
p ()
URL: http://www.elsevier.nl/locate/entcs/volume30.html 17 pages

A Static Analysis Method for a Classical Linear
Logic Programming Language

Kyoung-Sun Kang Naoyuki Tamura

Department of Computer and Systems Engineering
Kobe University
Kobe, Japan

Abstract

In this paper, we propose a new static analysis method which is applicable for a
classical linear logic programming language.

Andreoli et al. proposed a static analysis method for the classical linear logic pro-
gramming language LO, but their method did not cover multiplicative connectives
which are important for a resource-sensitive feature of linear logic.

Our method, in contrast, covers multiplicative conjunction in addition to multi-
plicative disjunction and linear implication. An abstract proof graph, an AND-OR
graph representing all possible sequent proofs, is constructed from a given program
and goal sequent. The graph can be repeatedly refined by propagating information
to eliminate unprovable nodes from the graph.

We applied our prototype analyzer for a sorting program written in Forum. The
sorting program was improved about 1000 times faster than the ordinary program
without analysis, for sorting 6 elements by using the analysis result.

1 Introduction

In logic programming, the execution of a program can be viewed as a proof
search in sequent calculus of logic. This principle can be also applied for
linear logic which was proposed by J.-Y. Girard [6]. Linear logic views logical
assumptions as consumable resources. Therefore, in linear logic programming
languages, a resource can be represented as a formula rather than a term.
Several logic programming languages based on linear logic have been proposed:
Lygon [7], LO [2], LinLog [1], Lolli [9], Forum [14], etc.

In particular, Forum is complete for classical linear logic and its execu-
tion can be viewed as a goal-directed proof search called uniform proof [15].
However, the proof search of Forum programs is highly non-deterministic.
For example, in the sorting program shown in section 6, execution time rises
hyper-exponentially with list length [10]. This is the reason most of the exe-

c©2000 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Kang and Tamura

cution time is spent trying to prove unprovable sequents. This problem is also
common to the other linear logic programming languages.

Therefore, it is very important to find unprovable sequents before the ex-
ecution of programs, and such a hope is realizable by a static analysis per-
forming an abstract proof search on an abstract propositional proof. This is
possible as an abstract interpretation of logic programs can be viewed as an
abstract proof search in a sequent calculus [4][5]. Of course, it is impossible
to find all unprovable sequents because the provability is undecidable in linear
logic.

Andreoli et al. [3] proposed a static analysis method for the classical linear
logic programming language LO, but their method did not cover multiplicative
connections which are important for a resource-sensitive feature of linear logic.
This follows from the fact that their system does not implement the lazy
splitting of resources 1 .

In this paper, we propose a new static analysis method which is applicable
for a classical linear logic programming language including multiplicative con-
junction in addition to multiplicative disjunction and linear implication. To
cover multiplicative conjunction, we introduce the I/O model into our system.
The I/O model was proposed by Hodas and Miller as a solution to reduce the
non-determinism in the splitting of resources [9] [8].

An abstract proof graph, an AND-OR graph representing all possible se-
quent proofs, is constructed from a given program and goal sequent. The graph
can be repeatedly refined by propagating information to remove unprovable
nodes from the graph.

2 Classical Linear Logic Programming Language

In this section, we define a sequent calculus system LL of linear logic and its
I/O model IO discussed in this paper.

2.1 The Language

In this paper, we choose a relatively small language. This is why we want to
make the discussion in this paper as simple as possible. However, it is not
difficult to extend our language widely. A program on our language is a set of
clauses which is defined as follows.

Definition 2.1.1 (Clause) A clause is a closed formula in the form(n ≥ 1):

∀−→x (A1℘ · · ·℘An :− G)

where G = ⊥ or 1 or A or B℘C or B �C or B ⊗ C, and A, B, C, Ai are
atomic formulas.

