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nilpotent groups. In particular, we give a conceptual explanation of
the results in Takegahara and Yoshida (2008) [TY].
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1. Introduction and main results

In the theory of finite groups, centers of group algebras over the complex numbers and rings of
complex valued class functions on groups play an important role in the study of structures of finite
groups. Recently, Takegahara and Yoshida [TY] obtained characterizations of a finite nilpotent group G
in terms of the structure constants of the center of the group algebra CG and the ring of complex
valued class functions on G . Table algebras abstract common features of centers of group algebras and
rings of complex valued class functions on groups, and of the Bose–Mesner algebras of association
schemes, etc. Table algebras have been studied in many papers, and applications to the theory of
finite groups as well as association schemes are discussed (cf. [ACCHMX,AFM,B1,X1,X2,X4,X5]).

In this paper we study characterizations of nilpotent table algebras, and discuss applications to fi-
nite nilpotent groups. Since a nilpotent fusion ring or based ring (cf. [GN]) is a nilpotent table algebra,
the results in this paper also hold for nilpotent fusion rings. Furthermore, an association scheme is
nilpotent if its Bose–Mesner algebra is a nilpotent table algebra. So our results here are also true for
nilpotent association schemes. However, we will not state our results for either nilpotent fusion rings
or nilpotent association schemes.
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Let (A,B) be a commutative table algebra. We will first prove that (A,B) is a nilpotent table
algebra if and only if for any b ∈ B such that b �= 1, the thin residue O ϑ (Bb) is not equal to Bb
(Theorem 1.1). An application of this result to finite groups is also presented (Corollary 1.2). Then we
introduce the concept of the thin residue matrix MatO ϑ (B) of (A,B), and establish the connections
between the n-th power of MatO ϑ (B) and the n-th thin residue of B as well as between the n-th
power of MatO ϑ (B) and the n-th thin radical of B, for any positive integer n (Theorem 1.5). As a direct
consequence, we obtain that (A,B) is a nilpotent table algebra of class n if and only if MatO ϑ (B)

is a nilpotent matrix of index of nilpotence n. For a finite group G , Takegahara and Yoshida [TY]
introduced matrices S and T similar to MatO ϑ (B) for the center of the group algebra CG and the ring
of complex valued class functions on G , respectively, and proved by lengthy but direct computations
that G is a nilpotent group of class n if and only if S is a nilpotent matrix of index of nilpotence n
if and only if T is a nilpotent matrix of index of nilpotence n (cf. [TY, Theorems 1.1 and 1.2]). Our
approach in this paper is not to generalize the theorems in [TY] to table algebras, but to prove stronger
properties about the structures of table algebras, and then obtain the characterizations of nilpotent
table algebras and nilpotent groups as direct consequences. In particular, our Theorem 1.5 provides a
conceptual explanation of [TY, Theorems 1.1 and 1.2]. We will also introduce the notion of the thin
residue digraph ΓO ϑ (B) , which is the digraph corresponding to the thin residue matrix MatO ϑ (B), and
show that (A,B) is a nilpotent table algebra of class n if and only if ΓO ϑ (B) does not contain any
directed cycle and the length of longest directed path is n − 1 (Theorem 1.10). Other properties for
nilpotent table algebras and nilpotent finite groups can also be easily obtained from the thin residue
digraphs (Corollaries 1.11, 1.12, and Proposition 3.7). In particular, our method developed in this paper
yields a very simple and direct proof of [TY, Theorem 1.4]. Finally, we study the properties of the basis
digraphs of table algebras, and prove that (A,B) is a nilpotent table algebra if and only if for any b ∈ B
such that b �= 1, the principal component of the basis digraph Γb is cyclically partite (Theorem 1.13).

The rest of this section is devoted to explicit statements of definitions, notation, and the main
results of the paper. Let us start with a very brief review of some known facts of table algebras,
closed subsets, and quotient table algebras.

A table algebra (A,B) is a finite dimensional associative algebra A over the complex numbers C,
and a distinguished basis B = {b0,b1,b2, . . . ,bk} for A such that the following properties hold:

(i) b0 = 1A , the identity element of A. (We will also simply write 1A as 1.)
(ii) The structure constants for B are nonnegative real numbers; that is, for all bi,b j ∈ B, bib j =∑k

m=0 λi jmbm , for some λi jm ∈R�0.
(iii) There is an algebra antiautomorphism (denoted by ∗) of A such that (a∗)∗ = a for all a ∈ A and

b∗
i ∈ B for all bi ∈ B. (Hence i∗ is defined by bi∗ = b∗

i .)
(iv) For all bi,b j ∈ B, λi j0 = 0 if j �= i∗; and λii∗0 > 0.

Let (A,B) be a table algebra. Then B is called a table basis. An element bi ∈ B is called a thin
(or linear) element if bib∗

i = λii∗01A . If every element in a nonempty subset N of B is thin, then we
say that N is thin. It is well known that there is a unique algebra homomorphism ν : A → C such
that ν(bi) = ν(b∗

i ) > 0 for all bi ∈ B (see Proposition 3.12 and Theorem 3.14 of [AFM]). The algebra
homomorphism ν : A → C is called the degree map of (A,B), and the values of ν(bi), for all bi ∈ B,
are called the degrees of (A,B). For any bi ∈ B and any nonempty subset N of B, the order of bi , o(bi),
and the order of N, o(N), are defined by

o(bi) := ν(bi)
2

λii∗0
and o(N) :=

∑
bi∈N

o(bi),

respectively. Furthermore, let

N+̃ :=
∑
b ∈N

ν(bi)

λii∗0
bi .
i
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Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}. For any a ∈ A with a = ∑k
i=0 αibi ,

define SuppB(a) := {bi | αi �= 0}. For any nonempty subsets R and L of B, define

RL :=
⋃

b∈R, c∈L

SuppB(bc) and R∗ = {
b∗ ∣∣ b ∈ R

}
.

Then for any nonempty subsets R, L, and N, (RL)N = R(LN); we will write both (RL)N and R(LN)

as RLN. A nonempty subset N of B is called a closed subset (or table subset) of B if N∗N ⊆ N. It is well
known that N is a closed subset of B if and only if NN ⊆ N, and if N is a closed subset of B, then
1A ∈ N, N∗ = N, and (CN,N) is also a table algebra, called a table subalgebra of (A,B), where CN is
the C-space with basis N. For any bi ∈ B, we write N{bi} as Nbi , {bi}N as biN, and N{bi}N as NbiN.
Assume that N is a closed subset of B. It is well known that {NbiN | bi ∈ B} forms a partition of B. Let

bi//N := o(N)−1(NbiN)+̃ = o(N)−1
∑

b j∈NbiN

ν(b j)

λ j j∗0
b j, for any bi ∈ B.

Let B//N := {bi//N | bi ∈ B}, and A//N := C(B//N). That is, A//N is the C-space with basis B//N. Then
(A//N,B//N) is a table algebra such that for any bi ∈ B, (bi//N)∗ = b∗

i //N, and the degree ν(bi//N) =
o(N)−1o(NbiN). (See [AFM, Theorem 4.9].) (A//N,B//N) is called the quotient table algebra of (A,B)

with respect to N. Note that in [AFM, Theorem 4.9], (A,B) is assumed to be standard. Although we do
not assume that (A,B) is standard here, the quotient table algebra (A//N,B//N) is actually defined
over the standard rescaling of B, and B//N itself is standard.

The thin residues and the thin radicals of closed subsets of association schemes are studied in [Z].
These concepts can be defined similarly for closed subsets of table algebras. Let (A,B) be a table
algebra, and let R be a subset of B. Then the intersection of all closed subsets of B that contain R is
a closed subset of B, called the closed subset generated by R, and denoted by 〈R〉. In particular, the
closed subset 〈∅〉 generated by the empty subset of B is {1}. For any b ∈ B, the closed subset generated
by {b} is denoted by 〈b〉 or Bb , and called the closed subset generated by b. Let N be a closed subset
of B. Then the thin residue of N, O ϑ (N), is defined by

O ϑ(N) :=
〈 ⋃

b∈N

SuppB
(
bb∗)〉.

