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Abstract 

Pfenning, F., and P. Lee, Metacircularity in the polymorphic A-calculus, Theoretical Computer 

Science 89 (1991) 137-159. 

We consider the question of whether a useful notion of metacircularity exists for the polymorphic 

A-calculus. Even though complete metacircularity seems to be impossible, we obtain a close 

approximation to a metacircular interpreter. We begin by presenting an encoding for the Girard- 

Reynolds second-order polymorphic A-calculus in the third-order polymorphic A-calculus. The 

encoding makes use of representations in which abstractions are represented by abstractions, thus 

eliminating the need for the explicit representation of environments. We then extend this construc- 
tion to encompass all of the w-order polymorphic A-calculus (F,). The representation has the 

property that evaluation is definable, and furthermore that only well-typed terms can be represented 

and thus type inference does not have to be explicitly defined. Unfortunately, this metacircularity 

result seems to fall short of providing a useful framework for typed metaprogramming. We 

speculate on the reasons for this failure and the prospects for overcoming it in the future. 

In addition, we briefly describe our efforts in designing a practical programming language 

based on F,. 

1. Introduction 

In this paper we consider the question of whether a useful notion of metacircularity 

exists for the polymorphic A-calculus. There are, of course, many examples of 

metacircularity in untyped (or dynamically typed) languages, most notably in Lisp 

[20]. In [32], Reynolds gives a metacircular interpreter for a simple untyped func- 

tional language. This was pursued further by Steele and Sussman [35], and others. 

More recently, metacircularity has been explored for logic programming languages 
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[l] and object-oriented languages [5]. In the realm of statically typed functional 

languages, however, we are unaware of any satisfactory examples. ML [21], for 

instance, seems not to be powerful enough to serve as its own metalanguage in a 

natural way-an ML interpreter written in ML would be highly redundant since, 

for example, type inference would have to be reimplemented explicitly. We would 

like to attain a high degree of reflexivity, meaning essentially that the metacircularity 

should be attained in a natural, “internal” way. We discuss this issue of reflexivity 

in greater detail in Section 2. 

As a starting point for our investigation we chose the polymorphic A-calculus. 

Conventional wisdom indicated that the answer to the question of whether metacircu- 

larity is possible in the polymorphic A-calculus should be “No.” It seemed that the 

type system would not permit a high degree of reflexivity, and also that, due to the 

strong normalization property of the calculus, the usual paradoxes would block our 

way. 

We have found, however, that the answer is “Almost.” After a brief review of 

the polymorphic A-calculus in Section 3, we explain our answer in Section 4. We 

start by showing how the second-order polymorphic A-calculus (F2) (see [12,13,31]) 

can be represented in Fs (the third-order polymorphic A-calculus) extended with 

an ML-like facility for defining data types. This representation turns out to be 

inductively defined; hence we are able to define evaluation for the FZ program 

representations via iteration. Then, by extending to higher orders the well-known 

methods for representing inductively defined data types in the second-order polymor- 

phic A-calculus [2,31], we are able to present a complete encoding of F2 programs 

in pure F3 such that their evaluation function is definable in Fs. 

Although quite different in the details, our construction is reminiscent of the 

rejlective tower of Smith [33,34]. Friedman and Wand’s analysis of reflective towers 

[ 10,361 emphasizes rei’cation, the translation from programs to data, and reflection, 

the translation from data to programs, as central concepts. Thus, in the setting of 

a statically typed functional language, we have found elegant and concise definitions 

for limited forms of reification and reflection. This allows us to build a “tower,” 

starting with an interpreter for Fz written in F3, and then extending to all higher 

orders by introducing a simple extension to the w-order polymorphic A-calculus 

(F,). This extension, which allows us to define reification and reflection functions 

for all of F,, is described in Section 5. 

An interesting feature of our definitions is that only well-typed programs can be 

represented, or “reified.” In the context of metaprogramming (i.e., the construction 

of programs that construct and manipulate other programs), this property implies 

that well-typed metaprograms can construct only well-typed object programs-a 

very desirable property. To our dismay, however, we have not been able to extend 

our metacircularity results to handle interesting kinds of metaprogramming prob- 

lems. As part of our concluding remarks in Section 6, we speculate briefly on the 

reasons for this failure, as well as the prospects for overcoming this in the future. 

In addition, ous experience has led us to ask whether F, can be used as the core 
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of a practical programming language. Here we find the situation to be much more 

encouraging, and so we also briefly describe our efforts to design a language based 

on F,, which we have called LEAP. 

2. Reflexivity 

We are concerned not only with metacircularity, but also with how easily and 

naturally the metacircularity can be expressed. We call this the reJlexivity of the 

language. We will not attempt to give a formal definition for when a language is 

reflexive. Instead, we will try to give some informal criteria for judging the degree 

of reflexivity of a language, the basic one being the ability of a language to serve 

as its own metalanguage. This by itself does not seem enough, since then every 

Turing-complete language would be reflexive. In addition, we would like to require 

that the metacircularity is achieved in a natural, “internal” way. The answers to the 

following questions provide some hints for evaluating the degree of reflexivity of a 

language. 

l How redundant is the definition of a metacircular interpreter? In a highly reflexive 

language, the metacircular interpreter should be simple and direct. The more that 

features of the object language can be implemented by using the corresponding 

features of the metalanguage, the more reflexive the language. We call this 

phenomenon inherifance of object language features from the metalanguage. 

Typical examples of features for which inheritance might be desirable are evalu- 

ation order (e.g., call-by-value vs. call-by-name) and static typechecking. 

l How much of the metalanguage can be interpreted by the metacircular interpreter? 

