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Abstract

The complexity of embedding a graph into a variety of topological surfaces is investigated.
A new data structure for graph embeddings is introduced and shown to be superior to the
previously known data structures. In particular, the new data structure efficiently supports all
on-line operations for general graph embeddings. Based on this new data structure, very efficient
algorithms are developed to solve the problem “given a graph G and an integer &, construct a
genus & embedding for the graph G” for a large range of integers & and for a large class of
graphs G.

1. Introduction

Graph embedding is a fundamental yet difficult problem, and it has many appli-
cations in diverse problem domains. The most studied is graph planar embeddings.
The well-known Hopcroft-Tartjan algorithm shows that a planar embedding of a planar
graph can be constructed in linear time [21]. Graph planar embeddings have been stud-
ied extensively in a variety of areas such as computational geometry [25] and graph
drawing [11].

On the other hand, the computational complexity of constructing embeddings of a
graph into non-planar surfaces is not well understood yet. The complexity of the graph
minimum genus problem remained as a basic open problem in Garey and Johnson’s
list [18] for ten years until Thomassen proved that the problem is NP-complete [27].
Algorithms have also been developed for embedding a graph into a variety of surfaces.
It is demonstrated by Furst et al. [17] that a maximum genus embedding of a graph
can be constructed in time O(n* log® n). Filotti [13] described an O(#®) time algorithm
for embedding cubic graphs of minimum genus 1 into the torus. Filotti et al. [14]
derived an O(»°M)) time algorithm that embeds graphs of minimum genus <k into
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a surface of genus k, which was improved recently by Djidjev and Reif [12] who
developed an algorithm of time O(2°%)'#n°()), Frederickson and others have considered
the complexity of graph embeddings that give the minimum “hammock number” or
minimum “face cover”, and studied their applications to other computational graph
problems [15, 16]. Recently, Mohar described a linear time algorithm for embedding
graphs of crosscap number 1 into the projective plane [24], and Chen described a linear
time algorithm for embedding graphs of bounded average genus [2]. Chen et al. have
also studied approximation algorithms for graph minimum genus embeddings [10].

An open problem posed by Furst et al. [17] is to determine the complexity of graph
embeddings into a general surface. There are several theoretical and practical reasons
why this problem should be studied. First, the distribution of graph embeddings into
topological surfaces provides a very useful isomorphism heuristic [5-7, 19]. Secondly,
embedding a graph into a certain surface helps efficiently solving other computational
graph problems [2, 4, 8, 15-17, 25]. Finally, study of graph embeddings has direct
applications in the areas such as circuit layout and VLSI design.

In this paper, we will develop a number of cfficient algorithms that embed a graph
into a variety of surfaces. We start by introducing a new data structure for graph
embeddings. We demonstrate that the new data structure is superior to the previously
known data structures for graph embeddings. In particular, the new data structure ef-
ficiently supports all on-line operations for general graph embeddings. Based on this
new data structure, we present an O(mlogn) time greedy algorithm that constructs
an embedding of genus at least (m — n + 1)/8 for a graph G of r vertices and m
edges. Then we show how we can continuously move in time O(mlogn) for a graph
from one embedding to another embedding. This implies, in particular, that there is an
O(mlogn) time algorithm that, given a planar graph G of # vertices and m edges and
given an integer k <(m—n+ 1)/8, constructs an embedding of genus k for G. We will
also study the complexity of embedding a graph into a surface of “average genus”,
which is an important topological invariant of a graph [5~7]. We present an O(m?)
time randomized algorithm that, given a graph G and an integer £, either reports with a
very small error probability that & is not equal to the average genus of G, or produces
an embedding of genus £ for G. These computational results demonstrate a very rich
and interesting structure for computational complexity of graph embeddings.

The paper is organized as follows. Section 2 is an introduction to the preliminaries
and definitions for the theory of graph embeddings. The new data structure is described
in Section 3. An efficient algorithm is presented in Section 4 to embed a graph into
a high genus surface. Section 5 discusses the complexity of embedding a graph into a
surface of genus k, for a variety of k. Concluding remarks are given in Section 6.

2. Preliminaries

It is assumed that the reader is somewhat familiar with the fundamentals of graph
embeddings. For further description, see [20].
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Unless stated explicitly, all graphs in our discussion are supposed to be connected
simple graphs in which each vertex is of degree at least 3. This assumption does not
lose any generality because “smoothing” a degree 2 vertex or removing a degree |
vertex has no effect on topological properties of a graph [20]. An embedding must
have the “cellularity property” that the interior of every face is simply connected.

A rotation at a vertex v is a cyclic permutation of the edge-ends incident on v. A
list of rotations, one for each vertex of the graph, is called a rotation sysrem.

An embedding of a graph G in an orientable surface induces a rotation system,
as follows: the rotation at vertex ¢ is the cyclic permutation corresponding to the
order in which the edge-ends are traversed in an orientation-preserving tour around r.
Conversely, by the Heffter—-Edmonds principle, every rotation system induces a unique
embedding of G into an orientable surface [20]. This bijectivity enables us to study
graph embeddings based on graph rotation systems, a more combinatorial structurec.
We will interchangeably use the phrases “an embedding of a graph” and “a rotation
system of a graph”.

Edge insertion and edge deletion are among the most important and fundamental
operations for graph embeddings. Most proposed graph embedding algorithms [10. 13,
14, 17, 21] are based on edge insertion and edge deletion. We first discuss the cffect
of inserting a new edge into an embedded graph.

Let p(G) be an embedding of a connected graph G. If a subpath e e, appears in
the boundary walk of a face f in p(G), where ¢) = (v, w) and e; = (w,2) are two
edges, then we say that ejwes is a corner of the face. If the content is apparent. we
simply say that the vertex w is a corner of the face f.