1 They describe adopting a lazy splitting technique as a future plan.

2

Kang and Tamura

Ψ;A −→ A
(identity)

Ψ; ∆1 −→ B,A1 Ψ; ∆2 −→ C,A2

Ψ; ∆1,∆2 −→ A1, · · · , An,A1,A2
(⊗)

(provided A1℘ · · ·℘An :− B ⊗ C ∈ Ψ)

Ψ; −→ A1, · · · , An
(1)

(provided A1℘ · · ·℘An :− 1 ∈ Ψ)

Ψ;B,∆ −→ C,A
Ψ; ∆ −→ A1, · · · , An,A (�)

(provided A1℘ · · ·℘An :− B �C ∈ Ψ)

Ψ; ∆ −→ A
Ψ; ∆ −→ A1, · · · , An,A (⊥)

(provided A1℘ · · ·℘An :− ⊥ ∈ Ψ)

Ψ; ∆ −→ B,C,A
Ψ; ∆ −→ A1, · · · , An,A (℘)

(provided A1℘ · · ·℘An :− B℘C ∈ Ψ)

Fig. 1. The rules for a propositional proof system LL

In the definition 2.1.1, the connective :− means the reverse linear implica-
tion, that is, A :− G is equivalent to G� A. Actually, it is easy to extend the
body of clauses in the definition 2.1.1 to the following syntax:

G ::= ⊥ | 1 | A | G1℘G2 | A�G | G1 ⊗G2

There is also a technique to translate a clause of the extended form into clauses
of the non-extended form. For example, the clause A1℘, · · · , ℘An :− (B1℘B2)⊗
(C1 �C2) can be translated into three clauses, A1℘, · · · , ℘An :− B ⊗ C ,
B :− B1℘B2 , and C :− C1 �C2 by introducing two new atomic formulas
B and C .

Definition 2.1.2 (Sequent) A sequent is an expression Ψ; ∆ −→ A, where
Ψ is a set of clauses and ∆, A are multisets of atomic formulas.

In the definition 2.1.2, the Ψ, ∆ are called the intuitionistic context and
linear context. These can be viewed as the program and resources respectively,
and the formulas in A are called the goals. Clauses in Ψ are considered to
be prefixed by the modality operator !. That is, the sequent Ψ; ∆ −→ A is
equivalent to !Ψ,∆ −→ A of standard linear logic.

Figure 1 presents the propositional sequent calculus system LL.

2.2 An I/O model for the proof system LL

In searching a proof of a sequent including a multiplicative connective from
the bottom up, it is necessary to split the linear context into two parts, and
therefore becomes highly non-deterministic.

On the other hand, the multiplicative conjunction ⊗ is one of the most
useful connectives in linear logic programming languages. Hodas and Miller
proposed a solution to reduce the non-determinism in searching a proof of
goal G1 ⊗ G2, which is called the I/O model for an intuitionistic linear logic

3

Kang and Tamura

Ψ;A,∆\∆ −→ A,A\A (identity)

Ψ;∆I\∆′ −→ B,AI\A′ Ψ;∆′\∆O −→ C,A′\AO

Ψ;∆I\∆O −→ A1, · · ·An,AI\AO
(⊗)

(provided A1℘ · · ·℘An :− B ⊗ C ∈ Ψ and AO ⊆ A′ ⊆ AI)

Ψ;∆\∆ −→ A1, · · ·An,A\A (1)

(provided A1℘ · · ·℘An :− 1 ∈ Ψ)

Ψ;B,∆I\∆O −→ C,AI\AO

Ψ;∆I\∆O −→ A1, · · ·An,AI\AO
(�)

(provided A1℘ · · ·℘An :− B � C ∈ Ψ)

Ψ;∆I\∆O −→ AI\AO

Ψ;∆I\∆O −→ A1, · · ·An,AI\AO
(⊥)

(provided A1℘ · · ·℘An :− ⊥ ∈ Ψ)

Ψ;∆I\∆O −→ B, C,AI\AO

Ψ;∆I\∆O −→ A1, · · ·An,AI\AO
(℘)

(provided A1℘ · · ·℘An :− B℘C ∈ Ψ)

Fig. 2. A I/O model IO for a propositional proof system LL

programming language Lolli [9] [8].

Γ; ∆1 −→ G1 Γ; ∆2 −→ G2

Γ; ∆1,∆2 −→ G1 ⊗G2
⊗R

Γ; ∆I\∆′ −→ G1 Γ; ∆′\∆O −→ G2

Γ; ∆I\∆O −→ G1 ⊗G2

⊗R

In order to prove of the goal G1⊗G2 in the I/O model for Lolli, the first input
context, ∆1,∆2, are given as usable assumptions to prove G1. The output
context ∆2 of G1, which is not used by G1, is given as input context of G2

to prove G2. The above ⊗R inference rule of the I/O model, the context on
the left of the “\” is the input linear context of a goal Gi, and the one on
the right is the output linear context of a goal Gi. By applying this idea to
right-hand goal context, Hodas proposed the I/O model for classical linear
logic programming language Forum [10]. We shall call our adaptation of this
I/O model for the system LL using the same method as Hodas, the system
IO.

