
Theoretical Computer Science 36 (1985) 27-58
North-Holland

27

T R A N S F O R M I N G S E Q U E N T I A L S Y S T E M S I N T O
C O N C U R R E N T S Y S T E M S

Ryszard JANICKI*
Institute of Electronic Systems, Aalborg University Centre, Strandvejen 19, DK-9000 Aalborg,
Denmark

Communicated by R. Milner
Received September 1982
Revised May 1984

Abstract. A problem of concurrent system specification is studied. A functionally equivalent
system is first specified, then a set of independent actions or abstract resources is devised, and,
finally, this sequential system is transformed into an equivalent concurrent system. The method
is based on the theory of path expressions. The notion of functional equivalence is formally
defined and studied. Necessary and sufficient conditions, stating when the method can be used,
are formulated and proved. Some examples (vending machine, cigarette smokers, readers and
writers, dining philosophers) are discussed.

Introduction

Concurrent systems are more difficult to design and analyse than sequential ones
because they can exhibit extremely complicated behaviour. Furthermore, it is very
difficult to comprehend the total effect of actions being performed concurrently and
with independent speeds. In practice, when a problem is complicated itself, the first
solution is frequently sequential, and only later solutions are concurrent. This is
almost a standard procedure in the case of technological processes.

In [6, 7], a method for developing a concurrent system from a functionally
equivalent sequential system was suggested.

In this paper we extend the ideas of [6, 7] and apply them to the COSY Formalism
proposed by Peter Lauer's group [10, 11, 12, 13, 14, 20, 23].

The method consists in starting with the sequential system, determining a set of
independent actions (by means of so-called abstract resources), and then performing
a set of transformations of the sequential system resulting in a concurrent system.

The notion of functional equivalence is formally defined and suitable necessary
and sufficient conditions are formulated and proved. Some new concepts of the
COSY Vector Firing Sequence Semantics are also presented.

* The main part of this work was carried out during the author's visit at the Computing Laboratory
of the University of Newcastle-upon-Tyne. Some part was also done at the Institute of Mathematics of
the Warsaw Technical University. The author is on leave from Warsaw Technical University.

0304-3975/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

28 R. Janicki

The following well-known examples are discussed: a noisy vending machine
[4, 10], cigarette smokers [19], readers and writers [1], and dining philosophers [2].

The approach presented in this paper follows from the author's conviction that
our mental perception of reality is sequential (see [9]), thus, in many cases starting
with a sequential version is the easiest way of designing a concurrent system. The
similar viewpoint (but the different level of abstraction) is presented in [16, 17],
where concurrent systems are specified in two steps: first, a correct program that
can be implemented sequentially is refined, and next, so-called semantics relations
allowing relaxations in the sequencing of the refinements operations (e.g., concur-
rency) are defined.

For those who are not convinced that this is a useful way of constructing systems,
or indeed, an advisable way of thinking about them, or who like purely theoreoretical
formulations, the problem considered in this paper may be formulated as follows.
We are given a system described by a regular expression with an outermost Kleene
star; the alphabetical symbols represent possible actions of the system and the
regular language associated with the regular expression determines the set of legiti-
mate sequences of occurrence of these actions. We are also given a collection of
'abstract resources'. An abstract resource is associated to a set of action names; the
resource may only be accessed by these actions associated and they must be
performed in sequence. Together, the expression and the collection of resources
determine a language of objects (actually, vectors of strings) which describe all
possible concurrent behaviours involving these actions, which, first, are such that
some sequentialization of the behaviour is a sequence belonging to the regular
language, second, two actions are only sequenced if they access a common abstract
resource. The problem is to construct a path expression accepting the asynchronous
language. This is a particular case of a general problem to find conditions under
which an asynchronous language is a 'product' of string languages.

All results of this paper can easily be translated into the formalism of labelled
Petri nets and Mazurkiewicz traces (see [13, 14, 18, 22]).

In Section 1, a brief description of the COSY Formalism is presented. Section 2
contains the method description. The notion of functional equivalence is formally
defined in Section 3. Necessary and sufficient conditions for the functional
equivalence and an algorithm for the verification are presented in Section 4. Section
5 is devoted to applications of the method. In Section 6, the longest in this paper,
a proof of necessary and sufficient conditions is presented. Section 7 contains a
final comment.

Some results of this paper have already been published (see [9]).

1. A brief description of COSY

COSY (abbreviation of COncurrent SYstem) is a formalism intended to simplify
where possible the study of synchronic aspects of concurrent systems by abstracting
away from all aspects of systems except those which have to do with synchronization.

Transforming sequential systems into concurrent systems 29

A basic COSY program or generalized path is a collection of single paths enclosed
in system and endsystem parenthesis.

A single path is a regular expression enclosed by path and end. For example:

P = system
path a ; b, c end
path (d ; e)* ; b end

endsystem

In every regular expression like the above, the semicolon implies sequence (concate-
nation), and the comma implies mutually exclusive choice. The comrn~ binds more
strongly than semicolon, so that the sequence a ; b, c means "first a, then either b
or c". A sequence may be enclosed in conventional parentheses with a Kleene star
appended, as for instance (d ; e)*, which means that the enclosed sequence may be
executed zero or more times. The sequence appearing between path and end is
implicitly so enclosed, so that paths describe cyclic sequences of actions. The
synchronization among paths is due to common actions ("b" in the above example).
Every single path describes a sequential system or subsystem.

For more details, the reader is referred to [10, 11, 12, 13, 14, 15].

2. Definition of the method

First, we will explain the method by analysing a very simple example: Hoare's
noisy vending machine (see [4, 10]), and next we will formally define the method.

Consider a vending machine which may be used by two customers concurrently,
that is, a machine that has distinct slots for 5 penny and 10 penny coins, and two
distinct points for extraction of small and large packets of biscuits.

This machine may involve the following actions:
5p---insertion of a 5 penny coin,

10p--insertion of a 10 penny coin,
small--withdrawal of a small packet of biscuits,
large--withdrawal of a large packet of biscuits,

plunk--sound made by a small packet of biscuits dropping out of the machine,
plonk--sound made by a large packet of biscuits dropping out of the machine.

The system described above is very simple and it can easily be specified by a
generalized path (see [10]), but we assume that we do not know how to specify this
system concurrently, while we are able to specify it sequentially.

The single path specifying the sequential vending machine (at any moment only
one customer uses a machine) is of the following form:

Ps = path (5p ; small ; plunk), (10p ;large ; plonk) end.

This sequential solution is not the only one and not even the most general, but it
seems to define quite precisely a function of this system. The function of a vending
machine is to vend biscuits. All what Ps does is to perform certain actions in

30 R. Janicki

sequence, but sequences 5p.small.plunk and 10p.large.plonk may be interpreted as
events: selling one small packet of biscuits, and selling one large packet of biscuits.
In this sense, Ps may be treated as a description of the funct ion of our system.

The full specification of every system consists, in fact, of two parts at least. T h e

first part described a f unc t ion of a system, that is, it defines what the system does;
whereas the second part describes resources necessary to perform the function of a

system.
In the case of a vending machine system we can distinguish four resources:
SVM--a part of the machine, which vends small packets of biscuits,
LVM--a part of the machine, which vends large packets of biscuits,

SC- -a customer asking for a small packet of biscuits, and
L C p a customer asking for a large packet of biscuits.

Let r denote the funct ion describing which resources are necessary to perform
each action, and ~ denote the function describing which actions are associated to
each resource. Thus we have:

r(5p) = {SVM, SC},

r(lOp) = {LVM, LC},

r(small) = {SVM, SC},

r(large) = {LVM, LC},

r (plunk) = {SVM},

r(plonk) = {LVM},

~(SVM) = {5p, small, plunk},

~(LVM) = { 10p, large, plonk},

~(SC) = {5p, small},

~(LC) = {10p, large}.

Note that ~ is fully described by r, namely, for every resource x, ~(x) = {al x ~ r(a)}.
If we assume that actions may be performed concurrently only if they use no

common resource, then for every resource x the set ~(x) contains all actions that
must be performed only one at a time.

The next step of our method is the projection on resources. Let us consider the

resource SVM. We have ~(SVM)= {5p, small, plunk}. At first we replace in Ps all
actions except 5p, small, plunk by the symbol " e " (empty string).

As the result we obtain the path

path (5p ; small ; plunk), (e ; e ; e) end.

Next we replace the above path by an equivalent one, in the sense of generating
the same regular language, but without the symbol " 'e".

Transforming sequential systems into concurrent systems 31

This new path is now of the form

path 5p ; small ; plunk end

and it will be denoted by the symbol Ps /SVM.
In a similar way we can obtain the following paths:

Ps/LVM : path 10p ; large ; plonk end
Ps/SC : path 5p ; small end
Ps/LC : path 10p ; large end

The generalized path

Pc = system
Ps/SVM : path 5p ; small ; plunk end
Ps/LVM : path 10p ; large ; plonk end
Ps /SC : path 5p ; small end
Ps/LC : path 10p ; large end
endsystem

describes our final concurrent solution. Note that the identical Pc was also derived
by Lauer [10] by informal arguments.

It seems to be intuitivety obvious that in the case of the vending machine system,
the sequential single path Ps and the interconnected generalized path Pc are
'functionally equivalent ' , although this notion should be precisely defined and
explained. This will be done in the next section.

We will now proceed with the formal definition of our method. Let Ps = path body
end be any single path, and let Alpha(Ps) denote the set of all action names appearing
in Ps. The path Ps is interpreted as a sequential solution.

Let resource(Ps) be any finite set (satisfying: resource(Ps) n Alpha(Ps) --~) which
is interpreted as the set of all abstract resources associated with Ps.