Suppose that we insert a new edge ¢ = (u.v) into the embedding p(G), where u
and v are vertices of (. There are two possible cases.

If the edge-ends of e at « and v are inserted between two comners of the same face f,
then the new edge e splits the face f into two faces. More precisely, if the boundary
walk around the face f in p(G) is of the form uxvfu, where x and f are subwalks,
then the new edge e splits the boundary walk of f into two walks: uaveu and tfuev,
resulting in two new faces. In this case, the embedding genus remains the same.

If the edge-ends of ¢ at # and v are inserted between comers of two different faces
fi and f5, then both these faces are merged by e into one larger face. In particular,
suppose that the edge e runs from the corner of u in face boundary walk wow of /i to
the corner of ¢ in face boundary walk vfv of f», then the merged face has boundary
walk wevfreuxu. In this case, the embedding genus is increased by 1.

Edge deletion is the inverse operation of edge insertion. Let ¢ be an edge to be
deleted from the embedding p(G). If e is on the boundary of two different faces ze
and efS, where o and p are subwalks, then deleting the edge e will merge these two
faces into a larger face off and keep the same embedding genus. If the two sides of
¢ are on the boundary of the same face exef, then deleting the edge e will result in
two new faces a and f and decrease the embedding genus by 1.

Data structures for sets from a universe with a total ordering have been studied
extensively [1]. The discussions can be easily generalized to sequences from a universe
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without a total ordering. Let % be a universe that may not have a total ordering.

A sequence is an ordered list of elements from %, in which each element of % may

appear more than once. Each element appearance in the sequence will be called a node.

For each sequence, we also assume a root that contains the name of the sequence.
With straightforward modifications in the discussion for data structures for sets from

a universe with a total ordering [1], a sequence can be represented by a concatenable

data structure, such as a 2-3 tree, which supports each of the following operations in

time O(log#n) on a sequence of n nodes:

e S-INSERT(r,v,x): insert the element x immediately before the node v in the sequence
rooted at r;

e S-DELETE(r,v): delete the node v from the sequence rooted at r;

o CONCAT(r|,r): take as input the roots r; and r, of the sequences L; and L,,
respectively, and output the root of the concatenated sequence L,L;;

e SPLIT(r,v): here v is a node in the sequence L rooted at » such that L = L vl,.
The output of this operation are roots of the two sequences L and L;;

o ROOT(v): return the root of the sequence containing the node v,

and each of the following operations in O(1) time:

¢ NEXT(v): return the node following the node v in the sequence containing v (the
first node is supposed to follow the last node in a sequence);

e PREC(v): return the node preceding the node v in the sequence containing v (the
last node is supposed to precede the first node in a sequence).

3. Data structures

We will evaluate the performance of a data structure for graph embeddings based

on the following graph embedding operations:
e FACE-TRACE(f): output a boundary walk of the face f.
o VERTEX-TRACE(v): output the edges incident on the vertex v in the (circular)

ordering of the rotation at v.

e COFACIAL(c),cy): return true if the two face corners ¢; and c; belong to the same
face of the current embedding and false otherwise.

e INSERT(cy,c2,e): insert the new edge ¢ between the face corners ¢; and c;.

e DELETE(e): delete the edge e from the current embedding.

¢ GENUS(p(G)): report the genus of the current embedding p(G).

A number of data structures have been proposed. Most of these data structures are
only valid for planar embeddings of a graph. Tamassia [26] proposed a data structure
that supports a special case of DELETE operation and each of the other operations in
O(logn) time on planar embedded graphs. Very recently, Italiano et al. [22] proposed
a new data structure that supports each of the above operations in O(log2 n) time on
planar embedded graphs.

None of these data structures seems to generalize to general graph embeddings.
Frequently, a rotation system of a graph is represented in the edge-list form, which for
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each vertex v contains the list of its incident edges, arranged in the order according to
the rotation at ¢. It is not difficult to see that this representation does not efficiently
support many embedding operations. Another data structure, the doubly connected edye-
list (DCEL) that has been widely used in computational geometry [25], can be directly
used for representing a rotation system of a graph. Suppose that G = (V. £) is a graph
and p(G) is a rotation system of G. A DCEL for p(G) is a table of |E| edge items.
There is a one-to-one correspondence between edges of G and edge items in the DCEL.
Each edge item consists of six fields W, ¥, Fi, f2, P, and P». For an edge e, the
fields e(}]) and e(}5) specify the two endpoints of e, the fields e(F) and e(F>) give
the “right face” and “left face” of the edge e when we traverse the edge ¢ from the
endpoint e(}]) to the endpoint e( ;). The field e(Py) (resp. e(f>)) points to the edge
item in the DCEL for the edge that follows the edge e in the rotation at e(};) (resp.
e(#3)) in p(G).

Based on the DCEL structure, the operation FACE-TRACE( f) can be done in time
linear in the size of the face f, and the operation VERTEX-TRACE(v) takes time
linear in the degree of the vertex v [25}. Moreover, the DCEL and the edge-list form
of a graph rotation system can be converted from one to the other in linear time [25].

Unfortunately, the DCEL structure does not seem to support the operations INSERT
and DELETE efficiently. An INSERT or a DELETE operation requires to update the
fields /i and/or F; for all edges on the boundary walks of the related faces, which
may take time up to O(n?).

One possible modification is to ignore the fields £y and /5 in a DCEL structure.
Indeed, a DCEL structure without the fields F; and F still gives a unique rotation
system for a graph. However, the resulting structure then does not seem to efficiently
support the operations COFACIAL and GENUS.

We introduce a new data structure and show that the new data structure efficiently
supports all the operations listed at the beginning of this section.