Ideally, the metalanguage and object language should coincide. 

l Can we define the functions reify and reflect in addition to eval? That is, 

can we coerce data into programs and vice versa? 

l How well can object language syntax and metalanguage syntax be integrated? 

We will mainly ignore this issue: with the aid of good syntax-handling tools one 

should always be able to achieve a reasonably smooth integration of metalanguage 

and object language. 

The concept of inheritance (though not under this name) was already considered 

by Reynolds in [32]. As we mentioned before, an ML interpreter written in ML 

would likely be highly redundant, since type inference would have to be reimple- 

mented explicitly. In other words, it seems that ML type inference cannot be 

inherited, in part because of the complexity of the data type of programs, and also 

because of the implicit nature of the type quantification in ML. An interpreter 

written for a dynamically scoped Lisp would also be redundant, since environments 

must be represented and manipulated explicitly by the interpreter. The notion of 

variable binding cannot be inherited and must be programmed explicitly. However, 

many other features such as automatic storage management clearly are inherited in 

a typical metacircular Lisp interpreter. 
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In this paper we show how a high degree of reflexivity can be obtained in the 

polymorphic A-calculus, despite the complications of types and the strong nor- 

malization property. 

3. The w-order polymorphic A-calculus 

In [12,13], Girard defined a powerful extension to Church’s simply typed A- 

calculus [3] and goes on to give a constructive proof of strong normalization for 

his system. A fragment of Girard’s calculus was independently discovered by 

Reynolds [31] who introduced abstraction on type variables and application of 

functions to types in order to define polymorphic functions explicitly. Reynolds’ 

calculus is known as the second-order polymorphic A-calculus. 

Here we consider the o-order polymorphic A-calculus (F_,) which is an extension 

of Reynolds’ system but only a fragment of Girard’s system (since it omits existen- 

tially quantified types). Our presentation of the calculus contains four distinct 

syntactic categories: kinds, types, terms, and contexts. 

Going beyond the second-order polymorphic A-calculus means that we have, in 

addition to types of terms, also functions from types to types, and so on. This 

generalization is essential for our construction, as even the representation of the 

simply typed A-calculus appears to require the formation of functions from types 

to types. We refer collectively to types, functions from types to types, and so forth, 

as higher-order types, and the “functionality” of a higher-order type is referred to 

as its kind. Only higher-order types of kind “Type” can actually be the type of a 

term. These and other properties of the calculus are summarized at the end of this 

section. Throughout this paper, we will often say just “type” when we actually mean 

“higher-order type.” In particular, we will refer to variables ranging over higher-order 

types simply as type variables. 

We use the metavariables K, K’ for kinds, a, p, . . . for higher-order types and 

occasionally for type variables, 13 for type variables, M, N, . . . for terms, and x, y, . . . 

for variables. 

Definition 1. The syntactic categories of kind, type, term, and context are defined 

inductively by 

Rinds K ::= Type 1 K+ K’, 

(Higher-order) Types (Y ::= 0 1 a+.p ) AO:K.cu 1 A0:K.a 1 a/3, 

Terms M ::= x ) AX:LY. M 1 MN ) AO:K. M ) M [a], 

Contexts r ::= () ) r, 0:K 1 r, X:CY. 

The A symbol is used to construct functions that can be applied to a term, yielding 

a term, and also to build functions that can be applied to a type, yielding a type. 

The symbol A constructs functions that can be applied to types, yielding a term. 
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Such a function will have a A type. The order of a term in this calculus is determined 

by what kind of abstractions over types are allowed: we obtain the second-order 

polymorphic A-calculus (FJ if we allow abstractions only over type variables of 

kind Type; we obtain F3 with abstractions over type variables of kinds Type + * * *+ 

Type, etc. Contexts uniquely assign kinds to type variables and types to term 

variables. We will omit empty contexts, and write “r, r”’ for the concatenation of 

two contexts. It is convenient not to distinguish between variables in a global context 

and constants, and occasionally, in a slight abuse of language, we call a member 

of a context a constant. 

Definition 2. The following judgments define the calculus F, : 

+ r context, r is a valid context, 

t- K E Kind, K is a valid kind, 

TkClEK, CY has kind K in context r, 

TFMECX, M has type CY in context r, 

“=prlP. 

We will regard a-convertible types and terms (with binders A, A, and A) to be 

equal. Thus we will ignore the issues of variable renaming and name clashes. We 

also assume that any variable occurs at most once in the domain of a context r 

(that is, the list of all variables 0 and x such that O:K or X:(Y are in r). This can 

always be achieved by cz-conversion or through the use of deBruijn indices, as for 

example in Coquand and Huet’s presentation and implementation of the Calculus 

of Constructions [7,9]. 

Definition 3 (Valid kinds). 

F Type E Kind 

t-KEKind t K'E Kind 

t-K-+K’EKind 

Definition 4 (Valid higher-order types). 

Tka EType rFp EType 

T+a+pEType 

r, O:KFaEType 

rkAO:K. a EType 

+ r context 0:K in r 

TkBEK 

r. 8:Ktcw E K’ 
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Definition 5 ( Valid contexts). 

k ( ) context 

t r context +KEKind 

t-r, 0: K context 

t-r context Tt--cu EType 

E r, x: a context 

Definition 6 (Valid terms). 

t r context x:ff in r 

rtxEa 

r.x:atMEa 

rkAx:a.MEa+p 

1-tMEa+p rb-NEcY 

TEMNEP 

1-,O:KkMMfl 

r+Ae:K. M~d0:K.p 

TkMEA0:K.a rtaEK 

r~M[c_u]E(hO:K./3)cY 

l-t-Mea 'y=lb P rkp EType 

l-k-M/3 

The rule giving the type of a A-abstraction is formulated so that the type conversion 

rule can be used to carry out the substitution of LY for the free occurrences of 8 in 

p. The simple device of reducing substitution to P-reduction is used later for the 

representation of terms. When we omit a kind, as in “AO. cr,” we mean “AB:Type . a” 

In the type conversion rule we allow conversion between Pn-equivalent types. 

