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Abstract. A problem of  concurrent system specification is studied. A functionally equivalent 
system is first specified, then a set of independent actions or abstract resources is devised, and, 
finally, this sequential system is transformed into an equivalent concurrent system. The method 
is based on the theory of path expressions. The notion of functional equivalence is formally 
defined and studied. Necessary and sufficient conditions, stating when the method can be used, 
are formulated and proved. Some examples (vending machine, cigarette smokers, readers and 
writers, dining philosophers) are discussed. 

Introduction 

Concurrent systems are more difficult to design and analyse than sequential ones 
because they can exhibit extremely complicated behaviour. Furthermore, it is very 
difficult to comprehend the total effect of actions being performed concurrently and 
with independent speeds. In practice, when a problem is complicated itself, the first 
solution is frequently sequential, and only later solutions are concurrent. This is 
almost a standard procedure in the case of technological processes. 

In [6, 7], a method for developing a concurrent system from a functionally 
equivalent sequential system was suggested. 

In this paper we extend the ideas of [6, 7] and apply them to the COSY Formalism 
proposed by Peter Lauer's group [10, 11, 12, 13, 14, 20, 23]. 

The method consists in starting with the sequential system, determining a set of 
independent actions (by means of so-called abstract resources), and then performing 
a set of transformations of the sequential system resulting in a concurrent system. 

The notion of functional equivalence is formally defined and suitable necessary 
and sufficient conditions are formulated and proved. Some new concepts of the 
COSY Vector Firing Sequence Semantics are also presented. 

* The main part of  this work was carried out during the author's visit at the Computing Laboratory 
of the University of  Newcastle-upon-Tyne. Some part was also done at the Institute of Mathematics of  
the Warsaw Technical University. The author is on leave from Warsaw Technical University. 
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The following well-known examples are discussed: a noisy vending machine 
[4, 10], cigarette smokers [19], readers and writers [1], and dining philosophers [2]. 

The approach presented in this paper follows from the author's conviction that 
our mental perception of reality is sequential (see [9]), thus, in many cases starting 
with a sequential version is the easiest way of designing a concurrent system. The 
similar viewpoint (but the different level of abstraction) is presented in [16, 17], 
where concurrent systems are specified in two steps: first, a correct program that 
can be implemented sequentially is refined, and next, so-called semantics relations 
allowing relaxations in the sequencing of the refinements operations (e.g., concur- 
rency) are defined. 

For those who are not convinced that this is a useful way of constructing systems, 
or indeed, an advisable way of thinking about them, or who like purely theoreoretical 
formulations, the problem considered in this paper may be formulated as follows. 
We are given a system described by a regular expression with an outermost Kleene 
star; the alphabetical symbols represent possible actions of the system and the 
regular language associated with the regular expression determines the set of legiti- 
mate sequences of occurrence of these actions. We are also given a collection of 
'abstract resources'. An abstract resource is associated to a set of action names; the 
resource may only be accessed by these actions associated and they must be 
performed in sequence. Together, the expression and the collection of resources 
determine a language of objects (actually, vectors of strings) which describe all 
possible concurrent behaviours involving these actions, which, first, are such that 
some sequentialization of the behaviour is a sequence belonging to the regular 
language, second, two actions are only sequenced if they access a common abstract 
resource. The problem is to construct a path expression accepting the asynchronous 
language. This is a particular case of a general problem to find conditions under 
which an asynchronous language is a 'product' of string languages. 

All results of this paper can easily be translated into the formalism of labelled 
Petri nets and Mazurkiewicz traces (see [13, 14, 18, 22]). 

In Section 1, a brief description of the COSY Formalism is presented. Section 2 
contains the method description. The notion of functional equivalence is formally 
defined in Section 3. Necessary and sufficient conditions for the functional 
equivalence and an algorithm for the verification are presented in Section 4. Section 
5 is devoted to applications of the method. In Section 6, the longest in this paper, 
a proof of necessary and sufficient conditions is presented. Section 7 contains a 
final comment. 

Some results of this paper have already been published (see [9]). 

1. A brief description of COSY 

COSY (abbreviation of COncurrent SYstem) is a formalism intended to simplify 
where possible the study of synchronic aspects of concurrent systems by abstracting 
away from all aspects of systems except those which have to do with synchronization. 
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A basic COSY program or generalized path is a collection of single paths enclosed 
in system and endsystem parenthesis. 

A single path is a regular expression enclosed by path and end. For example: 

P = system 
path a ; b, c end 
path (d ; e)* ; b end 

endsystem 

In every regular expression like the above, the semicolon implies sequence (concate- 
nation), and the comma implies mutually exclusive choice. The comrn~ binds more 
strongly than semicolon, so that the sequence a ; b, c means "first a, then either b 
or c". A sequence may be enclosed in conventional parentheses with a Kleene star 
appended, as for instance (d ; e)*, which means that the enclosed sequence may be 
executed zero or more times. The sequence appearing between path and end is 
implicitly so enclosed, so that paths describe cyclic sequences of actions. The 
synchronization among paths is due to common actions ( "b"  in the above example). 
Every single path describes a sequential system or subsystem. 

For more details, the reader is referred to [10, 11, 12, 13, 14, 15]. 

2. Definition of the method 

First, we will explain the method by analysing a very simple example: Hoare's 
noisy vending machine (see [4, 10]), and next we will formally define the method. 

Consider a vending machine which may be used by two customers concurrently, 
that is, a machine that has distinct slots for 5 penny and 10 penny coins, and two 
distinct points for extraction of small and large packets of biscuits. 

This machine may involve the following actions: 
5p---insertion of a 5 penny coin, 

10p--insertion of a 10 penny coin, 
small--withdrawal of a small packet of biscuits, 
large--withdrawal of a large packet of biscuits, 

plunk--sound made by a small packet of biscuits dropping out of the machine, 
plonk--sound made by a large packet of biscuits dropping out of the machine. 

The system described above is very simple and it can easily be specified by a 
generalized path (see [10]), but we assume that we do not know how to specify this 
system concurrently, while we are able to specify it sequentially. 

The single path specifying the sequential vending machine (at any moment only 
one customer uses a machine) is of the following form: 

Ps = path (5p ; small ; plunk), (10p ;large ; plonk) end. 

This sequential solution is not the only one and not even the most general, but it 
seems to define quite precisely a function of this system. The function of a vending 
machine is to vend biscuits. All what Ps does is to perform certain actions in 
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sequence, but  sequences 5p.small.plunk and 10p.large.plonk may be interpreted as 
events: selling one small packet of biscuits, and selling one large packet of  biscuits. 
In this sense, Ps may be treated as a description of the funct ion of our system. 

The full specification of  every system consists, in fact, of  two parts at  least. T h e  

first part described a f unc t ion  of a system, that is, it defines what the system does; 
whereas the second part  describes resources necessary to perform the function of  a 

system. 
In the case of  a vending machine system we can distinguish four resources: 
SVM--a  part  of  the machine, which vends small packets of biscuits, 
LVM--a  part  of  the machine, which vends large packets of  biscuits, 

SC- -a  customer asking for a small packet of biscuits, and 
L C p a  customer asking for a large packet of  biscuits. 

Let r denote  the funct ion describing which resources are necessary to perform 
each action, and ~ denote  the function describing which actions are associated to 
each resource. Thus we have: 

r(5p) = {SVM, SC}, 

r(lOp) = {LVM, LC}, 

r(small)  = {SVM, SC}, 

r(large) = {LVM, LC}, 

r (plunk)  = {SVM}, 

r(plonk)  = {LVM}, 

~(SVM) = {5p, small, plunk}, 

~(LVM) = { 10p, large, plonk}, 

~(SC) = {5p, small}, 

~(LC) = {10p, large}. 

Note that ~ is fully described by r, namely, for every resource x, ~(x) = {al x ~ r(a)}. 
If we assume that  actions may be performed concurrently only if they use no 

common resource, then for every resource x the set ~(x) contains all actions that  
must be performed only one at a time. 

The next step of  our method is the projection on resources. Let us consider the 

resource SVM. We have ~(SVM)= {5p, small, plunk}. At first we replace in Ps all 
actions except 5p, small, plunk by the symbol " e "  (empty string). 

As the result we obtain the path 

path (5p ; small ; plunk), (e ; e ; e) end. 

Next we replace the above path by an equivalent one, in the sense of  generating 
the same regular language, but without the symbol " 'e". 
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This new path is now of the form 

path 5p ; small ; plunk end 

and it will be denoted by the symbol Ps /SVM. 
In a similar way we can obtain the following paths: 

Ps/LVM : path 10p ; large ; plonk end 
Ps/SC : path 5p ; small end 
Ps/LC : path 10p ; large end 

The generalized path  

Pc = system 
Ps/SVM : path 5p ; small ; plunk end 
Ps/LVM : path 10p ; large ; plonk end 
Ps /SC : path 5p ; small end 
Ps/LC : path 10p ; large end 
endsystem 

describes our final concurrent solution. Note that the identical Pc was also derived 
by Lauer [10] by informal arguments. 

It seems to be intuitivety obvious that in the case of the vending machine system, 
the sequential single path  Ps and the interconnected generalized path Pc are 
'functionally equivalent ' ,  although this notion should be precisely defined and 
explained. This will be done in the next section. 

We will now proceed with the formal definition of our method. Let Ps = path body 
end be any single path,  and let Alpha(Ps)  denote the set of all action names appearing 
in Ps. The path Ps is interpreted as a sequential solution. 

Let resource(Ps) be any finite set (satisfying: resource(Ps) n Alpha(Ps)  --~) which 
is interpreted as the set of  all abstract resources associated with Ps. 