Each face is given by a sequence of vertices and edges that corresponds to a boundary
traversing of the face. The vertex appearances and the edge appearances in the sequence
will be called vertex nodes and edge nodes, respectively. The sequence is represented
by a concatenable data structure (e.g.. a 2-3 tree).

Definition. Let p(G) be an embedding of a graph G = (V,E) with face set F. A doubly
linked face-list (DLFL) for the embedding p(G) is a 4-tuple L = (F, ¥, &.¢), where
the face list F consists of a set of |F| sequences, each corresponds to a face in the
embedding p(G). Moreover, the roots of the sequences are connected by a circular
doubly linked list. The vertex array +" has |V| items, each ¥7[i] is a linked list of
pointers to the vertex nodes of the sequences in % that are labeled by the corresponding
vertex. The edge array & has |E| items, each &[i] consists of two pointers to the two
edge nodes of the sequences in # that are labeled by the corresponding edge. The
integer g is the genus of the embedding p(G).

The following theorem shows the relationship between DLFIL. and DCEL.
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Theorem 3.1. The DLFL structure and the DCEL structure of an embedding of a
graph can be converted from one to the other in linear time.

Proof. Let p(G) be an embedding of a graph G with n vertices and m edges. Let the
faces of p(G) be fi, f3,..., [, with sizes ny, na,...,n,, respectively.

Suppose that p(G) is given by a DCEL structure. Then for each 7, in time O(n;),
we can construct a boundary walk for the face f; [25]. It is also well known that
in time O(n;) we can construct a concatenable data structure for the boundary walk
of f;. The vertex array and the edge array in the DLFL structure for p(G) can also
be constructed during the face traversing. The genus of p(G) can be easily computed
using Euler’s equation. Therefore, the time needed to construct a DLFL structure from
a DCEL structure for the embedding p(G) is bounded by O( Zf':l n;) = O(m).

Conversely, suppose that p(G) is given by a DLFL structure. Then traversing the
boundary walk for each face f; can be obviously done in time O(n;) because the
operation NEXT on a sequence can be done in time O(1). By traversing boundary
walks for all faces in p(G), we can decide for each edge e of G the fields 1, V5, F, P,
Py, and P, in the DCEL structure for p(G). For example, suppose that eje; is a subpath
on the boundary walk of a face f in p(G), where e = (v,u) and e; = (u,w) are two
edges in G, then we can assign e;(}]) = v,e;(}4) = u. Once the fields ¢;(}]) and
e1(V3) are decided, we have immediately e;(F;) = f and e;(P,) = e;. In this way, all
fields of the DCEL will be filled out after the boundary traversing of all faces in p(G).
Therefore, the DCEL structure for p(G) can be constructed in time O(ZLl n;) = O(m)
from the DLFL structure for p(G). O

Corollary 3.2. 4 DLFL structure for an embedding of a graph can be built in linear
time and requires linear storage.

For those operations that are supported by the DCEL structure efficiently, the DLFL
structure has equally good performance.

Theorem 3.3. Based on the DLFL structure, the operation FACE-TRACE( f') can be
done in time linear to the size of the face f, and the operation VERTEX-TRACE(»)
can be done in time linear to the degree of the vertex v.

Proof. Let v be an arbitrary node in the sequence for the face f in a DLFL structure
for p(G). Using the NEXT operation on the sequence, which can be done in time
O(1), we can easily traverse the boundary walk of f in time linear to the size of the
face f.

Now we consider the operation VERTEX-TRACE(v). Let eqve; be an arbitrary face
corner in the embedding p(G), which can be found in constant time from the vertex
array of the DLFL structure for p(G). Note that we must have e; = (v,w) for some
vertex w. Start from this edge e; incident on v. From the edge array of the DLFL struc-
ture, we can find in constant time the other edge node labeled e, and the corresponding
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face corner ¢ ve;. Therefore, the edge e; must be the edge following the edge ¢; in
the rotation at the vertex v. Now apply the same technique to find the edge following
the edge e,, and so on, until we come back to the edge e;. Since in constant time
we can move from the current edge to the next edge, we conclude that the operation
VERTEX-TRACE(v) can be done in time linear to the degree of the vertex v. [

It is obvious that the operation GENUS(p(G)) can be done in constant time based
on a DLFL structure because a DLFL structure keeps the value of the genus for
the embedding p(G). Now we show that the DLFL structure also supports the other
embedding operations efficiently.

Theorem 3.4. The DLFL structure supports the operations COFACIAL, INSERT,
and DELETE in logarithmic time.

Proof. Let p(G) be an embedding of a graph G. First note that since the size of a
face in p(G) cannot be larger than twice of the number m of edges of the graph G,
the logarithm of the size of a face in p(G) is always bounded by O(logm).

Also note that a circular rotation xvff — fav of the sequence avfi, where « and f3
are subsequences and v is a node, can be done in time O(log|xvf|) when the node
is given. In fact, the circular rotation can be implemented by the SPLIT operation of
the sequence x&ff on the node v to produce two sequences « and f§, followed by the
CONCAT operations on the sequences ff, «, and .

For the operation COFACIAL(c),c2), where ¢ = ejrje] and ¢; = eatpeh are two
face corners in p(G), we apply the operations ROOT(¢) and ROOT(v;) to find the
roots # and r, of the corresponding sequences in the DLFL structure, respectively.
This can be done in time O(log m). Now the two corners ¢; and ¢, belong to the same
face in p(G) if and only if r| = ;.

Now consider the operation INSERT(c|,c2,¢), where e is an edge to be inserted
between the face corners ¢, = ejvje] and ¢; = e tres. We first apply the operations
ROOT(¢;) and ROOT(#;) to find the roots r; and » of the sequences in the DLFL
structure that contain the corners ¢; and ¢,. There are two possible cases.