We define =p,, on types as the equivalence relation induced by p- and v-reduction 

of types. At the level of types, a p-redex has the form (hO:K. a)~ and an q-redex 

has the form (hO:K. atI) where 0 is not free in cx 

In the conversions for terms we will have occasion to consider both /?-conversion 

and q-conversion. Both must include type applications, that is, (AO. M)[p] =p 

[p/O] M (where [p/O]M is the result of substituting p for 0 in M, renaming bound 

type variables to avoid name clashes) and AO. M[ 01 =? M if 13 is not free in M. 

We write =p,, for the equivalence relation induced by this extended notion of 

conversion. A valid term M or type CY is in long pq-normalform if it is in p-normal 

form and it cannot be q-expanded to a valid term or type without creating a /3-redex. 

During the remainder of the paper, we will make use of some fundamental 

properties of the calculus whose proofs can be found elsewhere (see, for example, 
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[12, 14, 111) or follow immediately from known results. We state here only a few 

of them. 

Theorem 7 (Basic properties of F, ; Girard [ 141). 

(1) IfrFMEathenrFaEType. 

(2) If r t CY E K then LY has a unique long PT-normal form. 

(3) If Tt M E a then M has a unique /?-normal form and a unique long pynormal 

form. 

(4) IfT+MEcu andrEME/ then (Y =asP. 

(5) r t M E (Y is decidable. 

The system F, can be stratified into levels very naturally in analogy to the way 

higher-order logic can be stratified into first-order logic, second-order logic, and so 

on. Of course, this does not mean that our system is predicative: already the level 

F2 is impredicative. In our setting the concept of order is determined exclusively 

by the kinds of the types of a term and its subterms. The orders are calibrated by 

naming the second-order polymorphic A-calculus F, (the system Girard calls F). 

Since the notation of order is important in the discussion of metacircularity, we 

will give a formal definition of the overloaded function o which applies to kinds, 

types, terms, and contexts. 

Definition 8 (Order of kinds). We define inductively: 

o(Type) = 1, 

o(K+K’)=max(o(K)+l,o(K’)). 

Definition 9 (Order of types). The order of all types are eventually reduced to the 

order of kinds. Given any context r, we define inductively o’.: 

o”(0) = o(K), where 0:K in r, 

~“(a -/3) = max(o“(a), o“(p)), 

o“(AB:K. cu)=max(o(K)+l, o”“‘~(cY)), 

o’.(AB:K. a)=max(o(K)+l, ~“‘:~(a)), 

o“(@) = max(o”(a), o“(p)). 

Definition 10 (Order of terms). The order of all terms is eventually reduced to the 

order of types and kinds. We define inductively: 

o”(x) = o”(a), where x:a in r, 

ol‘(hx:a. M) = max(oI‘(cu), o”“‘“(M)), 

o“( M N) = max(o“( M), ol.( IV)), 

o“(A0:K. M)=max(o(K)+l, o”“‘“(M)), 

o“(M[a]) =max(o“(a)+l, o“(M)). 
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Definition 11 (Order of contexts). 

o(T, x:a) =max(o(r), or(a)), 

o(T, 8:K) =max(o(r), o(K)). 

F, is the restriction of F, to kinds, types, terms, and contexts of order n. According 

to this definition, Fl will be the simply typed A-calculus and F2 is almost exactly 

Reynolds’ second-order polymorphic A-calculus. The difference is that F2 as defined 

above allows explicit formation of functions from types to types with A, which was 

not part of Reynolds’ calculus. However, it can be shown that no cz E Type with 

O(Q) = 2 in normal form will contain such an abstraction, so the difference is minor 

(see [28] for a detailed discussion). 

4. Reflection of F2 in F3 

In this section we describe how metacircularity can be achieved to a large degree 

with F,. The presentation will proceed in two stages: first we show how the F2 

fragment can be represented in F3 augmented by a few constants and some new 

reduction rules defining evaluation for F2. Second we show how all these constants 

are actually definable in such a way that /?-reduction is sufficient, that is, F2 and 

its evaluation function can be faithfully represented in F3. 

4.1. Representation of programs 

The first concern is the ability to represent programs in the language as data. Two 

approaches seem plausible: to build in a new special data type for programs, or to 

use combinations of existing built-in data types to represent programs. We first 

show how representation can be achieved using new constants, and then how these 

constants can be eliminated through internal definition. 

Starting informally, it is useful to consider how programs in F2 might be repre- 

sented if ML-style datatype constructors were used. Looking at Definition 1 suggests 

that there ought to be five constructors: one for variables and one for each form of 

abstraction and application. Thus we make our first crucial decision: the types of 

F2 are not represented explicitly, but rather mapped into types in F3. This technique 

results in the property that only well-typed terms in F2 can be represented, thereby 

providing a built-in type safety. But this then forces our hand in the representation 

of variables: if we try to represent them explicitly (say as strings or natural numbers), 

there appears to be no way to guarantee well-typedness of the term we are trying 

to represent. 

The way out of this dilemma is to use the idea of higher-order abstract syntax, 

which goes back to Church and appears in different guises in various places in the 

literature, for example [4, 15,251. The essence of higher-order abstract syntax is to 
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use the abstraction mechanism of the metalanguage to implement abstraction in the 

object language. Here, of course, both metalanguage and object language will be 

fragments of F,, so A and A will be used to implement themselves. That this is 

possible may seem unlikely at first, especially in this statically typed language, but, 

as we will see, we can construct such a representation and even define an evaluation 

function. 