Let r: Alpha(Ps)--> 2 res°urce(Ps) be any total function. The function r will be called 

a resource association function. 
Let ~: r e sou rce (Ps )~  2 Alpha(ps) be a function defined by 

(Vx ~ resource(Ps))  ?(x) = {al x E r(a)}. 

The function ~ describes which actions are associated to each resource and it will 
be called an action distribution function. 

Let x e  resource(Ps).  By a projection of  Ps on x, denoted by Ps/x, we mean any 
path derived from Ps in the following two steps: 

(1) Every action symbol a ¢ A l p h a ( P s ) - F ( x )  is replaced by the symbol " e "  
(empty string). Assume that a new path obtained after this step is of the form 
path body~ end. 

(2) The regular expression body~ is replaced by any e-free regular expression 
bodyx such that 

Ibody ~I - { e } = lbodyx[, 
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where Ibody~l and [bodyx[ denote languages defined by appropriate expressions (an 
algorithm may be found,  for instance, in [3]). 

In other words, P s / x  is derived from Ps by 'erasing' all symbols except those 

from ~(x). 
Assume that resource(Ps)=  {x~, . . . ,  x,}. 
A generalized path Pc of  the form 

P c  = P s /  x ,  . . . P s /  xn 

is said to be derived from Ps and r. 
One can easily prove that, for every single path Ps and every resource association 

function r, a generalized path Pc is always correctly defined. Unfortunately,  it turns 
out that sometimes Ps and Pc are 'functionally different'. Condi t ions  describing 
when they are ' functionall~ equivalent'  will be discussed in detail in Section 4. 

We assume that actions may be performed concurrently only if they use no 
common resources, i.e., the independence relation I ~ A l p h a ( P s ) × A l p h a ( P s )  is 
defined by the following equivalence: 

(Va, b ~ Alpha(Ps))  (a, b) ~ I ¢:~ r(a) c~ r(b) = O. 

Thus the set F(x) contains all actions that must be performed only one at a time, 
and the relations I fulfills the following equivalence: 

(a, b) ~ I <=> [(a # b) & (Vx ~ resource(Ps)) a ~ ~(x) or b ~ ~(x)], 

so, using the terminology of [5, 8], it can be treated as a symmetric and irreflexive 
relation defined by the covering cov= {F(x) l x ~ resource(Ps)} (such a relation R is 
defined by a covering cov iff (a, b) ~ R c ~ a  # b & (VA ~ cov) a ~; A or b ~ A). 

In the example considered above, the set resource(Ps) is identical with the set of 
real physical resources of a system, but such a situation is not a rule. Following [5] 
we call the set resource(Ps) the set of abstract resources; an abstract resource may 
be associated with a set of  actions which, for reasons of  data protection or others, 
must be performed only one at a time. It was proved in [5] that  every symmetric 
and irreflexive relation can be defined by means of  a set of  abstract resources and 
a resource association function. Shields [21] has proposed the name 'abstract 
monitors '  for sets F(x), where x e resource(Ps). 

Sometimes, the independence relation ! alone is much easier to define than the 
set resource(Ps) and the function r (see Section 5.2). In such a case we may construct 
the set resource(Ps) and the function r on the basis of L The procedure is the 
following (see [5]). Let I ~ Alpha(Ps) x Alpha(Ps) be any symmetrical and irreflexive 
relation (interpreted as an independence relation). 

Let kens(I)  _c 2Alpha(Ps ) be the following family of sets (see [5, 6, 7, 8]): 

kens(I )  = {BI B ~ Alpha(Ps) & (Va, b ~ B) (a, b) ~ I 

& (Vc ~ B)(=ia ~ B) (a, c) ~ I}. 

Assume that kens( I )  = { x i ,  . . . , x n } .  
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Let us define r e s o u r c e ( P s ) = k e n s ( I ) = { x i , . . .  , X n }  , and let r: Alpha(Ps)  --> 
2 res°urc~(p~) be the function defined as follows: (Va ~ Alpha(Ps)) r(a)= {x~] a ~ x~}. 

From [5] it follows that:  
(1) (V i=  1 , . . . ,  n) :(x,) =xi,  
(2) (Va, bEAlpha(Ps ) )  (a, b ) e I  ¢:> r ( a ) n  r ( b ) = 0 ,  

thus the set resource(Ps) and  the function r are correctly defined. This construction 
of resource(Ps) and r will be applied in Section 5.2. 

3. Def in i t ion  o f  func t iona l  equiva lence  

3.1. Preliminaries 

In order to define precisely the concept of functional equivalence we must recall 
some old and introduce some new notions. We start with a formal definition of  

vectors of  strings. 
Let A ~ , . . . ,  An be alphabets,  and let A = AI u -  • • u An. For every i = 1 , . . . ,  n, let 

hi: A*->  A *  b e  a homomorphism given by 

( V a ~ A )  h i ( a ) = {  a a~A, ,  
a ~ Ai, 

wherg e denotes the empty string, and let 

(VX _ A*) h , (X)  = [._J h,(x). 
x E X  

Let us define a concatenation on A~* ×- • • x An* in the following way: 

( V ( X I , - - - ,  Xn), (Yl, • • • , Y,)  ~ A *  x . . -  x A * )  

( x l , . . . , x , ) ( Y t , . . . , Y ~ ) = ( x l Y ~ , . . . , x ~ n ) .  

For every x ~  A*, let x =  ( h i ( x ) , . . . ,  h,,(x)). 
Let Vect: 2a*--> 2 A~×'''×A*~ be the following mapping: 

(VL~_ A*) V e c t ( L ) = { x l x e  L}. 

Let us consider Vect(A*) ~ A* x .  • • × An*. The set Vect(A*) may be called a set 
of vectors of  strings. One can also prove that Vect(A*) is equivalent to the set of  all 
Mazurkiewicz traces generated by the alphabet  A and the relation ! defined by 
the covering { A ~ , . . . , A n }  (Vect(A*) is isomorphic to A*/~x,  where I =  
sir({A~,. . . ,  An}), according to the notation of  [ i8,  5]). 

Let Vect:2A*~ 2 A~'x'''xA*~ be the following mapping: 

(VL ~ A*) Vect(L) = (h,(L) x - - -  x h,,(L)) n Vect(A*). 
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Corollary 3.1 
(1) V e c t ( L ) = ( ( x l , . . . , x , ) l ( 3 x ~ L ) ( V i =  1 , . . . , n )  h, (x )=x ,~A*} ,  
(2) V e c t ( L ) = { ( x l , . . . , x ~ ) l ( 3 y ~ A * ) ( V i =  1 , . . . ,  n) h , (y )=x ,~  h,(L) c_ A*}. 

Corollary 3.2 

(VL~ A*) Vect(L) ~ Vect(L). 

The inclusion from Corollary 3.2 is a proper one, i.e., usually Vect(L) ~ Vect(L). 
Let us consider the following two examples. To simplify the notation we will 

identify regular expressions with languages generated by them. 

Example 3.3. Let Al = {a}, A2 = {b}, A = A1 u A2, L = (ab)* c A*. Then 

Vect(L)={(a k, bk)lk>~O}, Vect(L)={(a k, bm)lk~>0, m>~0}, 

so Vect(L) ~ Vect(L). 

Example 3.4. Let A]{a, b}, A2 = {c, d}, A = Al u) A2, L = ab • cd ~ A*. Then 

Vect(L) = {(ab, e), (e, cd)}, Vect(L) = {(ab, e), (e, cd), (ab, cd)}, 

so Vect(L) ~ Vect(L). 

Now we recall some basic and introduce some new concepts of the Vector Firing 
Sequence Semantics for generalized paths (see [I0, 14, 20, 23]). 

For every language (or regular expression, single path, generalized path) X, let 
Alpha(X) denote the alphabet of X. For every regular expression/74 let IRI denote 
the language defined by R. For every language L c_A*, let Pref(L)= 
{x I (3y ~ A*) xy ~ L}. For every set of vectors of firing sequences V _  Vect(A*), let 
Pref( V) = {xl (3y ~ A*) xy ~ V}. 

Let P be a single path of the form P = path body end. As was mentioned above, 
P can be treated as an ordinary regular expression such that P = (body)*. It is 
assumed (see [14]) that the behaviour of a single path P is fully described by the 
language FS(P),  which is called the set of firing sequences, and defined as FS(P) = 
Pref(lPI). The language IPI is also denoted by Cyc(P)* [14], or SIT(P)* [10]. 

Let P -- P] . . .  Jan be a generalized path. The behaviour of P = P~. . .  P, is described 
by the set of all vectors of firing sequences that might be produced by P. This set, 
denoted by VFS(P) and called the set of vector firing sequences of P, is defined by 
the following equality (see [14, 20, 10]): 

VFS(P) = (FS(Pt) x . . -  x FS(Pn)) n Vect(Alpha(P)*). 

We will show that notions FS and VFS are insufficient to describe the concept 
of functional equivalence (see Example 3.8). We need notions characterizing not 
only all system histories but also full system cycles. 
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Let us consider two single paths 

P I  = path 5p ; small ; p lunk end, 

P2 = path 5p ; small ; p lunk ; 5p ; small ; plunk end. 

Of course, FS(P1 ) = FS(P2), but P~ and P2 not necessarily specify equivalent systems. 
The first path, P~, may be interpreted as a specification of  one slot 5 penny vending 
machine, whilst the second path, P2, is rather a specification of the similar machine 
but under the addit ional  assumption that each customer buys two packets of  biscuits. 
FS's and VFS's rather describe how a system works, but sometimes we also need a 
formal description of what a system does. To this purpose we introduce notions of 
results for single and generalized paths. 