If r; = r>. then the corners ¢| and ¢, belong to the same face f so inserting the
edge ¢ will split the face f into two faces and unchange the embedding genus. More
precisely, suppose that the boundary walk of face f is B, = aejv e ferrvael, where
% and 8 are subwalks, then inserting the edge e will result in two faces with the
boundary walks B; = gejvetye) and B;-’ = Bejtretef, respectively. After a possible
circular rotation in O(logm) time on the sequence for the face f in the DLFL struc-
ture, we obtain the sequence B,. Now the two sequences B; and By can be obtained
as follows: first we apply SPLIT to the sequence B; on node ¢] to produce two sub-
sequences ae vy and feyvael. Apply another SPLIT to the sequence ferv2e) on node
¢ to produce a sequence fle;v;. Then the sequence B; can be obtained by apply-
ing the operation CONCAT on the sequences ae;vy, ¢, ta, and e’z and the sequence
B;-’ can be obtained by applying the operation CONCAT on the sequences fe;ro. e,
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v;, and e}. The other updatings on the DLFL structure are straightforward. Since we
have only applied a constant number of sequence operations, each taking time at most
O(logm), we conclude that in this case, the INSERT operation can be done in time
O(log m).

If r1 # ry, then the face corners ¢; and ¢, belong to different faces aejvie] and
Pervael, where o and f are subwalks. Therefore, inserting the edge e will merge these
two faces into a larger face

/
ozelvleuzeéﬁezvzevlel

and increase the embedding genus by 1. The sequence for this larger face can be ob-
tained by first applying the operation SPLIT on the sequences ae v e] and fle;v2€5 to
produce sequences xe;v; and fle;vq, then applying the operation CONCAT to concate-
nate the sequences oe, vy, e, vz, e, fesva,e,v1, and e]. Since only a constant number of
sequence operations are applied, each taking time O(logm), in this case the INSERT
operation can also be done in time O(logm).

The DELETE(e) can be done similarly. Given the edge e to be deleted from the
embedded graph, we first get from the edge array of the DLFL structure the two edge
nodes labeled e and use ROOT operation to check whether the two edge nodes belong
to the same face in the embedding. If the two edge nodes belong to different faces
ae and fe of the embedding, then deleting the edge e will merge the two faces into
a single face aff with the embedding genus unchanged. The sequence for this new
face can be obtained by a constant number of SPLIT and CONCAT operations on
the sequences ae and fe. If the two edge nodes labeled e belong to the same face
deve, then deleting the edge e will break the face into two faces & and y and decrease
the embedding genus by 1. The sequences for these two faces can be obtained by a
constant number of SPLIT operations on the sequence deye. Therefore, the operation
DELETE(e) can be done in time O(logm).

This completes the proof of the theorem. [J

4. Embeddings on high genus surfaces

The problem “given a graph G and an integer k, construct for G an embedding
of genus & in its general form is NP-hard [27]. In fact, even for planar graphs, it
is unclear how an embedding of genus & > 0 can be constructed. In this section,
we present an cfficient algorithm that, given a graph G of n vertices and m edges,
constructs for G an embedding of genus at least §(G)/4, where f(G)=m—n+1 is
the cycle rank of the graph G. Note that by our assumption that every vertex of G
has degree at least 3, the cycle rank B(G) is at least as large as n/2 + 1. We will use
this result in the next section to show how an embedding of genus k is constructed
for a large class of graphs and for a large range of integers k.

Let v be a vertex of degree 4 in a graph G. We say that we split the vertex v into
two vertices v; and v, of degree d’ + 1 and d — d’ + 1, respectively, if we replace
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the vertex ¢ in the graph G by two adjacent new vertices r; and v; such that the
vertex vy is of degree d’ + | and adjacent to v; and d’ of the original neighbors of z,
and that the vertex v, is of degree d — d’ + 1 and adjacent to v; and the rest d — d’
original neighbors of v. Note that a splitting operation on a vertex of a graph does not
change the cycle rank of the graph. The inverse operation of vertex splitting is edge
contraction which deletes an edge e = {u,v} as well as the two vertices u and v and
adds a new vertex w that is adjacent to all original neighbors of u and .

The edge contraction operation can be extended to an embedding of the graph G.
Let p(G) be an embedding of the graph G such that the rotations at the two ends u
and v of the edge e are

uiv,u o, ..U, and  viu, LU, .., U

respectively. The contraction of the edge e in the embedding p(G) is an embedding
of the graph from the graph G by contracting the edge e in which every vertex
has the same rotation as in p((G) except the new vertex w, whose rotation is w:u, ..., u,.
ty,...,0. It is easy to see that edge contraction operation does not change the embed-
ding genus.

The following definitions apply as well to disconnected graphs in which vertex degree
may be less than 3. An adjacency matching in a graph H is a partition of edges of H
into groups of one or two edges such that if two edges are in the same group then they
have an endpoint in common. A maximum adjacency matching in H is an adjacency
matching that maximizes the number of two-edge groups. A maximal suspended chuin
C in H is a simple path in H such that all interior vertices of C have degree 2 in H
and both end-vertices of C have degree not equal to 2.

Let G be a 3-regular graph and H a spanning subgraph of G. For each degree 2
vertex v in H, the unique edge in G -- A that has v as an endpoint will be called “the
edge associated with v”.

The algorithm is presented in Fig. 1. The correctness of the algorithm is established
based on the following lemmas.

Lemma 4.1. The graph Hy in Step 4 has a one-face embedding p(Hy) whose genus
is equal to the number of two-edge groups in the maximum adjacency matching . #.