Ignoring the problems of types for the moment, we thus obtain the constructors 

rep (for bound variable occurrences), lam, app, typlarn, and typapp. The con- 

structors lam and typlam expect absstractions as arguments, since abstractions are 

to be represented by abstractions. In the interests of readability, we have in the 

definition below omitted the context argument of the representation function 0 

which could be easily filled in. The crucial property of this function is given in 

Theorem 15. 

Definition 12 (Standard representation). Let M be a valid term of F2 in some context 

r’. We define the standard representation ti of M inductively as follows: 

IfXECY then X = rep[ cr]x, 

1fhx:a. MEa+P then Ax:cw . M = lam[a][p](Ax:a. A?f), 
- - 

IfMEcr+pandNEa thenMN=app[a][P]MN, 

IfA0. MEA0.a then A0. M = typla,m[hf3. a](AO. A?), 

IfMEA0.a then M [p] = typapp[Ae. a]n;i[p]. 

Since the type of a given term is not unique (due to the type conversion rule), this 

does not actually define a function on terms. However, due to uniqueness of types 

up to conversion it is easy to see that M is also unique up to conversion at the level 

of types occurring in &?. We thus turn (5 into a function by stipulating that the 

types in M be in normal form. 

Example 13 (Representation of the polymorphic identity function). Let id= 

ACY. Ax:(Y. x. Then 

id= typlam[r\e. e+ e](Aa. lam[c-u][c~](A~:~~. rep[a]x)). 

What is the appropriate metalanguage in which to interpret n;i? Obviously, we 

need five constructors and a representation type. We write “rrcr” for the type of 

representations of programs of type (Y and define a context U giving the types of 

the constructors. 

Definition 14 (Representation context II). 

17 = rr : Type + Type, 

rep:Aa.a+Ta, 

lam:Acu.Ap.(a-,~~)~~((~~P), 

app:Aa.Ap.~(a~P)~~a~~~, 

typlam:Aa:Type-+Type. (Ae. 7r(ae))-+r(Ae. u+), 

typapp:Aa:Type+Type. n(AO. &)-+AB. ~(4). 
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The significance of this definition lies in the following theorem. 

Theorem 15 (Soundness of program representation). Let M be a term such that 

r, 17~ ME CY where (Y is in normal form and Oaks = 2. Then r, l7t h? E rra. 

Moreover, o’,“(iI?l) = 3. 

Proof. By a simple induction on the derivation of r, IKE M E (Y. 0 

Note also, that for a term M in F, (a simply-typed term), the representation iI? 

will be in F2. For the representation of F,-terms, it is not necessary to consider the 

context I7 for M, but it is convenient to do so for the completeness theorem. For 

example, a term N such that 17 E NE rr( OTT does not directly represent a term in 

the empty context, though it represents a term in the context I7 (see Example 17 

and Theorem 18). 

Definition 16 (Representation). We define the relation “represents” inductively like 

the standard representation, except that rep[a]M (which is not the standard 

representation of any term unless M is a variable) is defined as representing M and 

if N=,, N’ and N represents M, then N’ also represents M. 

Example 17 (A representation of a representation of the polymorphic identity func- 

tion). Let id be the standard representation of the polymorphic identity function 

from Example 13. The following represents id, though it is not its standard 

representation: 

rep[T(Aa. (Y + a)](typlam[hO. 13+ O](h. lam[a][a](Ax:a. rep[a]x))). 

Omitting some types within square brackets and without writing out representations 

of variables, the standard representation of id IS 

app[ I[ IWww[ ItmlN~~. f3 + 4) 
(twlam[ Ma. aw(twapp[ I(tnww[ 11W~l)[~l) 

Wd I[ I(Ax:a. wp[ I[ I(Qww[ lw[al)3))). 

The type of both of these representations is r( ~(Acx . a + a)) and they are valid 

terms in the context l7. 

Theorem 18 (Completeness of program representation). Let N be a term such that 

I’, ZIt NE TTTT(Y for (Y in normal form and or,=(N) = 3. Then there is an M with 

r, II k M E CY such that N represents M. 

Proof. We take the p-normal form of N and then n-expand to achieve the long 

Pq-normal form N’. By definition, if N’ represents M, then N also represents M. 

One can then see that N’ must be of the form of a constructor (that is, a variable 

in IT) applied to sufficiently many arguments: none of the variables in r could 

produce a term of type rr(~, since (Y is introduced in II and can therefore not appear 
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in K The function that maps N’ back to the term that it represents is in essence 

the function reflect from Definition 20. 0 

Note that representations of programs are not unique, not even up to conversion. 

For example, any term M E a in normal form can be represented as rep[ a] M, but 

it also has a representation in terms of lam, app, typlam, typapp, and rep, where 

rep is applied only to variables. 

Because of the property mentioned in the previous paragraph, it is tempting to 

try to eliminate the rep constructor from the representation. However, it is crucial 

in order to convert bound variables into their representations. A simple attempt to 

get around this would be to change the type of the lam constructor to AcrAP. ( TCY + 

CT/~) + T((Y + /3). However, this also fails since then there is a negative occurrence 

of v in the argument to one of the constructors for n, making it no longer inductive, 

but generally recursive. We have not explored in depth whether the addition of 

general recursive types would strengthen the possibility of reflection in F,,,, but we 

suspect that the results would be equally unsatisfactory. 

4.2. Evaluation 

Of course, there are a wide variety of possible representations, even given the 

constraint that we would like to represent only well-typed F2 programs. One of the 

crucial properties of our representation is the definability of the evaluation function. 

What is meant by evaluation in the context of F, ? Since the calculus has the strong 

normalization property with respect to both p and /3r]-reduction, the definition that 

appears to be easiest to work with is that M evaluates to N if N is in p-normal 

form and M =p N. 