It is well known that the quotient N//O ϑ (N) is a thin closed subset. Furthermore, if M is a closed
subset of N such that the quotient N//M is thin, then O ϑ (N) ⊆ M. Set (O ϑ )0(N) := N, and for any
integer n � 1, define the n-th thin residue of N, (O ϑ )n(N), inductively by(

O ϑ
)n

(N) := O ϑ
((

O ϑ
)n−1

(N)
)
.

On the other hand, the thin radical of N, O ϑ (N), is the set of all thin elements of N. It is clear that
the thin radical O ϑ (N) is a closed subset of B. Set O (0)

ϑ (N) := {1}, and for any integer n � 1, define

recursively the n-th thin radical of N, O (n)
ϑ (N), to be the closed subset of B such that

O (n)
ϑ (N)//O (n−1)

ϑ (N) = O ϑ

(
N//O (n−1)

ϑ (N)
)
.

If (A,B) is commutative, then

B ⊇ O ϑ(B) ⊇ (
O ϑ

)2
(B) ⊇ (

O ϑ
)3

(B) ⊇ · · ·
is called the lower central series of (A,B), and
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{1} ⊆ O ϑ(B) ⊆ O (2)
ϑ (B) ⊆ O (3)

ϑ (B) ⊆ · · ·
is called the upper central series of (A,B) (cf. [BX2]). Furthermore, if (A,B) is commutative and
O (n)

ϑ (B) = B for some positive integer n, then (A,B) is called a nilpotent table algebra, and the mini-

mal n such that O (n)
ϑ (B) = B is called the nilpotent class of B (cf. [BX2, Proposition 1.22 and Defini-

tion 1.23]). It is also known that (A,B) is a nilpotent table algebra of class n if and only if n is the
minimal positive integer such that (O ϑ )n(B) = {1} (cf. [B3,GN]).

Now we are ready to state the main results of the paper. The next theorem says that a nilpotent
table algebra (A,B) is characterized by the thin residues of its closed subsets Bb , for all b ∈ B such
that b �= 1.

Theorem 1.1. Let (A,B) be a commutative table algebra. Then the following are equivalent.

(i) (A,B) is a nilpotent table algebra.
(ii) For any b ∈ B such that b �= 1, O ϑ (Bb) �= Bb .

For a finite group G , we have two commutative table algebras: (Z(CG),Cla(G)), the center of the
group algebra CG with table basis Cla(G), the set of sums over various conjugacy classes of G; and
(Ch(G), Irr(G)), the ring of complex valued class functions on G with pointwise addition and multi-
plication, and with table basis Irr(G) the set of irreducible characters of G . The (anti)automorphism
of (Z(CG),Cla(G)) is induced from inversion on G . That is, for any conjugacy class C of G , let
C+ = ∑

x∈C x. Then (C+)∗ = ∑
x∈C x−1. The (anti)automorphism of (Ch(G), Irr(G)) is given by com-

plex conjugation on Irr(G), extended linearly to Ch(G). It is well known that G is a nilpotent group of
class n if and only if (Z(CG),Cla(G)) is a nilpotent table algebra of class n if and only if (Ch(G), Irr(G))

is a nilpotent table algebra of class n (cf. [B1, Remarks 1.12 and 1.10]). Note that this result also fol-
lows from the more general relationship between a nilpotent table algebra and its dual (if the dual is
also a table algebra); cf. [B2, Theorems 1 and 2].

As a direct consequence of Theorem 1.1, we have the following

Corollary 1.2. Let G be a finite group. Then the following are equivalent.

(i) G is a nilpotent group.
(ii) For any conjugacy class C of G such that C �= {1}, the commutator subgroup of G and 〈C〉, [G, 〈C〉], is not

equal to 〈C〉, where 〈C〉 is the (normal) subgroup of G generated by C .

Theorem 1.1 and Corollary 1.2 will be proved in Section 2.
Now we introduce the concept of the thin residue matrix of a table algebra, which is closely

related to the thin residue.

Definition 1.3. Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}, and structure con-
stants λi jm , 0 � i, j,m � k. Then the thin residue matrix of (A,B), MatO ϑ (B), is the k × k nonnegative
matrix whose rows and columns are indexed by b1,b2, . . . ,bk and whose (bi,b j)-entry is λ j j∗ i .

Let G be a finite group. Takegahara and Yoshida [TY] defined S := MatO ϑ (Cla(G)) and T :=
MatO ϑ (Irr(G)), and proved directly by calculations that G is nilpotent if and only if S is a nilpotent
matrix if and only if T is a nilpotent matrix (cf. [TY, Theorems 1.1 and 1.2]). For a commutative table
algebra (A,B), our next theorem gives the intrinsic connections between the n-th power of MatO ϑ (B)

and the n-th thin residue (O ϑ )n(B) as well as between the n-th power of MatO ϑ (B) and the n-th
thin radical O (n)

ϑ (B), for any positive integer n, which in turn provide a conceptual explanation of the
results in [TY].

Definition 1.4. Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}. For any k × k nonnega-
tive matrix P with rows and columns indexed by b1,b2, . . . ,bk , let
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C(P ) := {
bi

∣∣ the (bi,b j)-entry of P is not zero for some b j
}

and

D(P ) := {
b j

∣∣ the (bi,b j)-entry of P is zero for all bi
}
.

Then 〈C(P )〉 is called the closed subset of B associated with P , and 〈D(P )〉 is called the null closed
subset of P .

Theorem 1.5. Let (A,B) be a commutative table algebra, and let S = MatO ϑ (B). Then for any positive inte-
ger n,

(
O ϑ

)n
(B) = 〈

C
(

Sn)〉 (1.1)

and

O (n)
ϑ (B) = 〈

D
(

Sn)〉 = D
(

Sn) ∪ {1}. (1.2)

In particular, (O ϑ )n(B) = {1} if and only if O (n)
ϑ (B) = B if and only if Sn is a zero matrix.

As mentioned above, for a commutative table algebra (A,B) and a positive integer n, it is already
known that (O ϑ )n(B) = {1} if and only if O (n)

ϑ (B) = B. Here we obtain this result as a direct conse-
quence of (1.1) and (1.2).

The next corollary is a direct consequence of Theorem 1.5.

Corollary 1.6. Let (A,B) be a commutative table algebra. Then the following are equivalent.

(i) (A,B) is a nilpotent table algebra of class n.
(ii) MatO ϑ (B) is a nilpotent matrix of index of nilpotence n.

Let G be a group. Set Z0(G) := {1}, and for any positive integer i, define Zi(G) inductively to be
the normal subgroup of G such that Zi(G)/Zi−1(G) = Z(G/Zi−1(G)), the center of G/Zi−1(G). Then
the upper central series of G is

Z0(G) = {1} ⊆ Z1(G) = Z(G) ⊆ Z2(G) ⊆ · · · .

On the other hand, set G1 := G , and for any integer i � 2, define Gi inductively to be the commutator
subgroup [G, Gi−1] of G and Gi−1. Then the lower central series of G is

G = G1 ⊇ G2 = [G, G] ⊇ G3 = [
G, [G, G]] ⊇ · · · .

Let G be a finite group. For a nonempty subset R of the table basis Cla(G), let

RG :=
⋃{

C
∣∣ C is a conjugacy class of G such that C+ ∈ R

}
. (1.3)

It is clear that R is a closed subset of Cla(G) if and only if RG is a normal subgroup of G . By applying
Theorem 1.5 to the table algebra (Z(CG),Cla(G)), we get the next corollary immediately.
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Corollary 1.7. Let G be a finite group, and let S = MatO ϑ (Cla(G)). Then for any positive integer n,〈
C
(

Sn)〉
G = Gn+1 (1.4)

and 〈
D

(
Sn)〉

G = Zn(G). (1.5)

In particular, Zn(G) = G if and only if Gn+1 = {1} if and only if Sn is a zero matrix.