Proof. Let O = {e,e],...,e; e, }, where ¢; and ¢/ are in the same two-edge group in
the matching .#. We start with an arbitrary embedding of the spanning tree 7', which
is a one-face embedding. We then inductively insert the two edges e; and e/ in each
two-edge group in .# into the one-face embedding such that the first edge e; splits the
face into two faces, and the second edge e/ merges the two new faces into a single
large face and increases the embedding genus by 1. This is always possible since after
inserting the first edge e; that splits the single face, the two sides of the edge ¢; must be
on the boundary of the two new faces. Thus, at each endpoint of the edge e;, there are
at least two face corners that belong to different faces. Now the second edge e/ shares
a common endpoint v; with e;. Thus, after an arbitrary insertion of the other endpoint



256 J. Cheni Theoretical Computer Science 181 (1997) 247-266

Algorithm 1.
Input: A graph G of n vertices and m edges.
Output: An embedding for G of genus at least (m — n + 1)/4.

1. Use vertex splitting to convert the graph G into a 3-regular graph H;
2. Construct a spanning tree T of H;

3. Construct a maximum adjacency matching M in the co-tree H —T.
4

. Let @ be the set of all edges that are in the two-edge groups in the
matching M. Construct a one-face embedding p(Ho) for the graph

Ho=T+Q;
5. Let £ ={C,C,...,Cr} be the list of all maximal suspended chains
in Ho;

6. for each maximal suspended chain C; in the list £

case 1. C; has at most two interior vertices.

If there is a way to insert the edges associated with the
interior vertices of C; and increase the embedding genus,
then insert the edges and increase the embedding genus.
Let H; and p(H,) be the resulting graph and embedding,
respectively

Otherwise, let Hi = H;—; and p(H;) = p(Hi_1).

case 2. C; has more than two interior vertices.

Pick the first three consecutive interior vertices v, u, and w
on the chain C; such that the vertex u is between the vertices
v and w on the chain. Insert the edge associated with u. If
inserting u does not increase the embedding genus, insert
one of the edges associated with v and w to increase the
embedding genus. Let H; and p(H;) be the resulting graph
and embedding, respectively.

If any of the above edge insertion breaks a maximal sus-
pended chain Cj, 1 < j, in the list £, then replace the chain
C; in the list £ by the two shorter chains and increase k by
1.

7. Arbitrarily insert the edges of H that are not used in Step 6. Let the
resulting embedding of the graph H be p(H).

8. In the embedding p(H), contract those edges resulted from the vertex
splitting operations in Step 1. The resulting embedding is an embed-
ding for the graph G.

Fig. 1. Constructing an embedding on a high genus surface.

of €], we can always properly insert the endpoint v; of e/ so that the two endpoints of
e} are inserted into face corners belonging to different faces. Consequently, the second
edge e/ merges the two new faces into a single large face and increases the embedding
genus by 1. After the insertions of all the edges in the set ( in this way, we end up
with a one-face embedding p(H;) of genus g for the graph H, =7+ Q. O
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Lemma 4.2. The graph H, constructed by Step 6 in Algorithm 1 is a spanning sub-
graph of H in which no vertex has degree 1. Moreover, for each degree 2 vertex in
Hy, at most one of its neighbors is of degree 2.

Proof. First observe that since the graph G is simple, the 3-regular graph H is also a
simple graph. The graph Hj is a spanning subgraph of H because H, contains T -
as a subgraph and T is a spanning tree of the graph H.

Suppose that v is a degree 1 vertex in Hj. The vertex v cannot have a selfloop
because the graph H is simple. Let ¢; and e be the two distinct edges in H — H), that
share v as a common endpoint. Note that ¢, and e, are not contained in the set Q.
Thus, the two-edge groups in .# plus the pair {e),e2} would form a larger adjacency
matching in the co-tree H — T, contradicting the definition of .#.

Finally, as done by case 2 in Step 6, for every three consecutive interior vertices
on a maximal suspended chain in the list ¢, at least one associated edge is inserted,
thus at least one of these three vertices has degree 3 in the graph Hj. Also note that
each edge inserted in Step 6 is a maximal suspended chain without interior vertices.
In conclusion, the graph H, contains no maximal suspended chain with more than two
interior vertices. [

We need to verify the validity of case 2 in Step 6. Let e.,e,, and e, be the three
edges associated with the three vertices v,u, and w. respectively, in case 2 of Step 6.

Lemma 4.3. In case 2 of Step 6 in Algorithm 1, either a proper insertion of the edye
e, increases the embedding genus, or an insertion of the edge e, followed by a proper
insertion of one of the edges e, and e, increases the embedding genus.

Proof. Since C; is a maximal suspended chain in the graph H,;_;, we can talk about
the two “sides” of the chain C; in the embedding p(H; ). If the two sides of the
chain C; belong to different faces in the embedding p(H,_,), we can insert the edge
e, so that the embedding genus increases. On the other hand, if the two sides of the
chain C; belong to the same face of the embedding p(H;_,) and inserting the edge
e, does not increase the embedding genus, then the edge e, must split a face in the
embedding p(H,_ ) into two new faces /| and /> such that one side of the chain C;
is split by e, into two subwalks W, and W, where W; belongs to the boundary walk
of the new face f;, i = 1,2, and that each of the subwalks W) and W, contains one
of the vertices v and w (note that the other endpoint of the edge e, can be neither
¢ nor w because the graph H is a simple graph). See Fig. 2. On the other hand, the

Fig. 2. Inserting the edge e, splits a face.
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entire other side of the chain C; still belongs to the same face in the new embedding.
Therefore, for at least one of the vertices v and w, its two corners in the new embedding
belong to different faces. Thus, we can insert the associated edge for this vertex properly
to increase the embedding genus. O

Lemma 4.4. The embedding p(H) of the graph H constructed by Step 7 of Algo-
rithm 1 has genus at least f(H)/8.

