
University of Zurich
Zurich Open Repository and Archive

Winterthurerstr. 190

CH-8057 Zurich

http://www.zora.uzh.ch

Year: 2008

A Bayesian Network Based Approach for Change Coupling
Prediction

Zhou, Y; Wuersch, M; Giger, E; Gall, H C; Lue, J

Zhou, Y; Wuersch, M; Giger, E; Gall, H C; Lue, J (2008). A Bayesian Network Based Approach for Change
Coupling Prediction. In: Working Conference on Reverse Engineering, Antwerp, Belgium, 15 October 2008 - 18
October 2008, 27-36.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Working Conference on Reverse Engineering, Antwerp, Belgium, 15 October 2008 - 18 October 2008, 27-36.

Zhou, Y; Wuersch, M; Giger, E; Gall, H C; Lue, J (2008). A Bayesian Network Based Approach for Change
Coupling Prediction. In: Working Conference on Reverse Engineering, Antwerp, Belgium, 15 October 2008 - 18
October 2008, 27-36.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Working Conference on Reverse Engineering, Antwerp, Belgium, 15 October 2008 - 18 October 2008, 27-36.



A Bayesian Network Based Approach for Change Coupling
Prediction

Abstract

Source code coupling and change history are two important data sources for change coupling analysis.
The popularity of public open source projects in recent years makes both sources available. Based on
our previous research, in this paper, we inspect different dimensions of software changes including
change significance or source code dependency levels, extract a set of features from the two sources and
propose a bayesian network-based approach for change coupling prediction. By combining the features
from the co-changed entities and their dependency relation, the approach can model the underlying
uncertainty. The empirical case study on two medium-sized open source projects demonstrates the
feasibility and effectiveness of our approach compared to previous work.



A Bayesian Network Based Approach for Change Coupling Prediction

Yu Zhou1,2, Michael Würsch2, Emanuel Giger2, Harald Gall2, Jian Lü1

1State Key Lab. for Novel Software Technology, Nanjing University, China
2Software Evolution and Architecture Lab., University of Zurich, Switzerland

{zhou,wuersch,giger,gall}@ifi.uzh.ch, lj@nju.edu.cn

Abstract

Source code coupling and change history are two im-
portant data sources for change coupling analysis. The
popularity of public open source projects in recent years
makes both sources available. Based on our previous re-
search, in this paper, we inspect different dimensions of soft-
ware changes including change significance or source code
dependency levels, extract a set of features from the two
sources and propose a bayesian network-based approach
for change coupling prediction. By combining the features
from the co-changed entities and their dependency rela-
tion, the approach can model the underlying uncertainty.
The empirical case study on two medium-sized open source
projects demonstrates the feasibility and effectiveness of our
approach compared to previous work.

1. Introduction

Continuing change is one of the accompanying phenom-
ena along with software evolution [17]. The fact that huge
costs accumulate during the evolution phase stresses the im-
portance of research on the underlying changes [1]. The
public availability of open source project repositories pro-
vides a large data set for various research, including change-
coupling analysis. Mining these repositories to guide future
changes has become a common practice [19] in software
evolution research. Similar to the ideas presented by Zim-
mermann et al. in [30], Developers conducting software
maintenance tasks can be augmented by tools that for ex-
ample provide a warning that if you apply a change to this
entity, you will probably also have to propagate it to that en-
tity later. This information is also helpful during program
comprehension in general and reverse engineering in par-
ticular, as a programmer can quickly get an impression of
the dependencies between the parts of a system in terms of
change couplings.

Existing work on change-coupling typically leverages
change history information from version control systems to

extract co-change patterns. These are sets of files that fre-
quently changed together in the past, e.g., they often appear
in the same CVS commit action [9]. However, the types of
changes, which usually have different implications on the
co-change probability of other related entities, are not con-
sidered. For example, the indentation formatting and class
restructuring definitely have a different change impact on
other entities. Static dependencies within the code are an-
other source of heuristics to guide change coupling analy-
sis. For instance, adding new methods to abstract classes
or interfaces will very likely lead to co-changes along the
inheritance hierarchy or in the implementing classes.