Let r: Alpha(Ps)--> 2 res°urce(Ps) be any total function. The function r will be called

a resource association function.
Let ~: r e sou rce (Ps)~ 2 Alpha(ps) be a function defined by

(Vx ~ resource(Ps)) ?(x) = {al x E r(a)}.

The function ~ describes which actions are associated to each resource and it will
be called an action distribution function.

Let x e resource(Ps). By a projection of Ps on x, denoted by Ps/x, we mean any
path derived from Ps in the following two steps:

(1) Every action symbol a ¢ A l p h a (P s) - F (x) is replaced by the symbol " e "
(empty string). Assume that a new path obtained after this step is of the form
path body~ end.

(2) The regular expression body~ is replaced by any e-free regular expression
bodyx such that

Ibody ~I - { e } = lbodyx[,

32 R. Janicki

where Ibody~l and [bodyx[denote languages defined by appropriate expressions (an
algorithm may be found, for instance, in [3]).

In other words, P s / x is derived from Ps by 'erasing' all symbols except those

from ~(x).
Assume that resource(Ps)= {x~, . . . , x,}.
A generalized path Pc of the form

P c = P s / x , . . . P s / xn

is said to be derived from Ps and r.
One can easily prove that, for every single path Ps and every resource association

function r, a generalized path Pc is always correctly defined. Unfortunately, it turns
out that sometimes Ps and Pc are 'functionally different'. Condi t ions describing
when they are ' functionall~ equivalent' will be discussed in detail in Section 4.

We assume that actions may be performed concurrently only if they use no
common resources, i.e., the independence relation I ~ A l p h a (P s) × A l p h a (P s) is
defined by the following equivalence:

(Va, b ~ Alpha(Ps)) (a, b) ~ I ¢:~ r(a) c~ r(b) = O.

Thus the set F(x) contains all actions that must be performed only one at a time,
and the relations I fulfills the following equivalence:

(a, b) ~ I <=> [(a # b) & (Vx ~ resource(Ps)) a ~ ~(x) or b ~ ~(x)],

so, using the terminology of [5, 8], it can be treated as a symmetric and irreflexive
relation defined by the covering cov= {F(x) l x ~ resource(Ps)} (such a relation R is
defined by a covering cov iff (a, b) ~ R c ~ a # b & (VA ~ cov) a ~; A or b ~ A).

In the example considered above, the set resource(Ps) is identical with the set of
real physical resources of a system, but such a situation is not a rule. Following [5]
we call the set resource(Ps) the set of abstract resources; an abstract resource may
be associated with a set of actions which, for reasons of data protection or others,
must be performed only one at a time. It was proved in [5] that every symmetric
and irreflexive relation can be defined by means of a set of abstract resources and
a resource association function. Shields [21] has proposed the name 'abstract
monitors ' for sets F(x), where x e resource(Ps).

Sometimes, the independence relation ! alone is much easier to define than the
set resource(Ps) and the function r (see Section 5.2). In such a case we may construct
the set resource(Ps) and the function r on the basis of L The procedure is the
following (see [5]). Let I ~ Alpha(Ps) x Alpha(Ps) be any symmetrical and irreflexive
relation (interpreted as an independence relation).

Let kens(I) _c 2Alpha(Ps) be the following family of sets (see [5, 6, 7, 8]):

kens(I) = {BI B ~ Alpha(Ps) & (Va, b ~ B) (a, b) ~ I

& (Vc ~ B)(=ia ~ B) (a, c) ~ I}.

Assume that kens(I) = { x i , . . . , x n } .

Transforming sequential systems into concurrent systems 33

Let us define r e s o u r c e (P s) = k e n s (I) = { x i , . . . , X n } , and let r: Alpha(Ps) -->
2 res°urc~(p~) be the function defined as follows: (Va ~ Alpha(Ps)) r(a)= {x~] a ~ x~}.

From [5] it follows that:
(1) (V i= 1 , . . . , n) :(x,) =xi,
(2) (Va, bEAlpha(Ps)) (a, b) e I ¢:> r (a) n r (b) = 0 ,

thus the set resource(Ps) and the function r are correctly defined. This construction
of resource(Ps) and r will be applied in Section 5.2.

3. Def in i t ion o f func t iona l equiva lence

3.1. Preliminaries

In order to define precisely the concept of functional equivalence we must recall
some old and introduce some new notions. We start with a formal definition of

vectors of strings.
Let A ~ , . . . , An be alphabets, and let A = AI u - • • u An. For every i = 1 , . . . , n, let

hi: A*-> A * b e a homomorphism given by

(V a ~ A) h i (a) = { a a~A, ,
a ~ Ai,

wherg e denotes the empty string, and let

(VX _ A*) h , (X) = [._J h,(x).
x E X

Let us define a concatenation on A~* ×- • • x An* in the following way:

(V (X I , - - - , Xn), (Yl, • • • , Y,) ~ A * x . . - x A *)

(x l , . . . , x ,) (Y t , . . . , Y ~) = (x l Y ~ , . . . , x ~ n) .

For every x ~ A*, let x = (h i (x) , . . . , h,,(x)).
Let Vect: 2a*--> 2 A~×'''×A*~ be the following mapping:

(VL~_ A*) V e c t (L) = { x l x e L}.

Let us consider Vect(A*) ~ A* x . • • × An*. The set Vect(A*) may be called a set
of vectors of strings. One can also prove that Vect(A*) is equivalent to the set of all
Mazurkiewicz traces generated by the alphabet A and the relation ! defined by
the covering { A ~ , . . . , A n } (Vect(A*) is isomorphic to A*/~x, where I =
sir({A~,. . . , An}), according to the notation of [i8, 5]).

Let Vect:2A*~ 2 A~'x'''xA*~ be the following mapping:

(VL ~ A*) Vect(L) = (h,(L) x - - - x h,,(L)) n Vect(A*).

34 IL Janicki

Corollary 3.1
(1) V e c t (L) = ((x l , . . . , x ,) l (3 x ~ L) (V i = 1 , . . . , n) h, (x)=x ,~A*} ,
(2) V e c t (L) = { (x l , . . . , x ~) l (3 y ~ A *) (V i = 1 , . . . , n) h , (y)=x ,~ h,(L) c_ A*}.

Corollary 3.2

(VL~ A*) Vect(L) ~ Vect(L).

The inclusion from Corollary 3.2 is a proper one, i.e., usually Vect(L) ~ Vect(L).
Let us consider the following two examples. To simplify the notation we will

identify regular expressions with languages generated by them.

Example 3.3. Let Al = {a}, A2 = {b}, A = A1 u A2, L = (ab)* c A*. Then

Vect(L)={(a k, bk)lk>~O}, Vect(L)={(a k, bm)lk~>0, m>~0},

so Vect(L) ~ Vect(L).

Example 3.4. Let A]{a, b}, A2 = {c, d}, A = Al u) A2, L = ab • cd ~ A*. Then

Vect(L) = {(ab, e), (e, cd)}, Vect(L) = {(ab, e), (e, cd), (ab, cd)},

so Vect(L) ~ Vect(L).

Now we recall some basic and introduce some new concepts of the Vector Firing
Sequence Semantics for generalized paths (see [I0, 14, 20, 23]).

For every language (or regular expression, single path, generalized path) X, let
Alpha(X) denote the alphabet of X. For every regular expression/74 let IRI denote
the language defined by R. For every language L c_A*, let Pref(L)=
{x I (3y ~ A*) xy ~ L}. For every set of vectors of firing sequences V _ Vect(A*), let
Pref(V) = {xl (3y ~ A*) xy ~ V}.

Let P be a single path of the form P = path body end. As was mentioned above,
P can be treated as an ordinary regular expression such that P = (body)*. It is
assumed (see [14]) that the behaviour of a single path P is fully described by the
language FS(P), which is called the set of firing sequences, and defined as FS(P) =
Pref(lPI). The language IPI is also denoted by Cyc(P)* [14], or SIT(P)* [10].

Let P -- P] . . . Jan be a generalized path. The behaviour of P = P~. . . P, is described
by the set of all vectors of firing sequences that might be produced by P. This set,
denoted by VFS(P) and called the set of vector firing sequences of P, is defined by
the following equality (see [14, 20, 10]):

VFS(P) = (FS(Pt) x . . - x FS(Pn)) n Vect(Alpha(P)*).

We will show that notions FS and VFS are insufficient to describe the concept
of functional equivalence (see Example 3.8). We need notions characterizing not
only all system histories but also full system cycles.

Transforming sequential systems into concurrent systems 35

Let us consider two single paths

P I = path 5p ; small ; p lunk end,

P2 = path 5p ; small ; p lunk ; 5p ; small ; plunk end.

Of course, FS(P1) = FS(P2), but P~ and P2 not necessarily specify equivalent systems.
The first path, P~, may be interpreted as a specification of one slot 5 penny vending
machine, whilst the second path, P2, is rather a specification of the similar machine
but under the addit ional assumption that each customer buys two packets of biscuits.
FS's and VFS's rather describe how a system works, but sometimes we also need a
formal description of what a system does. To this purpose we introduce notions of
results for single and generalized paths.

The result o f a single path P is described by the language

FFS(P)=IP[,

which is called the set of full firing sequences of P.
The result o f a generalized path P = P~ . . . Pn is described by the set of all resulting

vectors of firing sequences that might be produced by P. This set, denoted by

VFFS(P) and called the set of vector ful l firing sequences of P, is defined by the
following equality:

VFFS(P) = (FFS(PI) × ' ' • x FFS(P,)) c~ Vect(Alpha(P)*).