Note that [TY, Theorem 2.3] can be interpreted as a variation of (1.5). Since a finite group G is
nilpotent of class n if and only if (Z(CG),Cla(G)) is a nilpotent table algebra of class n if and only
if (Ch(G), Irr(G)) is a nilpotent table algebra of class n, as a direct consequence of Corollary 1.6, we
have the following

Corollary 1.8. (See [TY, Theorems 1.1 and 1.2].) Let G be a finite group, S = MatO ϑ (Cla(G)), and T =
MatO ϑ (Irr(G)). Then the following are equivalent.

(i) G is a nilpotent group of class n.
(ii) S is a nilpotent matrix of index of nilpotence n.

(iii) T is a nilpotent matrix of index of nilpotence n.

Theorem 1.5 and Corollary 1.7 will be proved in Section 2.
Let G be a finite group. Other matrices related to MatO ϑ (Cla(G)) and MatO ϑ (Irr(G)) are introduced

in [TY], and some properties are proved by complicated computations. In Section 3 we will show that
these properties can be easily obtained by applying the method developed in this paper.

Now let us turn to the characterizations of nilpotent table algebras in terms of the thin residue
digraphs and the basis digraphs.

Definition 1.9. Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}, and structure con-
stants λi jm , 0 � i, j,m � k. The thin residue digraph of (A,B), ΓO ϑ (B) , is the directed graph (digraph)
defined by

V (ΓOϑ (B)) := B \ {1}, E(ΓOϑ (B)) := {
(bi,b j)

∣∣ λ j j∗ i �= 0
}
.

That is, ΓO ϑ (B) is the digraph corresponding to the thin residue matrix MatO ϑ (B).

Let (A,B) be a table algebra. Then ΓO ϑ (B) may not be a simple digraph. If ΓO ϑ (B) is not simple,
then there exists bi ∈ B \ {1} such that (bi,bi) ∈ E(ΓO ϑ (B)), and ΓO ϑ (B) has a directed cycle with only
one vertex bi . The next theorem follows directly from Theorem 1.5. It provides a very easy way to
determine whether a commutative table algebra is nilpotent or not. By applying this theorem, we
will prove some properties for matrices related to the thin residue matrix (see Proposition 3.7 in
Section 3), and obtain [TY, Theorem 1.4] as a direct consequence.

Theorem 1.10. Let (A,B) be a commutative table algebra. Then the following are equivalent.

(i) (A,B) is a nilpotent table algebra of class n.
(ii) The digraph ΓO ϑ (B) contains no directed cycles, and the length of the longest directed path is n − 1.

Let (A,B) be a commutative table algebra. Then (A,B) is not a nilpotent table algebra if and only if
the digraph ΓO ϑ (B) contains a directed cycle by Theorem 1.10. Thus, we have the following corollary.
Note that in Corollary 1.11(ii), it is possible that r = 1.
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Corollary 1.11. Let (A,B) be a commutative table algebra. Then the following are equivalent.

(i) (A,B) is not a nilpotent table algebra.
(ii) There are bi1 ,bi2 , . . . ,bir ∈ B \ {1} such that

bim ∈ SuppB
(
bim+1b∗

im+1

)
, for all m = 1,2, . . . , r,

where bir+1 = bi1 .

Let G be a group. For any character χ of G , let χ̄ denote the complex conjugate of χ . That is,
for any g ∈ G , χ̄ (g) = χ(g), the complex conjugate of χ(g). For any two characters χ and ρ , let
(χ,ρ) denote the inner product of χ and ρ . Let χ0 be the principal irreducible character of G .
The next corollary is a direct consequence of Theorem 1.10 (or Corollary 1.11). It provides a way to
determine if a finite group is not a nilpotent group. Note that in Corollary 1.12(ii), it is possible that
r = 1.

Corollary 1.12. Let G be a finite group. Then the following are equivalent.

(i) G is not a nilpotent group.
(ii) There are irreducible characters χ1, . . . ,χr ∈ Irr(G) \ {χ0} such that

(χi,χi+1χi+1) �= 0, for all i = 1,2, . . . , r,

where χr+1 = χ1 .

A very short proof of Theorem 1.10 will be included in Section 3 for the convenience of the reader.
Let (A,B) be a table algebra. Let us denote the structure constants of (A,B) by λbac , for all

b,a, c ∈ B. For any b ∈ B, we have a digraph Γb (cf. [AFM]) defined by

V (Γb) := B, E(Γb) := {
(a, c)

∣∣ λbac �= 0
}
.

Γb is called a basis digraph of (A,B). Note that Γb may not be a simple digraph. If b∗ = b, then Γb is an
undirected graph. Similar digraphs for association schemes are defined in [BCN], and called distribution
diagrams. For an association scheme (X, {Ri}0�i�d), the digraph G Ri , defined by V (G Ri ) := X and
E(G Ri ) := {(x, y) | (x, y) ∈ Ri}, is called a relation digraph, for any 0 � i � d. Note that the relation
digraphs of association schemes are called the basis digraphs in [BP].

Let (A,B) be a table algebra. For any b ∈ B such that b �= 1, each weak component of Γb is also a
strong component, and the vertex set of the (weak, strong) component of Γb that contains a vertex
a ∈ B is Bba (see Lemma 4.1 in Section 4 below). The component of Γb with vertex set Bb is called
the principal component of Γb (Definition 4.2 in Section 4 below).

Let Γ = (V , E) be a digraph. If there is an integer h > 1 and a partition V 1, V 2, . . . , Vh of the
vertex set V such that for any u ∈ V i and v ∈ V j with (u, v) ∈ E , we have j − i ≡ 1 mod h, then Γ is
called a cyclically h-partite digraph (cf. [CDS, p. 82]). In this paper a cyclically h-partite digraph is also
simply called a cyclically partite digraph.

The next theorem says that a nilpotent table algebra can be characterized by the principal com-
ponents of its nontrivial basis digraphs. Note that Barghi and Ponomarenko [BP] proved that an
association scheme is a p-scheme if and only if each nontrivial relation digraph is cyclically p-partite.

Theorem 1.13. Let (A,B) be a commutative table algebra. Then the following are equivalent.

(i) (A,B) is a nilpotent table algebra.
(ii) For any b ∈ B such that b �= 1, the principal component of the digraph Γb is cyclically partite.
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Note that in Theorem 1.13(ii), it is possible that for some b, c ∈ B \ {1} such that b �= c, Γb is
cyclically h-partite and Γc is cyclically p-partite with h �= p.

The rest of the paper is organized as follows. In Section 2 we prove Theorems 1.1 and 1.5. Then
in Section 3 we prove Theorem 1.10 and, by using the thin residue digraphs, some other properties
related to the thin residue matrices. We will study some basic properties of the basis digraphs and
prove Theorem 1.13 in Section 4.

2. Proofs of Theorems 1.1 and 1.5

Let us first prove Theorem 1.1. Let (A,B) be a table algebra, and let R be a nonempty subset of B.
Set R0 = {1}, and for any positive integer n, define Rn inductively by Rn = Rn−1R. It is clear that the
closed subset generated by R, 〈R〉, is given by

〈R〉 =
∞⋃

n=1

Rn. (2.1)

In particular, for any b ∈ B, Bb = ⋃∞
n=1 SuppB(bn). Furthermore, if (A,B) is commutative, then for any

nonempty subsets R and L of B, (RL)n = RnLn , for any positive integer n.
Let (A,B) be a table algebra, and let N be a closed subset of B. Then for any nonempty subset R

of B, let

R//N := {b//N | b ∈ R}.
Since the quotient table algebra (A//N,B//N) is defined over the standard rescaling of B in this paper,
all the known results for the quotient table algebras under the assumption that (A,B) is standard can
be applied in our discussions.

The next lemma is needed for the proof of Theorem 1.1.

Lemma 2.1. Let (A,B) be a commutative table algebra, and let N be a closed subset of B. Then the following
hold.

(i) For any nonempty subsets R and L of B, (R//N)(L//N) = RL//N. In particular, for any positive integer n,
(R//N)n = Rn//N.

(ii) For any nonempty subset R of B, 〈R//N〉 = 〈R〉//N = 〈R〉N//N.
(iii) For any b ∈ B, b//N is a thin element of B//N if and only if SuppB(bb∗) ⊆ N. In particular, if B is thin, then

B//N is also thin.