Change history offers a valuable source for future change
prediction. Existing work in this area tends to omit two im-
portant dimensions concerning change-couplings, i.e., the
author that was responsible for a particular change and the
exact time when the change happened. Different develop-
ers are usually assigned with different roles for particular
kinds of software entities. This is especially the case for
medium or large-scale software development with numer-
ous developers contributing to one system. Due to such
code-ownership mechanisms, changes applied by a partic-
ular programmer are more likely to propagate between the
entities of his responsibility than to those of others. Chang-
ing a software system is a continual activity. More recent
changes to a part of the system reflect that it is/was under
active development and therefore likely to change again in
the near future [12].

Neglecting the information mentioned above inevitably
reduces the prediction performance. In recent case studies,
this fact often reflects in the imbalance between precision
and recall rates, as seen for example in [20, 29, 30]. In
order to achieve a high value of one of either rates, the other
usually has to be sacrificed.

The cause-effect analysis of change coupling coincides
with the idea of a Bayesian network (a.k.a., probabilistic
cause-effect model) which is based on conditional proba-
bilistic theory. Due to its ability to reveal the underlying
causality, the Bayesian network has a wide range of appli-
cations for modeling the uncertainty [5, 6, 20, 27].

1



The above observations motivate us to reconsider the
process of analyzing software changes by investigating
what kind of information provided by current version con-
trol systems are most relevant to change couplings. We in-
corporate these into a Bayesian network based approach to
model the uncertainty, which allows us to infer possible co-
changes between entities in the future.

More formally expressed, given a set of entities Se =
{e1, e2, ...en} that belong to a software system and given
that a change was applied to some entity ei ∈ Se, this paper
presents an approach to predict the set of other entities Sc =
{Sc ⊂ Se | ei /∈ Sc} that are also likely to change. Our
work makes the following contributions:

1. We present a change propagation model based on a
Bayesian Network that incorporates static source code
dependencies as well as different features extracted
from the release history of a system, such as change
type significance and author information.

2. In a case study with two open source systems, we
demonstrate that our change propagation model is able
to predict future change couplings. By incorporating
evolutionary data, we are able to outperform similar
existing approaches significantly.

The remainder of this paper is organized as follows: In
Section 2 some background information on change type sig-
nificance levels, and the Bayesian network model is given.
Section 3 explains our approach in detail. We evaluate
the proposed approach in Section 4 by means of two open
source case studies, i.e., Azureus1 and ArgoUML2. A dis-
cussion of the results and also of the threats that might affect
the validity our approach is held in Section 5. We present
related work in Section 6. Section 7 concludes our work.

2. Background

In this section, we give a short introduction to change
type significance and Bayesian network.

2.1. Change Type Significance

Common version control systems, including CVS, store
changes between subsequent versions usually on a diff-
based textual level and therefore even simple indentations
can generate a change record. Aware of this, distilling
change significance according to different types is needed
to improve co-change analysis [25].

Our taxonomy of source code changes allows a more dif-
ferentiated view on source code changes, as it is based on

1http://azureus.sourceforge.net/
2http://argouml.tigris.org/

tree edit operations on the abstract syntax tree rather than
on textual line changes. The atomic operations include
insert, delete, and substitute based on which move- and
update-operations can be derived. The significance level
(e.g., low, medium, high, crucial) denotes the level of im-
pact of a change operation on other source code entities.
To asses the significance level, changes are classified into
two gross categories: body-part changes and declaration-
part changes. The former includes method body changes,
structure statement changes, and class body changes; while
the latter includes access modifier changes, final modifier
changes, attribute declaration changes, method declaration
changes, and class declaration changes. The basic met-
rics for mapping these change types to different signifi-
cance levels are based on complexity indicators (e.g., nest-
ing depth), or whether they are functionality-modifying or
functionality-preserving. For details, we refer to our previ-
ous work [8, 9, 10].

2.2. Bayesian Network

A Bayesian network is a directed acyclic graph model
that represents conditional independencies between a set of
variables [22]. It has two constituents: One is a network
graphical structure which is a directed acyclic graph with
the nodes of variables and arcs of relations. The other is
the conditional probability table associated with each node
in the model graph. Machine learning techniques are able
to estimate the structure and the conditional probability ta-
ble from the training data. The table represents the condi-
tional probability distribution of the associated graph nodes.
Based on the Bayesian probability inference, the condi-
tional probability can be estimated from the statistical data
and propagated along the links of the network structure to
the target label. By setting a threshold of confidence, the
final probability value can be used as the indication for the
classification decision.