In other words, VFS describes rather a procedure, while VFFS describes an aim.
Of course, knowledge about the procedure not necessarrily implies knowledge about
the aim, and vice versa.

A generalized path P is said to be adequate (see [10, 14, 20]) iff

(Vx e VFS(P))(Va ~ Alpha(P)) (Vy ~ Alpha(P)*) xya ~ VFS(P).

Adequacy represents the absence of even a partial deadlock.

A generalized path P is said to be consistent iff Pref(VFFS(P)) = VFS(P). If P is
consistent, then every history of a system leads to a proper result. The notion of
consistency is very similar to the not ion of periodicity introduced by Shields [22].
In fact, both concepts have the same root, but the periodicity is a stronger property.
One can prove that every periodic path is consistent, but not vice versa.

An action a e Alpha(P) is said to be fireable iff

(:Ix ~ Alpha(P)*) xa ~ VFS(P).

Lemma 3.5. I f P is consistent and every action from Alpha(P) is fireable, then P is
adequate.

Proof. Let A = Alpha(P) . Let x ~ VFS(P). Since VFS(P) = Pref(VFFS(P)), we have
(:ly ~ A*) xy ~ VFFS(P). Let a ~ A. Since a is fireable, (3x ' ~ VFS(P)) x'a ~ VFS(P).

36 R. Janicki

Since P is consistent, (3 y ' c A*) x ' ay ' c VFFS(P). Note that if xt ~ VFFS(P) and
x2e VFFS(P), then XlX2~ VFFS(P). Thus, xyx 'ay ' e VFFS(P), so xyx'a ~ VPS(P),
but this means that P is adequate. []

3.2. The definition

We will now return to our primary sequential single path and, derived from it, a

generalized path.
Let Ps be an arbitrary, fixed for the rest of this section, single path representing

sequential solution of a given problem.
Let A = Alpha(Ps) be the alphabet of Ps, R = resource(Ps) be a set of abstract

resources associated with Ps, r: A ~ 2 R be the resource association function, and let
~: R --> 2 A be the action distribution function. Recall that ~ is fully described by r, and

(Vx~ R) ~ (x) = { a l a ~ A & x ~ r (a) } .

Assume that R = r e s o u r c e (P s) = { x t , . . . , x n } . Let us put A i= ~(xi) for i = 1 , . . . , n.
Note that A-~ AI w- • -• A,. As was mentioned above, the behaviour of a single
path Ps is described by a language FS(Ps), and the result of Ps is described by a

language FFS(Ps). Note that FS(Ps) = Pref(FFS(Ps)).
To explain the intui t ion of the next notions we consider the following example.

Let Ps = path a ; b ; c end, resource(Ps) --- {xl, x2}, and r(a) = {xi, x2}, r(b) = {xl},
r(c) = {x2}. Thus A1 = ~(x l)= {a, b}, A 2 - ~(x2)= {a, c}. In this case we have: the

behaviour of Ps, FS(Ps) = (abc)*(ab u a ~ e) = { e, a, ab, abc, abca, abcab,. . .}, and

the result of Ps, FFS(Ps) = (abc)* = {e, abc, abcabc, . . . } .
Let us reflect what k ind of sequence vectors may be interpreted (in accordance

with our intuition) as a concurrent behaviour and a concurrent result defined by Ps
and the function r. There is no problem with the result. Note that

Vect(FFS(Ps)) = (abe)* = { e, abc , a b c a b c , . . . } ,

so the difference between Vect(FFS(Ps)) and FFS(Ps) consists only in the fact that
Vect(FFS(Ps)) enables one to perform independent actions concurrently.

Thus Vect(FFS(Ps)) may be treated as a concurrent result defined by Ps and
the function r. The problem with behaviour is somewhat more complicated.
The set Vect(FS(Ps)) looks rather strange. For instance, abc~Vec t (FS(Ps)) ,

a b ~ Vect(FS(Ps)), but ac~ Vect(FS(Ps)) al though abe = a c b !

From the notion of behaviour we usually demand that the beginning of every
history is also a history (compare [21]), or, in other words, the behaviour must be
closed under the operat ion Pref. On the other hand, the concurrent behaviour defined
by Ps and r should 'approximate ' Vect(FS(Ps)), because FS(Ps) defines the
behaviour of Ps and the Vect is an operation which forgets about superfluous
sequentializations.

The best 'approximation" of Vect(FS(Ps)) closed under Pref is merely the least
set containing Vect(FS(Ps)) and closed under Pref. One can easily prove that this
set is equal to Pref(Vect(FFS(Ps))). Now we come back to our general considerations.

Transforming sequential systems into concurrent systems 37

Let us denote

VFS(Ps, r) = Pref(Vect(FFS(Ps))),

VFFS(Ps, r) = Vect(FFS(Ps)).

We assume that the set VFS(Ps, r) describes the behaviour (concurrent) defined
by the single path Ps and the resource association function r, and we assume that
the set VFFS(Ps, r) describes the result (concurrent) defined by the single path Ps
and the resource associated function r.

Now we may define the notion of functional equivalence.
Let Pc denote a generalized path derived from Ps and r using rules described in

Section 2 of this paper, i.e., let

P c = P s / x , . . . P s / x . .

A single path Ps and a generalized path Pc are said to be functionally equivalent
if and only if:

(1) VFS(Ps, r)=VFS(Pc) ,
(2) VFFS(Ps, r) =VFFS(Pc) .

In other words, Ps and Pc are functionally equivalent if they describe the same
behaviour and the same result.

Note that VFS(Pc) and VFFS(Pc) can be described in terms of FS(Ps), FFS(Ps)
and the mapping Vect.

Lemma 3.6

(1) VFS(Pc) = Vect(FS(Ps)).
(2) VFFS(Pc) = Vect(FFS(Ps)).

Proof. VFS(Pc) = (FS(Ps/xl) x . . . x FS(Ps/x ,)) n Vect(A*). But
hi(FS(Ps)) for i = 1 , . . . , n. The same holds for VFFS(Pc). []

F S (P s / x ,) =

Thus the functional equivalence can be formulated in terms of FFS(Ps), Vect and
Vect.

Lemma 3.7. A single path Ps and a generalized path Pc are functionally equivalent iff:
(1) Pref(Vect(FFs(Ps))) = Vect(Pref(FFS(Ps))).
(2) Vect(FFS(Ps))= Vect(FFS(Ps)).

Proof. The proof follows from the fact that FS(Ps) = Pref(FFS(Ps)) and by Lemma
3.6. []

It turns out that frequently the equality VFS(Ps, r)=VFS(Pc) does not involve
the equality VFFS(Ps, r) = VFFS(Pc) and vice versa.

Let us consider the following two examples.

38 R. Janicki

Example 3.8. Let

Ps = path a ; b end, r (a) = {xl}, r (b) = {x2}.

Then

Pc = system path a end path b end endsystem.

Note that

VFS(Ps, r) = VFS(Pc) = (a u b)*,

but

while

VFFS(Ps, r)= {(a k, bk)[k >~O},

VFFS(Pc) = (a u b)* : {(a k, b~) lk ~ 0, m ~ 0},

so VFFS(Ps, r) # VFFS(Pc) .

Example 3.8 shows that the notion of VFS is insufficient itself to describe the concept
of functional equivalence. In this case, VFS(Ps, r) = VFS(Pc), but Ps and Pc are not
equivalent in the intuitive sense.

Example 3.9. Let

Ps = path (a ; c ; e), (b ; d ; f) end, r (a) = {Xl}, r (b) = {Xl}, r (c) = {x2} ,

r(d) = {x2}, r(e) = {x~, x2}, r (f) = {xl, x2}.

Then

Pc = system
path (a ; e) , (b ; f) end
path (c ; e) , (d ; f) end

endsystem.

One may prove that

VFFS(Ps, r) = VFFS(P¢) = (ace ~ bdf)*,

but

a d z VFS(Pc) - V F S (P s , r), so VFS(Pc) ~ VFS(Ps, r).

The property of functional equivalence implies a very regular structure of Pc.

Theorem 3.10. I f Pc and Ps are functionally equivalent, then Pc is consistent and
every action o f Pc is fireable.

Transforming sequential systems into concurrent systems 39

Proof

VFS(Pc) = VFS(Ps, r) = Pref(Vect(FFS(Ps))) = Pref(Vect(FFS(Ps)))

= Pref(VFFS(Ps)),

so Pc is consistent. Let a • A lpha (Pc)=Alpha (Ps) . Of course, a is fireable in Ps,

so there is x • Alpha(A)* such that xa • FS(Ps). Let xay • FFS(Ps). Since VFS(Pc) =
Pref(Vect(FFS(Ps))) , we have xa ~ VFS(Pc), so a is also fireable in Pc- []

Corollary 3.11. I f Pc and Ps are functionally equivalent, then Pc is adequate.

Proof. The proof follows from Theorem 3.10 and Lemma 3.5. []

The above corollary gives us a negative criterion for functional equivalence. I f
Pc is not adequate or if it deadlocks, then Pc and Ps are functionally different.

4. Necessary and sufficient conditions

When a sequential single path Ps is not complicated, then we can verify the
functional equivalence directly from the defni t ion, but when Ps is large, then such

a procedure is a difficult and very uphill task. Unfortunately, in the general case
we do only know necessary conditions, and in order to prove the functional
equivalence we must use the definition.

But if we restrict our attention to paths in which the repetition of actions is

restricted, then an appropriate sufficient condition can be formulated and proved.
A single path P = path body end is said to be an E*-path iff no action occurs

more than once in body (see [14]).
Let P = P~ . . . P, be a generalized path.