Proof. (i) By [X1, Lemma 2.5(iii)], (R//N)(L//N) = (RNL)//N. Since (A,B) is commutative, RNL = RLN.
But (RLN)//N = RL//N by [X1, Lemma 2.5(i)]. So (i) holds.

(ii) From (2.1) and (i) we have that

〈R//N〉 =
∞⋃

n=1

(R//N)n =
∞⋃

n=1

(
Rn//N

) =
( ∞⋃

n=1

Rn

)
//N = 〈R〉//N.

Also 〈R〉N//N = 〈R〉//N by [X1, Lemma 2.5(i)]. So (ii) holds.
(iii) For any b, c ∈ B, SuppB//N((b//N)(c//N)) = SuppB(bc)//N by (i). So (iii) holds. �
Let (A,B) and (C,D) be table algebras. Let ϕ : A → C be an algebra homomorphism such that

for any b ∈ B, ϕ(b) is a positive scalar multiple of an element in D. Then ϕ is called a table algebra
homomorphism from (A,B) to (C,D). If a table algebra homomorphism ϕ : (A,B) → (C,D) is bijective,
then ϕ is called a table algebra isomorphism, (A,B) and (C,D) are called isomorphic table algebras, and
denoted by (A,B) ∼= (C,D) or simply B ∼= D. It is clear that if B ∼= D and B is thin, then D is also
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thin. Let (A,B) be a commutative table algebra, and let M and N be closed subsets of B. Then by [B2,
Theorem 4], MN is a closed subset of B, and

MN//N ∼= M//(M ∩ N). (2.2)

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. (i) ⇒ (ii) Let b ∈ B such that b �= 1, and let m be the minimal positive in-
teger such that b /∈ (O ϑ )m(B). Then b ∈ (O ϑ )m−1(B), and it follows from (O ϑ )m−1(B)//(O ϑ )m(B)

a thin closed subset that b//(O ϑ )m(B) is thin. Hence, the closed subset 〈b//(O ϑ )m(B)〉 generated
by b//(O ϑ )m(B) is thin. Note that by Lemma 2.1(ii) and (2.2),〈

b//
(

O ϑ
)m

(B)
〉 = (

Bb · (O ϑ
)m

(B)
)
//

(
O ϑ

)m
(B) ∼= Bb//

(
Bb ∩ (

O ϑ
)m

(B)
)
.

Thus, Bb//(Bb ∩ (O ϑ )m(B)) is thin, and hence O ϑ (Bb) ⊆ Bb ∩ (O ϑ )m(B). But b /∈ (O ϑ )m(B). So
Bb ∩ (O ϑ )m(B) �= Bb . Thus, O ϑ (Bb) �= Bb , and (ii) holds.

(ii) ⇒ (i) Since B is a finite set, it is enough to prove that

for any closed subset N of B such that N �= {1}, O ϑ(N) �= N. (2.3)

Suppose toward a contradiction that (2.3) is false. Since the orders of closed subsets of B comprise a
finite set of positive real numbers, we may choose a closed subset N �= {1} with o(N) minimal such
that O ϑ (N) = N. Now N �= Bb for any b ∈ N, by (ii). Hence, there exist proper closed subsets C, D of N
with N = CD. (For example, let C be a maximal closed subset of N and D = Bb for any b ∈ N \ C.)
Choose such C, D with o(C) + o(D) minimal. Now o(D) < o(N) implies that (2.3) holds for D. Hence,
Q := O ϑ (D) is a proper closed subset of D, and D//Q is thin. By (2.2),

N//CQ = CD//CQ = (CQ )D//CQ ∼= D//(D ∩ CQ ).

But Q ⊆ D ∩ CQ implies that D//(D ∩ CQ ) = (D//Q )//((D ∩ CQ )//Q ) by [X1, Theorem 4.4]. Hence,
N//CQ is thin by Lemma 2.1(iii). Also, o(C) + o(Q ) < o(C) + o(D) implies that CQ �= N. Therefore,
O ϑ (N) ⊆ CQ � N, a contradiction. This proves (2.3), and (i) holds. �

The next (well-known) corollary is immediate from Theorem 1.1.

Corollary 2.2. Let (A,B) be a nilpotent table algebra. Then for any closed subset N of B, the table subalgebra
(CN,N) is also nilpotent.

Note that Corollary 2.2 can be proved without using Theorem 1.1, and the proof of “(i) ⇒ (ii)” in
Theorem 1.1 is trivial by applying Corollary 2.2.

Let G be a finite group. For a nonempty subset R of the table basis Cla(G), let RG be the same as
in (1.3), and let 〈RG 〉 be the (normal) subgroup of G generated by RG . The next lemma is immediate.

Lemma 2.3. Let G be a finite group. Then the following hold.

(i) For any nonempty subset R of the table basis Cla(G), 〈RG 〉 = 〈R〉G .
(ii) For any closed subset N of Cla(G), (O ϑ (N))G = [G,NG ], the commutator subgroup of G and NG .

Let G be a finite group. Then for any conjugacy class C of G , 〈C+〉G = 〈C〉 and (O ϑ (〈C+〉))G =
[G, 〈C〉] by Lemma 2.3. Thus, [G, 〈C〉] �= 〈C〉 if and only if O ϑ (〈C+〉) �= 〈C+〉. Since G is nilpotent if
and only if the table algebra (Z(CG),Cla(G)) is nilpotent, Corollary 1.2 follows directly from Theo-
rem 1.1.
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Now we prove Theorem 1.5. We need the next lemma first.

Lemma 2.4. Let (A,B) be a commutative table algebra. Then for any nonempty subset R of B,

〈 ⋃
b∈R

SuppB
(
bb∗)〉 = O ϑ

(〈R〉). (2.4)

Proof. Let N := 〈⋃b∈R SuppB(bb∗)〉. Then it follows from SuppB(bb∗) ⊆ O ϑ (〈R〉), for any b ∈ R, that
N ⊆ O ϑ (〈R〉). On the other hand, since (A,B) is commutative, it follows from Lemma 2.1(iii) that for
any b ∈ R, b//N is a thin element of B//N. So 〈R//N〉 is a thin closed subset of B//N. Note that 〈R〉 ⊇ N
and 〈R〉//N = 〈R//N〉 by Lemma 2.1(ii). So 〈R〉//N is a thin closed subset. Thus, O ϑ (〈R〉) ⊆ N, and the
lemma holds. �

The next example says that Lemma 2.4 is not true if (A,B) is not commutative.

Example 2.5. (The association scheme is adapted from [H].) Let (X, {Ri}0�i�9) be an association
scheme such that

9∑
i=0

i Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
1 0 3 3 2 2 5 5 4 4 8 8 9 9 6 6 7 7
2 3 0 2 1 3 6 7 8 9 4 7 4 6 5 9 5 8
2 3 2 0 3 1 7 6 9 8 7 4 6 4 9 5 8 5
3 2 1 3 0 2 8 9 6 7 5 9 5 8 4 7 4 6
3 2 3 1 2 0 9 8 7 6 9 5 8 5 7 4 6 4
4 5 6 7 9 8 0 4 5 1 7 2 2 6 3 9 8 3
4 5 7 6 8 9 4 0 1 5 2 7 6 2 9 3 3 8
5 4 9 8 6 7 5 1 0 4 3 9 8 3 7 2 2 6
5 4 8 9 7 6 1 5 4 0 9 3 3 8 2 7 6 2
6 9 4 7 5 8 7 2 3 8 0 6 4 2 5 3 1 9
6 9 7 4 8 5 2 7 8 3 6 0 2 4 3 5 9 1
7 8 4 6 5 9 2 6 9 3 4 2 0 7 1 8 5 3
7 8 6 4 9 5 6 2 3 9 2 4 7 0 8 1 3 5
9 6 5 8 4 7 3 8 7 2 5 3 1 9 0 6 4 2
9 6 8 5 7 4 8 3 2 7 3 5 9 1 6 0 2 4
8 7 5 9 4 6 9 3 2 6 1 8 5 3 4 2 0 7
8 7 9 5 6 4 3 9 6 2 8 1 3 5 2 4 7 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ai is the adjacency matrix of Ri , 0 � i � 9. Let (A,B) be the Bose–Mesner algebra of the as-
sociation scheme (X, {Ri}0�i�9), where B = {A0, A1, . . . , A9}. Then (A,B) is a noncommutative table
algebra. It is easy to check that (2.4) does not hold for R = {A8}.

