
Theoretical Computer Science 89 (1991) 137-159

Elsevier

137

Metacircularity in the
polymorphic h-calculus*

Frank Pfenning and Peter Lee
Department of Computer Science, Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213-3890, USA

Abstract

Pfenning, F., and P. Lee, Metacircularity in the polymorphic A-calculus, Theoretical Computer

Science 89 (1991) 137-159.

We consider the question of whether a useful notion of metacircularity exists for the polymorphic

A-calculus. Even though complete metacircularity seems to be impossible, we obtain a close

approximation to a metacircular interpreter. We begin by presenting an encoding for the Girard-

Reynolds second-order polymorphic A-calculus in the third-order polymorphic A-calculus. The

encoding makes use of representations in which abstractions are represented by abstractions, thus

eliminating the need for the explicit representation of environments. We then extend this construc-
tion to encompass all of the w-order polymorphic A-calculus (F,). The representation has the

property that evaluation is definable, and furthermore that only well-typed terms can be represented

and thus type inference does not have to be explicitly defined. Unfortunately, this metacircularity

result seems to fall short of providing a useful framework for typed metaprogramming. We

speculate on the reasons for this failure and the prospects for overcoming it in the future.

In addition, we briefly describe our efforts in designing a practical programming language

based on F,.

1. Introduction

In this paper we consider the question of whether a useful notion of metacircularity

exists for the polymorphic A-calculus. There are, of course, many examples of

metacircularity in untyped (or dynamically typed) languages, most notably in Lisp

[20]. In [32], Reynolds gives a metacircular interpreter for a simple untyped func-

tional language. This was pursued further by Steele and Sussman [35], and others.

More recently, metacircularity has been explored for logic programming languages

* This research was supported in part by the Office of Naval Research under contract N00014-84-K-0145

and in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404, monitored

by the Office of Naval Research under the same contract.

0304-3975/91/%03.50 0 1991-Elsevier Science Publishers B.V. All rights reserved

138 F. Pfenning, P. Lee

[l] and object-oriented languages [5]. In the realm of statically typed functional

languages, however, we are unaware of any satisfactory examples. ML [21], for

instance, seems not to be powerful enough to serve as its own metalanguage in a

natural way-an ML interpreter written in ML would be highly redundant since,

for example, type inference would have to be reimplemented explicitly. We would

like to attain a high degree of reflexivity, meaning essentially that the metacircularity

should be attained in a natural, “internal” way. We discuss this issue of reflexivity

in greater detail in Section 2.

As a starting point for our investigation we chose the polymorphic A-calculus.

Conventional wisdom indicated that the answer to the question of whether metacircu-

larity is possible in the polymorphic A-calculus should be “No.” It seemed that the

type system would not permit a high degree of reflexivity, and also that, due to the

strong normalization property of the calculus, the usual paradoxes would block our

way.

We have found, however, that the answer is “Almost.” After a brief review of

the polymorphic A-calculus in Section 3, we explain our answer in Section 4. We

start by showing how the second-order polymorphic A-calculus (F2) (see [12,13,31])

can be represented in Fs (the third-order polymorphic A-calculus) extended with

an ML-like facility for defining data types. This representation turns out to be

inductively defined; hence we are able to define evaluation for the FZ program

representations via iteration. Then, by extending to higher orders the well-known

methods for representing inductively defined data types in the second-order polymor-

phic A-calculus [2,31], we are able to present a complete encoding of F2 programs

in pure F3 such that their evaluation function is definable in Fs.

Although quite different in the details, our construction is reminiscent of the

rejlective tower of Smith [33,34]. Friedman and Wand’s analysis of reflective towers

[10,361 emphasizes rei’cation, the translation from programs to data, and reflection,

the translation from data to programs, as central concepts. Thus, in the setting of

a statically typed functional language, we have found elegant and concise definitions

for limited forms of reification and reflection. This allows us to build a “tower,”

starting with an interpreter for Fz written in F3, and then extending to all higher

orders by introducing a simple extension to the w-order polymorphic A-calculus

(F,). This extension, which allows us to define reification and reflection functions

for all of F,, is described in Section 5.

An interesting feature of our definitions is that only well-typed programs can be

represented, or “reified.” In the context of metaprogramming (i.e., the construction

of programs that construct and manipulate other programs), this property implies

that well-typed metaprograms can construct only well-typed object programs-a

very desirable property. To our dismay, however, we have not been able to extend

our metacircularity results to handle interesting kinds of metaprogramming prob-

lems. As part of our concluding remarks in Section 6, we speculate briefly on the

reasons for this failure, as well as the prospects for overcoming this in the future.

In addition, ous experience has led us to ask whether F, can be used as the core

Metacircularity in the polymorphic A-calculus 139

of a practical programming language. Here we find the situation to be much more

encouraging, and so we also briefly describe our efforts to design a language based

on F,, which we have called LEAP.

2. Reflexivity

We are concerned not only with metacircularity, but also with how easily and

naturally the metacircularity can be expressed. We call this the reJlexivity of the

language. We will not attempt to give a formal definition for when a language is

reflexive. Instead, we will try to give some informal criteria for judging the degree

of reflexivity of a language, the basic one being the ability of a language to serve

as its own metalanguage. This by itself does not seem enough, since then every

Turing-complete language would be reflexive. In addition, we would like to require

that the metacircularity is achieved in a natural, “internal” way. The answers to the

following questions provide some hints for evaluating the degree of reflexivity of a

language.

l How redundant is the definition of a metacircular interpreter? In a highly reflexive

language, the metacircular interpreter should be simple and direct. The more that

features of the object language can be implemented by using the corresponding

features of the metalanguage, the more reflexive the language. We call this

phenomenon inherifance of object language features from the metalanguage.

Typical examples of features for which inheritance might be desirable are evalu-

ation order (e.g., call-by-value vs. call-by-name) and static typechecking.

l How much of the metalanguage can be interpreted by the metacircular interpreter?

Ideally, the metalanguage and object language should coincide.

l Can we define the functions reify and reflect in addition to eval? That is,

can we coerce data into programs and vice versa?

l How well can object language syntax and metalanguage syntax be integrated?

We will mainly ignore this issue: with the aid of good syntax-handling tools one

should always be able to achieve a reasonably smooth integration of metalanguage

and object language.