The result o f  a single path P is described by the language 

FFS(P)=IP[ ,  

which is called the set of  full firing sequences of P. 
The result o f  a generalized path P = P~ . . .  Pn is described by the set of  all resulting 

vectors of firing sequences that might be produced by P. This set, denoted by 

VFFS(P) and called the set of vector ful l  firing sequences of P, is defined by the 
following equality: 

VFFS(P)  = (FFS(PI) × ' '  • x FFS(P,))  c~ Vect(Alpha(P)*).  

In other words, VFS describes rather a procedure, while VFFS describes an aim. 
Of course, knowledge about the procedure not necessarrily implies knowledge about 
the aim, and vice versa. 

A generalized path P is said to be adequate (see [10, 14, 20]) iff 

(Vx e VFS(P))(Va ~ Alpha(P) ) (Vy ~ Alpha(P)*)  xya ~ VFS(P). 

Adequacy represents the absence of  even a partial deadlock. 

A generalized path P is said to be consistent iff Pref(VFFS(P)) = VFS(P). If P is 
consistent, then every history of  a system leads to a proper  result. The notion of  
consistency is very similar to the not ion of periodicity introduced by Shields [22]. 
In fact, both concepts have the same root, but the periodicity is a stronger property. 
One can prove that every periodic path  is consistent, but not vice versa. 

An action a e Alpha(P)  is said to be fireable iff 

(:Ix ~ Alpha(P)*)  xa ~ VFS(P).  

Lemma 3.5. I f  P is consistent and every action from Alpha(P)  is fireable, then P is 
adequate. 

Proof. Let A = Alpha(P) .  Let x ~ VFS(P).  Since VFS(P) = Pref(VFFS(P)),  we have 
(:ly ~ A*) xy ~ VFFS(P).  Let a ~ A. Since a is fireable, (3x '  ~ VFS(P)) x'a ~ VFS(P). 
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Since P is consistent, ( 3 y ' c  A*) x ' ay ' c  VFFS(P).  Note that if xt ~ VFFS(P) and 
x2e VFFS(P),  then XlX2~ VFFS(P). Thus, xyx 'ay ' e  VFFS(P), so xyx'a ~ VPS(P), 
but this means that P is adequate. [] 

3.2. The definition 

We will now return to our primary sequential single path and, derived from it, a 

generalized path. 
Let Ps be an arbitrary, fixed for the rest of  this section, single path representing 

sequential solution of  a given problem. 
Let A = Alpha(Ps) be the alphabet of  Ps, R = resource(Ps) be a set of abstract 

resources associated with Ps, r: A ~ 2 R be the resource association function, and let 
~: R --> 2 A be the action distribution function. Recall that ~ is fully described by r, and 

(Vx~ R) ~ ( x ) = { a l a ~ A & x ~ r ( a ) } .  

Assume that R = r e s o u r c e ( P s ) = { x t , . . . , x n } .  Let us put A i=  ~(xi) for i =  1 , . . . ,  n. 
Note that A-~ AI w- • -• A,. As was mentioned above, the behaviour of a single 
path Ps is described by a language FS(Ps), and the result of Ps is described by a 

language FFS(Ps). Note that  FS(Ps) = Pref(FFS(Ps)). 
To explain the intui t ion of  the next notions we consider the following example. 

Let Ps = path a ; b ; c end, resource(Ps) --- {xl, x2}, and r(a)  = {xi, x2}, r(b) = {xl}, 
r(c) = {x2}. Thus A1 = ~(x l )=  {a, b}, A 2 -  ~(x2)= {a, c}. In this case we have: the 

behaviour of  Ps, FS(Ps) = ( abc)*( ab u a ~ e) = { e, a, ab, abc, abca, abcab,. . .}, and 

the result of  Ps, FFS(Ps) = (abc)* = {e, abc, abcabc, . . . } .  
Let us reflect what k ind of sequence vectors may be interpreted (in accordance 

with our intuition) as a concurrent behaviour and a concurrent result defined by Ps 
and the function r. There is no problem with the result. Note that 

Vect(FFS(Ps)) = (abe)* = { e, abc ,  a b c a b c ,  . . . } ,  

so the difference between Vect(FFS(Ps)) and FFS(Ps) consists only in the fact that  
Vect(FFS(Ps)) enables one to perform independent  actions concurrently. 

Thus Vect(FFS(Ps)) may be treated as a concurrent result defined by Ps and 
the function r. The problem with behaviour  is somewhat more complicated. 
The set Vect(FS(Ps)) looks rather strange. For instance, abc~Vec t (FS(Ps ) ) ,  

a b  ~ Vect(FS(Ps)), but ac~  Vect(FS(Ps)) al though abe = a c b  ! 

From the notion of  behaviour we usually demand that the beginning of every 
history is also a history (compare [21]), or, in other words, the behaviour must be 
closed under  the operat ion Pref. On the other hand,  the concurrent behaviour defined 
by Ps and r should 'approximate '  Vect(FS(Ps)), because FS(Ps) defines the 
behaviour of  Ps and the Vect is an operation which forgets about superfluous 
sequentializations. 

The best 'approximation" of Vect(FS(Ps)) closed under Pref is merely the least 
set containing Vect(FS(Ps)) and closed under  Pref. One can easily prove that this 
set is equal to Pref(Vect(FFS(Ps))). Now we come back to our general considerations. 
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Let us denote 

VFS(Ps, r) = Pref(Vect(FFS(Ps))), 

VFFS(Ps, r) = Vect(FFS(Ps)). 

We assume that the set VFS(Ps, r) describes the behaviour (concurrent) defined 
by the single path Ps and the resource association function r, and we assume that 
the set VFFS(Ps, r) describes the result (concurrent) defined by the single path Ps 
and the resource associated function r. 

Now we may define the notion of functional equivalence. 
Let Pc denote a generalized path derived from Ps and r using rules described in 

Section 2 of this paper, i.e., let 

P c  = P s /  x ,  . . . P s /  x . .  

A single path Ps and a generalized path Pc are said to be functionally equivalent 
if and only if: 

(1) VFS(Ps, r )=VFS(Pc) ,  
(2) VFFS(Ps, r) =VFFS(Pc) .  

In other words, Ps and Pc are functionally equivalent if they describe the same 
behaviour and the same result. 

Note that VFS(Pc) and VFFS(Pc) can be described in terms of FS(Ps), FFS(Ps) 
and the mapping Vect. 

Lemma 3.6 

(1) VFS(Pc) = Vect(FS(Ps)). 
(2) VFFS(Pc) = Vect(FFS(Ps)). 

Proof. VFS(Pc) = (FS(Ps/xl)  x . . .  x FS(Ps/x , ) )  n Vect(A*). But 
hi(FS(Ps)) for i = 1 , . . . ,  n. The same holds for VFFS(Pc). [] 

F S (  P s / x , )  = 

Thus the functional equivalence can be formulated in terms of FFS(Ps), Vect and 
Vect. 

Lemma 3.7. A single path Ps and a generalized path Pc are functionally equivalent iff: 
( 1 ) Pref(Vect(FFs(Ps))) = Vect(Pref(FFS(Ps))). 
(2) Vect(FFS(Ps))= Vect(FFS(Ps)). 

Proof. The proof follows from the fact that FS(Ps) = Pref(FFS(Ps)) and by Lemma 
3.6. [] 

It turns out that frequently the equality VFS(Ps, r )=VFS(Pc)  does not involve 
the equality VFFS(Ps, r ) =  VFFS(Pc) and vice versa. 

Let us consider the following two examples. 
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Example 3.8. Let 

Ps = path a ; b end, r ( a )  = {xl}, r ( b )  = {x2}. 

Then 

Pc = system path a end path b end endsystem. 

Note that 

VFS(Ps,  r) = VFS(Pc)  = (a u b)*, 

but 

while 

VFFS(Ps,  r)= {(a k, bk)[k >~O}, 

VFFS(Pc)  = (a u b)* : {(a k, b~) lk  ~ 0, m ~ 0}, 

so VFFS(Ps,  r) # VFFS(Pc) .  

Example 3.8 shows that the notion of  VFS is insufficient itself to describe the concept 
of  functional equivalence. In this case, VFS(Ps, r ) =  VFS(Pc),  but Ps and Pc are not 
equivalent in the intuitive sense. 

Example 3.9. Let 

Ps = path (a ; c ; e), (b ; d ; f )  end, r ( a )  = {Xl}, r ( b )  = {Xl}, r ( c )  = {x2} , 

r( d) = {x2}, r( e) = {x~, x2}, r ( f )  = {xl, x2}. 

Then 

Pc = system 
path (a ; e ) ,  ( b  ; f )  end 
path (c ; e ) ,  (d ; f )  end 

endsystem. 

One may prove that 

VFFS(Ps,  r) = VFFS(P¢) = (ace ~ bdf)*, 

but 

a d z  VFS(Pc) - V F S ( P s ,  r), so VFS(Pc)  ~ VFS(Ps, r). 

The property of functional equivalence implies a very regular structure of Pc. 

Theorem 3.10. I f  Pc and Ps are functionally equivalent, then Pc is consistent and 
every action o f  Pc is fireable. 
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Proof 

VFS(Pc)  = VFS(Ps, r) = Pref(Vect(FFS(Ps))) = Pref(Vect(FFS(Ps))) 

= Pref(VFFS(Ps)),  

so Pc is consistent. Let a • A lpha (Pc )=Alpha (Ps ) .  Of  course, a is fireable in Ps, 

so there is x • Alpha(A)* such that xa • FS(Ps). Let xay • FFS(Ps). Since VFS(Pc)  = 
Pref(Vect(FFS(Ps))) ,  we have xa ~ VFS(Pc),  so a is also fireable in Pc- [] 

Corollary 3.11. I f  Pc and Ps are functionally equivalent, then Pc is adequate. 