Proof. Suppose that the graph A has ny vertices. We count how many edges are not
inserted in Step 6. By Lemma 4.2, the graph H, is a spanning subgraph of 4 with no
degree 1 vertices.

Since the graph H is 3-regular, every vertex in the graph H) has degree either 2 or
3. Let #2 and n3 be the number of vertices of degree 2 and 3, respectively, of the graph
H,. Then ny +n3 = ng. We say that a degree 2 vertex v in Hj, is covered by a degree
3 vertex w in H, if v and w are adjacent in H,. By Lemma 4.2, in the graph H,,
each degree 2 vertex is adjacent to at most one degree 2 vertex. Thus, every degree
2 vertex in Hj is covered by at least one degree 3 vertex. Since each degree 3 vertex
in the graph Hj, can cover at most three degree 2 vertices, we have n3 =n,/3. Thus,
ng=n, + ny/3. This gives 3ng/4=n,. Since each edge in H — Hj, is associated with
exactly two degree 2 vertices in the graph H,, we conclude that the number of edges
in H — Hj, is bounded by 3n¢/8. In other words, the cycle rank f(H)) of the graph H,
is at least B(H) — 3ny/8.

By Lemma 4.1, the genus of the embedding p(#y) is equal to the number of two-
edge groups in the matching .#. Moreover, according to Step 6 of Algorithm 1, the
embedding genus is increased by at least 1 by inserting at most two edges in 4 — Hy.
Therefore, the genus of the embedding p(H,) is at least half of the cycle rank B(Hj).

Since the embedding p(H) constructed by Step 7 of Algorithm 1 has genus at least
as large as that of the embedding p(H},), we conclude that the genus of the embedding
p(H) is at least B(H)/2 = B(H)/2 — 3ny/16. Since the graph H is 3-regular, f(H) =
no/2 + 1. Thus, the embedding p(H ) has genus at least np/16+ %, which is larger than
pU)/8. O

The above analysis enables us to derive the following theorem, which claims that
given a graph, an embedding of high genus for the graph can always be constructed
efficiently. A number of applications of this theorem will be demonstrated in the next
section.

Theorem 4.5. Algorithm 1 runs in time O{mlogn) and constructs for a given graph
G an embedding of genus at least B(G)/8.

Proof. Since vertex splitting does not change the cycle rank of a graph, the 3-regular
graph H constructed in Step 1 has the same cycle rank as the graph G. Moreover,
since edge contraction on an embedding does not change the embedding genus, the
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embedding for the graph G constructed in Step 8 of Algorithm 1 has the same genus as
the embedding p(/). By Lemma 4.4, the embedding of G constructed by Algorithm 1
has genus at least S(G)/8.

Now we study the complexity of Algorithm 1. First note that the number of edges
in the graph A is bounded by O(m), where m is the number of edges in the graph G.
Steps 1 and 2 can be easily done in time O(m) under any reasonable data structure
for graphs. To construct a maximum adjacency matching in the co-tree H — T, note
that since f{ is 3-regular, each connected component in H — T is either a simple cycle
or a simple path. Moreover, it is easy to see that an adjacency matching in H — T
is maximum if and only if it leaves at most one edge in a one-edge group for each
connected component in // — 7. Thus, the maximum adjacency matching - /# can be
constructed in linear time.

To construct the embedding given by Step 7, we start with an arbitrary embedding
of the spanning tree T, which can be constructed in linear time. Now insertion and
deletion of an edge in Steps 4—7 takes time O(logn) using the data structure DLFL
introduced in Section 3. Also note that in Step 6, there are only four possible ways to
insert an associated edge since each endpoint of the edge has degree 2 in the current
embedding. Therefore, the conditions in Step 6 can be tested in O(logn) time. In
conclusion, each associated edge can be checked by case 1 at most twice and cach
checking takes time O(logn), and case 2 inserts at least one associated edge in time
O(log n) for each execution of the for loop body in Step 6.

The edge contraction in Step 8 is particularly easy if we adopt the data structure
DLFL: we only need to traverse all faces in the embedding and contract the edges
resulted from Step 1 on the boundary of each face.

This completes the proof that the time complexity of Algorithm 1 is bounded by
O(mlogn). [

Algorithm 1 constructs an embedding for a graph on a high genus surface. In fact,
this embedding is a good approximation of a maximum genus embedding of the graph.

Corollary 4.6. There is an O(mlogn) time algorithm that constructs an embedding
for a graph G such that the embedding genus is at least & of the maximum genus

a
of the graph G.

Proof. By Euler’s formula, the maximum genus of a graph G is bounded by p(G)/2.

L

5. Embeddings on the surface of genus &

Using the new data structure introduced in Section 3 and the efficient algorithm
developed in Section 4, we will show in this section that, in contrast with the general
NP-hardness of the graph minimum genus problem, for a large range of integers &
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Algorithm 2.

Input: Embeddings p1(G) and p2(G) and an integer 7y between 1 and 72,
where 71 and 72 are genera of p1(G) and p2(G), respectively.

Output: An embedding p(G) of G of genus ¥.

1. If ¥y < min{y1,v2} or ¥ > max{1, 7z}, Stop.
2. If ¥ = y; then output p1(G) and Stop
Otherwise, let p(G) = p1(G);
3. for each vertex v of the graph G
Let the rotation at v in the embedding p2(G) be
VUL UD, ..., U
for i=2 to rdo

Delete the edge e; = {v,u;} from the embedding
p(G), then reinsert the edge e; into the embedding
so that the edge e; follows the edge €i—1 in the
rotation at the vertex v, and the position of the
other endpoint of e; is unchanged.