The central idea in the definition of evaluation over the representation is to use 

a detour: we reflect the represented term into its corresponding term representation 

and then reify the result of the evaluation in the metalanguage. Let us try to explain 

this by analogy. Assume we have a programming language like ML (with a built-in 

type of integers) and we make an explicit definition of a data type of natural numbers 

(in a unary representation): 

indtype nat : Type with 

zero : nat 

succ: nat + nat 

end 

There is an obvious way of defining addition by using a schema of iteration (to be 

made precise below): 

plus zero m = m 

plus (succ n)m = succ (plus n m) 

It turns out that in our setting such a straightforward definition of evaluation is 

not possible, but there is a more devious definition of addition whose idea carries 

over to our example. We define representation and “unrepresentation” functions, 
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let us call them reflectnat and reifynat. 

ref lectnat : nat + int 
reflectnatzero=O 

reflectnat (succ n) = (reflectnat n)+ 1 

reifynat : int + nat 
reifynat n = if n = 0 then zero else succ (reifynat (n - 1)) 

Then addition can be programmed by observing that + on integers “behaves like” 

plus on natural numbers, that is, 

reflectnat n +reflectnat m = reflectnat (plus n m). 

Given that we have a reification function we can then define 

plus n m = reifynat (ref lectnat n + ref lectnat m). 

Our construction for programs follows this development, with functions reflect 

(for reflectnat) and reify (for reifynat) and eval (for plus). What plays the 

role of +? In essence, application does, since evaluating a function application in 

the metalanguage models the evaluation of a term (which is not in normal form) 

in the object language. 

Before we can give the definition of an evaluation function, we have to be more 

precise about the tools that will let us define functions over constructors as done 

informally above. All that we need here is the schema of iteration over an inductively 

defined type. For a general development of the notions of inductively defined types 

and iteration over such types that is general enough to apply to the representation 

of terms in F2, see [S, 271; here we only sketch some of the essential elements. An 

inductively defined type is given by a list of its constructors and their types. This 

is an extension of the datatype construction in ML, since constructors may be 

explicitly polymorphic. It is shown in [27] (extending ideas of Bijhm and Berarducci 

[2]) that these types do not require an addition to the core language, since inductively 

defined types are representable by closed types (see Section 4.4). With this in mind, 

we can now present a specification of the type of programs: 

indtype r : Type + Type with 

rep:Aa.c-u+vcu 

lam:A~.Ap.((~-,~~)‘~(~y~p) 

app:Aa.Ap.~(a~P)~~a~~~ 

typlam: Aa:Type+Type. (AO. ~(c.uO))-+ m(AO. ~0) 

typapp:Aa:Type+Type.rr(A0.~B)+A0.7r(cYB) 

end 

It is important to note that this is indeed inductive, that is, all occurrences of rr 

in the types of the arguments of the constructors are positive. This allows the 

definition of a function over the inductive type by iteration, a simpler form of 

primitive recursion. The general schema, instantiated to the type rr, yields the 

following. 
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Definition 19 (Iteration over n-). Given O:Type+ Type and terms 

h,EAa.cz+Oq 

h,EA~.Ap:Type.(a~OP)~O(a~P), 

h,EAa.Ap.O(LY~P)~OCY~OP, 

h4E Aa:Type+Type. (AB. @(a@))+ @(AO. me), 

h,EAcu:Type+Type. O(A0. aO)+AO. @(a@). 

If f satisfies 

f[~l(rw[alx) = h[~lx, 
f[a + Pl(~~iIc-ul[Plx) = Mal[Pl(Ay:a .f[Pl(x~)L 
f[Pl(w[4[Plxy) = WdMWI~ + Plx)CfblyL 
me. ~a(tm~blx = h4blw .fk4wlh 
f[~~l(txwd~lx[Pl) = hJ~l_f[A~. dx[Pl, 

then f: Acu:Type . TCY + @a is defined from h, , . . . , h, by iteration over r at type 0. 

Given this general schema it is easy to define the reflection function. 

Definition 20 (Function reflect). 

reflect : Aa. m -+ LX, 

reflect[a](rep[a]x) =x, 

reflect[cr +p](la,nr[cy][p]x) =Ay:Lu. reflect@](xy), 

reflect[p](app[cY][P]xy)=(reflect[cY~P]x)(reflect[a]y), 

reflect[AO. cYO](typlam[a]x)=A8.reflect[cre](x[e]), 

reflect[@](typapp[a]x[!I]) =reflect[AO. &?]x[p]. 

It is easy to verify that this is an instance of the schema for iteration given above 

where 0 = he. 8. The crucial property is that this really defines a proper reflection 

function with respect to the reification function n (see Theorem 22). In order to 

properly formulate this theorem, we have to add another constant to the context ll 

and some new conversion rules. In the end this will turn out to be unnecessary, 

since we can find a way of repressenting inductively defined types in the pure 

calculus (with an empty context) in such a way that iteration is definable. 

Definition 21 (Iteration context Z7’). We add a variable to the representation context 

ZI that expects a 0 and then functions h,, . . . , h5 to return the function that is 

defined by iteration at type 0 from h,, . . . , h5. 

Z7+ = ZZ, itprog : AO:Type + Type. 

+ACX.(Y+Oa 

-+Aa.A~.(a+O/3)+O(a+P) 

+Aa.A~.O(a+/3)+Oa+O~ 

+Aa:Type-+Type. (de. o(d))+ @(de. 49)) 

-+Aa:Type+Type. O(Ae:Type. ~e)+AO. @(ati) 

+ACY.7iW’&Y. 
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The iterative reduction property of itprog states that f = itprog@h, . . . h, satisfies 

the equations from Definition 19 (as reductions, they would be read from left to 

right). The corresponding enriched equivalence relation is denoted by = poL, 

Theorem 22 (Correctness of reflect). Let r, I7F N E ~a be some (not necessarily 

standard) representation of the term M. Then reflect N =p,,L M. 