Definition 2.2.1 A sequent of IO is an expression Ψ; ∆I\∆O −→ AI\AO,
where Ψ is a set of clauses and ∆I, ∆O, AI , AO are multisets of atomic
formulas.

Figure 2 presents the I/O model IO for the proof system LL. We now
show that the I/O model IO is sound and complete relative to the system
LL.

Proposition 2.1

LL � Ψ; ∆ −→ A ⇐⇒ IO � Ψ; ∆,∆O\∆O −→ A,AO\AO

Proof. This can be similarly proved as in [11].

4

Kang and Tamura

3 Abstraction of the Sequents

As described in the introduction section, abstract interpretation of logic pro-
grams can be viewed as an abstract proof search in sequent calculus. In propo-
sitional logic, when the goal sequent is given, there are only finite number of
sequents to be considered due to the subformula property and the idempo-
tent laws of conjunction (∧) and disjunction (∨). Therefore, proof search of
propositional logic is decidable.

However, in linear logic, the number of formulas is finite but the number
of sequents is infinite, because the idempotent laws do not hold for multiplica-
tive conjunction (⊗) and multiplicative disjunction (℘), that is, the sequent
A,A −→ B,B is not equivalent to A −→ B. Therefore, proof search of linear
logic is undecidable in general, even for propositional fragment [13].

Therefore, in order to develop abstract proof search in linear logic, we need
to map the sequents into finite sets. Of course, the provability is not equivalent
between the original sequent and the mapped sequent. However, our concern
is to statically detect the unprovability of the sequents, so we aim to define
the mapping to keep the provability property.

Let Ψ; ∆I\∆O −→ AI\AO be the given goal sequent to be proved. We
first map the sequent into propositional fragment by removing quantifiers and
the arguments of all atomic formulas over F .

Let F be a set of all propositional atomic formulas occurring in the program
and the goal sequent. A multiset over F can be defined as a mapping F −→
N where N is a set of non-negative integers. Now, we consider a finite
representation of multisets.

Definition 3.1 (M-representation) Let 〈M,+, 0〉 be a finite monoid ho-
momorphic to N , that is, there exists a mapping φ : N −→ M satisfying
φ(0) = 0, φ(x + y) = φ(x) + φ(y) for all x, y ∈ N . Let X be a multiset over
F . An M-representation of X is a composite mapping φ ◦X.

Example 3.1 Let Mn = {0, 1, 2, · · · , n}. 〈Mn,+, 0〉 is a finite monoid ho-
momorphic to N by the following mapping.

φ(x) =




x if x < n

n if x ≥ n

By using the M-representation, we can finitely represent the multiset by
finitely counting the number of formulas occurring in the multiset. Now, we
define a sequent calculus system on the basis of M-representations.

Definition 3.2 (M-multiset, M-sequent) An M-multiset (over F) is a
mapping F −→ M . An M-sequent is an expression Ψ; ∆I\∆O −→ AI\AO

where Ψ is a set of propositional clauses and ∆I , ∆O, AI , AO are M-multisets
over F .

We denote the M-multiset over F by superscripting the M-element over

5

Kang and Tamura

each formula of F , where the formulas with superscript of 0 are omitted. For
example, M2-multiset {a2, (a ⊗ b)1} is an M2-representation of the multiset
{a, a, a, a⊗ b}.

Definition 3.3 The proof system IOM is a sequent calculus system obtained
by regarding the sequence of formulas B1, · · · , Bn as an M-representation of a
multiset {B1, · · · , Bn} in the rules of IO.

Example 3.2 Let the program Ψ be a℘a :− a⊗ b and the goal sequent S1 be
Ψ; a, b\ −→ a, a\ , then the following are an IO proof and an IOM2 proof
respectively.

Ψ; a, b\b −→ a\b Ψ; b\ −→ b\
Ψ; a, b\ −→ a, a\ (⊗)

,

Ψ; a1, b1\b1 −→ a1\b1 Ψ; b1\ −→ b1\
Ψ; a1, b1\ −→ a1\ (⊗)

Many IO proofs can be mapped into the same IOM proof.

Proposition 3.1

IO � Ψ; ∆I\∆O −→ AI\AO =⇒ IOM � Ψ; ∆′
I\∆′

O −→ A′
I\A′

O

where ∆′
I, ∆′

O, A′
I , A′

O areM-representations of ∆I, ∆O, AI , AO respectively.
Proof. By the hypothesis, there exists a proof Π of the system IO. Then we
can obtain a proof of the system IOM by replacing all sequent in Π by its
M-representation.