If 4 equals the genus of the current embedding
p(G), output p(G) and Stop.

Fig. 3. Moving from one embedding to another embedding.

and for a large class of graphs G, the problem “given a graph G and an integer £,
construct a genus k£ embedding for G” can be solved efficiently.

We start with a very useful algorithm that efficiently moves continuously from
one embedding of a graph to another embedding of the same graph. This algorithm
will be crucial in many cases for finding graph embeddings on a surface of a given
genus.

Theorem 5.1. There is an O(mlogn) time algorithm that, given two embeddings
p1(G) and p(G) of a graph G of m edges and n vertices and given an integer
y such that v is between the genera of pi(G) and p2(G), constructs an embedding of
genus y for the graph G.

Proof. Consider the algorithm given in Fig. 3.

Since each edge deletion on an embedding can decrease the embedding genus by
at most 1 and never increase the embedding genus, and since each edge insertion to
an embedding can increase the embedding genus by at most 1 and never decrease the
embedding genus, each execution of the body of the inner for loop in Algorithm 2 can
change the embedding genus by at most 1. Therefore, Algorithm 2 must stop at some
point and end up with an embedding p(G) of G of genus exact y if y is between the
genera y; and y, of the embeddings p;(G) and p;(G), respectively.

Note that if the data structure DLFL introduced in Section 3 is used for the embed-
dings p1(G) and p2(G), then the genera y; and y, can be computed in constant time.
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Algorithm 2 consists of traversing the rotation at each vertex in the embedding p,(G)
and rearranging the rotation at each vertex in the embedding p,(G).

The traversing of the rotation at a vertex takes time proportional to the degree of the
vertex, if the data structure DLFL is used. Thus, the total time spent by Algorithm 2
on vertex rotation traversing is bounded by O(m), where m is the number of edges of
the graph G.

Each edge endpoint at a vertex in the embedding p;(G) is rearranged by an edge
deletion followed by an edge insertion. Therefore, the number of edge insertions and
edge deletions performed on each vertex of G is proportioned to the degree of the
vertex. Thus, the total number of edge insertions and edge deletions performed by
Algorithm 2 is proportional to the number m of edges of the graph . Using the data
structure DLFL, each such operation takes time O(logn).

We conclude that the total running time of Algorithm 2 is bounded by O(mlogn).

r

Corollary 5.2. There is an algorithm such that given two embeddings p\(G) and
p2(G) of genus y| and y,, respectively, for a graph G,y <72, the algorithm constructs
in time O(max{|y1 —y2|lm,mlogn}) y2—v\+1 embeddings p.,(G), p. +1(G),....p-{G)
for the graph G, such that the genus of the embedding pi(G) is i, for | <i<ya.

Proof. According to Theorem 5.1, moving from embedding p,(G) to embedding p2(G)
takes time O(m log n). Printing out an embedding for the graph G takes time O(m).
J

The algorithm in Corollary 5.2 is optimal when |y, — 71| = Q(logn) since printing
out a single embedding of the graph G would take time at least Q(m).

Theorem 5.3. There is an O(nlogn) time algorithm such that given a planar graph
G and an integer k <P(G)/8, the algorithm constructs an embedding of genus k for
the graph G.

Proof. The algorithm first constructs a planar embedding for the graph G in linear
time [21], then constructs an embedding of genus at least §(G)/8 for the graph G
in time O(mlogn) = O(nlogn), according to Theorem 4.5. Now the theorem follows
directly from Theorem 5.1. [

If both minimum genus embedding and maximum genus embedding of a graph can
be constructed efficiently, then so is its any “intermediate genus” embedding.

Theorem 5.4. Let € be a class of graphs whose minimum genus embedding and
maximum genus embedding can be constructed in time O(mlogn), then the problem
“given a graph G and an integer k, construct a genus k embedding for G” can be
solved in time O(mlogn) for the class €.
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Theorem 5.4 covers many important graph classes, in particular many graph classes
studied in the interconnection networks, such as complete graphs, hypercubes, star
graphs, and all 4-connected planar graphs. (For a comprehensive discussion of these
graph classes, we refer our readers to Leighton’s authoritative book {23].)

Theorem 5.5. Let 2 be a class of graphs whose minimum genus embedding can be
constructed in polynomial time, then the problem “given a graph G and an integer
k, construct a genus k embedding for G can be solved in polynomial time for the
class 2.

Proof. This is because that a maximum genus embedding of a graph G can be con-
structed in time O(n*log®n) [17]. O

Theorem 5.5 covers in particular the class of graphs whose minimum genus is
bounded by a fixed constant [12, 14].

Now we study the graph embeddings that are related to the “average genus” of the
graphs. Each graph G is associated with a sequence of integers go, 41,4, ..., called
the genus distribution of G, where g; is the number of embeddings of genus i for the
graph G. The average genus of G is defined to be the value

Zi:Oi g
Zi:O gi

Thus, an embedding of genus larger than y.,,(G) can be regarded as an “upper genus
embedding” while an embedding of genus smaller than y,,,(G) can be regarded as a
“lower genus embedding”. The average genus of a graph plays an important role in
the recent study of topological invariants of graphs [2,5-7, 19].

Intuitively, the average genus of a graph can be computed by probabilistic sampling.
In the following, we will discuss how this idea can be precisely formulated. We first
prove two lemmas. We will denote by I = )_,_, ¢ the total number of embeddings
of the graph G.

Vavg(G) =

Lemma 5.6. For any real number ¢ > 0, there are at least (¢/(1 + ¢))[¢ embeddings
of the graph G that are of genus <(1 + €)yavg(G).