The Bayesian formula can be mathematically expressed
as below:

P (Hj |
−→
E ) =

P (
−→
E |Hj)× P (Hj)∑n

i=1 P (
−→
E |Hi)× P (Hi)

(j = 1, 2, ..., n)

(1)
According to the basic statistical theory, e.g., the Chain

Rule and independency relation derived from the network
structure, the joint probability of

−→
E can be calculated by

the production of local distributions with its parent nodes,
i.e.,

P (
−→
E ) =

n∏
i=1

P (Ei|ParentOf(Ei)) (2)

In the above formulas,
−→
E denotes a set of variable val-

ues, i.e.
−→
E = {E1, E2, . . . , En}. H is termed as hypoth-

2



esis. P (H) is called the prior probability and P (H|
−→
E ) is

called posteriori probability of H given
−→
E . If Ei has no

parent nodes, P (Ei|ParentOf(Ei)) is equal to P (Ei).
In our case, we use the Bayesian network model to an-

swer the following question: given the features that be-
long to two software entities, for example names, authors,
change significance levels, etc., are they likely to co-change
in a revision transaction or not?

3. Approach

Our approach consists of three sequential steps:

1. Data Import & Preprocessing includes extracting the
change history information and the reconstruction of
the transactions from the version control repository
[23], transforming the selected source releases into
FAMIX model [4], and extracting the fine grained
source change information [10]. This data is used to
build the Release History Database (RHDB) [7].

2. Feature Extraction and Instance Generation involves
selecting features that influence on whether two enti-
ties might co-change. These features and their con-
crete values—features instances—are used to build the
network in the next step.

3. Training & Validation uses the selected entities and
their instances to feed and build up the network struc-
ture, then calculates the conditional probability values
to predict future co-changes. Features are the nodes of
the Bayesian network and feature instances are entries
in the probability table of their associated node.

We explain each step in detail in this section. Figure 1
illustrates our approach.

3.1. Data Preprocessing

While version control systems clearly provide an invalu-
able aid in the team development process, they often show
severe deficiencies when it comes to accessing the histori-
cal data for software evolution analysis. These deficiencies
make additional data extraction and processing steps neces-
sary which can be automated by using EVOLIZER, our soft-
ware evolution research and analysis platform. EVOLIZER
basically stems from the idea of having a Release History
Database (RHDB) [7] that integrates information originat-
ing from various repositories, such as CVS and Bugzilla, in
a single database. In the following we describe the three
tasks that are necessary 1) to infer the transactions that give
information about the co-change relationships of the files
under version control, 2) to calculate the static source code
dependencies, and 3) to extract and classify the source code

FAMIX Model Persistence
Management

RHDBChange 
Significance Levels 
and Transactions

Step 1: Data Import/Preprocessing

Connector
(ORM or JDBC)

Dependency
Weight 

Discretization

Co-Change
Feature Extraction

Dependency 
File

Historic
Co-Change 

Features

Co-Change
Candidate Sets

Change Occurence
Entity

Instances 
Generation

Bayesian Network
Classifier

Structure 
Learning

Parameter 
Learning

Evolizer
FAMIX Engine

Transaction 
Recovery

Prediction Validation

Training

Step 2: Feature Extraction and Instance Generation

Step 3: Training and Validation

Featured Instances

ChangeDistiller

Source Code

Change History

Version Control
Repository

Figure 1. The Change Prediction Process

changes into change types which allows to asses their sig-
nificance level in terms of the impact of the changes on other
source code entities.

Task 1: Co-changes. CVS provides only file-based ver-
sioning but does not store information about change sets or
transactions, i.e., about the set of files that where changed
together. To recover the transactions, EVOLIZER retrieves
all modification reports from CVS and uses a sliding win-
dow algorithm to group them [7, 30]. The result is then
stored in the RHDB for further processing.