A generalized path P = P~. . . P, is said to be a GE*-path if every Pi (i = 1, 2 , . . . , n)
is an E* -pa th (see [14]).

For every a e Alpha(P) , let occi(a) denote the number of occurrences of " a " in
P,.

For instance, if

P = system PI : path a ; b, a end P2 : path b, a ; b, c end enflsystem,

then

o c c l (a) = 2 , o c c l (b) = l , OCCl(C)=0, o c c 2 (a) = l , 0cc2(b)=2, occ2 (c)= l .

A generalized path P = P ~ . . . Pn is said to be a GRl*-path iff

(Va • Alpha(P)) (Vi = 1 , . . . , n) occ,(a) > 1 ~ [(Vj # i) occj(a) <~ 1].

In other words, an action a may be repeated in one path only. For instance,

P = system path a ; b ; a end path b, a ; b end endsystem

40 R. Janicki

is a GRl*-pa th , but

P' = system path a ; b ; a end path a ; c ; a end

is not a GRl* -pa th , because the action a occurs twice in two single paths.
Let Ps = path b o d y end be a single path, and let r:Alpha(Ps)->r res°urce<Ps) be a

resource association function. Recall that the path Ps can be treated as an ordinary
regular expression of the form Ps = (body)*.

Let us put A = Alpha(Ps).
Let I _c A × A be the following relation:

(Va, b e A) (a ,b) e I ¢3 r (a) n r (b) = O .

The relation I will be called the independence relation. The dependence relation is
defined as D = A × A - I.

Let us put L = FFS(Ps).

Let E _ A × A be the relation defined as follows:

(Va, b e A) (a, b) e E ¢:> (3x e A*) xa e Pref(Vect(L)) &

xb e Pref(Vect(L))

& xab ~ Pref(Vect(L)) & a ~ b.

The relation E will be called the mutual exclusion relation.

Every regular expression of the form (R)* or a*, where R is a regular expression,
" a " is a symbol, will be called a starexpression.

A symbol " a " will be called an outer cycle generated by a*.

A string x is said to be an outer cycle generated by a starexpression (R)* iff x e JR'I,
where R' is derived from R by replacing all starexpressions of R by e and removing
all e's.

Example 4.1. I f R = a u b(cd)*e(g*f)* w h*, then after replacing all starexpresions
of R by e's we obtain a w beee u e, next after removing all e 's we have a u be; so
R' = a u be, and there are two outer cycles generated by (R)* : a, be.

A string x is said to be a cycle generated by a regular expression R iff there is a
starexpression (R')* included in R, i.e., R = Q ~ (R ') * Q 2 where Qie

(Alpha(R) u {u , *,), (})*, such that x is an outer cycle generated by (R')*. For

instance, if R is as in Example 4.1, then R generates the following cycles: cd, g, f , h.
For every regular expression R, let CR denote the set o f all cycles generated by R.
For every string x, let Alpha(x) denote the set of symbols occurring in x.

Let us put C D = {Alpha(x)]x e Cps}. The set CD will be called the set of cycle
domains of Ps.

Example 4.2. I f Ps = path a, (b ; (c ; d)* ; e) end, then C D = {{a} , {b, e}, {c, d}}.

Let Pc = Ps/x~ . . . Ps /x . be the generalized path derived from Ps and the resource
association funct ion r.

Transforming sequential systems into concurrent systems 41

For every relation Q, let Q+= Ui%l Qi= Q*Q.

Theorem 4.3 (necessary conditions for the general case). Let Ps be a single path. I f
Ps and Pc are functionally equivalent, then:

(1) E n l = 0 ,
(2) (V X c C D) (V Y ~ X)

(Y is a maximal subset of X such that (D n Y x Y)+ = Y x Y) ~ Y ~ CD.

The second condition means that the graph of dependency relation D restricted
to any cycle domain is either connected or each of its maximal connected components
also creates a cycle domain.

Theorem 4.4 (sufficient conditions if Pc is a GRl*-path). Let Ps be a single path,
and let Pc be a GRl*-path. If:

(1) E n I = O , and
(2) (V X ~ C D) (D n X × X) + = X x X ,

then Ps and Pc are functionally equivalent.

Here the second condition means that the graph of dependency relation D
restricted to any cycle domain is connected.

Theorem 4.5 (necessary and sufficient conditions if Ps is an E*-path). Let Ps be an
E*-path. Then: Ps and Pc are functional equivalent if and only if:

(1) E c~ I = O, and
(2) (V X ~ C D) (D n X × X) + = X x X .

The proofs are long and they will be presented in a separate section (see Section
6).

5. Applications

5. I. The cigarette smokers problem

Patil [19] introduced the following synchronization problem:

"Three smokers are sitting at a table. One of them has tobacco, another has cigarette

papers, and the third has matches; each one has a different ingredient required to make

and smoke a cigarette but he may not give an ingredient to another. On the table in

front of them, two of the three ingredients will be placed, and the smoker who has the

necessary third ingredient should pick the ingredients from the table, make a cigarette

and smoke it. Further ingredients are not put on the table until the old ones have been

consumed. Other smokers must not interfere with the smoker who has the ingredients

on the table before him. Hence co-ordination is required between the smokers."

42 R. Janicki

The cigarette smokers problem was restated by Lauer and Campbel l [11] in the
following way:

(1) Decide which of the ingredients should be put on the table.
(2) Produce each ingredient and place it on the table.
(3) Choose the correct consumer to consumer the available ingredient.
(4) Go back to (1).

As a matter of fact, the decision which of the ingredients should be put on the table
immediately indicates the correct consumer.

The final solution proposed by Lauer and Campbell [11] is the following:

PL¢ = system
path supplytm, supplypt ; t obacco , m-smoker, p-smoker end
path supplytm, supplymp ; match ; t-smoker, p-smoker end
path supplypt, supp lymp , paper ; t-smoker, m-smoker end

endsystem

where the meanings of actions are the following:
supply tm--supply tobacco and matches,
supplymp---supply matches and paper,
supplypt - -supply paper and tobacco,
tobacco-- tobacco on the table,
match matches on the table,
pape r - -pape r on the table,
m-smoker- - the smoker with matches smokes,
p-smoker-- the smoker with paper smokes,
t -smoker-- the smoker with tobacco smokes.
A sequential solution of the cigarette smokers problem is not difficult, and it may

be presented in the following form:

Ps = path (supplytm ; tobacco ; match ; p-smoker),
(supplymp ; match ; paper ; t-smoker),
(supplypt ; paper ; tobacco ; m-smoker) end

In this case we have three abstract resources T, P, M interpreted as

T-- tobacco , P - - p a p e r , M- -matches .

The resource association function is the following:

r(supplytm) = r(p-smoker) = { T, M},

r (supplymp) = r(t-smoker) = {M, P},

r(supplypt) = r(m-smoker) = {P, T},

r(tobacco) = { T}, r(Match) = {M}, r(paper) = {P}.

Transforming sequential systems into concurrent systems 43

Thus Pc = P s / T P s / M P s / M is the following:

Pc = system
Ps/ T :

Ps/ M :

P d e :

path (supplytm ; tobacco ; p-smoker),
(supplypt ; tobacco ; m-smoker) end
path (supplymp ; match ; t-smoker),
(supplytm ; match ; p-smoker) end
path (supplymp ; paper ; t-smoker),

(supplypt ; paper ; m-smoker) end
endsystem.

Note that Pc is a GRl*-pa th , so we can use Theorem 4.4. One can easily show that
conditions (1) and (2) o f Theorem 4.4 are fulfilled, so Ps and Pc are functionally
equivalent.

Note that VFS(Pc)= VFS(PLC), VFFS(Pc)=VFFS(PLc), thus Pc and PLC are
equivalent in the sense of the Vector Firing Sequence Semantics. The Petri net
simulating Pc (see rules in [13, 14, 11]) is simpler than the Petri net simulating PLC
in that sense that the first one has less conflicts.

5.2. The first reader- writer problem

The first reader-wri ter problem [1] may be formulated as follows (compare [12]):

"Consider a system consisting of a single resource involving read and write operations

and a set of "reader" and "writer" processes which repeatedly use the operations to

read from and write to the resource, respectively. It is required that any number of

readers may be concurrently using the resource, but each writer must have exclusive

use of it. Also, no writer may jointly use the resource with a reader. Furthermore, no

reader should be kept waiting unless a writer is using the resource.'"

The sequential specification of that problem is trivial, and in the case of n readers
and m writers it looks as follows:

Ps = path read~, r e a d 2 , . . . , readn, write~, wr i te2 , . . . , write,, end,

where the interpretat ion of actions is fully described by their names.
In the case of a noisy vending machine and cigarette smokers, the set of abstract

resources corresponded to real system resources. In this case, we have only one real
resource, so the set of abstract resources must be defined in a different way. We
recall that an abstract resource may be associated with a set of actions which, for
various reasons, must be performed only one at a time.

Note that in this case the independence relation /, i.e., the relat ion describing
which actions may be performed concurrently, can easily be described on the basis
of the problem fo rmula t ion .

Namely:

I = {read~, readj) I i # j} .

44 R. Janicki

The family kens(I) defined by the relation I is of the form

kens(I) = {{wr i teb . . . , write,., r e a d l } , . . . , {wr i t e l , . . . , write,., read,}}.

Let us put

xi = {wr i t e l , . . . , write,., read/} for i = 1 , . . . , n.

Thus resource (Ps) = kens(l) = { x l , . . . , xn}, and

(Vi = 1 , . . . , n) r(read,) = {x,},

(V j = 1 , . . . , m) r (w r i t %) = { x l , . . . , x n } , and

(V i = 1 , . . . , n) ~(x,) = xi.