The concept of inheritance (though not under this name) was already considered

by Reynolds in [32]. As we mentioned before, an ML interpreter written in ML

would likely be highly redundant, since type inference would have to be reimple-

mented explicitly. In other words, it seems that ML type inference cannot be

inherited, in part because of the complexity of the data type of programs, and also

because of the implicit nature of the type quantification in ML. An interpreter

written for a dynamically scoped Lisp would also be redundant, since environments

must be represented and manipulated explicitly by the interpreter. The notion of

variable binding cannot be inherited and must be programmed explicitly. However,

many other features such as automatic storage management clearly are inherited in

a typical metacircular Lisp interpreter.

140 F. Pfnning, I? Lee

In this paper we show how a high degree of reflexivity can be obtained in the

polymorphic A-calculus, despite the complications of types and the strong nor-

malization property.

3. The w-order polymorphic A-calculus

In [12,13], Girard defined a powerful extension to Church’s simply typed A-

calculus [3] and goes on to give a constructive proof of strong normalization for

his system. A fragment of Girard’s calculus was independently discovered by

Reynolds [31] who introduced abstraction on type variables and application of

functions to types in order to define polymorphic functions explicitly. Reynolds’

calculus is known as the second-order polymorphic A-calculus.

Here we consider the o-order polymorphic A-calculus (F_,) which is an extension

of Reynolds’ system but only a fragment of Girard’s system (since it omits existen-

tially quantified types). Our presentation of the calculus contains four distinct

syntactic categories: kinds, types, terms, and contexts.

Going beyond the second-order polymorphic A-calculus means that we have, in

addition to types of terms, also functions from types to types, and so on. This

generalization is essential for our construction, as even the representation of the

simply typed A-calculus appears to require the formation of functions from types

to types. We refer collectively to types, functions from types to types, and so forth,

as higher-order types, and the “functionality” of a higher-order type is referred to

as its kind. Only higher-order types of kind “Type” can actually be the type of a

term. These and other properties of the calculus are summarized at the end of this

section. Throughout this paper, we will often say just “type” when we actually mean

“higher-order type.” In particular, we will refer to variables ranging over higher-order

types simply as type variables.

We use the metavariables K, K’ for kinds, a, p, . . . for higher-order types and

occasionally for type variables, 13 for type variables, M, N, . . . for terms, and x, y, . . .

for variables.

Definition 1. The syntactic categories of kind, type, term, and context are defined

inductively by

Rinds K ::= Type 1 K+ K’,

(Higher-order) Types (Y ::= 0 1 a+.p) AO:K.cu 1 A0:K.a 1 a/3,

Terms M ::= x) AX:LY. M 1 MN) AO:K. M) M [a],

Contexts r ::= ()) r, 0:K 1 r, X:CY.

The A symbol is used to construct functions that can be applied to a term, yielding

a term, and also to build functions that can be applied to a type, yielding a type.

The symbol A constructs functions that can be applied to types, yielding a term.

Metacircularity in the polymorphic A-calculus 141

Such a function will have a A type. The order of a term in this calculus is determined

by what kind of abstractions over types are allowed: we obtain the second-order

polymorphic A-calculus (FJ if we allow abstractions only over type variables of

kind Type; we obtain F3 with abstractions over type variables of kinds Type + * * *+

Type, etc. Contexts uniquely assign kinds to type variables and types to term

variables. We will omit empty contexts, and write “r, r”’ for the concatenation of

two contexts. It is convenient not to distinguish between variables in a global context

and constants, and occasionally, in a slight abuse of language, we call a member

of a context a constant.

Definition 2. The following judgments define the calculus F, :

+ r context, r is a valid context,

t- K E Kind, K is a valid kind,

TkClEK, CY has kind K in context r,

TFMECX, M has type CY in context r,

“=prlP.

We will regard a-convertible types and terms (with binders A, A, and A) to be

equal. Thus we will ignore the issues of variable renaming and name clashes. We

also assume that any variable occurs at most once in the domain of a context r

(that is, the list of all variables 0 and x such that O:K or X:(Y are in r). This can

always be achieved by cz-conversion or through the use of deBruijn indices, as for

example in Coquand and Huet’s presentation and implementation of the Calculus

of Constructions [7,9].

Definition 3 (Valid kinds).

F Type E Kind

t-KEKind t K'E Kind

t-K-+K’EKind

Definition 4 (Valid higher-order types).

Tka EType rFp EType

T+a+pEType

r, O:KFaEType

rkAO:K. a EType

+ r context 0:K in r

TkBEK

r. 8:Ktcw E K’

142 F. Pjenning, P. Lee

Definition 5 (Valid contexts).

k () context

t r context +KEKind

t-r, 0: K context

t-r context Tt--cu EType

E r, x: a context

Definition 6 (Valid terms).

t r context x:ff in r

rtxEa

r.x:atMEa

rkAx:a.MEa+p

1-tMEa+p rb-NEcY

TEMNEP

1-,O:KkMMfl

r+Ae:K. M~d0:K.p

TkMEA0:K.a rtaEK

r~M[c_u]E(hO:K./3)cY

l-t-Mea 'y=lb P rkp EType

l-k-M/3

The rule giving the type of a A-abstraction is formulated so that the type conversion

rule can be used to carry out the substitution of LY for the free occurrences of 8 in

p. The simple device of reducing substitution to P-reduction is used later for the

representation of terms. When we omit a kind, as in “AO. cr,” we mean “AB:Type . a”

In the type conversion rule we allow conversion between Pn-equivalent types.

We define =p,, on types as the equivalence relation induced by p- and v-reduction

of types. At the level of types, a p-redex has the form (hO:K. a)~ and an q-redex

has the form (hO:K. atI) where 0 is not free in cx

In the conversions for terms we will have occasion to consider both /?-conversion

and q-conversion. Both must include type applications, that is, (AO. M)[p] =p

[p/O] M (where [p/O]M is the result of substituting p for 0 in M, renaming bound

type variables to avoid name clashes) and AO. M[01 =? M if 13 is not free in M.

We write =p,, for the equivalence relation induced by this extended notion of

conversion. A valid term M or type CY is in long pq-normalform if it is in p-normal

form and it cannot be q-expanded to a valid term or type without creating a /3-redex.

During the remainder of the paper, we will make use of some fundamental

properties of the calculus whose proofs can be found elsewhere (see, for example,

Metacircularity in the polymorphic A-calculus 143

[12, 14, 111) or follow immediately from known results. We state here only a few

of them.

Theorem 7 (Basic properties of F, ; Girard [141).

(1) IfrFMEathenrFaEType.

(2) If r t CY E K then LY has a unique long PT-normal form.

(3) If Tt M E a then M has a unique /?-normal form and a unique long pynormal

form.

(4) IfT+MEcu andrEME/ then (Y =asP.

(5) r t M E (Y is decidable.