Task 2: Static Source Code Dependencies. While
the previous task is able to reveal implicit and evolution-
ary dependencies, so called logical couplings, the second
task complements this data with information derived from
an analysis of the static dependencies within the source
code, e.g., caller-callee or inheritance relationships. For
that, EVOLIZER builds a FAMIX model [4] for all releases
(or any snapshot, if configured so) of a system, based on the
source code retrieved from CVS, and stores it in the RHDB.
FAMIX is a language-independent source code metamodel
that has proved itself useful in many applications, e.g., in
[16, 24].

Task 3: Change Significance Levels. CHANGEDIS-
TILLER extracts source code changes based on the algo-
rithm presented in [10] and classifies them according to a
taxonomy of source code changes into change types [8]. For
that, it uses EVOLIZER to interface the RHDB and applies
tree differencing pairwise on abstract syntax trees generated
from subsequent revisions of the source code files that con-

3



tribute to the system under investigation. The fine-grained
change data, including the change classification, are also
stored in the RHDB for later use.

After these three tasks are completed, we have all the
data about the change history of the system under inves-
tigation at our disposal. Next we explain in detail which
features we extract from the data generated so far and how
we feed them into a Bayesian network in order to be able to
predict future changes.

3.2. Feature Extraction and Instance Generation

This step is concerned with identifying features that are
related to co-change events. We extract the concrete in-
stances of these features from the RHDB that we have built
during the data preprocessing phase described in the last
section.

Instead of simply giving considerations to past co-
change occurrence, we choose a set of factors that most
likely have an effect on the co-change relation between en-
tities, e.g., these are features that cause a certain set of
files being often changed together and then committed in
the same transaction to a CVS repository. The features are
static source code dependency level, co-change frequency,
change significance level, age of change, and author. We
consider these to be good indicators for co-change occur-
rence because:

Source Code Dependency Level. Static source code
dependencies, such as message passing between classes,
inheritance, or interface implementations can influence
the co-change behavior of source code entities. For in-
stance, adding a new method to an interface will propa-
gate to all implementing classes. We consider two kinds
of dependencies: associations between classes (denoted
D DEP LEVEL), in particular method calls, and hierarchi-
cal dependencies (denoted H DEP LEVEL), such as inher-
itance and interface implementation. We count the number
of each kind of dependencies between two source code en-
tities and discretize them into different levels: low, middle,
high and uncertain. Discretization is done as follows: un-
certain expresses the absence of any direct dependency. In
case of the D DEP LEVEL, the total number of dependen-
cies of the given entity is divided into the three intervals
low, middle, high. For example, given three packages p1,
p2, and p3, if there are 90 calls from p2 to methods in p1

and 10 calls from p3 to p1, the total number of dependen-
cies on p1 is 100 and we classify the dependency between
p1 and p2 as high, and the dependency between p1 and p3 as
low respectively. In case of H DEP LEVEL, values above
average are classified as high, all others as low.

Co-Change Frequency. This reflects how many times
entities changed together in the past. It is a commonly used
factor in literature on change prediction, for example in [20,

29, 30]. We discretize the co-change frequency for each pair
of entities e1 and e2 as follows: We calculate the number of
transactions that contain both, e1 and e2, and divide this
value by the total number of transactions that contain e1.
If the result is above the threshold 0.5, we classify the co-
change frequency as high, otherwise as low.

Change Significance Level. In [8], Fluri and Gall as-
signed a significance level to source code changes in terms
of the change impact on other source code entities. For in-
stance, changing the signature of a method will most likely
affect all of its callers whereas renaming a local variable
only affects its local scope. According to their classifica-
tion, we calculate for each change whether its significance
level is low, middle, high, or crucial.

Age of Change. Age of change considers the point in
time of a change. If the changes are old, it implies that
an entity is more stable. Therefore recent changes indicate
a more change prone entity in the near future. We divide
the whole project life span into four periods of equal length
and classify changes depending on the period that they took
place in into old, middle, new, or latest.

Author. Taking the author of a change into account is
based on organizational aspects of large-scale distributed
software development with multiple participants. Usually
a developer works on her assigned entities as a work pack-
age or in terms of code ownership.

The purpose of our approach is to predict co-changes.
Using the Bayesian network model and given a change in a
specific entity, we are able to say how likely it is that a cer-
tain other entity has to be changed in conjunction. We need
three other features to incorporate this goal in the network.

