop 
Otherwise, let p(G) = p1 (G); 

3. for each vertex o of the graph G 

Let the rotation at v in the embedding pz(G) be 
v : Ul, u2,. . . , up. 

for i= 2 to F do 

Delete the edge ei = {v,u~} from the embedding 
p(G), then reinsert the edge ei into the embedding 
so that the edge ei follows the edge ei-1 in the 
rotation at the vertex v, and the position of the 
other endpoint of ei is unchanged. 
If y equals the genus of the current embedding 
p(G), output p(G) and Stop. 

Fig. 3. Moving from one embedding to another embedding. 

and for a large class of graphs G, the problem “given a graph G and an integer k, 

construct a genus k embedding for G” can be solved efficiently. 

We start with a very useful algorithm that efficiently moves continuously from 

one embedding of a graph to another embedding of the same graph. This algorithm 

will be crucial in many cases for finding graph embeddings on a surface of a given 

genus. 

Theorem 5.1. There is an O(m logn) time algorithm that, given two embeddings 

p*(G) and pz(G) of a graph G of m edges and n vertices and given an integer 

y such that y is between the genera of p](G) and pz(G), constructs an embedding of 

genus y jbr the graph G. 

Proof. Consider the algorithm given in Fig. 3. 

Since each edge deletion on an embedding can decrease the embedding genus by 

at most 1 and never increase the embedding genus, and since each edge insertion to 

an embedding can increase the embedding genus by at most 1 and never decrease the 

embedding genus, each execution of the body of the inner for loop in Algorithm 2 can 

change the embedding genus by at most 1. Therefore, Algorithm 2 must stop at some 

point and end up with an embedding p(G) of G of genus exact y if y is between the 

genera yi and y2 of the embeddings p1 (G) and pi(G), respectively. 

Note that if the data structure DLFL introduced in Section 3 is used for the embed- 

dings pi(G) and pz(G), then the genera yi and y2 can be computed in constant time. 
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Algorithm 2 consists of traversing the rotation at each vertex in the embedding j)?(G) 

and rearranging the rotation at each vertex in the embedding pi(G). 

The traversing of the rotation at a vertex takes time proportional to the degree of the 

vertex, if the data structure DLFL is used. Thus, the total time spent by Algorithm 2 

on vertex rotation traversing is bounded by O(m), where IYI is the number of edges of 

the graph G. 

Each edge endpoint at a vertex in the embedding /II(G) is rearranged by an edge 

deletion followed by an edge insertion. Therefore, the number of edge insertions and 

edge deletions performed on each vertex of G is proportioned to the degree of the 

vertex. Thus, the total number of edge insertions and edge deletions performed by 

Algorithm 2 is proportional to the number m of edges of the graph G. Using the data 

structure DLFL, each such operation takes time O(logn). 

We conclude that the total running time of Algorithm 2 is bounded by O(m logn). 
! . 

Corollary 5.2. There is an algorithm such that given tl<o embeddings pI (G) und 

~-J(G) of genus ~1 and 72, respectiveI]*, jbr a graph G, 71 < ;‘l, the algorithm constructs 

in time O(max{ I;‘, - y2lm,mlogn}) ‘/2-:‘1+1 embeddings p:.,(G), p:,,+,(G),....p,,(G) 

fbr the graph G, such that the genus of the embedding pi(G) is i, ,fhr ;‘I <i <;b2. 

Proof. According to Theorem 5.1, moving from embedding p1 (G) to embedding p2( G ) 

takes time O(m log n). Printing out an embedding for the graph G takes time 0( rn). 

u 

The algorithm in Corollary 5.2 is optimal when l;‘2 - ;‘I 1 = II(logn) since printing 

out a single embedding of the graph G would take time at least n(m). 

Theorem 5.3. There is an O(n log n) time algorithm such that given a plunar graph 

G and an intesger k <<B( G)/8, the algorithm constructs an embedding qf genus k ,fi)r 

the graph G. 

Proof. The algorithm first constructs a planar embedding for the graph G in linear 

time [21], then constructs an embedding of genus at least /I(G)/8 for the graph G 

in time O(m logn) = O(n logn), according to Theorem 4.5. Now the theorem follows 

directly from Theorem 5.1. 0 

If both minimum genus embedding and maximum genus embedding of a graph can 

be constructed efficiently, then so is its any “intermediate genus” embedding. 