The system F, can be stratified into levels very naturally in analogy to the way

higher-order logic can be stratified into first-order logic, second-order logic, and so

on. Of course, this does not mean that our system is predicative: already the level

F2 is impredicative. In our setting the concept of order is determined exclusively

by the kinds of the types of a term and its subterms. The orders are calibrated by

naming the second-order polymorphic A-calculus F, (the system Girard calls F).

Since the notation of order is important in the discussion of metacircularity, we

will give a formal definition of the overloaded function o which applies to kinds,

types, terms, and contexts.

Definition 8 (Order of kinds). We define inductively:

o(Type) = 1,

o(K+K’)=max(o(K)+l,o(K’)).

Definition 9 (Order of types). The order of all types are eventually reduced to the

order of kinds. Given any context r, we define inductively o’.:

o”(0) = o(K), where 0:K in r,

~“(a -/3) = max(o“(a), o“(p)),

o“(AB:K. cu)=max(o(K)+l, o”“‘~(cY)),

o’.(AB:K. a)=max(o(K)+l, ~“‘:~(a)),

o“(@) = max(o”(a), o“(p)).

Definition 10 (Order of terms). The order of all terms is eventually reduced to the

order of types and kinds. We define inductively:

o”(x) = o”(a), where x:a in r,

ol‘(hx:a. M) = max(oI‘(cu), o”“‘“(M)),

o“(M N) = max(o“(M), ol.(IV)),

o“(A0:K. M)=max(o(K)+l, o”“‘“(M)),

o“(M[a]) =max(o“(a)+l, o“(M)).

144 F. Pjbning, P. Lee

Definition 11 (Order of contexts).

o(T, x:a) =max(o(r), or(a)),

o(T, 8:K) =max(o(r), o(K)).

F, is the restriction of F, to kinds, types, terms, and contexts of order n. According

to this definition, Fl will be the simply typed A-calculus and F2 is almost exactly

Reynolds’ second-order polymorphic A-calculus. The difference is that F2 as defined

above allows explicit formation of functions from types to types with A, which was

not part of Reynolds’ calculus. However, it can be shown that no cz E Type with

O(Q) = 2 in normal form will contain such an abstraction, so the difference is minor

(see [28] for a detailed discussion).

4. Reflection of F2 in F3

In this section we describe how metacircularity can be achieved to a large degree

with F,. The presentation will proceed in two stages: first we show how the F2

fragment can be represented in F3 augmented by a few constants and some new

reduction rules defining evaluation for F2. Second we show how all these constants

are actually definable in such a way that /?-reduction is sufficient, that is, F2 and

its evaluation function can be faithfully represented in F3.

4.1. Representation of programs

The first concern is the ability to represent programs in the language as data. Two

approaches seem plausible: to build in a new special data type for programs, or to

use combinations of existing built-in data types to represent programs. We first

show how representation can be achieved using new constants, and then how these

constants can be eliminated through internal definition.

Starting informally, it is useful to consider how programs in F2 might be repre-

sented if ML-style datatype constructors were used. Looking at Definition 1 suggests

that there ought to be five constructors: one for variables and one for each form of

abstraction and application. Thus we make our first crucial decision: the types of

F2 are not represented explicitly, but rather mapped into types in F3. This technique

results in the property that only well-typed terms in F2 can be represented, thereby

providing a built-in type safety. But this then forces our hand in the representation

of variables: if we try to represent them explicitly (say as strings or natural numbers),

there appears to be no way to guarantee well-typedness of the term we are trying

to represent.

The way out of this dilemma is to use the idea of higher-order abstract syntax,

which goes back to Church and appears in different guises in various places in the

literature, for example [4, 15,251. The essence of higher-order abstract syntax is to

Metacircularity in the polymorphic h-calculus 145

use the abstraction mechanism of the metalanguage to implement abstraction in the

object language. Here, of course, both metalanguage and object language will be

fragments of F,, so A and A will be used to implement themselves. That this is

possible may seem unlikely at first, especially in this statically typed language, but,

as we will see, we can construct such a representation and even define an evaluation

function.

Ignoring the problems of types for the moment, we thus obtain the constructors

rep (for bound variable occurrences), lam, app, typlarn, and typapp. The con-

structors lam and typlam expect absstractions as arguments, since abstractions are

to be represented by abstractions. In the interests of readability, we have in the

definition below omitted the context argument of the representation function 0

which could be easily filled in. The crucial property of this function is given in

Theorem 15.

Definition 12 (Standard representation). Let M be a valid term of F2 in some context

r’. We define the standard representation ti of M inductively as follows:

IfXECY then X = rep[cr]x,

1fhx:a. MEa+P then Ax:cw . M = lam[a][p](Ax:a. A?f),
- -

IfMEcr+pandNEa thenMN=app[a][P]MN,

IfA0. MEA0.a then A0. M = typla,m[hf3. a](AO. A?),

IfMEA0.a then M [p] = typapp[Ae. a]n;i[p].

Since the type of a given term is not unique (due to the type conversion rule), this

does not actually define a function on terms. However, due to uniqueness of types

up to conversion it is easy to see that M is also unique up to conversion at the level

of types occurring in &?. We thus turn (5 into a function by stipulating that the

types in M be in normal form.

Example 13 (Representation of the polymorphic identity function). Let id=

ACY. Ax:(Y. x. Then

id= typlam[r\e. e+ e](Aa. lam[c-u][c~](A~:~~. rep[a]x)).

What is the appropriate metalanguage in which to interpret n;i? Obviously, we

need five constructors and a representation type. We write “rrcr” for the type of

representations of programs of type (Y and define a context U giving the types of

the constructors.

Definition 14 (Representation context II).

17 = rr : Type + Type,

rep:Aa.a+Ta,

lam:Acu.Ap.(a-,~~)~~((~~P),

app:Aa.Ap.~(a~P)~~a~~~,

typlam:Aa:Type-+Type. (Ae. 7r(ae))-+r(Ae. u+),

typapp:Aa:Type+Type. n(AO. &)-+AB. ~(4).

146 F. Pjenning, P. Lee

The significance of this definition lies in the following theorem.

Theorem 15 (Soundness of program representation). Let M be a term such that

r, 17~ ME CY where (Y is in normal form and Oaks = 2. Then r, l7t h? E rra.

Moreover, o’,“(iI?l) = 3.

Proof. By a simple induction on the derivation of r, IKE M E (Y. 0

Note also, that for a term M in F, (a simply-typed term), the representation iI?

will be in F2. For the representation of F,-terms, it is not necessary to consider the

context I7 for M, but it is convenient to do so for the completeness theorem. For

example, a term N such that 17 E NE rr(OTT does not directly represent a term in

the empty context, though it represents a term in the context I7 (see Example 17

and Theorem 18).