As the contraposition of this Proposition 3.1, we know the sequent is un-
provable in the system IO if its M-representation is unprovable in the system
IOM .

Proposition 3.2 The provability in the proof system IOM is decidable.
Proof. It is obvious that the proof search of in the system IOM is decidable.
This is because the number of M-sequents is finite.

4 Abstract Proof Graph

As described in the previous section, IOM provability is theoretically de-
cidable. However, näıve proof search on IOM is inefficient and practically
inapplicable for large programs. Especially, when executing the multiplicative
conjunction ⊗, there are a large number of possible sequents as the upper
sequent due to the large possibility of the output context. For example, the
following IOM2 proof :

a :− b⊗ c,Ψ; \ −→ b1, d2, e2\∆ a :− b⊗ c,Ψ; \ −→ c1,∆\
a :− b⊗ c,Ψ; \ −→ a1, d2, e2\ (⊗)

6

Kang and Tamura

the M2-multiset ∆ have nine cases of ∅, {e1}, {e2}, {d1}, {d1, e1}, {d1, e2},
{d2}, {d2, e1}, {d2, e2}.

In order to improve the efficiency, we use a set of M-multisets to express the
alternatives by one representation. Let P(M) be the power set of M . Then,
〈P(M),+, {0}〉 is a finite monoid by defining the operation + as follows:

X + Y = {x + y | x ∈ X, y ∈ Y }
We also define the operation − as follows:

X − Y = {z ∈ M | x ∈ X, y ∈ Y, x = y + z}
Please note 〈P(M),∩,∪〉 forms a complete lattice.

Definition 4.1 (P(M)-representation, P(M)-multiset) Let X be a mul-
tiset over F and φ be its M-representation. A P(M)-representation of X de-
noted by [X] is a mapping F −→ P(M) such that [X](B) = {φ(B)} for all
B ∈ F . A P(M)-multiset over F is a mapping F −→ P(M).

We also denote the P(M)-multiset over F by superscripting the P(M)
element over each formula of F , where the formulas with superscript of {0}
are omitted. Especially for P(M2), which our prototype analyzer base on, we
use the following notation for simplicity:

Notation Stands For Meaning

B B{1} one B

B2 B{2} two or more B’s

B′ B{0,1} at most one B

B′′ B{0,2} zero or more than one B’s

B+ B{1,2} one or more B’s

B∗ B{0,1,2} any number of B’s

When the monoid M becomes larger, the static analysis becomes more
precisely, but it costs more.

A P(M)-multiset represents a set of possible M values for each formula in
F . In other words, a P(M)-multiset denotes a set of M-multisets.

Definition 4.2 Let X be a P(M)-multiset. ‖X‖ is a set of M-multisets
defined as follows:

‖X‖ = {Y | Y is an M-multiset Y (B) ∈ X(B) for all B ∈ F }
Example 4.1 Let X = {a′, b∗}(= {a{0,1}, b{0,1,2}}).
Then ‖X‖ = {{b1}, {b2}, {a1, b1}, {a1, b2}}.
Definition 4.3 Let X and Y be P(M)-multisets over F . X + Y , X − Y ,
X ∩ Y , X ∪ Y are P(M)-multisets satisfying the following for all B ∈ F
respectively.

7

Kang and Tamura

(X + Y)(B) = X(B) + Y (B)
(X − Y)(B) = X(B) − Y (B)
(X ∩ Y)(B) = X(B) ∩ Y (B)
(X ∪ Y)(B) = X(B) ∪ Y (B)

Example 4.2 For P(M2)-multisets,

{a{0,1}, b{0,1,2}} + {a{1}, b{2}} = {a{0,1}+{1}, b{0,1,2}+{2}} = {a{1,2}, b{2}},
{a{0,1}, b{0,1,2}} − {a{1}, b{2}} = {a{0,1}−{1}, b{0,1,2}−{2}} = {a{0}, b{0,1,2}},
{a{0,1}, b{0,1,2}} ∩ {a{1}, b{2}} = {a{0,1}∩{1}, b{0,1,2}∩{2}} = {a{1}, b{2}},
{a{0,1}, b{0,1,2}} ∪ {a{1}, b{2}} = {a{0,1}∪{1}, b{0,1,2}∪{2}} = {a{0,1}, b{0,1,2}}.