Next, using the standard procedure from Section 2 we may obtain Pc =
Ps/x~... Ps/x,, which is of the following form:

Pc = system

Ps/xl : path w r i t e l , . . . , writem, readi end
• , , , . , - . , , - - , , ° ° . . Q . ° . . . ° ° ° , , , , , o , . , , . ° o . ,

Ps/xn : path w d t e ~ , . . . , writem, readn end
endsystem.

In this case, Ps is an E*-path, so we can use Theorem 4.5. One can easily verify
that Ps and Pc are functionally equivalent. Note that Pc is identical with a solution
presented in [12].

5.3. Dining philosophers

Now we consider the standard synchronization problem consisting of five phil-
osophers who alternately think or eat [2]. To eat, a philosopher needs two forks,
but unfortunately there are only five forks on the circular table and each philosopher
is only allowed to use the two forks nearest to him. Obviously, two neighbours
cannot eat at the same time. Essentially, this is a resource allocation problem.

Assume that the philosophers and forks are numbered in the following way:

Transforming sequential systems into concurrent systems 45

This system may involve the following actions:

e imthe ith phi losopher eats,
puf l i - - the ith philosopher picks up a fork by his left hand,
puf r imthe ith philosopher picks up a fork by his right hand,
pd f l i~ the ith philosopher puts down his left fork,
p d f r i ~ t h e ith philosopher puts down his right fork,

where i = 1 , . . . , 5 .
The sequential solution is also very easy, and it can be presented by the following

single path:

Ps = path (puff] ; pufrl ; el ; pdff~ ; pdfrl),
(puff2 ; pufr2 ; e2 ; pdff2 ; pdfr2),
(puff3 ; purr3 ; ea ;pdfla ; pdfrs),
(puff4 ; pufr4 ; e4, pdfl4, pdfr4),
(puffs ; pufrs ; es ; pdfls ; pdfr5) end.

In this case we can distinguish five abstract resources:

f~-- the ith fork, i = 1, 2, 3, 4, 5.

The resource association function r is of the following form. For every i =
1 ,2 ,3 ,4 , 5:

r(e,) = {f/, f/el},

r(pufl~) = r(pdfl~) = {f~},

r(pufr~) = r(pdfr~) = {f~el},

where i C) 1 "= i f i > 1 then i - 1 e l se 5.

The single path Ps and the function r define the following generalized path Pc:

Pc = sys tem

Ps/f~ : path (pufl~ ; e~ ; pdfl~), (purr2 ; e2 ; pdfr2) end

Ps/ f2 : path (p u f f 2 ; e2 ; p d f l 2) , (p u f r 3 ; es ; pdfr3) end

Ps/f3 : path (puff3 ; es ; pdff3), (pufr4 ; e4 ; pdfr4) end
Ps/f4 : path (pull4 ; e 4 , pdfl4), (pufr5 ; e5 ; pdfrs) end

Ps/fs : path (puffs ; e5 ; pdfls), (pufr~ ; el ; pdfr~) end
endsys tem.

Unfortunately, the paths Ps and Pc are functionally different. One can use Theorem
4.3 and show that for instance (pufl~, puff2)~ E n I. One can also prove that, for
instance, pufl~ puff2 puff3 puff4 puffs e VFS(Pc) -VFS(Ps , r). Moreover, Pc deadlocks
after the performance of the sequence pufll . . . puffs, while Ps is obviously adequate.

Let us observe that while decomposing Ps into Pc we lose the information that
when the ith philosopher is going to eat, the philosophers i0) 1 and iO 1 must think
(i ~ 1 := i f i < 5 then i + 1 e l se 1).

46 R. Janicki

For every i = 1, 2, 3, 4, 5, let lrf~ denote the act ion in terpre ted as the beginning o f
a state "bo th , left, and right, forks o f the ith ph i losophers are on the tab le" , and

let r (l r f i)= {f~,f~el}.
The new sequential so lu t ion is the fol lowing:

P~ = path (lrfl ; pufl~ ; pufr~ ; e~ ; pdfl~ ; pdfr~),

(lrfs ; puffs ; pufr5 ; es ; pdfls ; pdfrs) end.

Of course, from the sequent ia l v iewpoint , Ps and P~ are essential ly the same. The
single pa th P~ and the funct ion r define the fol lowing general ized path P~:

P~ = system
Ps/f~ : path (lrfl ; pufl~ ; e~ ; pd f l l) , (Irf2 ; pufr2 ; e2 ; pdfr2) end
Ps/f2 : path (lrf2 ; pUflz ; e2 ; pdfl2), (lrf3 ; pufr3 ; e3 ; pdfr3) end
Ps/f3 : path (lrf3 ; pull3 ; e3 ; pdfl3), (lrf4 ; pufr4 ; e4 ; pdfr4) end
Ps/f4 : path (lrf4 ; puff4 ; e4 ; pdfl4), (lrfs ; pufrs ; es ; pdfrs) end
Ps/fs : path (lrfs ; puffs ; e5 ; pdfls), (lrfl ; pufrl ; el ; pdfr~) end
endsystem.

Note that P~ is an E * - p a t h , so we can use Theorem 4.5. One can prove (a l though
in this case it is a somewhat uphi l l task) that now E c~ l = 0 and (V X ~ CD)
(D c~ X x X) ÷ = X x X, so P~ and P~ are funct ional ly equivalent .

In this case, the in t roduc t ion of the act ions ' lrf{ does pa tch up the solution. This
in t roduc t ion was not suggested by the sequent ia l solut ion, to which, as was stated
above, they make no substant ial difference; this in t roduc t ion was suggested by
analysing reasons for which Pc and Ps tu rned out to be func t iona l ly different.

6. The proof of necessary and sufficient conditions

At first we prove Theorems 4.3 and 4.5, and then Theorem 4.4. Proofs of Theorems
4.3 and 4.5 are by induc t ion on the fo rm of regular expressions, and they consist
of a number of auxi l iary lemmas.

Let A, A I , . . . , A , be a lphabets , and let A = AI u - • • u A,. By a regular express ion
we will unders t and a regular expressions under A.

A regular expression R is said to be an E*-express ion if there is no symbol
occurr ing more than once in R.

In this section, for every x e A*, every L c A* and every regular expression R
under A, the symbols A(x), A(L) or A(R) will denote the set o f all symbols occurr ing
in x, L or R. Writ ing Vect and Vect we will unders tand that Vect, Vect: 2a*-->
2a~ ×... ×A*.

For every VI, V 2 c: Veet(A*), let

(V1)* = {Xl . . .Xk[XiE V| ~ k ~ O } .

Transforming sequential systems into concurrent systems 47

From the definition of Vect we obtain the following results.

Corollary 6.1

(1) L I ~ L2 ~ Vect(Lt)_Vect (L2) .
(2) Vect(Li)Vect(L2) _ Vect(L, L2).
(3) Vect(L~) u Vect(L2) G Vect(L~ u L2).
(4) Pref(Vect(L)) __. Vect(Pref(L)).

For every B _ A, let hB: A*--> B* be the homomorphism given by

(V a ~ A) hB(a) = a ~ B .

Let I G A × A be the following relation:

(Va, b ~ A) (a , b) s I ¢:> (V i = l , . . . , n) a ~ A i o r b ~ A ~ .

If resource(Ps) = { x t , . . . , x,} and A~ = ~(x~), then

(a, b) ~ I ¢~ r(a) n r(b) = O.

Let D G A x A be the relation defined as D = A x A - L For every regular expression

R, let ER ~ A x A be the following relation (see the definition of E in Section 4):

(a, b) ~ ER <=> (3x ~ A*) xa ~ Pref(Vect(lR}))

& xb ~ Pref(Vect(IRI)) & xab ~ Pref(Vect(IRI)) & a # b.

Recall that, for every regular expression R, the symbol CR denotes the set of all

cycles generated by R (see Section 4). For every regular expression R, let

C D R = { A (x) I x ~ C R } .

At present we can formulate the basic result of this paper.

Theorem 6.2. Let R be an E*-expression, and let L = I R[. Then

(Vect(L) = Vect(L) & Pref(Vect(L)) -- Vect(Pref(L))) ¢:>

<::> (ER n I = 0 & (V X e C D R) (D n X x X) + = X x X) .

Theorem 4.5 is a direct consequence of Theorem 6.2.

Theorem 6.2 is somewhat more general than Theorem 4.5 because here we do
not assume that R is of the form (R')*.

The proof of Theorem 6.2 is by induction on the structure of a regular expression.
For R = e, and R = a, where " a " is a symbol, the theorem is obviously true. Now

we will prove that it is also true for R = RIR2.

Lemma 6.3. Let L1, L2 c A* and let A (L1) n A(L2)= O. Then we have Vect(L1L2)=
~qect(L,) Vect(L2).

4 8 R. Janicki

Proof

Vect(L,L2) = { (x , , . . . , x,)l(:::lx ~ A*) hi(x) = xi ~ hi(L, L2)}

= {(y, z l , . . . , ynz , ,) l (3x ~ A*) hi(x) = yizi

& Yi ~ hi(L,) & zi e hi(L2)}

----- { (Y l , • • - , Y n) (Z 1 , • • • , Zn)](:]X E A*) hi(x) = yizi

h (L 0 & hi(L2)} = V.

Let x ' denote a pro jec t ion of x on A(L1), and let x" denote a pro jec t ion of x on A(L2).
Because A (L ~) h A (L 2) = 0 , we have hi (x ')= y,, h i (x")=z i for i = 1 1 . . . , n. Thus

we can write

V = {(Yl,. • . , y , ,) (z l , . . . , z~) I (3x ' , x " e A*) hi(x') = y, e hi(L1)

& hi(x") = z~ ~ h~(L2)} = Vect(L~) Vect(L2). []

Lemma 6.4. Let L~, L2 C _ A*, A (L 1) n A (L 2) = 0, and let V e c t (L i) = V e c t (L i) f o r i=
1, 2. Then: Vect(LtL2) = Vect(L~L2).