Definition 16 (Representation). We define the relation “represents” inductively like

the standard representation, except that rep[a]M (which is not the standard

representation of any term unless M is a variable) is defined as representing M and

if N=,, N’ and N represents M, then N’ also represents M.

Example 17 (A representation of a representation of the polymorphic identity func-

tion). Let id be the standard representation of the polymorphic identity function

from Example 13. The following represents id, though it is not its standard

representation:

rep[T(Aa. (Y + a)](typlam[hO. 13+ O](h. lam[a][a](Ax:a. rep[a]x))).

Omitting some types within square brackets and without writing out representations

of variables, the standard representation of id IS

app[I[IWww[ItmlN~~. f3 + 4)
(twlam[Ma. aw(twapp[I(tnww[11W~l)[~l)

Wd I[I(Ax:a. wp[I[I(Qww[lw[al)3))).

The type of both of these representations is r(~(Acx . a + a)) and they are valid

terms in the context l7.

Theorem 18 (Completeness of program representation). Let N be a term such that

I’, ZIt NE TTTT(Y for (Y in normal form and or,=(N) = 3. Then there is an M with

r, II k M E CY such that N represents M.

Proof. We take the p-normal form of N and then n-expand to achieve the long

Pq-normal form N’. By definition, if N’ represents M, then N also represents M.

One can then see that N’ must be of the form of a constructor (that is, a variable

in IT) applied to sufficiently many arguments: none of the variables in r could

produce a term of type rr(~, since (Y is introduced in II and can therefore not appear

Metacircularity in the polymorphic A-calculus 147

in K The function that maps N’ back to the term that it represents is in essence

the function reflect from Definition 20. 0

Note that representations of programs are not unique, not even up to conversion.

For example, any term M E a in normal form can be represented as rep[a] M, but

it also has a representation in terms of lam, app, typlam, typapp, and rep, where

rep is applied only to variables.

Because of the property mentioned in the previous paragraph, it is tempting to

try to eliminate the rep constructor from the representation. However, it is crucial

in order to convert bound variables into their representations. A simple attempt to

get around this would be to change the type of the lam constructor to AcrAP. (TCY +

CT/~) + T((Y + /3). However, this also fails since then there is a negative occurrence

of v in the argument to one of the constructors for n, making it no longer inductive,

but generally recursive. We have not explored in depth whether the addition of

general recursive types would strengthen the possibility of reflection in F,,,, but we

suspect that the results would be equally unsatisfactory.

4.2. Evaluation

Of course, there are a wide variety of possible representations, even given the

constraint that we would like to represent only well-typed F2 programs. One of the

crucial properties of our representation is the definability of the evaluation function.

What is meant by evaluation in the context of F, ? Since the calculus has the strong

normalization property with respect to both p and /3r]-reduction, the definition that

appears to be easiest to work with is that M evaluates to N if N is in p-normal

form and M =p N.

The central idea in the definition of evaluation over the representation is to use

a detour: we reflect the represented term into its corresponding term representation

and then reify the result of the evaluation in the metalanguage. Let us try to explain

this by analogy. Assume we have a programming language like ML (with a built-in

type of integers) and we make an explicit definition of a data type of natural numbers

(in a unary representation):

indtype nat : Type with

zero : nat

succ: nat + nat

end

There is an obvious way of defining addition by using a schema of iteration (to be

made precise below):

plus zero m = m

plus (succ n)m = succ (plus n m)

It turns out that in our setting such a straightforward definition of evaluation is

not possible, but there is a more devious definition of addition whose idea carries

over to our example. We define representation and “unrepresentation” functions,

148 F. Pjbning, P. Lee

let us call them reflectnat and reifynat.

ref lectnat : nat + int
reflectnatzero=O

reflectnat (succ n) = (reflectnat n)+ 1

reifynat : int + nat
reifynat n = if n = 0 then zero else succ (reifynat (n - 1))

Then addition can be programmed by observing that + on integers “behaves like”

plus on natural numbers, that is,

reflectnat n +reflectnat m = reflectnat (plus n m).

Given that we have a reification function we can then define

plus n m = reifynat (ref lectnat n + ref lectnat m).

Our construction for programs follows this development, with functions reflect

(for reflectnat) and reify (for reifynat) and eval (for plus). What plays the

role of +? In essence, application does, since evaluating a function application in

the metalanguage models the evaluation of a term (which is not in normal form)

in the object language.

Before we can give the definition of an evaluation function, we have to be more

precise about the tools that will let us define functions over constructors as done

informally above. All that we need here is the schema of iteration over an inductively

defined type. For a general development of the notions of inductively defined types

and iteration over such types that is general enough to apply to the representation

of terms in F2, see [S, 271; here we only sketch some of the essential elements. An

inductively defined type is given by a list of its constructors and their types. This

is an extension of the datatype construction in ML, since constructors may be

explicitly polymorphic. It is shown in [27] (extending ideas of Bijhm and Berarducci

[2]) that these types do not require an addition to the core language, since inductively

defined types are representable by closed types (see Section 4.4). With this in mind,

we can now present a specification of the type of programs:

indtype r : Type + Type with

rep:Aa.c-u+vcu

lam:A~.Ap.((~-,~~)‘~(~y~p)

app:Aa.Ap.~(a~P)~~a~~~

typlam: Aa:Type+Type. (AO. ~(c.uO))-+ m(AO. ~0)

typapp:Aa:Type+Type.rr(A0.~B)+A0.7r(cYB)

end

It is important to note that this is indeed inductive, that is, all occurrences of rr

in the types of the arguments of the constructors are positive. This allows the

definition of a function over the inductive type by iteration, a simpler form of

primitive recursion. The general schema, instantiated to the type rr, yields the

following.

Metacircularity in the polymorphic A-calculus 149

Definition 19 (Iteration over n-). Given O:Type+ Type and terms

h,EAa.cz+Oq

h,EA~.Ap:Type.(a~OP)~O(a~P),

h,EAa.Ap.O(LY~P)~OCY~OP,

h4E Aa:Type+Type. (AB. @(a@))+ @(AO. me),

h,EAcu:Type+Type. O(A0. aO)+AO. @(a@).

If f satisfies

f[~l(rw[alx) = h[~lx,
f[a + Pl(~~iIc-ul[Plx) = Mal[Pl(Ay:a .f[Pl(x~)L
f[Pl(w[4[Plxy) = WdMWI~ + Plx)CfblyL
me. ~a(tm~blx = h4blw .fk4wlh
f[~~l(txwd~lx[Pl) = hJ~l_f[A~. dx[Pl,

then f: Acu:Type . TCY + @a is defined from h, , . . . , h, by iteration over r at type 0.