Proof. The proof  follows from Theorem 3.10 and Lemma 3.5. [] 

The above corollary gives us a negative criterion for functional equivalence. I f  
Pc is not adequate  or if  it deadlocks, then Pc and Ps are functionally different. 

4. Necessary and sufficient conditions 

When a sequential  single path Ps is not complicated, then we can verify the 
functional equivalence directly from the defni t ion,  but when Ps is large, then such 

a procedure is a difficult and very uphill task. Unfortunately,  in the general case 
we do only know necessary conditions, and in order to prove the functional 
equivalence we must use the definition. 

But if  we restrict our attention to paths in which the repetition of actions is 

restricted, then an appropriate sufficient condition can be formulated and proved. 
A single path  P = path body end is said to be an E*-path iff no action occurs 

more than once in body (see [14]). 
Let P = P~ . . .  P, be a generalized path. 

A generalized path P = P~. . .  P, is said to be a GE*-path if every Pi (i = 1, 2 , . . . ,  n) 
is an E* -pa th  (see [14]). 

For every a e Alpha(P) ,  let occi(a)  denote the number  of occurrences of " a "  in 
P,. 

For instance, if  

P = system PI : path a ; b, a end P2 : path b, a ; b, c end enflsystem, 

then 

o c c l ( a ) = 2 ,  o c c l ( b ) = l ,  OCCl(C)=0, o c c 2 ( a ) = l ,  0cc2(b)=2,  occ2 (c )= l .  

A generalized path P = P ~ . . .  Pn is said to be a GRl*-path iff 

(Va • Alpha(P) ) (Vi  = 1 , . . . ,  n) occ,(a) > 1 ~ [(Vj # i) occj(a)  <~ 1]. 

In other words, an action a may be repeated in one path only. For instance, 

P = system path a ; b ; a end path b, a ; b end endsystem 
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is a GRl*-pa th ,  but 

P' = system path a ; b ; a end path a ; c ; a end 

is not a GRl* -pa th ,  because the action a occurs twice in two single paths. 
Let Ps = path b o d y  end be a single path, and let r:Alpha(Ps)->r res°urce<Ps) be a 

resource association function. Recall that the path Ps can be treated as an ordinary 
regular expression of the form Ps = (body)*. 

Let us put A = Alpha(Ps).  
Let I _c A × A be the following relation: 

(Va, b e A )  ( a ,b )  e I  ¢3 r ( a ) n r ( b ) = O .  

The relation I will be called the independence relation. The dependence relation is 
defined as D = A × A - I. 

Let us put L = FFS(Ps).  

Let E _ A × A be the relation defined as follows: 

(Va, b e A) (a, b) e E ¢:> (3x  e A*) xa e Pref(Vect(L)) & 

xb e Pref(Vect(L)) 

& xab ~ Pref(Vect(L)) & a ~ b. 

The relation E will be called the mutual exclusion relation. 

Every regular expression of the form (R)* or a*, where R is a regular expression, 
" a "  is a symbol,  will be called a starexpression. 

A symbol " a "  will be called an outer cycle generated by a*. 

A string x is said to be an outer cycle generated by a starexpression (R)* iff x e JR'I, 
where R'  is derived from R by replacing all starexpressions of R by e and removing 
all e's. 

Example  4.1. I f  R = a u b(cd)*e(g*f )*  w h*, then after replacing all starexpresions 
of R by e's we obtain a w beee u e, next after removing all e 's we have a u be; so 
R' = a u be, and  there are two outer cycles generated by ( R )* : a, be. 

A string x is said to be a cycle generated by a regular expression R iff there is a 
starexpression (R')* included in R, i.e., R = Q ~ ( R ' ) * Q 2  where Qie  

(Alpha(R) u {u ,  *, ), (})*, such that x is an outer cycle generated by (R')*. For 

instance, if  R is as in Example 4.1, then R generates the following cycles: cd, g, f ,  h. 
For every regular expression R, let CR denote the set o f  all cycles generated by R. 
For every string x, let Alpha(x) denote the set of symbols occurring in x. 

Let us put  C D  = {Alpha(x)]x e Cps}. The set CD will be called the set of cycle 
domains of  Ps. 

Example  4.2. I f  Ps = path a, (b ; (c  ; d )*  ; e)  end, then  C D  = {{a} ,  {b, e}, {c, d}}.  

Let Pc = Ps/x~ . . .  Ps /x .  be the generalized path derived from Ps and the resource 
association funct ion r. 
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For every relation Q, let Q+= Ui%l Qi= Q*Q. 

Theorem 4.3 (necessary conditions for the general case). Let Ps be a single path. I f  
Ps and Pc are functionally equivalent, then: 

(1) E n l = 0 ,  
(2) ( V X c C D ) ( V Y ~  X) 

( Y is a maximal subset of X such that (D n Y x Y)+ = Y x Y ) ~  Y ~  CD. 

The second condition means that the graph of dependency relation D restricted 
to any cycle domain is either connected or each of its maximal connected components 
also creates a cycle domain. 

Theorem 4.4 (sufficient conditions if Pc is a GRl*-path). Let Ps be a single path, 
and let Pc be a GRl*-path. If: 

(1) E n I = O ,  and 
(2) ( V X ~ C D )  ( D n X × X ) + = X x X ,  

then Ps and Pc are functionally equivalent. 

Here the second condition means that the graph of dependency relation D 
restricted to any cycle domain is connected. 

Theorem 4.5 (necessary and sufficient conditions if Ps is an E*-path).  Let Ps be an 
E*-path. Then: Ps and Pc are functional equivalent if and only if: 

(1) E c~ I = O, and 
(2) ( V X ~ C D )  ( D n X × X ) + = X x X .  

The proofs are long and they will be presented in a separate section (see Section 
6). 

5. Applications 

5. I. The cigarette smokers problem 

Patil [19] introduced the following synchronization problem: 

"Three smokers are sitting at a table. One of them has tobacco, another has cigarette 

papers, and the third has matches; each one has a different ingredient required to make 

and smoke a cigarette but he may not give an ingredient to another. On the table in 

front of  them, two of the three ingredients will be placed, and the smoker who has the 

necessary third ingredient should pick the ingredients from the table, make a cigarette 

and smoke it. Further ingredients are not put on the table until the old ones have been 

consumed. Other smokers must not interfere with the smoker who has the ingredients 

on the table before him. Hence co-ordination is required between the smokers." 
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The cigarette smokers problem was restated by Lauer and Campbel l  [11] in the 
following way: 

(1) Decide which of  the ingredients should be put on the table. 
(2) Produce each ingredient and place it on the table. 
(3) Choose the correct consumer to consumer the available ingredient. 
(4) Go back to (1). 

As a matter of  fact, the decision which of the ingredients should be put on the table 
immediately indicates the correct consumer. 

The final solution proposed by Lauer and Campbell  [11] is the following: 

PL¢ = system 
path supplytm, supplypt ; t obacco ,  m-smoker,  p-smoker end 
path supplytm, supplymp ; match ; t-smoker, p-smoker end 
path supplypt,  supp lymp ,  paper  ; t-smoker, m-smoker  end 

endsystem 

where the meanings of  actions are the following: 
supply tm--supply  tobacco and matches, 
supplymp---supply matches and paper, 
supplypt - -supply  paper  and tobacco, 
tobacco-- tobacco on the table, 
match matches on the table, 
pape r - -pape r  on the table, 
m-smoker- - the  smoker  with matches smokes, 
p-smoker-- the  smoker  with paper  smokes, 
t -smoker-- the  smoker  with tobacco smokes. 
A sequential solution of  the cigarette smokers problem is not  difficult, and it may 

be presented in the following form: 

Ps = path (supplytm ; tobacco ; match ; p-smoker), 
(supplymp ; match ; paper  ; t-smoker), 
(supplypt  ; paper  ; tobacco ; m-smoker) end 

In this case we have three abstract resources T, P, M interpreted as 

T-- tobacco ,  P - - p a p e r ,  M- -matches .  

The resource association function is the following: 

r(supplytm) = r(p-smoker)  = { T, M}, 

r (supplymp) = r(t-smoker) = {M, P}, 

r(supplypt) = r(m-smoker)  = {P, T}, 

r(tobacco) = { T}, r(Match) = {M}, r(paper)  = {P}. 
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Thus Pc = P s / T P s / M P s / M  is the following: 

Pc = system 
Ps/ T : 

Ps/ M : 

P d e  : 

path (supplytm ; tobacco ; p-smoker), 
(supplypt  ; tobacco ; m-smoker) end 
path (supplymp ; match ; t-smoker), 
(supplytm ; match ; p-smoker) end 
path (supplymp ; paper ; t-smoker), 

(supplypt  ; paper ; m-smoker) end 
endsystem. 

Note that Pc is a GRl*-pa th ,  so we can use Theorem 4.4. One can easily show that 
conditions (1) and (2) o f  Theorem 4.4 are fulfilled, so Ps and Pc are functionally 
equivalent. 

Note that  VFS(Pc)=  VFS(PLC), VFFS(Pc)=VFFS(PLc),  thus Pc and PLC are 
equivalent in the sense of  the Vector Firing Sequence Semantics. The Petri net 
simulating Pc (see rules in [13, 14, 11]) is simpler than the Petri net simulating PLC 
in that sense that the first one has less conflicts. 