Proof . By the defini t ion of Vect we have: Vec t (L~L2)=Vec t (L1)Vec t (L2) , and by
L e m m a 6.3: Vect(L~) Vect(L2) = Vect(L~ L2).

Thus we can write

Vect(L~Lz) = Vect(L~) Vect(L2) = Vect(L1) Vect(Lz) = Vect(L~L:) . []

Lemma 6.5. Let L~, L2 ~_ A*, let A(L2) n A(L2) = O, and let Vect(Pref(Li)) =
Pref(v--e-~(L/)) for i = 1, 2. Then: Vect(Pref(L1L2)) = Pref(Vect(L~L2)).

Proof . By Coro l l a ry 6.1(4) we have Pref(Vect(L1L2))_~ Vect(Pref(L~L2)).

Let x = (xb •. •, x ,) ~ Vect(Pref(LlL2)) . This means that

(::ly e A *) (V i = 1 , . . . , n) h , (y) - - xi ~ hi(Pref(LlL2)).

N o t e that

h, (Pre f(L1 L2)) = hl (Pre f(L1)) u h, (L1) h, (Pre f '(L2)),

whe re Pref ' (L2) = Pref(L2) - (e}.

Thus every xi can be represented in the form: xi = yizi, where

(Yi ~ h i (Pref (Ll)) & zl = e) or (Yi ~ h , (Ll) & z, ~ hi(Pref ' (L2))) .

Let us cons ider (Yl, . . . , Y,). Since A (L 1) ~ A (L 2) = 0, we have

Y, = hA(LO(YiZi) = hA(Lo(X,) = hA(L,)(h,(x)) = hi(hA(Ll)(X)),

for all i. Thus , we have Yi = h(y ') , for all i, where y ' = hA(L,)(X). ThUS (y ~ , . . . , y ,)
Vec t (Pre f (L ,)) .

Transforming sequential systems into concurrent systems 49

Similarly we can show tha t (z ~ , . . . , z,) e Vect(Pref(L2)). Recall that y' = hA(L0(x);
et z ' = hA(~)(x).

Since V e c t (P r e f (L)) = Pref(Vect(Li)) , i = 1, 2, we have

y ' = (y ~ , . . . , y ,) ~ Pref(Vect (Ll)) and z ' = (Z l , . . . , z,) e Pref(Vect(L2)).

~et y" be a shortest s tr ing such that y'.v"e Vect(L~), and let z" be a shortest string

uch that z ' z"eVe-~(L2) . For all i = 1 , . . . , n, let y~= hi(y"), z~= hi(z"). Note that
,~ = e or z~ = e for every i = 1 , . . . , n. Let us put x' = y'y"z'z".

Of course, (Vi = 1 , . . . , n) hi(x') = ycv~z~z~ ~ hi(L1L2), so x' e Vect(L~ L2). But since

,~ = e or z~ = e, we have hi(x') = y~v~z~zl = y~z~v'~z~. But this means that x e Pref({x'})
'ref(Vect(L~ L2)). []

~emma 6 . 6 . Let L~, L2 ~_ A*, A(L~) n A(L2) = 9, V e c t (L i) = Vect(Li) and let
~ref(Vect(Li)) = Vect(Pref(L~)) for i = 1, 2. Then:

Vect (L~ L2) = Vect(L~ L2) and Pref(Vect(L~ L2)) --- Vect(Pref(Ll L2)).

'roof . The equal i ty Vect(L~L2) = Vect(LiL2) fol lows f rom L e m m a 6.4. From L e m m a

,.5 we have Vect (Pref (L~L2))= Pref(V---'g~(LxL2)). But f rom those two s ta tements it
ollows tha t Pref(Vect(L~L2)) =Vect(Pref(LxL2)) . []

The above l emma proves that Theo rem 6.2 is t rue for R = R~ R2. The next case
ze must p r o v e is the case tha t R = Rj u R2.

e m m a 6 .7 . Let R1, R2, R = R~ u R2 be E*-expressions. Let Li
"ect(Pref(Li)) for i -- l, 2. Let ER n I = 9.

Then: Pref(Vect(L~ u L2)) = Vect(Pref(L~ u L2)).

= IR, I, Pref(Vect(L,)) =

'roof. Let us put L = Lt u L 2. By Corollaries 6.1 and 3.2 we have Pref(Vect(L)) _
"ect(Pref(L)).

The o p p o s i t e inclus ion will be proved by contradict ion. We assume that
"ect(Pref(L)) - Pref(Vect(L)) ~ 9, and then we show that ER n I ~ 9.

Let xab be the fo l lowing vector o f sequences:
(1) xab E Vect(Pref (L)) - Pref(Vect(L)) ,

(2) (Vy E Vect (Pref (L))) l ength(y) < length(xab):=>y ~ Pref(Vect(L)) .

lote that i f V e c t (P r e f (L)) ~ Pref(Vect(L)) , then there exist min imal vectors o f

e c t (P r e f (L)) - P r e f (V e c t (L)) . They must differ f rom b, b ~ A(L) , because in that

~se we w o u l d have b ~ A (L 1) n A(/_~), contradic t ing the hypothesis that R is an

:*-express ion. Thus, there always exist such a vector o f sequences xab. We have
,,b e Vect (Pref (L)) - Pref (Vect (L)) , and xa ~ Pref(Vect(L)) . Because Rl, R2, R =

'.t u R2 are E*-expres s ions , A(LI) n A(L2) = 9. Since A (L i) n A(L2) = 9, we have

Pref(Vect (L)) = Pref(Vect(Ll u L2)) = Pref(Vect(LI) u Vect(L2))

= Pref(Vect(L~)) u Pref(Vect(L2)).

50 IL Janicki

But Pref(Vect(Li))= Vect(Pref(L~)) for i = 1, 2, so

Pref(Vect(L)) = Vect(Pref(L~)) u Vect(Pref(L2)).

Thus, xa ~ Vect(Pref(L1)) w Vect(Pref(L2)). Because A(L~) n A (L :) = 0, we have

Ve ct (Pre f(L1)) c~ Ve ct (Pre f(L2)) = { e }.
Assume that x a ~ V e c t (P r e f (L t)) . This means that (V i = l , . . . , n) h~(xa)~

h~(Pref(L1)). Since xab ~ Vect(Pref(Li u L2)) and A(L1) c~ A(L2) = 0, we have

(V i = 1 , . . . , n) h,(xab) ~ h,(Pref(L~ u L2)) = h,(Pref(Ll)) u h,(Pref(L2)).

Note that xa ~ Vect(Pref(L~)) & xab ~ Vect(Pref(L~)) w Vect(Pref(L2)) implies that
(3i) h , (xab) ~ h,(Pref(L2)).

Assume that (::lj){a, b}___ A~. This means that h~(xab)=x 'ab . Since b occurs in

x'ab, we have x ' a b ~ h~(Pref(Ll)), so x 'ab ~ h~(Pref(L2)). Thus a s A(L2). On the
other hand, xa ~ Vect(Pref(L~)), so a ~ A(L~). But A(L~) c~ A(L2) = 0, and the
assumption (~j) {a, b} c_ Aj "leads to a discrepancy. Thus (a, b) e / , and of course
xab = xba.

Since Vec t (Pre f (L))=Pre f (Vec t (Pre f (L))) , we have x b ~ V e c t (P r e f (L)) . But
length(xb) < length(xab), so xb ~ Pref(Vect(L)).

In this way we have proved that

xa ~ Pref(Vect(L)) & xb ~ Pref(Vect(L)) & xab ~ Pref(Vect(L)),

so (a, b) ~ E~.

We have also proved that (a , b) ~ l , thus E R ~ I ¢ O - - - - i n spite of the
assumption. []

Lemma 6.8. Let RI, R2, R = R ~ u R 2 be E*-expressions. Let Li = IRil, Vect(L~)=
Vect(Li), Pref(Vect(L~)) = Vect(Pref(L~)) for i = 1, 2. Let ER c~ 1 = O.

Then, Vect(L~ u/-,2) = Vect(Ll u/-,2).

Proof. By Corol lary 6.1(3) we have Vect(L1) u Vect(L2) c_ Vect(Ll u L2).

From Lemma 6.7 and the proof of Lemma 6.7 we obtain

Vect(Pref(L1 u L2)) = Pref(Vect(L1 u L2)) = Vect(Pref(L~)) u Vect(Pref(L2))

x ~ Vect(L~ u/-.2) ~ x ~ Vect(Pref(Ll u L2)) ~ x ~ Vect(Pref(Ll))
u Vect(Pref(L2)).

Assume that x ~ Vect(Pref(L1)). Since A (L I) n A(L2) = 0, this means that x ~ A(Lt)* .

Thus x ~ Vect(L~ u L2) c~ Vect(Pref(L~)). But because A (L I) c~ A(L2) = 0, we have

Vect(L~ u/-,2) c~ Vect(Pref(L~)) = Vect(Ll). similarly for x e Vect(Pref(L2)).
In this way we have proved that x ~ Vect(L~)u Vect(/_~). Thus,

V e c t (L l L)/.,2) = Vect(Ll) w Vect(L:) = Vect(Ll) u V e c t (L 2) = Vect(L~ u L2). []

At this point we proved the implication ~ for R = Ri u R2.