Given this general schema it is easy to define the reflection function.

Definition 20 (Function reflect).

reflect : Aa. m -+ LX,

reflect[a](rep[a]x) =x,

reflect[cr +p](la,nr[cy][p]x) =Ay:Lu. reflect@](xy),

reflect[p](app[cY][P]xy)=(reflect[cY~P]x)(reflect[a]y),

reflect[AO. cYO](typlam[a]x)=A8.reflect[cre](x[e]),

reflect[@](typapp[a]x[!I]) =reflect[AO. &?]x[p].

It is easy to verify that this is an instance of the schema for iteration given above

where 0 = he. 8. The crucial property is that this really defines a proper reflection

function with respect to the reification function n (see Theorem 22). In order to

properly formulate this theorem, we have to add another constant to the context ll

and some new conversion rules. In the end this will turn out to be unnecessary,

since we can find a way of repressenting inductively defined types in the pure

calculus (with an empty context) in such a way that iteration is definable.

Definition 21 (Iteration context Z7’). We add a variable to the representation context

ZI that expects a 0 and then functions h,, . . . , h5 to return the function that is

defined by iteration at type 0 from h,, . . . , h5.

Z7+ = ZZ, itprog : AO:Type + Type.

+ACX.(Y+Oa

-+Aa.A~.(a+O/3)+O(a+P)

+Aa.A~.O(a+/3)+Oa+O~

+Aa:Type-+Type. (de. o(d))+ @(de. 49))

-+Aa:Type+Type. O(Ae:Type. ~e)+AO. @(ati)

+ACY.7iW’&Y.

150 E Pfenning, P. Lee

The iterative reduction property of itprog states that f = itprog@h, . . . h, satisfies

the equations from Definition 19 (as reductions, they would be read from left to

right). The corresponding enriched equivalence relation is denoted by = poL,

Theorem 22 (Correctness of reflect). Let r, I7F N E ~a be some (not necessarily

standard) representation of the term M. Then reflect N =p,,L M.

Proof. As in the proof of Theorem 18 by induction on the long normal form of N

in terms of the constructors of n. 0

4.3. The dejinitions of reify and eval

Given the definition of reflect, it is a simple matter to give the definition of

eval : rm -+ TCY. Intuitively, eval should take the representation of a term and return

a representation of its normal form. This is achieved simply by composing reflection

with reification. This definition (given formally below) will not return the standard

representation of the normal form of the term, but rather exploit the fact that every

normal form term M can be represented as rep M. This is also a weakness, since

the internal structure of M is lost (unlike in the standard representation). In a

practical language there seems to be no way around this deficiency. For instance,

in a compiled language it is not clear how one could reify the target machine code.

reify : Aa.a+~~a,

reify = rep,

eval : Aa. rrc~ + m,

eval = ALU. hx:m. reify[a](reflect[a]x).

Theorem 23 (Correctness of eval). Let r, IIF NE TTCY be some (not necessarily

standard) representation of the term M. Then eval[a]N is a representation of the

normal form of M.

Proof. Follows directly from Theorem 22. Cl

We do not have a simple and intuitive characterization of exactly which functions

are definable over the given representation of programs. In particular, we do not

know whether the apparently simpler one-step outermost P-reduction is represent-

able, but it appears that it is not. The problem is that the first argument to lam

expects a function of type LY + VP, not of type ICY + n/I. Unfortunately, our lack of

understanding of exactly what is definable has prevented us from finding more

practical programming applications of our metacircularity results.

Metacircularity in the polymorphic A-calculus 151

4.4. Representing inductively dejined types and iteration

So far we have been able to interpret F2 in an enrichment of F3 that contains

some new representation constants and an iteration schema. The purpose of this

section is to show that we can eliminate these additional constants: we will explicitly

define in pure F3 a parameterized type rr and terms rep, lam, app, typlam, and

typapp to represent programs, and also a term itprog that satisfies the reduction

property of Definition 21.

The basic problem is to be able to explicitly define a function rr from types to

types, such that w is a type representing programs of type (Y. The usual, well-known

approach for defining inductive data types in the second-order polymorphic h-

calculus (see [2,30]) fails (although we do not have a proof that such a representation

is impossible). The data types that have been shown to be representable in F2 either

have constructors that are not polymorphic (such as nat = Aa. a + (a + a) + (Y,

which has constructors zero:nat and succ:nat+ nat), or have the property that

the type variables in the constructor are uniform over the whole data type (such

as list = ha. AO. (a -+ 0 + 13) + 0 + 19 with constructors cons:AO . t9 + list 13 + list 0

and nil:AO. list 0). This allows the definitions of the constructors to be uniform

over this type variable (see the discussion of uniform parameterization in [27]).

An attempt at a straightforward extension of this approach to the case of a data

type of programs fails, since a program of type /3 may have components of type

(Y + p and (Y, and thus in fact of arbitrary type. This problem can be dealt with in

the third-order polymorphic A-calculus, since in it one can explicitly use a function

from types to types that maps the type of the components to the type of a term.

In analogy to Church’s representation of natural numbers in the A-calculus, each

program is represented as its own iteration function. That is, in the end we would

like to define (omitting some types of bound variables)

itprog-A@:Type+Type. Ah,. . . Ah5. Aa. Ax:rra. x[O]h,. . . h5.

From this one can infer what the definition of rr will have to be. Each line is

annotated with a corresponding constructor function that is defined below.

n=Ay.AO:Type+Type.

(da. a+&~) (*rep*)
~(A(YA~.((Y’OP)~O(~~~)) (*lam*)
+(AaAp. @(~y+~)+@cx+@~)) (*aw*)
+ (An:Type+Type. (AIM. O(aO))+ @(AO. ~0)) (*typlam*)
+(Aa:Type+Type. @(AtI. aB)+(AB. @(at?))) (*typapp*)
+ oy.

This is a special case of a very general transformation from an inductive definition

of a data type into an encoding into F, described in [27]. The definitions of the

constructors in this encoding can be found in Fig. 1.

152 F. Pfenning, P. Lee

rep : Aa.a+no

rep = Aczhx:(~.

A@ hrep Alam happ htyplam htypapp.

reP[~lx

1aJIl : AaA/3.(a+~~)+~(a+@)

lam = nCXnpAj-:a+$.

A@ Arep Alam Aapp Atyplam Atypapp .

lam [a][/?](Ax:a .fx [O] rep lam app typlam typapp)

am : AcYA~.GT(cY+~)+TxY+T@

app = h Ap Ax:~(cx + p) Ay:%-a.