In other words,

{a′, b∗} + {a, b2} = {a+, b2}, {a′, b∗} − {a, b2} = {b∗},
{a′, b∗} ∩ {a, b2} = {a, b2}, {a′, b∗} ∪ {a, b2} = {a′, b∗}.

Definition 4.4 (P(M)-sequent) A P(M)-sequent over F is an expression
Ψ; ∆I\∆O −→ AI\AO where Ψ is a set of propositional clauses and ∆I, ∆O,
AI , AO are P(M)-multisets over F .

Definition 4.5 Let S be a P(M)-sequent Ψ; ∆I\∆O −→ AI\AO. The ‖S‖
is a set of M-sequents defined by :

‖S‖ = {Ψ;∆′
I\∆′

O −→ A′
I\A′

O | ∆′
I ∈ ‖∆I‖,∆′

O ∈ ‖∆O‖,A′
I ∈ ‖AI‖,A′

O ∈ ‖AO‖}

Definition 4.6 An AND-OR graph 2 is a tuple 〈V,E, v0〉 where V is a set
of nodes, E is a set of AND arcs (E ⊆ V ∪ V 2 ∪ V 3) and v0 ∈ V is the root
node.

A tuple 〈v, v1, v2〉 ∈ E means an AND arc from v to v1 and v2. A pair
〈v, v1〉 ∈ E means an arc from v to v1. A singleton 〈v〉 ∈ E means an arc
from v but no destination nodes. A bundle of AND arcs from the same node
v represents OR selection.

Definition 4.7 Let G ≡ 〈V,E, v0〉 be an AND-OR graph. Let T be a tree
in which the set of node is U and the root node is u0 ∈ U . The tree T is
contained in G if there exists a mapping f : U −→ V satisfying:

(i) f(u0) = v0,

(ii) for all node u ∈ U with child nodes u1, · · · , un, 〈f(u), f(u1), · · · , f(un)〉 ∈
E (n = 1 or 2) and

(iii) for all leaf node u ∈ U , 〈f(u)〉 ∈ E.

Even if the AND-OR graph is finite, infinitely many trees can be contained
in it, due to the possibility of cycles in the graph.

Definition 4.8 An AND-OR graph 〈V,E, v0〉 is called a proof graph if V is
a set of P(M)-sequents.

2 The definition of And-OR graph used here is different from that in standard textbooks.

8

Kang and Tamura

Definition 4.9 Let G be a proof graph and Π be an IOM proof. An IOM

proof is contained in G if

(i) Π is contained in G as a tree by mapping f ,

(ii) S ∈ ‖f(S)‖ for any M-sequent S in Π.

Definition 4.10 Let G be a proof graph. G is called an abstract proof graph
if all IOM proofs are contained in G.

Example 4.3 Let Ψ be the following program
s ℘ s :− s⊗m
m :− 1.

Let Ψ; s1\ −→ s1\ be the goal M1-sequent. The followings are its three
IOM1proofs.

Ψ; s1\ −→ s1\ ,

Ψ; s1\ −→ s1\ Ψ; \ −→ m1\
Ψ; s1\ −→ s1\ ,

Ψ; s1\ −→ s1\ Ψ; \ −→ m1\
Ψ; s1\ −→ s1\ Ψ; \ −→ m1\

Ψ; s1\ −→ s1\
Figure 3 shows an abstract proof graph containing all above three proofs.

s+ \ --> s+ \

 \ --> m+\

.

where the program Ψ is omitted

Fig. 3. An abstract proof graph for the goal M1-sequent, Ψ; s1\ −→ s1\

Now, we describe an algorithm to create an abstract proof graph from a
given goal P(M)-sequent.

Definition 4.11 (Initial Proof Graph Algorithm) Let S be the given
goal P(M)-sequent to be proved. The initial proof graph is a proof graph
obtained by repeatedly adding nodes and arcs by applying the following steps

9

Kang and Tamura

until no more nodes or arcs can be added.
Let S be a root node v0, and for any node v, Ψ; ∆I\∆O −→ AI\AO,

(i) if ∆I ∩ [{A}] �= ∅, AI ∩ [{A}] �= ∅ for some atomic formula A, then add
an arc 〈v〉,

(ii) if (A1℘ · · ·℘An :− 1) ∈ Ψ and AI ∩ [{A1, · · · , An}] �= ∅, then add an arc
〈v〉,