Change request. This denotes the entity that initially
changes due to a request, e.g., because there is a need to fix
a bug, apply refactoring measures, etc.

Change candidate. The change candidate is the entity
for which we predict the probability that it will change to-
gether with the entity of the change request.

Co-Change. This is the target label we want to predict.
It has the instances yes or no to indicate whether or not the
candidate entity changes together with the change request
or not. The final feature set can be found in Table 1.

We take the following procedure to generate the in-
stances (the algorithm is also outlined in Algorithm 1):

1. Trace the revisions in the RHDB, get the change
entity in a transaction with their change age, author name
and change significance level. This information can be re-
trieved from the RHDB database (Lines: 7 to 8). 2. Se-
lect candidates from the their dependent set, and their de-
pendency level (Lines: 9 to 10). 3. Check their past co-
change frequency (Lines: 11 to 14). 4. Check whether they
co-changed in this transaction. If it is true, label it with
‘yes’, otherwise ‘no’, and update the co-change historical
frequency (Lines: 15 to 23). The change frequency can be

4



Data: rreq:revision request
Result: InstanceList
begin1

InstanceList←− ∅;2
depList←− dependentSetOf(rreq);3
pastList←− pastCochangeSetOf(rreq);4
transList←− transactionSetOf(rreq);5
ins: Instance ;6
Assign rreq to ins.changerequest;7
Retrieve and assign rreq′s author name, change age and8
significance level features to ins;
for ri ∈ depList do9

Assign dependLevel to ins.dependlevel;10
if ri ∈ pastList then11

ins.pastchangelevel←− pastFrequency(ri);12
else13

ins.pastchangelevel←− no ;14

if ri ∈ transList then15
ins.label←− yes;16
if ri /∈ pastList then17

add ri to rreq’s pastList;18

updateCoChangeRateSet(rreq, ri);19
else20

ins.label←− no;21
if ri ∈ pastList then22

updateCoChangeRateSet(rreq, ri);23

InstanceList←− InstanceList ∪ {ins}24

for ri ∈ pastList− depList do25
ins.dependlevel←− uncertain;26
ins.pastchangelevel←− pastFrequency(ri);27
if ri ∈ transList then28

ins.label←− yes;29
updateCoChangeRateSet(rreq, ri);30

else31
ins.label←− no;32
updateCoChangeRateSet(rreq, ri);33

InstanceList←− InstanceList ∪ {ins}34

for ri ∈ transList− (pastList ∪ depList) do35
ins.dependlevel←− uncertain;36
ins.pastchangelevel←− no;37
ins.label←− yes;38
add ri to rreq’s pastList;39
updateCoChangeRateSet(rreq, ri);40
InstanceList←− InstanceList ∪ {ins}41

end42

Algorithm 1: Feature Extraction and Instance Generation

Feature Name Value(s)
CHANGE REQUEST entity name
AGE OF CHANGE {old, middle, new, latest}
AUTHOR author name
SIG LEVEL {low, middle, high, crucial}
D DEP LEVEL {uncertain, low, middle, high}
H DEP LEVEL {uncertain, low, high}
CHANGE CANDIDATE candidate name
PAST CO CHANGE LEVEL {none, low, high}
CO CHANGE LABEL {yes, no}

Table 1. List of Features

calculated by the co-change times divided by the transaction
numbers. 5. Select candidates from co-change history but
not included in the dependency. Since it has no dependency
level, assign the dependency level with ‘uncertain’ (Lines:
25 to 26). 6. Check their past co-change frequency, assign
the co-change rate to the instance, and label them for this
transaction (Lines: 27 to 33). 7. Select those entities that
co-changed in this transaction but not included in the above
two sets, label it ‘yes’, add it to the historical co-change list
and update the accompanied frequency rate (Lines: 35 to
40).

3.3. Bayesian Network Training and Prediction

Now that we have generated the set of instances, they are
used to build the Bayesian network. For evaluation purpose,
the set is divided into two parts: one is considered to be the
training set, the other is used for prediction. By training,
we mean using the entities in the training set to learn the
structure and the parameters of the Bayesian network. By
prediction, we mean using the trained Bayesian network to
predict the remaining part of the dataset and evaluate the
precision rate as well as recall rate. As the instances are
populated from the repository, each candidate is labeled as
yes or no for the co-change occurrence in the same trans-
action with the initial change request entity. Thus this is a
supervised learning process.