A@ Arep Alam Aapp Atyplam Atypapp.

wp[~I[Pl(x[@l 9 lam w typlam typapp)
(Y[@I 9 lam app typlam typapp)

typhll :

t.yplaJn =

typapp :

QPnPP =

Acu:Type+Type. (AB. n(aO))+n(AO. ~0)

Acr:Type+Type hf:A13. ~(a@).

A@ Arep Alam Aapp Atyplam Atypapp .

typlam [a](AO .f[e][o] rep lam app typlam typapp)

Aa:Type+Type. n(Ae. ae)+(Ae. n(ae))

Aa:Type+Type Af:n(AO. c&) A@.

A@ Arep Alam Aapp Atyplam Atypapp .

Wapp [~l(f[@l 9 lam am Q&m Ww) wl

Fig. 1. Definition of program constructors for Fz in F3.

We thus can eliminate the context l7+ and the additional reduction rule for

iteration and give a representation of programs in pure F3.

Theorem 24 (Representation in pure FJ. Let &?I and & be the result of substituting

the definitions above for variables rr, rep, lam, app, typlam, typapp, and itprog

in a term M or type a, respectively. If I, II+ E M E nw then It &l E 6%. Moreover,
A 1

if M =oTL N then M =o,, N.

Proof. This is an instance of the general representation theorem for inductively

defined types in [23,27]. 0

The crucial step in the definition of eval is the definition of reflect, which

maps the representation of a term of type ~TT(Y into a term of type rw, that is,

Metacircularity in the polymorphic A-calculus 153

reflect : Aa. TCX + a. In order to obtain its definition in pure F3, we simply match

up the general schema of iteration from Definition 19 with the definition of ref lect

(Definition 20) to obtain expressions for h, , . . . , h,. Each hi turns out to be a variant

of the identity function:

reflect : Ay.xy+y

reflect = itprog[ha.S](Aa. id[a])(AaAp.id[a+p])

(AaAp. id[a+p])

(A(xAj?.id[cu+p])

(Aa:Type+Type.id[A8.cu@])

(Aa:Type-+Type.id[A0.a0])

= AyAp:7iy.p[A6.6]

(Aa. id[a])

(AaAp.id[a+p])

(AaAp. id[a+p])
(Aa:Type+Type. id[A0. (~01)

(Aa:Type+Type. id[Af?. (~01).

This definition highlights the fact that a program is represented as its own iteration

function. The ability of a program to be evaluated is captured in the representation

itself-externally we simply supply identity functions.

5. Application to other calculi

Let us first deal with the most obvious question: since F2 can be reflected in F3

one might expect that F3 could be reflected in F4. However, the construction as

given does not extend to this case (as was erroneously claimed in [28]). Can we

modify the construction to obtain an interpreter for all of F, ? The answer is yes,

but we have to modify our construction to add another level in addition to terms,

types, and kinds. Perhaps the most uniform way of doing this is to introduce universes

as in related systems such as the Generalized Calculus of Construction (CC”) [6, 161.

This is beyond the scope of this paper, and so we simply give the construction as

it would appear if one additional level is added explicitly, thereby allowing an

interpreter for F, to be written.

The way in which this additional level is added is straightforward for our purposes:

we need variables K ranging over kinds and a way to explicitly abstract terms over

kinds.

Definition 25 (Calculus F:). To the syntactic categories of Definition 1 we add

Kinds K ::= .I K,

Types ff ::= ::.I A+K.LY,

Terms M ::= . ..I A +K.M) M[K]+,

Contexts r ::= . . . (K:Kind.

154 F. Pjenning, P. Lee

At stands for abstraction over kinds at the level of terms, and a function thus

formed has a type of the form A+K . a and can be applied via [I’. The inference

rules from Section 3 must be modified in the obvious way so that the judgment

t- K E Kind is parameterized by a context, that is, TE K E Kind. We also add the

following new deduction rules:

C r context rc:Kind in r

TtKEKind

c K:KindFaETvne

rt-A+K.(YEType

r context

r, K : Kind context

r. K:KindEME (Y

rtA+K. MEdtK. ff

rI-MMA+K.(Y TkK E Kind

rf-bf[K]+E[K/K]Cl

All of the desirable properties such as strong normalization and decidability of

type-checking of F, are preserved in F: (see, for example, [19] for the proofs in

a much stronger system of which F: is only a small fragment).

The next step is to modify the construction in Sections 4 and 4.4. The crucial

change is in the definition of r: all the other changes follow almost automatically.

Consider

typlam: Aa:Type+Type. (A@. ~(aO))+n(dB. (~0).

This must now be generalized, since abstractions in F, may also range over variables

of kind Type -+ Type, Type + Type + Type, and so on. In order to represent all of

these in a uniform way, we need a family of constructors, indexed by a kind K:

typlam, : Aa:K +Type. (AO:K. r(d))+ r(AB:K. d).

In [26] we proposed using global definitions and definitional equality to solve this

problem, here we add a way of explicitly abstracting over kinds. In our notation

from above, typlam will then have the type

typhm: A+K. ACI:K +Type. (de:K. 7i-(ae))+ n(de:K. (ae)).

Metacircularity in the polymorphic A-calculus 155

The modified standard representation function then reads as follows:

IfXEcu then X = rep[(_y lx.

Ifhx:a. MEa+P then hx:a. M= lam[a][p](Ax:a.n;i).

IfMEa+pandNEa thenMN=app[a][P]MN.

IfAO:K. M~d0:K.a thenAO:K. M

IfMEA0:K.a

= typlam[K]+[Ae:K.(y](ne:K.n;i).
then M[p] = typapp[K]+[AO: K. a]n;i[p].

The type of typapp has to be changed in a way analogous to typlam leading to

the following definition of GT generalized from Section 4.4:

rr= Ay. AO:Type+Type.

(Aa.a+Oa)

~(AcuAp.(a~op)~O((y~p))

+(AcrAp. O(a+p)+Oa+@p))

+ (A’K. ACY:K +Type. (A~:K. @(aO))

+ O(AB:K. a0))

+ (A+K. A(Y:K -+Type . O(AO:K. a0)

+ (AI~:K. @(aYe)))

+ oy.

(*rep*)
(*lam*)

(*w*)

(*typlam*)

(*tww*)

Most of the other definitions of Section 4.4 go through as given, with some changes

in the types (which were omitted in Fig. 1). As an example we consider typlam.

typlam : A+K. Aa:K *Type. (A@:K. n(aO))-+ T(AO:K. ~0)

typlam = A+ K. ACX:K +Type A~:AO:K.TT(OZO).