Proof. As in the proof of Theorem 18 by induction on the long normal form of N 

in terms of the constructors of n. 0 

4.3. The dejinitions of reify and eval 

Given the definition of reflect, it is a simple matter to give the definition of 

eval : rm -+ TCY. Intuitively, eval should take the representation of a term and return 

a representation of its normal form. This is achieved simply by composing reflection 

with reification. This definition (given formally below) will not return the standard 

representation of the normal form of the term, but rather exploit the fact that every 

normal form term M can be represented as rep M. This is also a weakness, since 

the internal structure of M is lost (unlike in the standard representation). In a 

practical language there seems to be no way around this deficiency. For instance, 

in a compiled language it is not clear how one could reify the target machine code. 

reify : Aa.a+~~a, 

reify = rep, 

eval : Aa. rrc~ + m, 

eval = ALU. hx:m. reify[a](reflect[a]x). 

Theorem 23 (Correctness of eval). Let r, IIF NE TTCY be some (not necessarily 

standard) representation of the term M. Then eval[a]N is a representation of the 

normal form of M. 

Proof. Follows directly from Theorem 22. Cl 

We do not have a simple and intuitive characterization of exactly which functions 

are definable over the given representation of programs. In particular, we do not 

know whether the apparently simpler one-step outermost P-reduction is represent- 

able, but it appears that it is not. The problem is that the first argument to lam 

expects a function of type LY + VP, not of type ICY + n/I. Unfortunately, our lack of 

understanding of exactly what is definable has prevented us from finding more 

practical programming applications of our metacircularity results. 
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4.4. Representing inductively dejined types and iteration 

So far we have been able to interpret F2 in an enrichment of F3 that contains 

some new representation constants and an iteration schema. The purpose of this 

section is to show that we can eliminate these additional constants: we will explicitly 

define in pure F3 a parameterized type rr and terms rep, lam, app, typlam, and 

typapp to represent programs, and also a term itprog that satisfies the reduction 

property of Definition 21. 

The basic problem is to be able to explicitly define a function rr from types to 

types, such that w is a type representing programs of type (Y. The usual, well-known 

approach for defining inductive data types in the second-order polymorphic h- 

calculus (see [2,30]) fails (although we do not have a proof that such a representation 

is impossible). The data types that have been shown to be representable in F2 either 

have constructors that are not polymorphic (such as nat = Aa. a + (a + a) + (Y, 

which has constructors zero:nat and succ:nat+ nat), or have the property that 

the type variables in the constructor are uniform over the whole data type (such 

as list = ha. AO. (a -+ 0 + 13) + 0 + 19 with constructors cons:AO . t9 + list 13 + list 0 

and nil:AO. list 0). This allows the definitions of the constructors to be uniform 

over this type variable (see the discussion of uniform parameterization in [27]). 

An attempt at a straightforward extension of this approach to the case of a data 

type of programs fails, since a program of type /3 may have components of type 

(Y + p and (Y, and thus in fact of arbitrary type. This problem can be dealt with in 

the third-order polymorphic A-calculus, since in it one can explicitly use a function 

from types to types that maps the type of the components to the type of a term. 

In analogy to Church’s representation of natural numbers in the A-calculus, each 

program is represented as its own iteration function. That is, in the end we would 

like to define (omitting some types of bound variables) 

itprog-A@:Type+Type. Ah,. . . Ah5. Aa. Ax:rra. x[O]h,. . . h5. 

From this one can infer what the definition of rr will have to be. Each line is 

annotated with a corresponding constructor function that is defined below. 

n=Ay.AO:Type+Type. 

(da. a+&~) (*rep*) 
~(A(YA~.((Y’OP)~O(~~~)) (*lam*) 
+(AaAp. @(~y+~)+@cx+@~)) (*aw*) 
+ (An:Type+Type. (AIM. O(aO))+ @(AO. ~0)) (*typlam*) 
+(Aa:Type+Type. @(AtI. aB)+(AB. @(at?))) (*typapp*) 
+ oy. 

This is a special case of a very general transformation from an inductive definition 

of a data type into an encoding into F, described in [27]. The definitions of the 

constructors in this encoding can be found in Fig. 1. 
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rep : Aa.a+no 

rep = Aczhx:(~. 

A@ hrep Alam happ htyplam htypapp. 

reP[~lx 

1aJIl : AaA/3.(a+~~)+~(a+@) 

lam = nCXnpAj-:a+$. 

A@ Arep Alam Aapp Atyplam Atypapp . 

lam [a][/?](Ax:a .fx [O] rep lam app typlam typapp) 

am : AcYA~.GT(cY+~)+TxY+T@ 

app = h Ap Ax:~(cx + p) Ay:%-a. 

A@ Arep Alam Aapp Atyplam Atypapp. 

wp[~I[Pl(x[@l 9 lam w typlam typapp) 
(Y[@I 9 lam app typlam typapp) 

typhll : 

t.yplaJn = 

typapp : 

QPnPP = 

Acu:Type+Type. (AB. n(aO))+n(AO. ~0) 

Acr:Type+Type hf:A13. ~(a@). 

A@ Arep Alam Aapp Atyplam Atypapp . 

typlam [a](AO .f[e][o] rep lam app typlam typapp) 

Aa:Type+Type. n(Ae. ae)+(Ae. n(ae)) 

Aa:Type+Type Af:n(AO. c&) A@. 

A@ Arep Alam Aapp Atyplam Atypapp . 