5.2. The first reader- writer problem 

The first reader-wri ter  problem [1] may be formulated as follows (compare [12]): 

"Consider a system consisting of a single resource involving read and write operations 

and a set of "reader"  and "writer" processes which repeatedly use the operations to 

read from and write to the resource, respectively. It is required that any number of 

readers may be concurrently using the resource, but each writer must have exclusive 

use of it. Also, no writer may jointly use the resource with a reader. Furthermore, no 

reader should be kept waiting unless a writer is using the resource.'" 

The sequential specification of  that problem is trivial, and in the case of  n readers 
and m writers it looks as follows: 

Ps = path read~, r e a d 2 , . . . ,  readn, write~, wr i te2 , . . . ,  write,, end, 

where the interpretat ion of  actions is fully described by their names. 
In the case of  a noisy vending machine and cigarette smokers, the set of abstract 

resources corresponded to real system resources. In this case, we have only one real 
resource, so the set of  abstract resources must be defined in a different way. We 
recall that an abstract resource may be associated with a set of actions which, for 
various reasons, must be performed only one at a time. 

Note that  in this case the independence relation /, i.e., the relat ion describing 
which actions may be performed concurrently, can easily be described on the basis 
of the problem fo rmula t ion .  

Namely: 

I = {read~, readj)  I i # j} .  
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The family kens(I )  defined by the relation I is of  the form 

kens( I )  = {{wr i teb . . . ,  write,., r e a d l } , . . . ,  {wr i t e l , . . . ,  write,., read,}}. 

Let us put 

xi = {wr i t e l , . . . ,  write,., read/} for i = 1 , . . . ,  n. 

Thus resource (Ps) = kens( l )  = { x l , . . . ,  xn}, and 

(Vi = 1 , . . . ,  n) r(read,) = {x,}, 

( V j =  1 , . . . ,  m) r ( w r i t % ) = { x l , . . . , x n } ,  and 

( V i =  1 , . . . ,  n) ~(x,) = xi. 

Next, using the standard procedure from Section 2 we may obtain Pc = 
Ps/x~... Ps/x,, which is of the following form: 

Pc = system 

Ps/xl : path w r i t e l , . . . ,  writem, readi end 
• , , , . , - . , , - - , ,  ° ° . . Q . ° . . . ° ° ° , , , , ,  o , . , , . ° o . ,  

Ps/xn : path w d t e ~ , . . . ,  writem, readn end 
endsystem. 

In this case, Ps is an E*-path, so we can use Theorem 4.5. One can easily verify 
that Ps and Pc are functionally equivalent. Note that Pc is identical with a solution 
presented in [ 12]. 

5.3. Dining philosophers 

Now we consider the standard synchronization problem consisting of five phil- 
osophers who alternately think or eat [2]. To eat, a philosopher needs two forks, 
but unfortunately there are only five forks on the circular table and each philosopher 
is only allowed to use the two forks nearest to  him. Obviously, two neighbours 
cannot eat at the same time. Essentially, this is a resource allocation problem. 

Assume that  the philosophers and forks are numbered in the following way: 
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This system may involve the following actions: 

e imthe ith phi losopher eats, 
puf l i - - the  ith philosopher picks up a fork by his left hand, 
puf r imthe  ith philosopher picks up a fork by his right hand, 
pd f l i~ the  ith philosopher puts down his left fork, 
p d f r i ~ t h e  ith philosopher puts down his right fork, 

where i = 1 , . . . , 5 .  
The sequential  solution is also very easy, and it can be presented by the following 

single path: 

Ps = path (puff] ; pufrl ; el ; pdff~ ; pdfrl), 
(puff2 ; pufr2 ; e2 ; pdff2 ; pdfr2), 
(puff3 ; purr3 ; ea ;pdfla ; pdfrs), 
(puff4 ; pufr4 ; e4, pdfl4, pdfr4), 
(puffs ; pufrs ; es ; pdfls ; pdfr5) end. 

In this case we can distinguish five abstract resources: 

f~-- the ith fork, i = 1, 2, 3, 4, 5. 

The resource association function r is of  the following form. For every i = 
1 ,2 ,3 ,4 ,  5: 

r(e,) = {f/, f/el}, 

r(pufl~) = r(pdfl~) = {f~}, 

r(pufr~) = r(pdfr~) = {f~el}, 

where i C) 1 "= i f  i > 1 then  i - 1 e l se  5. 

The single path Ps and the function r define the following generalized path  Pc: 

Pc = sys tem 

Ps/f~ : path  (pufl~ ; e~ ; pdfl~), (purr2 ; e2 ; pdfr2) end 

Ps/ f2  : path  ( p u f f 2  ; e2 ; p d f l 2 ) ,  ( p u f r 3  ; es ; pdfr3) end 

Ps/f3 : path  (puff3 ; es ; pdff3), (pufr4 ; e4 ; pdfr4) end 
Ps/f4 : path  (pull4 ; e 4 , pdfl4), (pufr5 ; e5 ; pdfrs) end 

Ps/fs : path  (puffs ; e5 ; pdfls), (pufr~ ; el ; pdfr~) end 
endsys tem.  

Unfortunately,  the paths Ps and Pc are functionally different. One can use Theorem 
4.3 and show that for instance (pufl~, puff2)~ E n I. One can also prove that, for 
instance, pufl~ puff2 puff3 puff4 puffs e VFS(Pc)  -VFS(Ps ,  r). Moreover, Pc deadlocks 
after the performance of  the sequence pufll . . .  puffs, while Ps is obviously adequate.  

Let us observe that while decomposing Ps into Pc we lose the information that 
when the ith philosopher is going to eat, the philosophers i0) 1 and iO  1 must  think 
(i  ~ 1 := i f  i < 5 then i + 1 e l se  1 ). 
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For every i = 1, 2, 3, 4, 5, let lrf~ denote  the act ion in terpre ted as the beginning  o f  
a state "bo th ,  left, and  right, forks o f  the  ith ph i losophers  are on the tab le" ,  and  

let r ( l r f i )=  {f~,f~el}. 
The new sequential  so lu t ion  is the fol lowing:  

P~ = path (lrfl ; pufl~ ; pufr~ ; e~ ; pdfl~ ; pdfr~), 

(lrfs ; puffs ; pufr5 ; es ; pdfls ; pdfrs) end. 

Of course, from the sequent ia l  v iewpoint ,  Ps and P~ are essential ly the same. The 
single pa th  P~ and  the funct ion  r define the fol lowing general ized path  P~: 

P~ = system 
Ps/f~ : path (lrfl ; pufl~ ; e~ ; pd f l l ) ,  (Irf2 ; pufr2  ; e2 ; pdfr2) end 
Ps/f2 : path (lrf2 ; pUflz ; e2 ; pdfl2), (lrf3 ; pufr3 ; e3 ; pdfr3)  end 
Ps/f3 : path (lrf3 ; pull3 ; e3 ; pdfl3),  (lrf4 ; pufr4 ; e4 ; pdfr4) end 
Ps/f4 : path (lrf4 ; puff4 ; e4 ; pdfl4), (lrfs ; pufrs ; es ; pdfrs) end 
Ps/fs : path (lrfs ; puffs ; e5 ; pdfls), (lrfl ; pufrl  ; el ; pdfr~) end 
endsystem. 

Note  that  P~ is an E * - p a t h ,  so we can use Theorem 4.5. One  can prove (a l though 
in this case it is a somewhat  uphi l l  task) that  now E c~ l = 0  and  ( V X ~  CD)  
(D  c~ X x X )  ÷ = X x X, so P~ and  P~ are funct ional ly  equivalent .  

In this case, the in t roduc t ion  of  the act ions  ' lrf{ does pa tch  up the solution.  This 
in t roduc t ion  was not  suggested by the sequent ia l  solut ion,  to which,  as was stated 
above, they  make  no substant ial  difference;  this in t roduc t ion  was suggested by 
analysing reasons for which  Pc and  Ps tu rned  out to be func t iona l ly  different. 

6. The proof of necessary and sufficient conditions 

At first we prove Theorems  4.3 and  4.5, and  then Theorem 4.4. Proofs of  Theorems 
4.3 and 4.5 are by induc t ion  on the fo rm of  regular  expressions,  and  they consist  
of  a number  of  auxi l iary  lemmas.  

Let A, A I , . . . ,  A ,  be a lphabets ,  and  let A = AI u -  • • u A,. By a regular  express ion 
we will unders t and  a regular  expressions under  A. 

A regular  expression R is said to be an E*-express ion  if  there is no symbol  
occurr ing more  than  once  in R. 

In this section, for every x e A*, every L c A* and  every regular  expression R 
under  A, the  symbols A(x), A(L) or A(R) will denote  the set o f  all symbols  occurr ing 
in x, L or  R. Writ ing Vect and  Vect we will unders tand  that  Vect, Vect:  2a*--> 
2a~ ×... ×A*. 

For every VI, V 2 c: Veet(A*),  let 

(V1)* = {Xl . . .Xk[XiE V| ~ k ~ O } .  
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From the definition of  Vect we obtain the following results. 

Corollary 6.1 

(1) L I ~  L2 ~ Vect(Lt )_Vect (L2) .  
(2) Vect(Li)Vect(L2) _ Vect(L, L2). 
(3) Vect(L~) u Vect(L2) G Vect(L~ u L2). 
(4) Pref(Vect(L)) __. Vect(Pref(L)). 

For every B _  A, let hB: A*--> B* be the homomorphism given by 

( V a ~ A )  hB(a) = a ~ B .  

Let I G A × A be the following relation: 

(Va, b ~ A )  ( a , b ) s I  ¢:> ( V i = l , . . . , n )  a ~ A i o r b ~ A ~ .  

If  resource(Ps) = { x t , . . . ,  x,} and A~ = ~(x~), then 

(a, b) ~ I ¢~ r(a) n r(b) = O. 