Proof of Theorem 1.5. Let us first prove (1.1) by induction on n. It is clear that (1.1) holds for n = 1
by the definition of the thin residue. Now assume that n > 1 and (1.1) holds for n − 1. Then we show
that (1.1) holds for n. Let R be a k × k nonnegative matrix whose rows and columns are indexed by
b1,b2, . . . ,bk and whose (bi,b j)-entry is ρi j � 0. Then by Lemma 2.4,

O ϑ
(〈
C(R)

〉) =
〈 ⋃

bt∈C(R)

SuppB
(
btb

∗
t

)〉
= 〈

bi ∈ B
∣∣ λtt∗ i �= 0 for some bt (t � 1) with ρt j �= 0 for some b j

〉
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=
〈
bi ∈ B

∣∣ ∑
t�1

λtt∗ iρt j �= 0 for some b j

〉
= 〈

bi ∈ B
∣∣ the (bi,b j)-entry of S R is nonzero for some b j

〉
= 〈

C(S R)
〉
.

In particular, let R = Sn−1. Then O ϑ (〈C(Sn−1)〉) = 〈C(S Sn−1)〉 = 〈C(Sn)〉. Thus, by the induction as-
sumption,

(
O ϑ

)n
(B) = O ϑ

((
O ϑ

)n−1
(B)

) = O ϑ
(〈
C
(

Sn−1)〉) = 〈
C
(

Sn)〉.
So (1.1) holds for n.

Next we prove (1.2). For any positive integer n, define T(n) := {b j ∈ B \ {1} | λ j j∗ i = 0 for all bi /∈
O (n−1)

ϑ (B)}, and prove by induction that for all n � 1,

O (n)
ϑ (B) = D

(
Sn) ∪ {1} = T(n) ∪ {1}. (2.5)

This is immediate for n = 1, by the definitions of O (0)
ϑ (B), O (1)

ϑ (B), and D(S). Suppose that (2.5) holds

for some n � 1. Let N := O (n)
ϑ (B). Then for j � 1,

b j ∈ O (n+1)
ϑ (B) ⇐⇒ (b j//N)

(
b∗

j //N
) = 1//N ⇐⇒ SuppB

(
b jb

∗
j

) ⊆ N

⇐⇒ λ j j∗t = 0 for all bt /∈ O (n)
ϑ (B) ⇐⇒ b j ∈ T(n+1).

By the induction hypothesis, for t � 1,

bt ∈ O (n)
ϑ (B) ⇐⇒ the (bi,bt)-entry of Sn is 0 for all 1 � i � k.

Let βit be the (bi,bt)-entry of Sn , 1 � i, t � k. If j � 1 and b j ∈ O (n+1)
ϑ (B), then for all i � 1, the

(bi,b j)-entry of Sn+1 = Sn S is

∑
t�1

βitλ j j∗t =
∑

bt∈O (n)
ϑ (B)\{1}

βitλ j j∗t +
∑

bt /∈O (n)
ϑ (B)

βitλ j j∗t = 0.

Thus, O (n+1)
ϑ (B) ⊆ D(Sn+1) ∪ {1}. If b j /∈ O (n+1)

ϑ (B), then λ j j∗u �= 0 for some bu /∈ O (n)
ϑ (B). Hence, by

the induction assumption again, the (bi,bu)-entry of Sn is nonzero for some i. So the (bi,b j)-entry of
Sn S is nonzero, and b j /∈D(Sn+1)∪{1}. This proves that (2.5) holds for n+1, and establishes (1.2). �

Let G be a finite group. Then the map

{
closed subsets of Cla(G)

} → {normal subgroups of G}, N �→ NG

is bijective. Furthermore, for any closed subsets M and N of Cla(G) such that N ⊆ M,

M//N is thin if and only if MG/NG ⊆ Z(G/NG).
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Therefore, for any positive integer n, (
O (n)

ϑ

(
Cla(G)

))
G = Zn(G).

It is also clear that for any positive integer n,((
O ϑ

)n(
Cla(G)

))
G = Gn+1

by Lemma 2.3(ii). Hence, Corollary 1.7 follows directly from Theorem 1.5.

3. Thin residue digraphs

In this section we first study some basic properties of the thin residue digraph of a table algebra,
and prove Theorem 1.10. Then we show that some properties proved by lengthy and complicated
calculations in [TY, Theorem 1.4] can be easily obtained by the method developed in this paper.

Let Γ = (V , E) be a digraph. For any vertices u, v ∈ V , if there is an ordered list of vertices u1 = u,

u2, . . . , un+1 = v such that (ui, ui+1) ∈ E for i = 1,2, . . . ,n, then we say that there is a directed path
from u to v of length n. If u = v , then a directed path from u to u is a directed cycle. If Γ is not
simple, and (u, u) ∈ E for some u ∈ V , then Γ has a directed cycle with only one vertex u.

Definition 3.1. Let Γ be a digraph. A vertex v of Γ is called a cycle-less vertex if there is no directed
path that begins with v and intersects a directed cycle.

Let Γ be a digraph. Then a vertex v of Γ is cycle-less if and only if the length of any directed
path beginning with v (if it exists) is finite. If v is a cycle-less vertex of Γ , then all vertices on the
directed paths beginning with v (if any) are cycle-less. Furthermore, every vertex of Γ is cycle-less if
and only if Γ contains no directed cycles.

Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}. For any k ×k nonnegative matrix P
with rows and columns indexed by b1,b2, . . . ,bk , let ΓP be the digraph defined by

V (ΓP ) = B \ {1} and E(ΓP ) = {
(bi,b j)

∣∣ the (bi,b j)-entry of P is not zero
}
.

That is, ΓP is the digraph corresponding to P .

Lemma 3.2. With the notation in the above paragraph, the following hold.

(i) For any bi ∈ B \ {1}, bi ∈ C(Pn) for some positive integer n > 1 if and only if there exists b j ∈ B \ {1} such
that (bi,b j) ∈ E(ΓP ) and b j ∈ C(Pn−1).

(ii) For any bi ∈ B\ {1}, bi ∈ C(Pn) for some positive integer n if and only if there is a directed path of length n
that begins with bi .

(iii) If bi is not a cycle-less vertex of ΓP , then bi ∈ C(Pn) for any positive integer n.
(iv) If bi is a cycle-less vertex of ΓP , and the length of the longest directed path that begins with bi is n � 1,

then bi ∈ C(P r) for any positive integer r � n, but bi /∈ C(Pm) for any positive integer m > n.

Proof. (i) Assume that for any 1 � i,m � k, the (bi,bm)-entries of P and Pn−1 are pim and βim ,
respectively. Then the (bi,bm)-entry of Pn is

∑k
l=1 pilβlm . Since P and hence Pn−1 are nonnegative

matrices, the (bi,bm)-entry of Pn is not zero if and only if there is 1 � j � k such that pij �= 0 and
β jm �= 0. So (i) holds.

(ii) follows directly from (i) by induction on n.
(iii) Since bi is not a cycle-less vertex, there is a directed path that begins with bi and intersects a

directed cycle. So for any positive integer n, there is a directed path of length n that begins with bi .
Hence, (iii) holds by (ii).
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(iv) Since there is a directed path of length r that begins with bi for any positive integer r � n, and
there is no directed path of length m that begins with bi for any positive integer m > n, (iv) follows
directly from (ii). �
Definition 3.3. Let Γ be a digraph. If Γ has a directed path whose vertices are all cycle-less, then
the length of the longest directed path with cycle-less vertices is called the cycle-less length of Γ , and
denoted by �(Γ ). If Γ has no directed path with cycle-less vertices, then define �(Γ ) = 0.