(iii) if (A1℘ · · ·℘An :− ⊥) ∈ Ψ and AI ∩ [{A1, · · · , An}] �= ∅, then add a node
v1, Ψ; ∆I \∆O −→ AI − [{A1, · · · , An}] \AO, and add an arc 〈v, v1〉,

(iv) if (A1℘ · · ·℘An :− B �C) ∈ Ψ and AI ∩ [{A1, · · · , An}] �= ∅, then add a
node
v1, Ψ; ∆I + [{B}] \∆O −→ AI − [{A1, · · · , An}] + [{C}] \AO, and add
an arc 〈v, v1〉,

(v) if (A1℘ · · ·℘An :− B℘C) ∈ Ψ and AI ∩ [{A1, · · · , An}] �= ∅, then add a
node
v1, Ψ; ∆I\∆O −→ AI − [{A1, · · · , An}] + [{B,C}] \AO, and add an arc
〈v, v1〉,

(vi) if (A1℘ · · ·℘An :− B ⊗ C) ∈ Ψ and AI ∩ [{A1, · · · , An}] �= ∅, then add
two nodes
v1,
Ψ;∆I\Cl(∆I) −→ AI − [{A1, · · · , An}] + [{B}] \Cl(AI − [{A1, · · · , An}]),

v2, Ψ;Cl(∆I)\∆O −→ Cl(AI − [{A1, · · · , An}]) + [{C}]\AO, and add an arc
〈v, v1, v2〉.
Where, the Cl(X) used above is defined as follows.

Cl(X) = {z ∈ M | x ∈ X, y ∈ M,x = y + z}

This algorithm always stops because there are only finite number of nodes and
arcs.

Note that X ⊂ Cl(X) for any P(M)-multiset X because {z ∈ M | x ∈
X, z = 0 + z} ⊂ Cl(X).

Proposition 4.1 The initial proof graph is an abstract proof graph.
Proof. Let S be an M-sequent and

S1 · · ·Sn

S

be a correct IOM inference step (n = 0, 1, 2). It is easy to verify that when S ∈
‖v‖ for some node v in the initial proof graph, there exists an arc 〈v, v1, · · · vn〉
and Si ∈ ‖vi‖ (i = 1, · · · , n). The case of ⊗ is easily proved by using A ⊂
Cl(A).

10

Kang and Tamura

5 Refinement of Abstract Proof Graph

In the previous section, we describe the algorithm to generate an initial ab-
stract proof graph, but the graph might contain a lot of unprovable nodes.

In this section, we discuss how to eliminate those unprovable nodes. This
can be seen as an optimization procedure on proof graphs, that is, the elimi-
nation of nodes and arcs means the elimination of redundant inference steps.

We borrow the idea of data-flow analysis for the optimization. Each for-
mula B ∈ F is considered as a variable, and the P(M) value for B is considered
as a set of possible values for the variable. By the data-flow analysis, the pos-
sible set will be reduced to be smaller, and when it becomes the empty set,
the node will be removed.

The reader may ask “What is the data-flow in proof graphs”. In the I/O
model, the input context usually comes up from the lower sequent, and the
output context usually goes down from the upper sequent. In addition, in the
case of (⊗)-rule, the output context of the upper left sequent goes to the input
context of the upper right sequent.

Therefore, we first split each node of proof graph into an input part and an
output part, that is, the node Ψ; ∆I\∆O −→ AI\AO is split into Ψ; ∆I −→ AI

as the input part and Ψ; ∆O −→ AO as the output part. So, the node can be
figured as follows.

Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Now, we add data-flow links for each AND arc (that is, for each inference
step) in the initial abstract proof graph. Each link has a constraint specifying
the condition of the inference step. The following describes what links are
added for each AND arc and their constraints.

Definition 5.1 Let G be a proof graph. The following defines the data-flow
links for each AND arc in G.

• If the arc is for (identity)-rule of the atomic formula A, the following link
is added.

| ↓
Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Constraint: (∆I − [{A}]) ∩ ∆O �= ∅, (AI − [{A}]) ∩AO �= ∅
• If the arc is for (A1℘ · · ·℘An :− 1), the following link is added.

| ↓
Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Constraint: ∆I ∩ ∆O �= ∅, (AI − [{A1, · · · , An}]) ∩ AO �= ∅
11

Kang and Tamura

• If the arc is for (A1℘ · · ·℘An :− ⊥), the following two links are added.
Ψ; ∆′

I −→ A′
I Ψ; ∆′

O −→ A′
O

↑ ↓
Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Constraint for the left link: ∆I ∩ ∆′
I �= ∅, (AI − [{A1, · · · , An}])∩A′

I �= ∅
Constraint for the right link: ∆′

O ∩ ∆O �= ∅, A′
O ∩AO �= ∅

• If the arc is for (A1℘ · · ·℘An :− B �C), the following two links are added.