Theorem 5.4. Let W be a cluss of graphs lvhose minimum yenus embeddiq und 

muximum genus embedding can be constructed in time O(m log n), then the problem 

“given u qruph G and an integer k, construct a genus k embedding for G” cun be 

.solved in time O(m log n) for the class V. 
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Theorem 5.4 covers many important graph classes, in particular many graph classes 

studied in the interconnection networks, such as complete graphs, hypercubes, star 

graphs, and all 4-connected planar graphs. (For a comprehensive discussion of these 

graph classes, we refer our readers to Leighton’s authoritative book [23].) 

Theorem 5.5. Let 9 be (I class of graphs whose minimum genus embedding can be 

constructed in polynomial time, then the problem “given a graph G and an integer 

k, construct a genus k embedding for G” can be solved in polynomial time for the 

class 9. 

Proof. This is because that a maximum genus embedding of a graph G can be con- 

structed in time O(n4 log6 n) [17]. 0 

Theorem 5.5 covers in particular the class of graphs whose minimum genus is 

bounded by a fixed constant [12,14]. 

Now we study the graph embeddings that are related to the “average genus” of the 

graphs. Each graph G is associated with a sequence of integers yo,gt, g2,. . . , called 

the genus distribution of G, where gi is the number of embeddings of genus i for the 

graph G. The average genus of G is defined to be the value 

I/avg(G) = CL=0 i ’ gi 
Ci=OYi 

Thus, an embedding of genus larger than yavg(G) can be regarded as an “upper genus 

embedding” while an embedding of genus smaller than Y&G) can be regarded as a 

“lower genus embedding”. The average genus of a graph plays an important role in 

the recent study of topological invariants of graphs [2,5-7, 191. 

Intuitively, the average genus of a graph can be computed by probabilistic sampling, 

In the following, we will discuss how this idea can be precisely formulated. We first 

prove two lemmas. We will denote by &J = cizo gi the total number of embeddings 

of the graph G. 

Lemma 5.6. For any real number F > 0, there are at least (E/( 1 + E))& embeddings 

of the graph G that are of genus f (1 + .s)~~~s(G). 

Proof. Assume the contrary. Then there are more than ro - (a/(1 + E))& = 

(l/( 1 + E))& embeddings of G of genus larger than ( 1 + s)y,,$(G). Thus 

This contradiction proves the lemma. 0 

Lemma 5.7. For any real number E > 0, there are at least (v/4)ro embeddings of the 

graph G that are of genus >,( 1 - c)y,,,(G). 
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Proof. Assume the contrary. Then there are less than (~/4)&; embeddings of G of 

genus >( 1 - E)>J&G). Let ;jmax(G) be the maximum genus of the graph G. Recently, 

Chen et al. [9] have proved that ymax(G) <4;,,,,(G). We have 

< (1 - ~)yav~(G)rc + 4i’avs(G)(&/4)r<; 

r, 

= &(G). 

This contradiction proves the lemma. 0 

We present two randomized algorithms with small error probability that construct 

graph embeddings related to graph average genus. We will use uo~nd(;*,,~(G)) to 

denote the unique integer in the semi-open interval (ygyg(G) - OS,;,,,,(G) + 0.51 on 

the real line. 

Theorem 5.8. For any red number (5 > 0, there is u time 0(m2) rundomi-_ed ul- 

yorithm such that @en u gruph G und an integer k, the al~qorithm either reports 

k # rowxl(~aYg(G)) with error probability less thun ii, or constructs an emheddin~~ of 

yenus k _fi)r the gruph G. 

Proof. Let e be the base of natural logarithm. Let L’ be a constant such that e-“ < iij2. 