The practical Bayesian network application emerged
much later in contrast to the relatively long history of
Bayesian network theory. This is primarily due to the ex-
pensive computation requirement [2].

We use the K2 algorithm developed by Cooper et al. to
overcome this limitation. K2 is a greedy search based learn-
ing algorithm. It begins with the assumption that a node has
no parents, and then adds incrementally the parent whose
addition increases the probability of the resulting structure
the most. By using this heuristic, the complexity is reduced
to polynomial time [3]. It is widely used as a classical struc-
ture learning technique in Bayesian networks, and known
for its good performance [18].

When structure learning is completed, the network pa-
rameter learning process (i.e., the conditional probability
table associated with the node) starts. We use the SimpleEs-
timator algorithm implemented in WEKA [28] which calcu-
lates the feature frequency values from training sets and de-
duces the corresponding probability according to Formula 1
and 2 in Section 2.2.

4. Case Study

The selection criterion for our case study is based on the
following considerations:

5



1. Medium to large scale open source projects that pro-
vide public access to source code and use a versioning
system that allows us to extract the historical informa-
tion;

2. Projects with multiple contributors and a relatively
long history, i.e., at least three years;

3. Projects with large group of users and broad applica-
tion domain in practice;

Azureus and ArgoUML fit these requirements well. The
former is one of the most popular BitTorrent clients with
the first release in June 2003. The latter is a well known
UML modeling application with the first release in July
2002. Both are written in Java, have a public accessible
CVS repository, and are still under development.

Mirarab et al. proposed a Bayesian network based ap-
proach to predict change couplings in [20]. They built three
kinds of Bayesian network models, each having a different
focus and used Azureus as a case study to evaluate their ap-
proach. Their network models omit several features that,
as we argued in Section 3.2, have implications on the co-
change behavior. Our results show including these features
yields a better performance; we use Azureus to conduct a
comparison experiment between their approach and ours.
Mirarab et al. used Java packages as granularity level for
their case study, so we choose the same to guarantee con-
sistence and comparability between the two approaches.

4.1. Experimental setup

For the case of Azureus, we use the same releases that
Mirarab et al. explicitly listed in their paper (see Table
1. Measures of Azureus2 in [20]), except Release 2.0.0.8
which was not available anymore, to extract the package
dependency information. Mirarab et al. only provided aver-
age performance values over the whole history, therefore we
also calculated average values to establish the comparison
as shown in Figure 2. To demonstrate that our approach also
shows good prediction performance for other systems, we
selected five releases from ArgoUML. Both, the selected re-
leases of Azureus, as well as those of ArgoUML, are listed
in Table 2.

Azureus2 ArgoUML
Version Date Version Date
2.0.3.2 2003.10.12 0.10.1 2002.10.09
2.0.7.0 2004.01.31 0.12 2003.08.18
2.1.0.2 2004.06.20 0.16 2004.07.19
2.3.0.2 2005.05.25 0.181 2005.04.30
2.5.0.0 2006.08.21 0.22 2006.08.08

Table 2. Information for Azureus 2 and ArgoUML

For each of the two projects, we populate a RHDB and
perform the data preprocessing tasks that we outlined in
Section 3.1, that is, we recover the transactions to get the
co-change information, build a FAMIX model for each re-
lease to get the static source code dependencies, and calcu-
late the change significance levels to take the nature of the
change into account. Then we extract the features from the
RHDB and generate the instances (Section 3.2) to train our
Bayesian network (Section 3.3) and evaluate its prediction
performance. This evaluation is explained in the following
sections.

4.2. Metrics

In [20], Mirarab et al. used two sets of evaluation crite-
ria, i.e., point-biserial correlation and information retrieval
metrics. As we need a way of measuring the accuracy of our
prediction result, we are interested in the precision and re-
call rates. Using these two metrics as evaluation criteria is a
common procedure in related work, e.g., in [13, 26, 29, 30]
and the areas of both information retrieval and statistics.