Transforming sequential systems into concurrent systems

Lemma 6.9. Let xa E Pref(Vect(L)) & xb ~ Pref(Vect(L)) & (a, b) ~ I.
Then, xab ~ Vect(Pref(L)).

Proof. By Corollaries 3.2 and 6.1 we have Pref(Vect(L)) ~ Vect(Pref(L)).

xa ~ Pref(Vect(L)) & xb ~ Pref(Vect(L))

(Vi = 1 , . . . , n) hi(xa) ~ hi(Pref(L)) & h,(xb) ~ h,(Pref(L)).

Because (a, b)~ L if a e A~, then be~A~ and vice versa.
Thus, (Vi = 1 , . . . , n) if a ~ A~, then h~(xab) = h~(xa), and if b e A~, then h~(xab) =

hi(xb). Let us consider xab. From the above considerations it follows that

(Vi = 1 , . . . , n) hi(xab) ~ hi(Pref(L)), so xab ~ Vect(Pref(L)). []

51

Lemma 6.10. Let R be any regular expression and let L = JR].

Then, Pref(Vect(L)) = Vect(Pref(L)) ~ ER n I = O.

Proof. Assume that (a, b) ~ ER n / . By the definition of ER we have

(3 x) xa ~ Pref(Vect(L)) & xb ~ Pref(Vect(L)) & xab ~ Pref(Vect(L)).

By Lemma 6.9 we have: xab ~ Vect(Pref(L)).
Thus, Pref(Vect(L)) ~ Vect(Pref(L)). []

The above lemma proves the implication ~ for R = RI u R2, thus Theorem 6.2
is true for R = R1 u R2. To prove the whole theorem we must show its truthfulness
for R = (Rl)*.

Lemma 6.11

Pref(Vect(L)) = Vect(Pref(L)) ~ Pref(Vect(L*)) = Vect(Pref(L*)).

Proof. The p roof follows by induction on the length of x from Vect(Pref(L*)).
From Corollaries 3.2 and 6.1, we have Pref(Vect(L*)) c_ Vect(Pref(L*)). Note that

e ~ Pref(Vect(L*)).

Let x ~ Vect(Pref(L*)) n Pref(Vect(L*)).
Note that Pref(Vect(L*)) = Vect(L*)Pref(Vect(L)).
Let x =yz, where y ~ Vect(L*) and z e Pref(Vect(L)).
Since Vect(L*) ~ Vect(L*), we have y ~ Vect(L*).

Let us consider xa =yza ~ Vect(Pref(L*)). By the definition we have

(V i = 1 , . . . , n) h , (y za)= h , (y)h , (za)~ h,(Pref(L*))= h,(L*)h,(Pref(L)) .

But this means that (Vi = 1 , . . . , n) hi(za) ~ hi(Pref(L)), so za ~ Vect(Pref(L)). Since

52 R. Janicki

Vect(Pref(L)) = Pref(Vect(L)), we have za ~ Pref(Vect(L)). Thus

xa = yza ~ Vect(L*)Pref(Vect(L)) = Pref(Vect(L*)). []

Lemma 6.12. Let R be an E*-expression of the form R = (R')* and let L= [R I.

Then,

x c L ¢:> x ~ Pref(L) & (3Xl, . . . , Xk ~ CR)(Vi= 1 , . . . , n) ha<x,)(x) e {x~}*

& A (x) = A (x ,) w " "uA(Xk) .

Proof. The proof directly follows from the definition of CR. If x ~ L, then every
cycle included in x must be closed. []

Lemma 6.13. Let R be a regular expression and let L = [R[. Let xyz ~ L, y ~ CR, y' ~ CR,
y = y'y", and y' # e, y" ~ e.

Then, xy' z ¢_ L.

Proof. The proof follows from the definition of CR. The string xy 'z ~ L because it
contains the beginning of an open cycle. []

Lemma 6.14. Let R be an E*-expression and let L--IR[.
Vect(Pref(L)). Let (V X ~ CDR,) (D c~ X x X) + = X x X.

Then, Vect(L*) = Vect(L*).

Let Pref(Vect(L)) =

Proof. Since L * ~ Pref(L*), by Corollary 6.1 we have Vec t (L*)~ Vect(Pref(L*)).
From Lemma 6.11 it follows that Pref(Vect(L*))=Vect(Pref(L*)) , so Vect (L*)_

Pref(Vect(L*)).
Let x ~ Vec t (L*) -Vec t (L*) . Thus, x e Pref(Vect(L*)) -Vec t (L*) . From Lemma

6.12 it follows that (=lx'e CR.) hA(x')(X)~ {X '}* . Let us denote y = hA(x,)(x). Of course,
A(y) c_ A(x ') and y ~ Pref({x'}*). For every symbol a and every string s, let #~(s)

denote the number of occurrences of a in s. For instance, #, , (abca) = 2.
Since y ~ {x'}*, we have (:la, b ~ A(y)) #Q(y) ~s #b(Y).
Since x~Vec t (L*) , we have (Vi= 1 , . . . , n) hi(y)shi(ha<,,,)(L*))=h~({x'}*).

Assume that (3Aj) {a, b} e Aj.

But since # a (y) ~ #b(Y) , we have #, , (hj(y)) ~ #b(hj(y)) , so hi(Y)¢_ hj({x'}*)--a
discrepancy. Thus (a, b) ~ / .

But this means that (a, b) ¢~ (D n A(x ') x A(x ')) +.
In this way we have proved that (D n A (x ') x A (x ')) + ~ S A (x ') x A (x ') , where

A (x ') c C D R . []

Lemmas 6.11 and 6.14 prove the implication ~ for R = (R1)*.

Lemma 6.15. Let R be a regular expression and let L = [R I.

Transforming sequential systems into concurrent systems 53

Then,

Vect(L) = Vect(L)

(VX ~ C D R) (V Y ~ X) (Y is a maximal subset o f X such that

(D n Y x Y)+= Y x Y) ~ YECDR.

Proof. Assume that x' ~ CR, X = A(x') , and (D n X × X) ÷ # X x X. Note that the
above assumption implies card(X) I> 2.

Let xx'y ~ Vect(L). One can easily show that such a sequence vector always exists.

Let Y _ X be a maximal subset of X satisfying the condition (D n Y × Y)÷ = Y × Y,
and Y~ CDR. Of course, card(Y) I> 1.

Let x"= hy(x ') . Note that, by the definition, xx"y ~ Vect(L), and, by Lemma 6.13,
xx"y ~ Vect(L). []

Lemma 6.16. I f R is an E*-expression then the conditions given below are equivalent:
(1) (VX e CDR)(V Y c_ X) (Y is a maximal subset o f X such that (D n Y x Y)+ =

Y × Y) ~ Y ~ C D n .
(2) (VX ~ CDR) (D n X × X) + = X x X.

Proof. The proof follows from the definition of CDn. []

From the last lemma we obtain the implication ~ for R = (RI)*. In this way we
proved Theorem 6.2.

Note that the condi t ion ER n I = 0 is associated with the operat ion " w " only,

and the condit ion (V X ~ C D R) (D n X x X) +--- X x X is only associated with the
operation "*" .

Because in Lemmas 6.11 and 6.15 we assume nothing about the form of R, they

hold in the general case. Thus, we may formulate the following theorem.

Theorem 6.17. Let R be a regular expression and let L = IRJ.
Then,

[Vect(L) = Vect(L) & Pref(Vect(L)) = Vect(Pref(L))]

[E R n I = O &

(VX ~ CDR)(V y c X) (Y is a maximal subset o f X such that (D n

Y x Y) + = Y x Y) ~ Y~CDR] .

Proof. The proof follows from Lemmas 6.11 and 6.15. []

Theorem 4.3 is a special case of Theorem 6.17 (for R = (R')*). We are now going
to prove Theorem 4.4. The proof will be based on the results of Theorem 6.2.

Let P = P i - - - P , be a GRl*-pa th , and let A = A l p h a (P) , Ai=Alpha(P~) for
i = l , . . . , n .

54 R. Janicki

Let B = { a [(3 i e { 1 , . . . , n}) o c c i (a) > 1}. Since P is a GRl*-path , for every a ~ A
there is at most one i such that occ~(a) > 1. For every a ~ B, let ia denote a number

such that occio(a)> 1. Let a ~ B, and let ma = occ~o(a).
Let P ' denote the result of converting P according to the following rules:

"For every a 6 B:
(1) replace the ith occurrence of a in P~o by a&i,
(2) for every i = 1 , . . . , i~ - 1, i,, + 1 , . . . , n, replace an occurrence of a in P~ by

the string a &l , a & 2 , . . . , a&rn~."
The path P ' is said to be a GE*-representation of the GRl*-path P. The above
construction is essentially the same as the general transformation of generalized
paths into GE*-paths given in [13]. Because P is a GRl*-path , a new numeration
of repeated actions may be somewhat simpler than that of [13].

Example 6.18. Let P be the following GRl*-path:

P = system

path a ; b, a end

path a ; c ; c ; c end

path b, a ; c end

endsystem.

In this case, B = {a, c} and

P' = system

path a& l ; b, a&2 end
path a&l , a&2 ; c&l ; c&2 ; c&3 end

path b, a&l , a&2 ; c&l, c&2, c&3 end

endsystem.

Let A ' = A l p h a (P ') , C = A - B . Note that Cc_A' and A ' - C ~ _ { a & i la

B & i~{1 ,2 , . . . }} .
Let h~: Vect((A')*) -~ Vect(A*) be the following homomorphism:

(Vb e A') h&(b) = b = a&ie A ' - C.

Lemma 6.19 (follows from [13]).
(1) VFS(P) = h~(VFS(P')) .
(2) VFFS(P) = h~(VFFS(P')) .