Ψ; ∆′
I −→ A′

I Ψ; ∆′
O −→ A′

O

↑ ↓
Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Constraint for the left link: (∆I+[{B}])∩∆′
I �= ∅, ((AI−[{A1, · · · , An}])+

[{C}])∩ A′
I �= ∅

Constraint for the right link: ∆′
O ∩ ∆O �= ∅, A′

O ∩AO �= ∅
• If the arc is for (A1℘ · · ·℘An :− B℘C), the following two links are added.

Ψ; ∆′
I −→ A′

I Ψ; ∆′
O −→ A′

O

↑ ↓
Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Constraint for the left link: ∆I ∩ ∆′
I �= ∅, ((AI − [{A1, · · · , An}]) +

[{B,C}])∩A′
I �= ∅

Constraint for the right link: ∆′
O ∩ ∆O �= ∅, A′

O ∩AO �= ∅
• If the arc is for (A1℘ · · ·℘An :− B⊗C), the following three links are added.

Ψ; ∆′
I −→ A′

I Ψ; ∆′
O −→ A′

O −→ Ψ; ∆′′
I −→ A′′

I Ψ; ∆′′
O −→ A′′

O

↖ ↙
Ψ; ∆I −→ AI Ψ; ∆O −→ AO

Constraint for the left link: ∆I∩∆′
I �= ∅, ((AI− [{A1, · · · , An}])+[{B}])∩

A′
I �= ∅

Constraint for the top link: ∆′
O ∩ ∆′′

I �= ∅, (A′
O + [{C}]) ∩A′′

I �= ∅
Constraint for the right link: ∆′′

O ∩ ∆O �= ∅, A′′
O ∩AO �= ∅

Proposition 5.1 Let G be a proof graph with the root node v0. If G contains
an IOM proof Π, there exists a path of data-flow links starting from the input
part of v0 and ending at the output part of v0, and each data-flow link in the
path satisfies its constraint condition.
Proof. It is easy to verify that any correct inference step of the system IOM

satisfies the corresponding constraint conditions.

Therefore, we can use an iterative algorithm widely used in optimizing

12

Kang and Tamura

compilers by propagating information through all possible paths. The outline
of the information propagation algorithm is as follows.

Definition 5.2 (A Forward Propagation Algorithm) Let G be a proof
graph with the root node v0.

(i) Set all input and output parts except v0’s to be ∅ −→ ∅.
(ii) Do the followings for all paths of data-flow links starting from the input

part of v0 and ending at the output part of v0 until no informations are
changed.
• If ∆ −→ A and ∆′ −→ A′ are connected by a link with constraint
C(∆,∆′,A,A′), calculate the minimum ∆′′ and A′′ satisfying
C(∆,∆′′,A,A′′) and update ∆′ and A′ by ∆′ ∪ ∆′′ and A′ ∪A′′ respec-
tively.

A Backward Propagation Algorithm can be similarly defined.

Definition 5.3 (A Refinement Algorithm)

(i) Do the forward propagation.

(ii) Do the elimination.
• A Elimination Algorithm
Eliminate the nodes which the input or output parts including an empty
set and the links having unsatisfiable constraints.

(iii) Do the backward propagation.

(iv) Do the elimination.

This refinement can be repeated any times. In other words, the repeating
execution of the refinement can be stopped at anytime. However, of course,
there is no meaning to repeat the refinement when the information propagation
does not change anything anymore.

6 Performance Measurements

We developed a prototype system doing the static analysis described (based
on P(M2)) in this paper. The list sorting program written in Forum is used
for the analysis [10].

The following is the program given to the analyzer.

g :- s� p

p :- s

p :- s℘p

s℘s :- s ⊗m

m :- 1

m :- m

13

Kang and Tamura

First, the analyzer creates the initial abstract proof graph from the above
program and the goal sequent −→ g. The initial abstract proof graph consists
of the 57 nodes and 220 arcs. After the refinement for the abstract proof graph,
the number of nodes and arcs are reduced as shown below.