Let D G A x A be the relation defined as D = A x A - L For every regular expression 

R, let ER ~ A x A  be the following relation (see the definition of E in Section 4): 

( a, b) ~ ER <=> (3x  ~ A*) xa ~ Pref(Vect(lR})) 

& xb ~ Pref(Vect(IRI)) & xab ~ Pref(Vect(IRI)) & a # b. 

Recall that, for every regular expression R, the symbol CR denotes the set of all 

cycles generated by R (see Section 4). For every regular expression R, let 

C D R = { A ( x ) I x ~ C R } .  

At present we can formulate the basic result of this paper. 

Theorem 6.2. Let R be an E*-expression, and let L = I R[. Then 

(Vect(L) = Vect(L) & Pref(Vect(L)) -- Vect(Pref(L))) ¢:> 

<::> (ER n I = 0 &  ( V X e C D R )  ( D n X  x X ) + = X  x X ) .  

Theorem 4.5 is a direct consequence of Theorem 6.2. 

Theorem 6.2 is somewhat  more general than Theorem 4.5 because here we do 
not assume that R is of the form (R')*. 

The proof  of Theorem 6.2 is by induction on the structure of a regular expression. 
For R = e, and R = a, where " a "  is a symbol, the theorem is obviously true. Now 

we will prove that it is also true for R = RIR2. 

Lemma 6.3. Let L1, L2 c A* and let A (  L1) n A(L2)=  O. Then we have Vect(L1L2)= 
~qect(L,) Vect(L2). 
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Proof 

Vect(L,L2)  = { ( x , , . . . ,  x,)l(:::lx ~ A*)  hi(x)  = xi ~ hi(L, L2)} 

= {(y, z l , . . . ,  ynz , , ) l (3x ~ A*)  hi(x)  = yizi 

& Yi ~ hi(L,)  & zi e hi(L2)} 

----- { ( Y l ,  • • - ,  Y n ) ( Z 1 ,  • • • ,  Zn)](:]X E A*)  hi(x) = yizi 

h ( L 0  & hi(L2)} = V. 

Let  x '  denote  a pro jec t ion  of  x on  A(L1), and let x" denote  a pro jec t ion  of  x on A(L2). 
Because A ( L ~ ) h A ( L 2 ) = 0 ,  we have hi (x ' )=  y,, h i (x" )=z i  for  i =  1 1 . . . ,  n. Thus 

we can write 

V = {(Yl,. • . ,  y , , ) ( z l , . . . ,  z~) I (3x ' ,  x " e  A*)  hi(x')  = y, e hi(L1) 

& hi(x") = z~ ~ h~(L2)} = Vect(L~) Vect(L2). []  

Lemma 6.4. Let  L~, L2 C _ A*,  A ( L 1 ) n  A ( L 2 ) =  0, and let V e c t ( L i ) =  V e c t ( L i ) f o r  i= 
1, 2. Then: Vect(LtL2)  = Vect(L~L2). 

Proof .  By the  defini t ion of  Vect we have: Vec t (L~L2)=Vec t (L1)Vec t (L2) ,  and by 
L e m m a  6.3: Vect(L~ ) Vect(L2) = Vect(L~ L2). 

Thus  we can  write 

Vect(L~Lz) = Vect(L~) Vect(L2) = Vect(L1) Vect(Lz) = Vect(L~L:) .  [] 

Lemma 6.5. Let  L~, L2 ~_ A*, let A(L2) n A(L2) = O, and let Vect(Pref(Li))  = 
Pref(v--e-~(L/)) for  i = 1, 2. Then: Vect(Pref(L1L2)) = Pref(Vect(L~L2)).  

Proof .  By Coro l l a ry  6.1(4) we have Pref(Vect(L1L2))_~ Vect(Pref(L~L2)).  

Let x = (xb  •. •, x , )  ~ Vect(Pref(LlL2)) .  This  means  that  

(::ly e A * ) ( V i =  1 , . . . ,  n) h , (y) - -  xi ~ hi(Pref(LlL2)).  

N o t e  that  

h, (Pre f(L1 L2 ) ) = hl (Pre f( L1 )) u h, ( L1 ) h, (Pre f '(L2 ) ), 

whe re  Pref ' (L2)  = Pref(L2) - (e}. 

Thus  every xi can  be represented  in the form:  xi = yizi, where 

(Yi ~ h i (Pref (Ll ) )  & zl = e) or (Yi ~ h , (Ll)  & z, ~ hi(Pref ' (L2))) .  

Let  us cons ider  (Yl, . . . ,  Y,). Since A ( L 1 ) ~  A ( L 2 ) =  0, we have 

Y, = hA(LO(YiZi) = hA(Lo(X,) = hA(L,)(h,(x)) = hi(hA(Ll)(X)), 

for  all i. Thus ,  we have Yi = h(y ' ) ,  for  all i, where  y ' =  hA(L,)(X). ThUS ( y ~ , . . . ,  y , )  
Vec t (Pre f (L , ) ) .  
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Similarly we  can show tha t  ( z ~ , . . . ,  z,) e Vect(Pref(L2)).  Recall that  y' = hA(L0(x); 
et z ' =  hA(~)(x).  

Since V e c t ( P r e f ( L ) )  = Pref(Vect(Li)) ,  i = 1, 2, we have  

y ' =  ( y ~ , . . . ,  y , )  ~ Pref(Vect (Ll) )  and  z ' =  ( Z l , . . . ,  z,)  e Pref(Vect(L2)).  

~et y" be a shortest  s tr ing such that  y'.v"e Vect(L~), and  let z" be a shortest  string 

uch that  z ' z"eVe-~(L2) .  For  all i =  1 , . . . ,  n, let y~= hi(y"), z~= hi(z"). Note  that  
,~ = e or z~ = e for every i = 1 , . . . ,  n. Let us put  x'  = y'y"z'z".  

Of course,  (Vi  = 1 , . . . ,  n) hi(x') = ycv~z~z~ ~ hi(L1L2), so x' e Vect(L~ L2). But since 

,~ = e or  z~ = e, we have hi(x') = y~v~z~zl = y~z~v'~z~. But this means  that  x e Pref({x'}) 
'ref(Vect(L~ L2)). [] 

~emma 6 . 6 .  Let L~, L2 ~_ A*, A(L~) n A(L2) = 9,  V e c t ( L i )  = Vect(Li) and  let 
~ref(Vect(Li)) = Vect(Pref(L~)) for  i = 1, 2. Then: 

Vect  (L~ L2) = Vect(L~ L2) and Pref(Vect(L~ L2)) --- Vect(Pref(Ll  L2)). 

'roof .  The  equal i ty  Vect(L~L2) = Vect(LiL2) fol lows f rom L e m m a  6.4. From L e m m a  

,.5 we have  Vect (Pref (L~L2))=  Pref(V---'g~(LxL2)). But f rom those two s ta tements  it 
ollows tha t  Pref(Vect(L~L2)) =Vect(Pref(LxL2)) .  []  

The above  l emma  proves  that  Theo rem 6.2 is t rue for R = R~ R2. The next  case 
ze must  p r o v e  is the case tha t  R = Rj u R2. 

e m m a  6 .7 .  Let R1, R2, R = R~ u R2 be E*-expressions. Let Li 
"ect(Pref(Li)) for  i -- l, 2. Let ER n I = 9. 

Then: Pref(Vect(L~ u L2)) = Vect(Pref(L~ u L2)). 

= IR, I, Pref(Vect(L,))  = 

'roof. Let us put  L =  Lt u L 2. By Corollaries 6.1 and  3.2 we have Pref(Vect(L))  _ 
"ect(Pref(L)). 

The o p p o s i t e  inclus ion will be proved  by contradict ion.  We assume that  
"ect(Pref(L)) - Pref(Vect(L))  ~ 9, and  then  we show that  ER n I ~ 9. 

Let xab be  the  fo l lowing vector  o f  sequences:  
(1) xab E Vect(Pref (L))  - Pref(Vect(L)) ,  

(2) (Vy E Vect (Pref (L)) )  l ength(y)  < length(xab):=>y ~ Pref(Vect(L)) .  

lote that  i f  V e c t ( P r e f ( L ) ) ~  Pref(Vect(L)) ,  then  there  exist min imal  vectors o f  

e c t ( P r e f ( L ) ) - P r e f ( V e c t ( L ) ) .  They must  differ f rom b, b ~ A(L) ,  because in that  

~se we w o u l d  have b ~ A ( L 1 ) n  A(/_~), contradic t ing the  hypothesis  that  R is an 

:*-express ion.  Thus, there  always exist such a vector  o f  sequences  xab. We have  
,,b e Vect (Pref (L))  - Pref (Vect (L)) ,  and  xa ~ Pref(Vect(L)) .  Because Rl,  R2, R = 

'.t u R2 are E*-expres s ions ,  A(LI )  n A(L2) = 9. Since A ( L i )  n A(L2) = 9, we have  

Pref(Vect (L))  = Pref(Vect(Ll  u L2)) = Pref(Vect(LI)  u Vect(L2)) 

= Pref(Vect(L~)) u Pref(Vect(L2)).  
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But Pref(Vect(Li) )= Vect(Pref(L~)) for i =  1, 2, so 

Pref(Vect(L))  = Vect(Pref(L~)) u Vect(Pref(L2)). 

Thus, xa ~ Vect(Pref(L1)) w Vect(Pref(L2)). Because A(L~) n A ( L : )  = 0, we have 

Ve ct (Pre f( L1 ) ) c~ Ve ct ( Pre f(L2) ) = { e }. 
Assume that  x a ~ V e c t ( P r e f ( L t ) ) .  This means that  ( V i = l , . . . , n )  h~(xa)~ 

h~(Pref(L1)). Since xab ~ Vect(Pref(Li u L2)) and A(L1)  c~ A(L2) = 0, we have 

(V i  = 1 , . . . ,  n) h,(xab) ~ h,(Pref(L~ u L2)) = h,(Pref(Ll)) u h,(Pref(L2)). 