Wapp [~l(f[@l 9 lam am Q&m Ww) wl 

Fig. 1. Definition of program constructors for Fz in F3. 

We thus can eliminate the context l7+ and the additional reduction rule for 

iteration and give a representation of programs in pure F3. 

Theorem 24 (Representation in pure FJ. Let &?I and & be the result of substituting 

the definitions above for variables rr, rep, lam, app, typlam, typapp, and itprog 

in a term M or type a, respectively. If I, II+ E M E nw then It &l E 6%. Moreover, 
A 1 

if M =oTL N then M =o,, N. 

Proof. This is an instance of the general representation theorem for inductively 

defined types in [23,27]. 0 

The crucial step in the definition of eval is the definition of reflect, which 

maps the representation of a term of type ~TT(Y into a term of type rw, that is, 
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reflect : Aa. TCX + a. In order to obtain its definition in pure F3, we simply match 

up the general schema of iteration from Definition 19 with the definition of ref lect 

(Definition 20) to obtain expressions for h, , . . . , h,. Each hi turns out to be a variant 

of the identity function: 

reflect : Ay.xy+y 

reflect = itprog[ha.S](Aa. id[a])(AaAp.id[a+p]) 

(AaAp. id[a+p]) 

(A(xAj?.id[cu+p]) 

(Aa:Type+Type.id[A8.cu@]) 

(Aa:Type-+Type.id[A0.a0]) 

= AyAp:7iy.p[A6.6] 

(Aa. id[a]) 

(AaAp.id[a+p]) 

(AaAp. id[a+p]) 
(Aa:Type+Type. id[A0. (~01) 

(Aa:Type+Type. id[Af?. (~01). 

This definition highlights the fact that a program is represented as its own iteration 

function. The ability of a program to be evaluated is captured in the representation 

itself-externally we simply supply identity functions. 

5. Application to other calculi 

Let us first deal with the most obvious question: since F2 can be reflected in F3 

one might expect that F3 could be reflected in F4. However, the construction as 

given does not extend to this case (as was erroneously claimed in [28]). Can we 

modify the construction to obtain an interpreter for all of F, ? The answer is yes, 

but we have to modify our construction to add another level in addition to terms, 

types, and kinds. Perhaps the most uniform way of doing this is to introduce universes 

as in related systems such as the Generalized Calculus of Construction (CC”) [6, 161. 

This is beyond the scope of this paper, and so we simply give the construction as 

it would appear if one additional level is added explicitly, thereby allowing an 

interpreter for F, to be written. 

The way in which this additional level is added is straightforward for our purposes: 

we need variables K ranging over kinds and a way to explicitly abstract terms over 

kinds. 

Definition 25 (Calculus F:). To the syntactic categories of Definition 1 we add 

Kinds K ::= .I K, 

Types ff ::= ::.I A+K.LY, 

Terms M ::= . ..I A +K.M ) M[K]+, 

Contexts r ::= . . . ( K:Kind. 
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At stands for abstraction over kinds at the level of terms, and a function thus 

formed has a type of the form A+K . a and can be applied via [ I’. The inference 

rules from Section 3 must be modified in the obvious way so that the judgment 

t- K E Kind is parameterized by a context, that is, TE K E Kind. We also add the 

following new deduction rules: 

C r context rc:Kind in r 

TtKEKind 

c K:KindFaETvne 

rt-A+K.(YEType 

r context 

r, K : Kind context 

r. K:KindEME (Y 

rtA+K. MEdtK. ff 

rI-MMA+K.(Y TkK E Kind 

rf-bf[K]+E[K/K]Cl 

All of the desirable properties such as strong normalization and decidability of 

type-checking of F, are preserved in F: (see, for example, [19] for the proofs in 

a much stronger system of which F: is only a small fragment). 

The next step is to modify the construction in Sections 4 and 4.4. The crucial 

change is in the definition of r: all the other changes follow almost automatically. 

Consider 

typlam: Aa:Type+Type. (A@. ~(aO))+n(dB. (~0). 

This must now be generalized, since abstractions in F, may also range over variables 

of kind Type -+ Type, Type + Type + Type, and so on. In order to represent all of 

these in a uniform way, we need a family of constructors, indexed by a kind K: 

typlam, : Aa:K +Type. (AO:K. r(d))+ r(AB:K. d). 

In [26] we proposed using global definitions and definitional equality to solve this 

problem, here we add a way of explicitly abstracting over kinds. In our notation 

from above, typlam will then have the type 

typhm: A+K. ACI:K +Type. (de:K. 7i-(ae))+ n(de:K. (ae)). 
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The modified standard representation function then reads as follows: 

IfXEcu then X = rep[ (_y lx. 

Ifhx:a. MEa+P then hx:a. M= lam[a][p](Ax:a.n;i). 

IfMEa+pandNEa thenMN=app[a][P]MN. 

IfAO:K. M~d0:K.a thenAO:K. M 

IfMEA0:K.a 

= typlam[K]+[Ae:K.(y](ne:K.n;i). 
then M[p] = typapp[K]+[AO: K. a]n;i[p]. 

The type of typapp has to be changed in a way analogous to typlam leading to 

the following definition of GT generalized from Section 4.4: 

rr= Ay. AO:Type+Type. 

(Aa.a+Oa) 

~(AcuAp.(a~op)~O((y~p)) 

+(AcrAp. O(a+p)+Oa+@p)) 

+ (A’K. ACY:K +Type. (A~:K. @(aO)) 

+ O(AB:K. a0)) 

+ (A+K. A(Y:K -+Type . O(AO:K. a0) 

+ (AI~:K. @(aYe))) 

+ oy. 