Let Γ be a digraph. If Γ has a directed path whose vertices are all cycle-less, then it is clear that
the length of the path is finite. Thus, we have that �(Γ ) < ∞.

Lemma 3.4. Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}. Let P be a k × k nonnegative
matrix whose rows and columns are indexed by b1,b2, . . . ,bk. If n = �(ΓP ), then

C(P ) � C
(

P 2) � · · ·� C
(

Pn) � C
(

Pn+1) = C
(

Pn+2) = · · · .

Furthermore, C(Pn+1) contains no cycle-less vertices of ΓP .

Proof. If n = 0, then ΓP does not have any directed path whose vertices are all cycle-less. Let
bi ∈ C(P ). Then bi is not a cycle-less vertex. Hence, bi ∈ C(Pm) for all positive integer m by
Lemma 3.2(iii). This proves that C(P ) = C(P 2) = C(P 3) = · · · , and the lemma holds. If n > 0, then
there is a directed path of length n, say bin+1 → bin → ·· · → bi2 → bi1 , such that bin+1 ,bin , . . . ,bi2 ,bi1

are cycle-less vertices and bi1 /∈ C(P ). Hence for m = 2,3, . . . ,n + 1, n = �(ΓP ) implies that the length
of the longest directed path beginning with bim is m − 1. Thus, bim ∈ C(Pm−1) but bim /∈ C(Pm) by
Lemma 3.2(iv), m = 2,3, . . . ,n + 1. Therefore, C(P r) �= C(P r+1) for all r = 1,2, . . . ,n. Furthermore,
since for any cycle-less vertex b j , the length of any directed path that begins with b j is at most n,
it follows from Lemma 3.2(iv) that C(Pn+1),C(Pn+2), . . . contain no cycle-less vertices of ΓP . So
C(Pn+1) = C(Pn+2) = · · · by Lemma 3.2(iii). It is clear that C(P r) ⊇ C(P r+1) for all positive integer r.
Hence, the lemma holds. �

Now Theorem 1.10 is clear. We include a very short proof here for the convenience of the reader.

Proof of Theorem 1.10. By Lemma 3.2(iii) and (iv), MatO ϑ (B) is a nilpotent matrix if and only if every
vertex of the digraph ΓO ϑ (B) is cycle-less. Hence, MatO ϑ (B) is a nilpotent matrix if and only if ΓO ϑ (B)

has no directed cycles. Furthermore, if MatO ϑ (B) is a nilpotent matrix of index of nilpotence n, then
n = 1 + �(ΓO ϑ (B)) by Lemma 3.4. Thus, Theorem 1.10 holds by Corollary 1.6. �

The next corollary is immediate from Theorem 1.5 and Lemma 3.4.

Corollary 3.5. Let (A,B) be a commutative table algebra. Let n = �(ΓO ϑ (B)). Then

(
O ϑ

)n+1
(B) = (

O ϑ
)n+2

(B) = · · · .

Let (A,B) be a commutative table algebra. The next example says that for some positive integer
m < �(ΓO ϑ (B)), we may also have (O ϑ )m+1(B) = (O ϑ )m+2(B) = · · · .

Let (A,B) be a commutative table algebra. The nonzero entries of MatO ϑ (B) are not all ones in
general. Since MatO ϑ (B) is a nonnegative matrix, changing its nonzero entries to 1 does not affect
which entries of the powers of MatO ϑ (B) are nonzero. This fact is used implicitly in this section.

Example 3.6. Let (U ,V) be a commutative table algebra such that V := {v0 := 1, v1, v2, v3}, v∗
i = vi ,

0 � i � 3, and
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v2
1 = 3v0 + v1 + v2, v1 v2 = v1 + 2v3, v1 v3 = v3 + 2v2,

v2
2 = 3v0 + 2v2, v2 v3 = v3 + 2v1, v2

3 = 3v0 + v1 + v2.

(This table algebra is presented in [BX1, Example 1.14].) Let (C,D) be a commutative table algebra
such that D := {d0 := 1,d1} and d2

1 = d0. Let (A,B) := (C � U ,D � V), the wreath product of (C,D)

and (U ,V). Then

B := D � V = {
d0 ⊗ v0,d0 ⊗ v1,d0 ⊗ v2,d0 ⊗ v3,d1 ⊗ V+}

, where V+ := v0 + v1 + v2 + v3.

(For the basic properties of wreath products of table algebras, the reader is referred to [X3].) Hence,

MatOϑ (B) =
⎛⎜⎝

1 0 1 1
1 1 1 1
0 0 0 1
0 0 0 0

⎞⎟⎠ .

Thus,

C
(
MatOϑ (B)

)
� C

((
MatOϑ (B)

)2) = C
((

MatOϑ (B)
)3) = · · · .

So �(ΓO ϑ (B)) = 1 by Lemma 3.4. (It is also very easy to get �(ΓO ϑ (B)) = 1 from the digraph ΓO ϑ (B) .)
However, it is clear that

O ϑ(B) = (
O ϑ

)2
(B) = (

O ϑ
)3

(B) = · · · = {d0 ⊗ v0,d0 ⊗ v1,d0 ⊗ v2,d0 ⊗ v3}.

That is, although C(MatO ϑ (B)) � C((MatO ϑ (B))2), we have

〈
C
(
MatOϑ (B)

)〉 = 〈
C
((

MatOϑ (B)
)2)〉

.

Let (A,B) be a table algebra, with B = {b0 = 1A,b1,b2, . . . ,bk}, and structure constants λi jm ,
0 � i, j,m � k. Let ν be the degree map of (A,B). Recall that ν(bi) > 0 for all 0 � i � k. Now we
introduce two matrices related to MatO ϑ (B). Let P and Q be (k + 1) × (k + 1) nonnegative matri-
ces whose rows and columns are indexed by b0,b1, . . . ,bk . Assume that the (bi,b j)-entry of P is
λ j j∗ i/ν(b j), and the (bi,b j)-entry of Q is λ j j∗ i/ν(bi), 0 � i, j � k. For a finite group G , two matrices
similar to P and Q for Cla(G) and Irr(G) were introduced in [TY], and some properties of these two
matrices were presented. In the following we show that the similar properties for P and Q can be
easily obtained by means of the thin residue digraph ΓO ϑ (B) . Let O k be the k × k zero matrix.

Proposition 3.7. With the notation in the above paragraph, for any positive integer n > 1, the following are
equivalent.

(i) Pn = ( 1 α

0 O k

)
, where α = (ν(b1), ν(b2), . . . , ν(bk)).

(ii) Q n = ( 1 γ

0 O k

)
, where γ = (ν(b1)

2, ν(b2)
2, . . . , ν(bk)

2).

(iii) The n-th power of MatO ϑ (B) is a zero matrix.

Proof. Since λ00∗0 = 1, λ00∗ i = 0 for all 1 � i � k, and ν(b0) = 1, we may write P and Q as

P =
(

1 α1
0 P

)
and Q =

(
1 γ1
0 Q

)
,

0 0
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where the (bi,b j)-entry of P0 is λ j j∗ i/ν(b j), the (bi,b j)-entry of Q 0 is λ j j∗ i/ν(bi), for all 1 � i, j � k,
and

α1 = (
λ11∗0/ν(b1), λ22∗0/ν(b2), . . . , λkk∗0/ν(bk)

)
,

γ1 = (
λ11∗0/ν(b0), λ22∗0/ν(b0), . . . , λkk∗0/ν(b0)

) = (λ11∗0, λ22∗0, . . . , λkk∗0).

Thus, the digraphs ΓP0 , ΓQ 0 , and ΓO ϑ (B) are the same. Hence, the above discussions yield that for any
positive integer n > 1, the n-th power of MatO ϑ (B) is equal to O k if and only if Pn

0 = O k if and only
if Q n

0 = O k . But

Pn =
(

1 α1(I + P0 + · · · + Pn−1
0 )

0 Pn
0

)
and Q n =

(
1 γ1(I + Q 0 + · · · + Q n−1

0 )

0 Q n
0

)
,

where I is the k × k identity matrix. Hence, the following are equivalent.

(a) Pn = ( 1 α1(I+P0+···+Pn−1
0 )

0 O k

)
.