Proof (the idea). This is a consequence of the construction of P'. It turns out that
Petri nets simulating P and P ' (according to standard rules from [13, 14]) are
isomorphic. Let us consider the following simple example.

Transforming sequential systems into concurrent systems 55

Let

Thus

P = system path a ; b, a end path a ; c end endsystem.

P' = system path a & l ; b, a & 2 end path a & l , a & 2 ; c end endsystem.

The appropriate simulating Petri nets N (P) and N (P ') are the following:

NCP) =

For more details, the reader is referred to [13, 14]. []

Let Ps be a single path, and let resource(Ps)= { x l , . . . , x,}. Assume that A =
Alldha(P), Ai = ~(xi) for i = 1 , . . . , n. Let Pc = P s / x l . . . Ps/x,. Assume that Pc is a

GR 1 *-path.
Let PEs denote the result of converting Ps according to the following rule:

"'For every a ~ A, if a occurs more than once in Ps, then the ith occurrence

of a is replaced by a&i."
For instance, if Ps = path a ; (b, a)*, b ; c, a end, then PEs = path a&l ; (b&l,

a&2)* , b&2 ; c ; a&3 end.

Let us extend the resource association function r on Alpha(P ') in the following
way: (Va&i ~ Alpha(P ')) r(a&i) = r(a).

Let PEc = PEs/xl , • • •, PEs/x, .

L e m m a 6.20. PEc is a GE*-representation of Pc.

Proof. This is a simple consequence of the construction of the GE*-representa-

tion. []

Theorem 6.21. Let L = [Psi.
Then:

(Eps c~ I =O & (V X ~ CD~, s) (D n X x X)+= X x X) :=>

(Vect(L) = Vect(L) & Pref(Vect(L)) = Vect(Pref(L))).

56 R. Janicki

Proof. Assume that Evs n I = 13 & (VX ~ CDps) (D n X x X) + = X x X.
Let A ' = Alpha(PEs) and let Ie`, De`_~ A ' x A' be the following relations:

IR,= {(0¢, fl) l (he`(a), he`(fl)) ~ I},

De` = A' x A ' - Ie`.

Let L ' = IPEs]. From the definitions of PEs and he` we have

Vect(L) -- he`(Vect(L')), Pref(Vect(L)) --- he`(Pref(Vect(L'))).

From the above statement and the definitions of Ie`, De, we obtain

(1) (hs:(a), h&(fl))e Eps ~ (o~, f l) e EpEs,
(2) ((V X ~ CDPs) (D n X × X) + = X x X) ~ ((VXE CDpEs) (De, n X × X) +

= X x X) .

But this means simply that

(Ep~n I =!3& (V X ~ C D v s) (D n X x X) + = X x X)

(Epss n I =13& (VX E CDpEs) (D e ` n X × X) + = X x X) .

By Theorem 6.2 we have

(EvEs n [=13 & (VXE CDpEs) (D & n X x X) + = X × X) ¢:>

¢:~ (Vect(L') = Vect(L') & Pref(Vect(L')) = Vect(Pref(L'))).

By the definition of he` we can write

(Veet(L') = Vect(L') & Pref(Vect(L')) = Vect(Pref(L')))

(he`(Vect(L')) = he`(Vect(L')) & he`(Pref(Vect(L')))

= he`(Vect(Pref(L')))).

As we have stated above, from the definitions of PEs and he` we have

he`(Vect(L')) = Vect(L), he`(Pref(Veet(U))) = Pref(Vect(L)).

From Lemmas 6.19 and 6.20 we obtain

he`(V-e--~(L')) = he`(VFFS(P')) = VFFS(P) = Vect(L),

he`(Vect(Pref(L'))) = he`(VFS(P')) = VFS(P) = Vect(Pref(L)).

But this means that

(Vect(L') = Veet(L') & Pref(Vect(L')) = Vect(Pref(L')))

(Vect(L) = Vect(L) & Pref(Vect(L)) = Veet(Pref(L))),

which ends the proof of the theorem. []

Theorem 4.4 is a consequence of the above theorem. Necessary and sufficient
conditions for the general ease are an open problem still.

Transforming sequential systems into concurrent systems 57

7. Final comments

The method presented above has two disadvantages: first, sometimes it leads to
functionally different specifications, and second, the necessary and sufficient condi-
tions for functional equivalence are not easy to verify, particularly the construction
of the relation E may be uphill; furthermore, sufficient condition are unknown in

the general case.
The second fault may be mended in future, but the first unfortunately not. The

good point of the method lies in the fact that we start with a sequential solution.
Long before now, people have stated that it is very difficult to comprehend the
combined effect of activities which evolve simultaneously and with independent
speeds. Up till now, the human imagination, not technology, is a main obstacle in
use of concurrency in computers. It is hard to avoid the conclusion that we
understand concurrent events by looking at sequential subsets of them. We suppose
there are two natural methods of specifying concurrent systems. The first of them,
very popular, consists in the logical decomposition of the problem into sequential
in the course of nature components, independent designing each component, and
next superposing all components. Among others, the COSY path expressions and
Hoare's CSP [4] are examples of that approach. The second method is presented
in [6, 7, 17, 16] and in this paper. For some applications, this second method seems
to be more convenient (see examples in [171). We also feel this paper can only be
treated as a first step towards a methodology which starts with a primary sequential
solution. The general transformations are probably more complicated than those
presented in Section 2.

Acknowledgment

The author would like to thank Peter Lauer for his suggestions, comments and
criticism, and for the invitation to Newcastle-upon-Tyne. The author is also indebted
to the anonymous referee(s) for careful reading, helpful comments and finding
errors. The work reported in this paper was partly supported by a grant from the
Science and Engineering Research Council of Great Britain.

References

[1] P.J. Courtois, F. Heymans and D.L. Parnas, Concurrent control with "readers" and "writers",
CACM 14 (10) (1971) 667-668.

[2] E.W. Dijkstra, Hierarchical ordering of sequential processes, in: C.A.R. Hoare and R.H. Perrott,
eds., Operating System Techniques (Academic Press, New York, 1973).

[3] M.A. Harrison, Introduction to Switching and Automata Theory (McGraw-Hill, New York, 1965).
[4] C.A.R. Hoare, Communicating sequential processes, in: McKeag and McNaughton, eds., On the

Construction of Programs (Cambridge University Press, London, 1980).

58 1t. Janicki

[5] R. Janicki, A characterisation of concurrency-like relations, Lecture Notes in Computer Science 70
(Springer, Berlin, 1979) 320-333.

[6] R. Janicki, On the design of concurrent systems, Proc. 2nd conf. on Distributed Computing Systems,
Paris, 1981 (IEEE Press, New York, 1981) 455-466.

[7] R. Janicki, A construction of concurrent schemes by means of sequential solution and concurrency
relations, Lecture Notes in Computer Science 107 (Springer, Berlin, 1981) 327-334.

[8] R. Janicki, Nets, sequential components and concurrency relations, Theoret. Comput. Sci. 29 (1984)
87-121.

[9] R. Janicki, A method for developing concurrent systems, Lecture Notes in Computer Science 167
(Springer, Berlin, 1984) 155-166.

[10] P.E. Lauer, Synchronization of concurrent processes without'globality assumptions, in: K.G.
Beauchamp, ed., New Advances in Distributed Computer Systems, NATO Advanced Study Institutes
Series (Reidel, Dordrecht, 1982) 341-366.

[11] P.E. Lauer and R.H. Campbell, Formal semantics for a class of high level primitives for coordinating
concurerent processes, Acta Informatica 5 (1975) 247-322.

[12] P.E. Lauer and M.W. Shields, Abstract specification of resource accessing disciplines: adequacy,
starvation, priority and interrupts, SIGPLAN Notices 13 (12) (1978) 41-58.

[13] P.E. Lauer, M.W. Shields and E. Best, Formal theory of the basic COSY notation, TR 143, Comput.
Lab., Univ. of Newcastle-upon-Tyne, 1979.

[14] P.E. Lauer, M.W. Shields and J.Y. Cotronis, Formal behavioural specification of concurrent systems
without globability assumptions, Lecture Notes in Computer Science 107 (Springer, Berlin, 1981)
115-151.

[15] P.E. Lauer, P.IL Torrigiani and M.W. Shields, COSY: A system specification based on paths and
processes, Acta Informatica 12 (1979) 109-158.

[16] C. Lengauer, A methodology for programming with concurrency: The formalism, Sci. Comput.
Program~ 2 (1982) 19-52.

[17] C. Lengauer and E.C.R. Hehner, A methodology for programming with concurrency: An informal
presentation, Sci~ Comput. Programm. 2 (1982) 1-18.

[18] A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMI PB-78, Aarhus
Univ. Press, 1977.

[19] S.S. Patil, Limitations and capabilities of Dijkstra's semaphore primitives for co-ordination among
processes, Project MAC, Computation Structures Group Memo 57, 1971.

[20] M.W. Shields, Adequate path expressions, Lecture Notes in Computer Science 70 (Springer, Berlin,
1979) 249-265.

[21] M.W. Shields, Is COSY big enough? Notes towards a study of deterministic concurrent machines,
Report ASM/77, Comput. Lab., Univ. of Newcastle-upon-Tyne, 1980.

[22] M.W. Shields, On the non-sequential behaviour of systems possessing a generalized free-choice
property, Internal Report CRS-91-81, Dept. of Comput. Sci., Univ. of Edinburgh, 1981.

[23] M.W. Shields and P.E. Lauer, A semantics for concurrent systems, Lecture Notes in Computer Science
71 (Springer, Berlin, 1979).