Note that  xa ~ Vect(Pref(L~)) & xab ~ Vect(Pref(L~)) w Vect(Pref(L2)) implies that 
(3i)  h , (xab ) ~ h,(Pref(L2)). 

Assume that  (::lj){a, b}___ A~. This means that h~(xab)=x 'ab .  Since b occurs in 

x'ab, we have x ' a b ~  h~(Pref(Ll)), so x 'ab  ~ h~(Pref(L2)). Thus a s A(L2). On the 
other hand,  xa ~ Vect(Pref(L~)), so a ~ A(L~). But A(L~) c~ A(L2) = 0, and the 
assumption (~j)  {a, b} c_ Aj "leads to a discrepancy. Thus (a, b) e / ,  and of course 
xab = xba. 

Since Vec t (Pre f (L ) )=Pre f (Vec t (Pre f (L ) ) ) ,  we have x b ~ V e c t ( P r e f ( L ) ) .  But 
length(xb) < length( xab ), so xb ~ Pref(Vect(L)). 

In this way we have proved that 

xa ~ Pref(Vect(L)) & xb ~ Pref(Vect(L)) & xab ~ Pref(Vect(L)), 

so (a, b) ~ E~. 

We have also proved that ( a , b ) ~ l ,  thus E R ~ I ¢ O - - - - i n  spite of  the 
assumption. [] 

Lemma 6.8. Let  RI,  R2, R = R ~ u  R 2 be E*-expressions. Let Li = IRil, Vect(L~)= 
Vect(Li), Pref(Vect(L~)) = Vect(Pref(L~)) for  i = 1, 2. Let  ER c~ 1 = O. 

Then, Vect(L~ u/-,2) = Vect(Ll u/-,2). 

Proof. By Corol lary 6.1(3) we have Vect(L1) u Vect(L2) c_ Vect(Ll u L2). 

From Lemma 6.7 and the proof of Lemma 6.7 we obtain 

Vect(Pref(L1 u L2)) = Pref(Vect(L1 u L2)) = Vect(Pref(L~)) u Vect(Pref(L2)) 

x ~ Vect(L~ u/-.2) ~ x ~ Vect(Pref(Ll u L2)) ~ x ~ Vect(Pref(Ll))  
u Vect(Pref(L2)). 

Assume that  x ~ Vect(Pref(L1)). Since A ( L I )  n A(L2) = 0, this means that x ~ A(Lt )* .  

Thus x ~ Vect(L~ u L2) c~ Vect(Pref(L~)). But because A ( L I )  c~ A(L2)  = 0, we have 

Vect(L~ u/-,2) c~ Vect(Pref(L~)) = Vect(Ll). similarly for x e Vect(Pref(L2)). 
In this way we have proved that x ~ Vect(L~)u Vect(/_~). Thus, 

V e c t ( L l  L)/.,2) = Vect(Ll) w Vect(L:) = Vect(Ll) u V e c t ( L 2 )  = Vect(L~ u L2).  [ ]  

At this point  we proved the implication ~ for R = Ri u R2. 
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Lemma 6.9. Let  xa E Pref(Vect(L)) & xb ~ Pref(Vect(L)) & (a, b) ~ I. 
Then, xab ~ Vect(Pref(L)). 

Proof. By Corollaries 3.2 and 6.1 we have Pref(Vect(L)) ~ Vect(Pref(L)). 

xa ~ Pref(Vect(L)) & xb ~ Pref(Vect(L)) 

(Vi = 1 , . . . ,  n) hi(xa)  ~ hi(Pref(L)) & h,(xb) ~ h,(Pref(L)). 

Because (a, b )~  L if a e A~, then be~A~ and vice versa. 
Thus, (Vi = 1 , . . . ,  n) if a ~ A~, then h~(xab) = h~(xa), and if b e A~, then h~(xab) = 

hi(xb). Let us consider xab. From the above considerations it follows that 

(Vi = 1 , . . . ,  n) hi(xab) ~ hi(Pref(L)), so xab ~ Vect(Pref(L)). [] 
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Lemma 6.10. Let  R be any regular expression and let L =  JR]. 

Then, Pref(Vect(L)) = Vect( Pref( L ) ) ~ ER n I = O. 

Proof. Assume that  (a, b) ~ ER n / .  By the definition of  ER we have 

( 3 x )  xa ~ Pref(Vect(L)) & xb ~ Pref(Vect(L)) & xab ~ Pref(Vect(L)). 

By Lemma 6.9 we have: xab ~ Vect(Pref(L)). 
Thus, Pref(Vect(L)) ~ Vect(Pref(L)). [] 

The above lemma proves the implication ~ for R = RI u R2, thus Theorem 6.2 
is true for R = R1 u R2. To prove the whole theorem we must show its truthfulness 
for R = (Rl)*. 

Lemma 6.11 

Pref(Vect(L)) = Vect(Pref(L)) ~ Pref(Vect(L*)) = Vect(Pref(L*)). 

Proof. The p roof  follows by induction on the length of x from Vect(Pref(L*)). 
From Corollaries 3.2 and 6.1, we have Pref(Vect(L*)) c_ Vect(Pref(L*)). Note that 

e ~ Pref(Vect(L*)). 

Let x ~ Vect(Pref(L*)) n Pref(Vect(L*)). 
Note that Pref(Vect(L*)) = Vect(L*)Pref(Vect(L)). 
Let x =yz, where y ~  Vect(L*) and z e Pref(Vect(L)). 
Since Vect(L*) ~ Vect(L*), we have y ~ Vect(L*). 

Let us consider xa =yza  ~ Vect(Pref(L*)). By the definition we have 

( V i =  1 , . . . ,  n) h , ( y za )=  h , ( y )h , ( za )~  h,(Pref(L*))= h,(L*)h,(Pref(L)) .  

But this means that  (Vi = 1 , . . . ,  n) hi(za) ~ hi(Pref(L)), so za ~ Vect(Pref(L)). Since 
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Vect(Pref(L)) = Pref(Vect(L)),  we have za ~ Pref(Vect(L)). Thus 

xa = yza ~ Vect(L*)Pref(Vect(L)) = Pref(Vect(L*)). [] 

Lemma 6.12. Let R be an E*-expression of  the form R = (R')* and let L= [R I. 

Then, 

x c  L ¢:> x ~  Pref(L) & (3Xl, . . . , Xk ~ CR)(Vi= 1 , . . . ,  n) ha<x,)(x) e {x~}* 

& A ( x ) =  A ( x , ) w "  "uA(Xk) .  

Proof. The proof  directly follows from the definition of CR. If  x ~ L, then every 
cycle included in x must be closed. [] 

Lemma 6.13. Let R be a regular expression and let L = [R[. Let xyz ~ L, y ~ CR, y' ~ CR, 
y = y'y", and y' # e, y" ~ e. 

Then, xy' z ¢_ L. 

Proof. The proof  follows from the definition of CR. The string xy 'z  ~ L because it 
contains the beginning of  an open cycle. [] 

Lemma 6.14. Let R be an E*-expression and let L--IR[. 
Vect(Pref(L)). Let ( V X  ~ CDR,) (D c~ X x X)  + = X x X. 

Then, Vect(L*) = Vect(L*). 

Let Pref(Vect(L)) = 

Proof. Since L * ~  Pref(L*), by Corollary 6.1 we have Vec t (L*)~  Vect(Pref(L*)). 
From Lemma 6.11 it follows that Pref(Vect(L*))=Vect(Pref(L*)) ,  so Vect (L*)_  

Pref(Vect(L*)). 
Let x ~ Vec t (L*) -Vec t (L*) .  Thus, x e Pref(Vect(L*)) -Vec t (L*) .  From Lemma 

6.12 it follows that (=lx'e CR.) hA(x')(X)~ {X '}* .  Let us denote y = hA(x,)(x ). Of course, 
A(y)  c_ A(x ' )  and y ~ Pref({x'}*). For every symbol a and every string s, let #~(s )  

denote the number  of occurrences of a in s. For instance, #, , (abca) = 2. 
Since y ~  {x'}*, we have (:la, b ~ A(y) )  #Q(y) ~s #b(Y). 
Since x~Vec t (L*) ,  we have (Vi=  1 , . . . , n )  hi(y)shi(ha<,,,)(L*))=h~({x'}*). 

Assume that (3Aj) {a, b} e Aj. 

But since # a ( y )  ~ #b(Y) ,  we have #, , (hj(y))  ~ #b(hj(y)) ,  so hi(Y)¢_ hj({x'}*)--a 
discrepancy. Thus (a, b) ~ / .  

But this means that  (a, b) ¢~ (D  n A(x ' )  x A(x ' ) )  +. 
In this way we have proved that ( D n A ( x ' ) x A ( x ' ) ) + ~ S A ( x ' ) x A ( x ' ) ,  where 

A ( x ' ) c C D R .  [] 

Lemmas 6.11 and 6.14 prove the implication ~ for R = (R1)*. 

Lemma 6.15. Let R be a regular expression and let L = [R I. 
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Then, 

Vect(L) = Vect(L) 

(VX ~ C D R ) ( V Y ~  X )  ( Y is a maximal subset o f  X such that 

( D n  Y x  Y)+=  Y x  Y)  ~ YECDR. 

Proof. Assume that x'  ~ CR, X = A(x') ,  and (D  n X × X)  ÷ # X x X. Note that the 
above assumption implies card(X)  I> 2. 