No. of nodes No. of arcs

Initial graph 57 220

After 1 refinement 25 53

After 2 refinements 15 29

Because the above proof graph is too large to describe in this paper, we will
show the initial abstract proof graph and refined graph for the goal sequent
s −→ s2 in Figure 4 and Figure 5 respectively. The program Ψ is omitted in
Figure 4 and Figure 5 because it is invariant in the proof graph on this case.
The initial abstract proof graph consists of 10 nodes, and the refined graph
has only 4 nodes.

We translated the sorting program into our LLP language program by
hands. LLP is a compiler system of an intuitionistic linear logic programming
language 3 [16][12].

The translated program without using the analysis result checks whether
it can use all rules at each inference step or not. The optimized translated
program using the analysis result does not check the rules eliminated by the
analyzer.

The former version spent about 9.5 seconds for sorting 6 elements, and the
later only spend 10 milliseconds. The more elements are sorted, the larger the
difference becomes.

7 Conclusion and Future work

In this paper, we proposed a new static analysis method which is applicable
for a fragment of a classical linear logic programming language.

Our method, covers multiplicative conjunction in addition to multiplicative
disjunction and linear implication.

We introduced an abstract proof graph representing all possible sequent
proofs. The graph is constructed from a given program and goal sequent. Fur-
thermore, the abstract proof graph can be repeatedly refined by propagating
information to eliminate unprovable nodes from the graph. The method of
refinement is based on the idea of data-flow analysis for the optimization.

Finally, we applied our prototype analyzer for a sorting program written
in Forum. The sorting program was improved about 1000 times faster than
the ordinary program without analysis, for sorting 6 elements by using the
analysis result.

3 http://bach.seg.kobe-u.ac.jp/llp/

14

Kang and Tamura

s’-->m+ s+ s’-->m* s*

s’-->m+ s* s’-->m’ s*

s’-->m s+ s’-->m’ s*

s’-->m s* s’--> s*

s --> s+ s’--> s*

s --> s2 -->

s’-->m+ s* s’-->m* s*

s’-->m+ s* s’--> s*

s’-->m+ s* -->

s’-->m s* -->

Fig. 4. Initial Abstract Proof Graph

s --> s2 -->

 -->m -->s --> s+ -->

 -->m -->

Fig. 5. Refined Abstract Proof Graph

15

Kang and Tamura

As a future work, we are planning to extend of our static analysis method
to include more connectives, such as the additive conjunction & and the intu-
itionistic implication ⇒ (where A ⇒ B ≡!A �B).

References

[1] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[2] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in
inheritance. New Generation Computing, 9:445–473, 1991.

[3] J.-M. Andreoli, R. Pareschi, and T. Castagnetti. Static analysis of linear logic
programming. In New Generation Computing,15, pages 449–481, 1997.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoint.
In Proceedings of the 4th ACM Symposium on Principles of Programming
Languages, 1977.

[5] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. In Journal of Logic Programming,13, pages 103–179, 1992.

[6] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[7] J. Harland and D. Pym. The uniform proof-theoretic foundation of linear
logic programming. In V. Saraswat and K. Ueda, editors, Proceedings of
the International Logic Programming Symposium, pages 304–318, San Diego,
California, Oct. 1991.

[8] J. S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory, Design
and Implementation. PhD thesis, University of Pennsylvania, Department of
Computer and Information Science, 1994.

[9] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2):327–365, 1994. Extended
abstract in the Proceedings of the Sixth Annual Symposium on Logic in
Computer Science, Amsterdam, July 15–18, 1991.

[10] J. S. Hodas and J. Polakow. Forum as a logic programming language:
Preliminary results and observations. In M. Okada, editor, Proceedings of the
Linear Logic ’96 Meeting, volume 3, Tokyo, Japan, 1996. Elsevier Electronic
Notes in Theoretical Computer Science.

[11] J. S. Hodas and J. Polakow. Early observation on forum as a logic programming
language. Unpublised, 1997.

[12] J. S. Hodas, K. Watkins, N. Tamura, and K.-S. Kang. Efficient implementation
of a linear logic programming. In Proceedings of the Joint International
Conference and Symposium on Logic Programming, pages 145–159, 1998.

16

Kang and Tamura

[13] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, Spring 1992.

[14] D. Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165(1):201–232, 1996.

[15] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a
foundation for logic programming. In Annals of Pure and Applied Logic,51,
pages 125–157, 1991.

[16] N. Tamura and Y. Kaneda. Extension of WAM for a linear logic programming
language. In T. Ida, A. Ohori, and M. Takeichi, editors, Second Fuji
International Workshop on Functional and Logic Programming, pages 33–50.
World Scientific, Nov. 1996.

17