A 0 A rep A lam A app A typlam A typapp .

typhm [K]+[cx](AO:K .f[O][@] rep lam upp typlum typapp)

For the definition of reflect we get

reflect : AY. V+Y

reflect = AyAp:~y.p[h~S. 61

(Aa. id[a])

(AaAp.id[a+p])

(AaAp. id[cl-+p])

(A+K. A(Y:K -Type. id[dO:K.aO])

(A’K. ACU:K +Type . id[AO:rc. (~01).

The representation theorems go through in the same way as before, but now any

term in F, can be represented and evaluated. Even though the uniform representation

and definition of the evaluation function is in FL, evaluation of a given term in F,

“takes place” in F,,,, , since any given term in F,, will only use finitely many kinds.

156 F. Pfenning, P. Lee

6. Conclusions

We conclude that metacircularity is very nearly attainable in a statically typed

language. Unfortunately, this does not seem to imply that the same language is also

suitable for typed metaprogramming: the construction of statically typed programs

(called metaprograms) that construct, analyze, and manipulate other programs

(which are called the objectprograms). It is this problem which provided the original

motivation for the construction presented in this paper.

With regard to typed metaprogramming, it seems that we have little to add to

what is already known, despite the fact that we have developed a simple extension

to F, that allows all of F, to be represented. Our experience has been that evaluation

is just about the only useful function definable over this representation. Other

interesting metaprogramming tasks, such as partial evaluation, macro expansion,

program transformations, and so on, do not seem to be expressible.

The precise reasons for these difficulties have eluded us thus far, and as a result

we have yet to prove any negative results. However, there are a number of plausible

explanations which center on the issue of how to model abstraction.

l If one models abstraction in the object language by abstraction in the meta-

language (as we have done here), then static typing does not seem to be a major

obstacle to useful metaprograms. Instead, the problem seems to be an insufficient

degree of access to the intensional structure of programs. In a functional language,

a possible way out may be to preserve intensionality with new language constructs

that are parallel to, but separate from extensional function constructors.

l If abstraction is not modeled by abstraction, then static typing becomes a major

obstacle to metacircularity. Of course, removing the static typing requirement

allows many useful metaprograms to be expressed, as exemplified by Lisp. In a

statically typed setting, however, proofs of well-typedness would have to be

carried out at the meta-level and, moreover, reflection and reification functions

could not be made internal. Still, this approach is promising and has been explored

by Howe in the framework of NuPrl [17,18].

In related research we have been working on the design and implementation of

a practical, explicitly polymorphic language along the lines of ML which we call

LEAP.’ For a core of LEAP which encompasses most language fragments described

in this paper, we have built a prototype implementation, written largely in the

language AProlog [22], and the examples in this paper have been run on our

implementation. Two features of our language of importance to the ultimate practi-

cality of LEAP are type reconstruction and type-argument synthesis.

With regard to type reconstruction, we employ the convention of allowing the

programmer to omit type information, but with the requirement that “placeholders”

be used to mark all applications of functions to types. So, for example, the

representation of the polymorphic identity function from Example 13 could be

’ LEAP is an acronym for a Language with Eva1 And Polymorphism.

Metacircularity in the polymorphic A-calculus 157

written as

id = typlam[](Aa. lam[][](hx:a. rep[lx)).

Though undecidable, we have found in practice that the semi-decision procedure

given in [24] for this type reconstruction problem behaves acceptably well. There

is much yet to be explored here, however, especially in the practical engineering

issues, such as the efficiency of the reconstruction mechanism, its behavior on errors

and failures, and the incorporation of a notion of modules.

Even with type reconstruction, we find the requirement of placeholders to be

cumbersome. Hence, a mechanism for synthesizing type-argument applications is

necessary. This has been noted by others as well, and various methods have been

proposed for carrying out this synthesis [9,29]. In LEAP, we have taken a purely

syntactic approach involving the annotation of identifiers in their defining occur-

rences by the number of type arguments to be inferred at each occurrence of that

identifier, thus separating issues of type reconstruction from the issues of argument

synthesis. Modifying the left-hand side of the definition of typlam and related

functions by annotating them with *‘s (for example, typlam* = . . . , and lam** =

. . .), we express the representation of the polymorphic identity as

id= typlam(Aa. lam(Ax:a. rep x)).

With type reconstruction and type-argument synthesis, as well as inductive type

definitions, we obtain a useful and syntactically tractable LEAP language. Of course,

lacking a full implementation we can only speculate on the question of its ultimate

practicality. However, almost any argument that might be made for ML as a

metalanguage can also be made for LEAP. In addition, LEAP is able to represent

and manipulate in a type-safe way data with richer type structures than is possible

in ML. Just how useful this added power is in practice will require much further

investigation and experience.

Other issues to be studied further include the exact extent of the language, in

particular with respect to additions such as general recursion, references, exceptions,

and so on. We have done some preliminary work along these lines, and have some

evidence that such extensions will not destroy the “reflective” properties of LEAP.

Another issue is the efficiennt implementation of LEAP. Our efforts here have been

directed towards devising efficient implementation strategies for inductively defined

data types and recursive functions defined over such types.

We hope to have more to report as the design and implementation of a full LEAP

language proceeds.

Acknowledgment

The authors would like to thank Christine Paulin-Mohring for valuable criticism

of an earlier draft and also Ken Cline, Scott Dietzen, Jean Gallier, Robert Harper,

158 F. Z’jenning, P. Lee

Spiro Michaylov, and Benjamin Pierce for many helpful discussions about F,,

reflection, and metaprogramming.

References

[II

VI

[31
[41
[51

[61

r71
PI

[91

[lOI

[Ill

[I21

[I31

[I71

[181

[I91

PO1

[211

WI

K. Bowen and R. Kowalski, Amalgamating language and metalanguage in logic programming, in:

K.L. Clark and S.-A. TBrnlund, eds., Logic Programming (Academic Press, New York, 1982) 153-172.

C. Biihm and A. Berarducci, Automatic synthesis of typed A-programs on term algebras, Theoret.

Comput. Sci. 39 (1985) 135-154.

A. Church, The C&X& of Lambda-Conversion (Princeton University Press, Princeton, NJ, 1941).

A. Church, A formulation of the simple theory of types, J. Symbolic Logic 5 (1940) 56-68.

P. Cointe, Metaclasses are first class: the ObjVlisp model, in: N. Meyrowitz, ed., OOPSLA ‘87:

Proc. 1987 Conf: on Object-Oriented Programming Systems, Languages and Applications, Orlando

(ACM Press, 1987) 156-167.