Let xx'y ~ Vect(L). One can easily show that such a sequence vector always exists. 

Let Y _  X be a maximal  subset of X satisfying the condition (D n Y × Y)÷ = Y × Y, 
and Y~ CDR. Of  course, card(Y) I> 1. 

Let x"= hy(x ' ) .  Note that,  by the definition, xx"y ~ Vect(L), and,  by Lemma 6.13, 
xx"y ~ Vect(L). [] 

Lemma 6.16. I f  R is an E*-expression then the conditions given below are equivalent: 
( 1 ) (VX e CDR)(V Y c_ X )  ( Y is a maximal subset o f  X such that (D  n Y x Y)+ = 

Y × Y )  ~ Y ~ C D n .  
(2) (VX ~ CDR) (D n X × X)  + = X x X. 

Proof. The proof  follows from the definition of CDn. [] 

From the last lemma we obtain the implication ~ for R = (RI)*. In this way we 
proved Theorem 6.2. 

Note that the condi t ion ER n I = 0 is associated with the operat ion " w "  only, 

and the condit ion ( V X ~ C D R ) ( D n X  x X)  +--- X x X is only associated with the 
operation "*" .  

Because in Lemmas 6.11 and 6.15 we assume nothing about the form of R, they 

hold in the general case. Thus, we may formulate the following theorem. 

Theorem 6.17. Let R be a regular expression and let L = IRJ. 
Then, 

[Vect(L) = Vect(L) & Pref(Vect(L)) = Vect(Pref(L))] 

[ E R n I = O &  

(VX ~ CDR)(V y c  X )  ( Y is a maximal subset o f  X such that (D n 

Y x Y ) + = Y x Y )  ~ Y~CDR] .  

Proof. The proof  follows from Lemmas 6.11 and 6.15. [] 

Theorem 4.3 is a special case of Theorem 6.17 (for R = (R')*). We are now going 
to prove Theorem 4.4. The proof  will be based on the results of  Theorem 6.2. 

Let P =  P i - - - P ,  be a GRl*-pa th ,  and let A = A l p h a ( P ) ,  Ai=Alpha(P~)  for 
i = l , . . . , n .  
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Let B = { a [ ( 3 i e { 1 , . . . ,  n}) o c c i ( a ) >  1}. Since P is a GRl*-path ,  for every a ~ A  
there is at most one i such that occ~(a) > 1. For every a ~ B, let ia denote a number 

such that  occio(a)> 1. Let a ~ B, and let ma = occ~o(a). 
Let P '  denote the result of  converting P according to the following rules: 

"For  every a 6 B: 
(1) replace the ith occurrence of a in P~o by a&i, 
(2) for every i = 1 , . . . ,  i~ - 1, i,, + 1 , . . . ,  n, replace an occurrence of  a in P~ by 

the string a &l ,  a & 2 , . . . ,  a&rn~." 
The path  P '  is said to be a GE*-representation of the GRl*-path  P. The above 
construction is essentially the same as the general transformation of  generalized 
paths into GE*-paths given in [13]. Because P is a GRl*-path ,  a new numeration 
of repeated actions may be somewhat simpler than that of [13]. 

Example  6.18. Let P be the following GRl*-path:  

P = system 

path a ; b, a end 

path a ; c ;  c ;  c end 

path b, a ; c end 

endsystem. 

In this case, B = {a, c} and  

P' = system 

path a& l ; b, a&2 end 
path a&l ,  a&2 ; c&l  ; c&2 ; c&3 end 

path b, a&l ,  a&2 ; c&l,  c&2, c&3 end 

endsystem. 

Let A ' = A l p h a ( P ' ) ,  C = A - B .  Note that Cc_A'  and A ' - C ~ _ { a & i  la 

B & i~{1 ,2 , . . . }} .  
Let h~: Vect((A')*) -~ Vect(A*) be the following homomorphism: 

(Vb e A') h&(b) = b = a&ie  A ' -  C. 

Lemma 6.19 (follows from [13]). 
(1) VFS(P) = h~(VFS(P')) .  
(2) VFFS(P)  = h~(VFFS(P')) .  

Proof  (the idea). This is a consequence of the construction of P'. It turns out that 
Petri nets simulating P and P '  (according to standard rules from [13, 14]) are 
isomorphic. Let us consider the following simple example. 
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Let 

Thus 

P = system path a ; b, a end path a ; c end endsystem.  

P'  = system path a & l  ; b, a & 2  end path a & l ,  a & 2  ; c end endsystem. 

The appropriate simulating Petri nets N ( P )  and N ( P ' )  are the following: 

NCP) = 

For more details, the reader is referred to [13, 14]. [] 

Let Ps be a single path, and let resource(Ps)= { x l , . . . ,  x,}. Assume that A = 
Alldha(P), Ai = ~(xi) for i = 1 , . . . ,  n. Let Pc = P s / x l . . .  Ps/x,.  Assume that Pc is a 

GR 1 *-path. 
Let PEs denote the result of  converting Ps according to the following rule: 

"'For every a ~ A, if a occurs more than once in Ps, then the ith occurrence 

of a is replaced by a&i." 
For instance, if Ps = path a ; (b, a)*, b ; c, a end, then PEs = path a&l  ; (b&l,  

a&2)* ,  b&2 ; c ; a&3  end. 

Let us extend the resource association function r on Alpha(P ' )  in the following 
way: (Va&i ~ Alpha(P ' ) )  r(a&i) = r(a). 

Let PEc = PEs/xl ,  • • •, PEs/x, .  

L e m m a  6.20. PEc is a GE*-representation of Pc. 

Proof. This is a simple consequence of the construction of the GE*-representa- 

tion. [] 

Theorem 6.21. Let L = [Psi. 
Then: 

(Eps c~ I =O & ( V X  ~ CD~, s) (D n X x X)+= X x X )  :=> 

(Vect(L) = Vect(L) & Pref(Vect(L)) = Vect(Pref(L))). 
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Proof. Assume that  Evs n I = 13 & (VX ~ CDps) ( D  n X x X)  + = X x X. 
Let A ' =  Alpha(PEs)  and let Ie`, De`_~ A ' x  A' be the following relations: 

IR,= {(0¢, fl ) l ( he`( a), he`(fl ) ) ~ I}, 

De` = A' x A ' -  Ie`. 

Let L ' =  IPEs]. From the definitions of PEs and he` we have 

Vect(L) -- he`(Vect(L')), Pref(Vect(L)) --- he`(Pref(Vect(L'))). 

From the above statement and the definitions of Ie`, De, we obtain 

(1) (hs:(a), h&(fl))e Eps ~ (o~, f l ) e  EpEs, 
(2) ( ( V X ~  CDPs) ( D n X  × X ) + = X  x X )  ~ ((VXE CDpEs) (De, n X  × X )  + 

= X x X ) .  

But this means simply that  

(Ep~n I =!3& ( V X ~ C D v s )  ( D n X  x X )  + = X  x X )  

(Epss n I =13& (VX E CDpEs) ( D e ` n X  × X ) +  = X x X ) .  

By Theorem 6.2 we have 

(EvEs n [ =13 & (VXE CDpEs) ( D & n  X x X )  + = X × X )  ¢:> 

¢:~ (Vect(L') = Vect(L') & Pref(Vect(L')) = Vect(Pref(L'))). 

By the definition of he` we can write 

(Veet(L') = Vect(L') & Pref(Vect(L')) = Vect(Pref(L'))) 

(he`(Vect(L')) = he`(Vect(L')) & he`(Pref(Vect(L'))) 

= he`(Vect(Pref(L')))). 

As we have stated above, from the definitions of PEs and he` we have 

he`(Vect(L')) = Vect(L), he`(Pref(Veet(U))) = Pref(Vect(L)). 

From Lemmas 6.19 and 6.20 we obtain 

he`(V-e--~(L')) = he`(VFFS(P')) = VFFS(P)  = Vect(L), 

he`(Vect(Pref(L'))) = he`(VFS(P')) = VFS(P)  = Vect(Pref(L)). 

But this means that 

(Vect(L') = Veet(L') & Pref(Vect(L')) = Vect(Pref(L'))) 

(Vect(L) = Vect(L) & Pref(Vect(L)) = Veet(Pref(L))),  

which ends the proof  of the theorem. []  

Theorem 4.4 is a consequence of the above theorem. Necessary and sufficient 
conditions for the general ease are an open problem still. 
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7. Final comments 

The method presented above has two disadvantages: first, sometimes it leads to 
functionally different specifications, and second, the necessary and sufficient condi- 
tions for functional equivalence are not easy to verify, particularly the construction 
of the relation E may be uphill; furthermore, sufficient condition are unknown in 

the general case. 
The second fault may be mended in future, but the first unfortunately not. The 

good point of the method lies in the fact that we start with a sequential solution. 
Long before now, people have stated that it is very difficult to comprehend the 
combined effect of activities which evolve simultaneously and with independent 
speeds. Up till now, the human imagination, not technology, is a main obstacle in 
use of concurrency in computers. It is hard to avoid the conclusion that we 
understand concurrent events by looking at sequential subsets of them. We suppose 
there are two natural methods of specifying concurrent systems. The first of them, 
very popular, consists in the logical decomposition of the problem into sequential 
in the course of nature components, independent designing each component, and 
next superposing all components. Among others, the COSY path expressions and 
Hoare's CSP [4] are examples of that approach. The second method is presented 
in [6, 7, 17, 16] and in this paper. For some applications, this second method seems 
to be more convenient (see examples in [171). We also feel this paper can only be 
treated as a first step towards a methodology which starts with a primary sequential 
solution. The general transformations are probably more complicated than those 
presented in Section 2. 
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