(*rep*) 
(*lam*) 

(*w*) 

(*typlam*) 

(*tww*) 

Most of the other definitions of Section 4.4 go through as given, with some changes 

in the types (which were omitted in Fig. 1). As an example we consider typlam. 

typlam : A+K. Aa:K *Type. (A@:K. n(aO))-+ T(AO:K. ~0) 

typlam = A+ K. ACX:K +Type A~:AO:K.TT(OZO). 

A 0 A rep A lam A app A typlam A typapp . 

typhm [K]+[cx](AO:K .f[O][@] rep lam upp typlum typapp) 

For the definition of reflect we get 

reflect : AY. V+Y 

reflect = AyAp:~y.p[h~S. 61 

(Aa. id[a]) 

(AaAp.id[a+p]) 

(AaAp. id[cl-+p]) 

(A+K. A(Y:K -Type. id[dO:K.aO]) 

(A’K. ACU:K +Type . id[AO:rc. (~01). 

The representation theorems go through in the same way as before, but now any 

term in F, can be represented and evaluated. Even though the uniform representation 

and definition of the evaluation function is in FL, evaluation of a given term in F, 

“takes place” in F,,,, , since any given term in F,, will only use finitely many kinds. 
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6. Conclusions 

We conclude that metacircularity is very nearly attainable in a statically typed 

language. Unfortunately, this does not seem to imply that the same language is also 

suitable for typed metaprogramming: the construction of statically typed programs 

(called metaprograms) that construct, analyze, and manipulate other programs 

(which are called the objectprograms). It is this problem which provided the original 

motivation for the construction presented in this paper. 

With regard to typed metaprogramming, it seems that we have little to add to 

what is already known, despite the fact that we have developed a simple extension 

to F, that allows all of F, to be represented. Our experience has been that evaluation 

is just about the only useful function definable over this representation. Other 

interesting metaprogramming tasks, such as partial evaluation, macro expansion, 

program transformations, and so on, do not seem to be expressible. 

The precise reasons for these difficulties have eluded us thus far, and as a result 

we have yet to prove any negative results. However, there are a number of plausible 

explanations which center on the issue of how to model abstraction. 

l If one models abstraction in the object language by abstraction in the meta- 

language (as we have done here), then static typing does not seem to be a major 

obstacle to useful metaprograms. Instead, the problem seems to be an insufficient 

degree of access to the intensional structure of programs. In a functional language, 

a possible way out may be to preserve intensionality with new language constructs 

that are parallel to, but separate from extensional function constructors. 

l If abstraction is not modeled by abstraction, then static typing becomes a major 

obstacle to metacircularity. Of course, removing the static typing requirement 

allows many useful metaprograms to be expressed, as exemplified by Lisp. In a 

statically typed setting, however, proofs of well-typedness would have to be 

carried out at the meta-level and, moreover, reflection and reification functions 

could not be made internal. Still, this approach is promising and has been explored 

by Howe in the framework of NuPrl [17,18]. 

In related research we have been working on the design and implementation of 

a practical, explicitly polymorphic language along the lines of ML which we call 

LEAP.’ For a core of LEAP which encompasses most language fragments described 

in this paper, we have built a prototype implementation, written largely in the 

language AProlog [22], and the examples in this paper have been run on our 

implementation. Two features of our language of importance to the ultimate practi- 

cality of LEAP are type reconstruction and type-argument synthesis. 

With regard to type reconstruction, we employ the convention of allowing the 

programmer to omit type information, but with the requirement that “placeholders” 

be used to mark all applications of functions to types. So, for example, the 

representation of the polymorphic identity function from Example 13 could be 

’ LEAP is an acronym for a Language with Eva1 And Polymorphism. 
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written as 

id = typlam[ ](Aa. lam[ ][ ](hx:a. rep[ lx)). 

Though undecidable, we have found in practice that the semi-decision procedure 

given in [24] for this type reconstruction problem behaves acceptably well. There 

is much yet to be explored here, however, especially in the practical engineering 

issues, such as the efficiency of the reconstruction mechanism, its behavior on errors 

and failures, and the incorporation of a notion of modules. 

Even with type reconstruction, we find the requirement of placeholders to be 

cumbersome. Hence, a mechanism for synthesizing type-argument applications is 

necessary. This has been noted by others as well, and various methods have been 

proposed for carrying out this synthesis [9,29]. In LEAP, we have taken a purely 

syntactic approach involving the annotation of identifiers in their defining occur- 

rences by the number of type arguments to be inferred at each occurrence of that 

identifier, thus separating issues of type reconstruction from the issues of argument 

synthesis. Modifying the left-hand side of the definition of typlam and related 

functions by annotating them with *‘s (for example, typlam* = . . . , and lam** = 

. . . ), we express the representation of the polymorphic identity as 

id= typlam(Aa. lam(Ax:a. rep x)). 

With type reconstruction and type-argument synthesis, as well as inductive type 

definitions, we obtain a useful and syntactically tractable LEAP language. Of course, 

lacking a full implementation we can only speculate on the question of its ultimate 

practicality. However, almost any argument that might be made for ML as a 

metalanguage can also be made for LEAP. In addition, LEAP is able to represent 

and manipulate in a type-safe way data with richer type structures than is possible 

in ML. Just how useful this added power is in practice will require much further 

investigation and experience. 

Other issues to be studied further include the exact extent of the language, in 

particular with respect to additions such as general recursion, references, exceptions, 

and so on. We have done some preliminary work along these lines, and have some 

evidence that such extensions will not destroy the “reflective” properties of LEAP. 

Another issue is the efficiennt implementation of LEAP. Our efforts here have been 

directed towards devising efficient implementation strategies for inductively defined 

data types and recursive functions defined over such types. 

We hope to have more to report as the design and implementation of a full LEAP 

language proceeds. 
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