(b) Q n = ( 1 γ1(I+Q 0+···+Q n−1
0 )

0 O k

)
.

(c) The n-th power of MatO ϑ (B) is O k .

Note that if Pn
0 = Q n

0 = O k , then I + P0 +· · ·+ Pn−1
0 = (I − P0)

−1, and I + Q 0 +· · ·+ Q n−1
0 = (I − Q 0)

−1.

But for any 1 � j � k, applying the degree map ν to both sides of b jb∗
j = ∑k

i=0 λ j j∗ ibi yields that

k∑
i=1

λ j j∗iν(bi) = ν(b j)
2 − λ j j∗0.

Hence,

α(I − P0) = α1 and γ (I − Q 0) = γ1.

Thus, if Pn
0 = Q n

0 = O k , then

α1
(

I + P0 + · · · + Pn−1
0

) = α1(I − P0)
−1 = α,

and

γ1
(

I + Q 0 + · · · + Q n−1
0

) = γ1(I − Q 0)
−1 = γ .

So the lemma follows from the equivalence of (a), (b), and (c). �
Let G be a finite group, and let C0 := {1}, C1, . . . , Cd be the conjugacy classes of G . Then Cla(G) =

{C+
0 , C+

1 , . . . , C+
d }. Let si jm , 0 � i, j,m � d, denote the structure constants of (Z(CG),Cla(G)), and let

ki := |Ci |, the cardinality of Ci , 0 � i � d. Then the degree map of (Z(CG),Cla(G)) is defined by
C+

i �→ ki . Let P1 and Q 1 be two (d + 1) × (d + 1) matrices whose rows and columns are indexed by
C+

0 , C+
1 , . . . , C+

d . Assume that the (C+
i , C+

j )-entry of P1 is s j j∗ i/k j , and the (C+
i , C+

j )-entry of Q 1 is
s j j∗ i/ki , 0 � i, j � d. Furthermore, let χ0,χ1, . . . ,χd be the irreducible characters of G such that χ0 is
the principal character. The structure constants of (Ch(G), Irr(G)) are denoted by ti jm , 0 � i, j,m � d.
Let zi := χi(1), 0 � i � d. Then the degree map of (Ch(G), Irr(G)) is induced by χi �→ zi . Let P2 and Q 2
be two (d + 1) × (d + 1) matrices whose rows and columns are indexed by χ0,χ1, . . . ,χd . Assume
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that the (χi,χ j)-entry of P2 is t j j∗ i/z j , and the (χi,χ j)-entry of Q 2 is t j j∗ i/zi , 0 � i, j � d. Let O d
denote the d × d zero matrix. As a direct consequence of Proposition 3.7 and Corollary 1.8, we have
the following corollary.

Corollary 3.8. With the notation in the above paragraph, for any positive integer n > 1, the following are
equivalent.

(i) Pn
1 = ( 1 α1

0 O d

)
, where α1 = (k1,k2, . . . ,kd).

(ii) Q n
1 = ( 1 γ1

0 O d

)
, where γ1 = (k2

1,k2
2, . . . ,k2

d).

(iii) Pn
2 = ( 1 α2

0 O d

)
, where α2 = (z1, z2, . . . , zd).

(iv) Q n
2 = ( 1 γ2

0 O d

)
, where γ2 = (z2

1, z2
2, . . . , z2

d).

(v) The n-th power of MatO ϑ (Cla(G)) is a zero matrix.
(vi) The n-th power of MatO ϑ (Irr(G)) is a zero matrix.

Note that P1 and Q 2 in Corollary 3.8 are the same as A and B in [TY, Theorem 1.4], respectively,
and the equivalence of (i), (iv), (v), and (vi) was proved in [TY, Theorem 1.4].

4. Basis digraphs

In this section we study basic properties of the basis digraphs of table algebras, and prove Theo-
rem 1.13. Let Γ = (V , E) be a digraph. Then Γ is weakly connected if replacing all of its directed edges
with undirected edges produces a connected (undirected) graph. Γ is strongly connected if it contains
a directed path from u to v for any distinct vertices u, v ∈ V . The strong components of Γ are the
maximal strongly connected subgraphs, and the weak components are the maximal weakly connected
subgraphs. For any vertices u, v ∈ V , if there is an ordered list of vertices u1 = u, u2, . . . , un+1 = v
such that either (ui, ui+1) ∈ E or (ui+1, ui) ∈ E for i = 1,2, . . . ,n, then we say that there is a semipath
between u and v of length n.

Lemma 4.1. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Then the following hold.

(i) For any a, c ∈ B, there is a directed path from a to c of length n in the digraph Γb if and only if
c ∈ SuppB(bna).

(ii) For any a, c ∈ B, if there is a semipath between a and c in the digraph Γb, then there is also a directed path
from a to c.

(iii) A weak component of Γb is also a strong component of Γb.
(iv) For any a ∈ B, the vertex set of the (weak, strong) component of Γb that contains a is Bba.
(v) The digraph Γb is strongly connected if and only if Bb = B.

Proof. (i) Let us prove the statement by induction on n. It is clear that the statement is true for
n = 1. Now assume that n > 1 and the statement is true for n − 1. Then we prove the statement
for n. If c ∈ SuppB(bna), then there exists c1 ∈ SuppB(bn−1a) such that c ∈ SuppB(bc1). Hence, there
is a directed path from a to c1 of length n − 1 in the digraph Γb by induction assumption, and
(c1, c) ∈ E(Γb). So there is a directed path from a to c of length n. On the other hand, if there is
a directed path from a to c of length n, then there exists c1 ∈ B such that there is a directed path
from a to c1 of length n − 1 and (c1, c) ∈ E(Γb). Hence, c1 ∈ SuppB(bn−1a) by induction assumption,
and c ∈ SuppB(bc1). Thus, c ∈ SuppB(bna), and the statement is true for n.

(ii) It is enough to prove that for any a, c ∈ B, if (c,a) ∈ E(Γb), then there is a directed path
from a to c in the digraph Γb . Note that (c,a) ∈ E(Γb) if and only if a ∈ SuppB(bc) if and only if
c ∈ SuppB(b∗a). But b∗ ∈ SuppB(bn) for some positive integer n. So c ∈ SuppB(bna), and there is a
directed path from a to c in the digraph Γb by (i). This proves (ii). Now (iii) follows directly from (ii),
(iv) from (i) and (iii), and (v) from (iv). �
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Lemma 4.1(v) was proved in [AFM, Proposition 4.3]. Since each weak component of Γb is also
a strong component by Lemma 4.1(iii), a weak (or strong) component of Γb will simply be called
a component of Γb .

Definition 4.2. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Then the component of Γb
with vertex set Bb is called the principal component of Γb .

Let Γ be a digraph such that any weak component of Γ is also a strong component. Then

max
{

d
∣∣ d is the diameter of a weak (or strong) component of Γ

}
is called the maximal component diameter of Γ , and denoted by mcd(Γ ).

Lemma 4.3. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Then

mcd(Γb) = the diameter of the principal component.

Proof. Let a, c ∈ B such that a �= c and the distance from a to c is n for some positive inte-
ger n. Then we show that n is less than or equal to the diameter of the principal component
of Γb . If n = 1, there is nothing to prove. Now assume that n > 1. Then c ∈ SuppB(bna) but
c /∈ SuppB(bma) for any 1 � m � n − 1 by Lemma 4.1(i). Hence, SuppB(ca∗) ∩ SuppB(bn) �= ∅ but
SuppB(ca∗) ∩ SuppB(bm) = ∅ for any 1 � m � n − 1. Let d ∈ SuppB(ca∗) ∩ SuppB(bn). Then d �= 1,
d ∈ SuppB(bn), but d /∈ SuppB(bm) for any 1 � m � n − 1. Thus, d ∈ Bb and the distance from d to 1
is n by Lemma 4.1(i). So n is less than or equal to the diameter of the principal component. Hence,
the lemma holds. �

The next lemma says that a thin element is characterized by its basis digraph.

Lemma 4.4. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Then the following are equivalent.