Precision is used to measure the exactness of the predic-
tion set, while recall evaluates the completeness. Precision
and recall can be expressed mathematically:

precision =
TruePositives

TruePositives + FalsePositives
(3)

recall =
TruePositives

TruePositives + FalseNegatives
(4)

Based on the precision and recall, we can calculate the F-
measure:

f -measure = 2× precision× recall

precision + recall
(5)

In information retrieval the F-measure denotes the balance
and discrepancy between precision and recall.

4.3. Evaluation

Like Mirarab et al. in [20] and Ying et al. in [29], we
split the data set along the time line into a training and a
validation set. Then we use the first set to train the Bayesian
network and evaluate whether it predicts the validation set
well.

For Azureus, as well as for ArgoUML, we run the Al-
gorithm 1 for the change entities in the change history and
generate instances for the subsequent releases. The static
source code dependencies are calculated once, that is at the
beginning of the interval. The instances are generated by
iterating over the change history. Mirarab et al. did not pro-
vide the split percentage between the training and validation
set in their work [20]. To get the average prediction result,

6



 0

 0.2

 0.4

 0.6

 0.8

 1

Precision Recall F-Measurement

Contrast Experiment on Azureus2

Results of BDHM Results of Our Approach

Figure 2. Comparison with previous work on
Azureus2

we perform nine experiments for each interval by adjusting
the training split from the first 10% to the first 90%, in steps
of 10% each time. And in this way, we sum up the results
and calculate the average precision and recall.3

In each of the nine experiments, after learning from the
training set, we look at each co-change that actually took
place in the validation set. If we predicted the co-change,
we consider it as a true positive. If we did not predict it, we
count it as false negative. In case we predict a co-change
that actually did not happen, i.e., that is not in the validation
set, it is counted as false positive. The results of the exper-
iments for the two projects can be found in Table 4. As we
are more interested in the prediction performance for actual
co-changes, we provide the prior probabilities for ‘yes’ in
each interval.

The average weighted precision and recall rate can be
calculated by:

avg pre =
1∑n

i=1 N(i)
×

n∑
j=1

(
(

1
m
×

m∑
k=1

prek)×N(j)
)

(6)

avg rec =
1∑n

i=1 N(i)
×

n∑
j=1

(
(

1
m
×

m∑
k=1

reck)×N(j)
)

(7)
In Formula 6 and 7, m denotes how often training was car-
ried out, which is nine times in our case; n denotes number
of intervals, which is four in Azureus2, as well as in Ar-
goUML. N(j) denotes the number of instances in interval
j. By using Formula 5, an average F-measure can be de-
rived. The weighted average results are listed in Table 3.

3The data used for the case study can be downloaded from our website:
‘http://seal.ifi.uzh.ch/fileadmin/User Filemount/reagle/data.tgz’

Precision Recall F-measurement
Azureus2 0.866 0.714 0.782
ArgoUML 0.757 0.532 0.625

Table 3. Average Experiment Result

The comparison result of our work with [20] is illus-
trated in Figure 2. In [20], the authors proposed three dif-
ferent Bayesian models among which the Bayesian Depen-
dency and History Model (BDHM) comes closest to ours.
Figure 2 depicts how our approach performs in contrast to
the BDHM. The average performance result of the five re-
leases of Azureus are more accurate, raising the recall rate
from the level of 20% to the level of more than 70%, and
the precision rate from 82% to 87% respectively.

5. Discussion

Software co-changing is an activity triggered by a mix
of accidental and essential causes. By extracting the fea-
tures from this activity, the Bayesian network can be used to
model the underlying uncertainty and predict future change
couplings. The experimental results for the two open source
systems demonstrate the feasibility and effectiveness of our
approach. In particular, our comparison with existing work
shows that incorporating information about static source
code dependencies, author information and about the nature
of changes, i.e., their impact on other source code entities,
can leverage the change coupling prediction performance in
terms of precision and recall significantly.

All the features needed for our algorithm are available
from the version control repositories, so our approach can
be used to extend or augment existing tools in order to
provide for example recommendations of the kind ”If you
change this package, then you will probably also have to
consider changing these packages...” to the developer. The
evaluation results of our case study show that, even when
considering the early stage of software development where
only few training data is available, we achieve a precision
rate of 60% and a recall rate of 40%. The overall average
performance increases up to 80% for precision, and 60%
for recall respectively, once the training set increases and
the initial training phase is over.