Proof. Assume the contrary. Then there are more than I; ~ (g/(1 + &)y =
(1/(1 4 ¢))I embeddings of G of genus larger than (1 + &)}, (G). Thus

2> (leys(@ 97 (14 £)7avg(G6/(1 + ¢)
Pag(G) > SR e = 7ue(G).

This contradiction proves the lemma. O

Lemma 5.7. For any real number ¢ > 0, there are at least (£/4)I embeddings of the
graph G that are of genus 2(1 — €)Yayg(G).
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Proof. Assume the contrary. Then there are less than (¢/4)I; embeddings of G of
genus 2= (1 — &)7,,(G). Let ynax(G) be the maximum genus of the graph G. Recently,
Chen et al. [9] have proved that yma(G) < 47 (G). We have

2=yl Gy b Y0 T 2 oim (1 ey L i

cnee(G) =

Yave(G) P
< (1= &)7ave(G) Do <1yt 95+ Tmax 2150 ey 9
= FG
< (1 - ﬁ)yavg(G)FG +4"}"avg(G)(8/4)FG

I
= Javg(G).

This contradiction proves the lemma. O

We present two randomized algorithms with small error probability that construct
graph embeddings related to graph average genus. We will use round(;.,(G)) to
denote the unique integer in the semi-open interval (7.,,(G) — 0.5,74e(G) + 0.5) on
the real line.

Theorem 5.8. For any real number 6 > 0, there is a time O(m*) randomized al-
gorithm such that given a graph G and an integer k., the algorithm either reports
k # round(y,,o(G)) with error probability less than &, or constructs an embedding of
genus k for the graph G.

Proof. Let e be the base of natural logarithm. Let ¢ be a constant such that e ™ < 0/2.

Let m be the number of edges of the graph G. By Lemma 5.6, there are at least
[(1/m)/(1 + 1/m)lIz = [1/(m+ )]l embeddings of the graph G that have genus
< (1 + 1/m)yaye(G). Therefore, if we randomly pick 4cm embeddings of G, the prob-
ability that all these embeddings are of genus larger than (14 1/m)y,.,,(G) i1s bounded
by

(1= U(m+ )" <[(1 = 1/im+ D))" <e™ <672

By Lemma 5.7, there are at least [1/(4m)][; embeddings of the graph G that have
genus =(1 — 1/m)yag(G). Thus, if we randomly pick 4cm embeddings of G, the
probability that all these embeddings are of genus less than (1 —1/m)}..:(G) is bounded
by

(1 — 1/4m)*™ <e™¢ < §/2.

Therefore, if we randomly pick 4cm embeddings of the graph G, with probability
larger than 1 — §, we will have one embedding p;(G) of genus 7 <(1 + 1/m)yava(G)
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and one embedding p,(G) of genus y2 =(1 — 1/m)pa(G). Note that y,,,(G)<(m —
n+1)/2 <m/2.? Therefore, y; < 7ag(G) + 0.5 and 73 > yaye(G) — 0.5. Since both y;
and 7, are integers, we must have 7| <round(yae(G)) and y; = round(ya,(G)).

In conclusion, if & = round(y.s(G)), then with probability larger than 14, we will
get two embeddings p(G) and po(G) from a random sample set of 4cm embeddings
such that the genus of pi(G) is not larger than &£ and the genus of p(G) is not
smaller than k. Now a genus £ embedding of the graph G can be constructed by
applying Theorem 5.1. The algorithm obviously runs in time O(m?). O

With a similar argument, we can also show that constructing an upper genus em-
bedding for a graph, i.e., an embedding of genus at least as large as its average genus,
is feasible if we allow a small error probability.

Theorem 5.9. For any real number & > 0, there is a polynomial time randomized
algorithm such that given a graph G and an integer k, the algorithm either reports
k < round(yag(G)) with error probability less than 3, or constructs an embedding of
genus k for the graph G.

Proof. Similar to the analysis in Theorem 5.8, we first construct an embedding p(G)
of genus bounded by round(y.(G)) from a random sample set of O(m) embeddings.
We also construct a maximum genus embedding p'(G) for the graph G in polynomial
time [17]. Now we apply Theorem 5.1. O

The error probability é in Theorem 5.9 can actually be bounded by é = 0(2""d) for
any constant d. In fact, if instead of using a random sample set of O(m) embeddings,
we use a random sample set of (m + 1)?*! embeddings, then the error probability is
bounded by

(1 — 1)(m + 1))mt™ < g=meD)’ o p=m’,

6. Concluding remarks

We have developed a new data structure for graph embeddings. The data structure
is superior to the existing data structures and efficiently supports all on-line opera-
tions for graph embeddings. We have shown a number of applications of the new
data structure, including an O(mlogn) time algorithm for constructing embeddings of
graphs on surfaces of high genus, and an O(mlogn) time algorithm for continuously
moving from one embedding of a graph to another embedding of the same graph. We
have demonstrated efficient algorithms for constructing all kinds of embeddings for
planar graphs. Efficient randomized algorithms have also been developed to construct
graph embeddings on surfaces of genus larger than the average genus of the graph,

2 Without loss of generality, we assume that the number n of vertices of the graph is at least 2.
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and embeddings on surfaces of genus equal to the average genus of the graph. Our
computational results indicate that there is a very interesting and rich computational
structure related to graph embeddings, which definitely deserves further investigation.

Our results show that construction of an embedding of a graph on high genus surfaces
is in general computationally feasible. A closely related problem is the complexity
of constructing low genus embeddings for a graph. It is unknown whether there is a
polynomial time algorithm that approximates the minimum genus embedding of a graph
to a constant ratio. A recent result by Chen et al. [10] partially hints the difficulty of
approximating graph minimum genus embeddings: for any real number &, 0<{e¢<1, the
problem of embedding a graph G of » vertices into a surface of genus 7, (G) + #* is
NP-hard.
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