T. Coquand, An analysis of Girard’s paradox, in: Symp. on Logic Computer Science, (IEEE, New

York, 1986) 227-236.

T. Coquand and G. Huet, The Calculus of Constructions, Inform. and Compuf. 76(2/3) (1988) 95-120.

T. Coquand and C. Pauling-Mohring, Inductively defined types, Talk presented at the Workshop

on Programming Logic, University of Goteborg and Chalmers University of Technology, 1989.

Project Formel, The Calculus of Constructions, INRIA-ENS, Documentation and User’s Guide,

Version 4.10, 1989.

D.P. Friedman and M. Wand, Reification: reflection without metaphysics, in: Proc. 1984 ACM

Symp. on Lisp and Functional Programming (ACM Press, 1984) 348-355.
J.H. Gallier, On Girard’s “Candidats de Reductibilite; in: P. Odifreddi, ed., Logic and Computer

Science (Academic Press, New York, 1990).

J.-Y. Guard, Interpretation fonctionelle et elimination des coupures dee I’arithmetique d’ordre

superieur, Ph.D. Thesis, Universite Paris VII, 1972.

J.-Y. Girard, Une extension de I’interpretation de Code1 a I’analyse, et son application a I’elimination

des coupures dans I’analyse et la theorie des types, in: J.E. Fenstad, ed., Proc. 2nd Scandinavian

Logic Symp. (North-Holland, Amsterdam, 1971) 63-92.

J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, Cambridge Tracts in Theoretical Computer

Science 7 (Cambridge University Press, Cambridge, 1989).
R. Harper, F. Honsell and G. Plotkin, A framework for defining logics, J. ACM (to appear); a

preliminary version appeared in: Symp. on Logic in Computer Science (1987) 194-204.

R. Harper and R. Pollack, Type checking, universe polymorphism, and typical ambiguity in the

Calculus of Constructions, in: TAPSOFT ‘89, Proc. Znrernar. Joinr Conf: on Theory and Practice in

Software Developme+ Barcelona, Spain, Lecture Notes in Computer Science 352 (Springer, Berlin,

1989) 241-256.
D.J. Howe, Automating Reasoning in an implementation of Constructive type theory. Ph.D. Thesis,

Computer Science Department, Cornell University, 1987.

D.J. Howe, Computational metatheory in Nuprl, in: E. Lusk and R. Overbeek, eds., 9th Internal.

Conf: on Automated Deduction, Argonne, Illinois, Lecture Notes in Computer Science 310 (Springer,

Berlin, 1988) 238-257.
Z. Luo, ECC, an extended Calculus of Constructions, in: 4th Ann. Symp. on Logic in Computer

Science (IEEE Computer Society Press, 1989) 386-395.
J. McCarthy, Recursive functions of symbolic expressions and their computation by machine,

Comm. ACM 3(4) (1960) 184-195.
R. Milner, The Standard ML core language, Polymorphism II(2) (1985); also Technical Report

ECS-LFCS-86-2, University of Edinburgh, Edinburgh, Scotland, 1986.
G. Nadathur and D. Miller, An overview of AProlog, in: R.A. Kowalski and K.A. Bowen, eds.,
Logic Programming: Proc. 5th Znrernar. Conf: Symp., Volume 1 (MIT Press, Cambridge, MA, 1988)

810-827.

Metacircularity in the polymorphic A-calculus 159

[23] C. Paulin-Mohring, Extraction de programmes dans le Calcul des Constructions, Ph.D. Thesis,

Universite Paris VII, 1989.
[24] F. Pfenning, Partial polymorphic type inference and higher-order unification, in: Proc. 1988 ACM

Conj on Lisp and Functional Programming, Snowbird, Utah (ACM Press, 1988) 153-163; also

available as Ergo Report 88-048, School of Computer Science, Carnegie Mellon University,

Pittsburgh.
[25] F. Pfenning and C. Elliott, Higher-order abstract syntax, in: Proc. SIGPLAN ‘88 Symp. on Language

Design and Implementation, Atlanta, Georgia (ACM Press, 1988) 199-208; available as Ergo Report

88-036, School of Computer Science, Carnegie Mellon University, Pittsburgh.
[26] F. Pfenning and P. Lee, LEAP: a language with eval and polymorphism, in: TAPSOFT ‘89, Proc.

Internat. Joint Conf: on Theory and Practice in Software Development, Barcelona, Spain, Lecture

Notes in Computer Science 352 (Springer, Berlin, 1989) 345-359; also available as Ergo Report

88-065, School of Computer Science, Carnegie Mellon University, Pittsburgh.

[27] F. Pfenning and C. Paulin-Mohring, Inductively defined types in the Calculus of Constructions,

in: Proc. 5th Conj: on the Mathematical Foundations of Programming Semantics, Lecture Notes in

Computer Science (Springer, Berlin, 1989); available as Ergo Report 88-069, School of Computer

Science, Carnegie Mellon University, Pittsburgh.

[28] B. Pierce, S. Dietzen and S. Michaylov, Programming in higher-order typed lambda-calculi, Tech-
nical Report CMU-CS-89.111, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1989.

[29] R. Pollack, The theory of LEGO, Unpublished manuscript and documentation, 1988.

[30] J. Reynolds, Three approaches to type structure, in: H. Ehrig, C. Floyd, M. Nivat and J. Thatcher,

eds., Mathematical Foundations of Software Development, Lecture Notes in Computer Science 185

(Springer, Berlin, 1985) 97-138.

[31] J. Reynolds, Towards a theory of type structure, in; Proc. Coil. Programmarion, Lecture Notes in

Computer Science 19 (Springer, Berlin, 1974) 408425.

[32] J. Reynolds, Definitional interpreters for higher-order programming languages, in: Proc. 25th ACM

National Conf: (ACM, New York, 1972) 717-740.

[33] B.C. Smith, Reflection and semantics in a procedural language, Technical Report MIT-LCS-TR-272,

Massachusetts Institute of Technology, Cambridge, MA, 1982.

[34] B.C. Smith, Reflection and semantics in Lisp, in: Proc 1 Ith ACM Symp. on Principles of Programming

Languages, Salt Lake City (ACM, 1984) 23-35.

[35] G.L. Steele and G.J. Sussman, The revised report on SCHEME-a dialect of LISP, AI Memo 452,

MIT, Cambridge, 1978.

[36] M.D. Wand and D.P. Friedman, The mystery of the tower revealed: a nonreflective description of

the reflective tower, Lisp Symbolic Comput. l(1) (1988) 1 l-38.