Let m be the number of edges of the graph G. By Lemma 5.6, there are at least 

[( l/nz)/( 1 + l!m)]& = [l/(m + l)]Tc embeddings of the graph G that have genus 

< (1 + 1 ,!m)yavs( G). Therefore, if we randomly pick 4cm embeddings of G, the prob- 

ability that all these embeddings are of genus larger than (1 + ljm)~~,,(G) is bounded 

by 

(1 - l/(m + 1 ))4CM < [( 1 - l/(m + 1 ))“+‘lC < e-” < ii;2 

By Lemma 5.7, there are at least [1/(4m)]r G embeddings of the graph G that have 

genus >( 1 - l/m)y,,g(G). Thus, if we randomly pick 4cm embeddings of G, the 

probability that all these embeddings are of genus less than (1 - l/m);~,,,(G) is bounded 

by 

( 1 - 1/4m )4cm < e-’ < 612. 

Therefore, if we randomly pick 4cm embeddings of the graph G, with probability 

larger than 1 - 6, we will have one embedding p,(G) of genus 71 <( 1 + I/m)yavc(G) 
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and one embedding pz(G) of genus y2 a( 1 - l/m)~~~s(G). Note that yavs(G) <(m - 

n + 1)/2 -=c m/2. 2 Therefore, yt < y,,,(G) + 0.5 and y2 > yavs(G) - 0.5. Since both yi 

and y2 are integers, we must have yr <round(y,,,(G)) and y2 >round(y,,,(G)). 

In conclusion, if k = ro~zd(y,,~( G)), then with probability larger than 1 - 6, we will 

get two embeddings pi(G) and p2(G) from a random sample set of 4cm embeddings 

such that the genus of pi(G) is not larger than k and the genus of p2(G) is not 

smaller than k. Now a genus k embedding of the graph G can be constructed by 

applying Theorem 5.1. The algorithm obviously runs in time O(m2). 0 

With a similar argument, we can also show that constructing an upper genus em- 

bedding for a graph, i.e., an embedding of genus at least as large as its average genus, 

is feasible if we allow a small error probability. 

Theorem 5.9. For any real number 6 > 0, there is a polynomial time randomized 

algorithm such that given a graph G and an integer k, the algorithm either reports 

k < round(y,,,(G)) with error probability less than 6, or constructs an embedding of 

genus k for the graph G. 

Proof. Similar to the analysis in Theorem 5.8, we first construct an embedding p(G) 

of genus bounded by round(y,,,(G)) from a random sample set of O(m) embeddings. 

We also construct a maximum genus embedding p’(G) for the graph G in polynomial 

time [17]. Now we apply Theorem 5.1. 0 

The error probability 6 in Theorem 5.9 can actually be bounded by 6 = 0(2@‘) for 

any constant d. In fact, if instead of using a random sample set of O(m) embeddings, 

we use a random sample set of (m + l)d+’ embeddings, then the error probability is 

bounded by 

(1 _ l/(m + 1p+u”+’ < e-(“+‘)” <2-m”, 

6. Concluding remarks 

We have developed a new data structure for graph embeddings. The data structure 

is superior to the existing data structures and efficiently supports all on-line opera- 

tions for graph embeddings. We have shown a number of applications of the new 

data structure, including an O(m log n) time algorithm for constructing embeddings of 

graphs on surfaces of high genus, and an O(m logn) time algorithm for continuously 

moving from one embedding of a graph to another embedding of the same graph. We 

have demonstrated efficient algorithms for constructing all kinds of embeddings for 

planar graphs. Efficient randomized algorithms have also been developed to construct 

graph embeddings on surfaces of genus larger than the average genus of the graph, 

‘Without loss of generality, we assume that the number n of vertices of the graph is at least 2. 
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and embeddings on surfaces of genus equal to the average genus of the graph. Our 

computational results indicate that there is a very interesting and rich computational 

structure related to graph embeddings, which definitely deserves further investigation. 

Our results show that construction of an embedding of a graph on high genus surfaces 

is in general computationally feasible. A closely related problem is the complexity 

of constructing low genus embeddings for a graph. It is unknown whether there is a 

polynomial time algorithm that approximates the minimum genus embedding of a graph 

to a constant ratio. A recent result by Chen et al. [lo] partially hints the difficulty of 

approximating graph minimum genus embeddings: for any real number E, 0 < c< 1, the 

problem of embedding a graph G of n vertices into a surface of genus ym,,,(G) + II’ is 

NP-hard. 
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