(i) b is a thin element of B.
(ii) Each component of the digraph Γb is a directed cycle.

Furthermore, if b is thin, then the number of vertices of any component of Γb is a factor of |Bb|.

Proof. (i) ⇒ (ii) Assume that b is thin. Then Bb is also thin. For any c ∈ Bb , let c′ := ν(c)−1c, where
ν is the degree map of (A,B). Then B′

b := {c′ | c ∈ Bb} is a cyclic group generated by b′ := ν(b)−1b. Let
a ∈ B, and let staB′

b
(a) := {u′ ∈ B′

b | u′a = a} be the stabilizer of a in B′
b . Then staB′

b
(a) is a subgroup

of B′
b , and it follows from B a finite set that (b′)n ∈ staB′

b
(a) for some positive integer n. Assume that

m is the smallest positive integer such that (b′)m ∈ staB′
b
(a). If m = 1, then Bba = {a}, and (a,a) ∈ Γb .

So the component of Γb that has vertex a is a directed cycle. If m > 1, since |SuppB(bia)| = 1 for any
positive integer i, we may assume that SuppB(bia) = {ai}, i = 1,2, . . . ,m − 1. Then a,a1,a2, . . . ,am−1
are all distinct, and Bba = {a,a1,a2, . . . ,am−1}. Thus, the component of Γb that has vertex a is
also a directed cycle. This proves (ii). Moreover, |Bba| = |staB′

b
(a)| = m, and hence |Bba| is a factor

of |Bb|.
(ii) ⇒ (i) Since the principal component of Γb is a directed cycle, we must have that

SuppB(bb∗) = {1}. So b is thin, and (i) holds. �
Lemma 4.5. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Assume that Bb has a proper closed
subset N. Then 〈b//N〉 = Bb//N.
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Proof. Since Bb//N is a closed subset of B//N, and b//N ∈ Bb//N, we see that 〈b//N〉 ⊆ Bb//N. On the
other hand, (2.1) and [X1, Lemma 2.5(iii)] imply that

〈b//N〉 =
∞⋃

n=1

(b//N)n ⊇
∞⋃

n=1

(
SuppB

(
bn)//N

) =
( ∞⋃

n=1

SuppB
(
bn))//N = Bb//N.

Thus, 〈b//N〉 = Bb//N. �
Now we discuss the relations between the basis digraphs of a table algebra and its quotient table

algebra.

Lemma 4.6. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Assume that Bb has a proper closed
subset N. Then for any a, c ∈ B, the following hold.

(i) If (a, c) ∈ E(Γb), then (a//N, c//N) ∈ E(Γb//N).
(ii) If (A,B) is commutative, then a and c are in the same component of Γb if and only if a//N and c//N are

in the same component of Γb//N .

Proof. (i) If c ∈ SuppB(ba), then c//N ∈ SuppB//N((b//N)(a//N)) by [AFM, Theorem 4.9]. So (i) holds.
(ii) If a and c are in the same component of Γb , then a//N and c//N are in the same component

of Γb//N by (i). Now assume that a//N and c//N are in the same component of Γb//N . Then by Lem-
mas 4.1(iv) and 4.5, c//N ∈ (Bb//N)(a//N). Since (A,B) is commutative, (Bb//N)(a//N) = Bba//N by
Lemma 2.1(i). Thus, c//N = c1//N for some c1 ∈ Bba. Note that (A,B) commutative and c//N = c1//N
yield that c ∈ Nc1. Hence, c ∈ NBba. But N is a proper closed subset of Bb . So NBb = Bb , and c ∈ Bba.
Therefore, a and c are in the same component of Γb by Lemma 4.1(iv). �
Lemma 4.7. Let (A,B) be a table algebra. Let b ∈ B such that b �= 1. Then the following hold.

(i) If there is a proper closed subset N of Bb such that the principal component of the digraph Γb//N is cyclically
partite, then so is the principal component of the digraph Γb.

(ii) Let (A,B) be commutative. Then the principal component of the digraph Γb is cyclically partite if and only
if there is a proper closed subset N of Bb such that b//N is a thin element of the quotient table algebra
(A//N,B//N).

Proof. (i) From Lemma 4.5, the vertex set of the principal component of the digraph Γb//N is Bb//N.
If the principal component of the digraph Γb//N is cyclically partite, then there is an integer h > 1
and a partition Ṽ 1, Ṽ 2, . . . , Ṽh of the vertex set Bb//N such that for any a//N ∈ Ṽ i and c//N ∈ Ṽ j

with (a//N, c//N) ∈ E(Γb//N), j − i ≡ 1 mod h. Let V i := {a ∈ Bb | a//N ∈ Ṽ i}, i = 1,2, . . . ,h. Then
V 1, V 2, . . . , Vh form a partition of Bb . Let a ∈ V i and c ∈ V j such that (a, c) ∈ E(Γb). Then a//N ∈ Ṽ i ,
c//N ∈ Ṽ j , and (a//N, c//N) ∈ E(Γb//N) by Lemma 4.6(i). Thus, j − i ≡ 1 mod h. This proves that the
principal component of the digraph Γb is also cyclically h-partite.

(ii) If there is a proper closed subset N of Bb such that b//N is a thin element, then by Lemma 4.4,
the principal component of the digraph Γb//N is a directed cycle of length greater than 1. Thus, the
principal component of the digraph Γb//N is cyclically partite, and hence the principal component of
the digraph Γb is also cyclically partite by (i). On the other hand, assume that the principal compo-
nent of the digraph Γb is cyclically h-partite for some positive integer h > 1. Let V 1, V 2, . . . , Vh be a
partition of Bb such that for any a ∈ V i and c ∈ V j , if (a, c) ∈ E(Γb), then j − i ≡ 1 mod h. Let ai ∈ V i ,
1 � i � h. Then for any 1 � i < j � h, since ai,a j ∈ Bb and ai �= a j , there exists a directed path from ai
to a j , and the length of any directed path from ai to a j is congruent to j − i modulo h. Let

N :=
∞⋃

SuppB
(
bhr).
r=1
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Then N is a closed subset of B. For any 1 � i � h, and any c ∈ Nai , it follows from c ∈ SuppB(bhrai), for
some positive integer r, that there is a directed path from ai to c of length congruent to 0 modulo h
by Lemma 4.1(i). Thus, a j /∈ Nai , for any 1 � i < j � h, and hence Na1,Na2, . . . ,Nah are all distinct. So
N is a proper closed subset of Bb (because h > 1). Furthermore, for any c ∈ V i such that c �= ai , the
length of any directed path from ai to c is a multiple of h. Thus, c ∈ Nai by Lemma 4.1(i), and hence
V i ⊆ Nai , 1 � i � h. But {V 1, V 2, . . . , Vh} is a partition of Bb . Therefore, we must have that V i = Nai ,
1 � i � h. Hence, Bb = ⋃h

i=1 Nai , and it follows from (A,B) commutative that

Bb//N = {a1//N,a2//N, . . . ,ah//N}.
Note that SuppB(bai) ⊆ V i+1, 1 � i � h−1, and SuppB(bah) ⊆ V 1. So there exist ci ∈ V i , 1 � i � h, such
that (ai, ci+1) ∈ E(Γb), 1 � i � h − 1, and (ah, c1) ∈ E(Γb). Hence by Lemma 4.6(i), (ai//N, ci+1//N) ∈
E(Γb//N), 1 � i � h − 1, and (ah//N, c1//N) ∈ E(Γb//N). But ci//N = ai//N, 1 � i � h, and the vertex set
of the principal component of the digraph Γb//N is Bb//N by Lemma 4.5. Thus, the principal compo-
nent of the digraph Γb//N is a directed cycle. Hence, b//N is thin by Lemma 4.4, and (ii) holds. �

As a direct consequence of Lemma 4.7(ii), we have the following

Corollary 4.8. Let (A,B) be a commutative table algebra. Let b ∈ B such that b �= 1. Then the principal com-
ponent of the digraph Γb is cyclically partite if and only if O ϑ (Bb) �= Bb.

Now Theorem 1.13 follows directly from Theorem 1.1 and Corollary 4.8.
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