An apparent limitation of existing approaches that focus
on transaction-based change coupling solely, emerges from
the fact that most of the current mainstream version control
systems only allow us to identify the co-changed entities,
i.e., entities that appear in the same transaction—either di-
rectly by using available API (in case of SVN) or by apply-
ing some heuristics and performing additional computation
steps (in case of CVS). They do not provide us information
about the logical change ordering [30]. We can not induce
solely from version history which change triggered logi-

7



Azureus 2.0.3.2 to 2.0.7.0 Azureus 2.0.7.0 to 2.1.0.2 Azureus 2.1.0.2 to 2.3.0.2 Azureus: 2.3.0.2 to 2.5.0.0
(25278 instances, 16.2%a) (41246 instances, 16.8%) (127555 instances, 11.3%) (343264 instances, 14.5%)

TPb Precision Recall F-Mc Precision Recall F-M Precision Recall F-M Precision Recall F-M
10% 0.681 0.426 0.524 0.760 0.640 0.695 0.641 0.523 0.576 0.908 0.779 0.839
20% 0.773 0.471 0.585 0.800 0.537 0.642 0.767 0.531 0.628 0.905 0.785 0.841
30% 0.833 0.501 0.626 0.827 0.555 0.664 0.781 0.552 0.647 0.906 0.789 0.844
40% 0.841 0.526 0.647 0.854 0.571 0.685 0.792 0.570 0.663 0.904 0.791 0.844
50% 0.863 0.538 0.663 0.881 0.589 0.706 0.793 0.586 0.674 0.903 0.792 0.844
60% 0.874 0.552 0.677 0.886 0.599 0.715 0.784 0.601 0.681 0.906 0.793 0.846
70% 0.875 0.577 0.696 0.901 0.611 0.728 0.789 0.608 0.687 0.905 0.794 0.846
80% 0.876 0.576 0.695 0.906 0.628 0.742 0.790 0.620 0.695 0.901 0.799 0.847
90% 0.887 0.608 0.722 0.906 0.628 0.742 0.798 0.630 0.704 0.907 0.806 0.853

ArgoUML 0.10.1 to 0.12 ArgoUML 0.12 to 0.16 ArgoUML 0.16 to 0.181 ArgoUML 0.181 to 0.22
(110775 instances, 15.2%) (35476 instances, 16.8%) (113171 instances, 14.5%) (22442 instances, 17.6%)

TP Precision Recall F-M Precision Recall F-M Precision Recall F-M Precision Recall F-M
10% 0.723 0.435 0.543 0.635 0.477 0.545 0.652 0.465 0.543 0.776 0.620 0.689
20% 0.779 0.477 0.591 0.735 0.480 0.581 0.686 0.502 0.580 0.796 0.619 0.697
30% 0.795 0.503 0.616 0.750 0.507 0.605 0.718 0.518 0.602 0.805 0.605 0.691
40% 0.801 0.516 0.628 0.761 0.517 0.616 0.731 0.532 0.616 0.832 0.593 0.693
50% 0.800 0.537 0.642 0.765 0.528 0.625 0.726 0.539 0.619 0.826 0.597 0.693
60% 0.806 0.547 0.652 0.755 0.530 0.623 0.730 0.542 0.622 0.834 0.600 0.698
70% 0.798 0.553 0.654 0.764 0.549 0.638 0.731 0.548 0.627 0.830 0.607 0.701
80% 0.803 0.570 0.667 0.764 0.544 0.636 0.736 0.552 0.631 0.825 0.626 0.712
90% 0.803 0.576 0.671 0.770 0.555 0.645 0.743 0.554 0.634 0.835 0.607 0.703

aThe percentage number after instances denotes the prior probability for yes
bTP denotes Training Percentage
cF-M denotes F-Measure

Table 4. Results for different Releases of Azureus2 and ArgoUML

cally other changes of the same transaction. By incorporat-
ing static source code dependencies, we are able overcome
this lack of information on the causality between changes
at least partially. Moreover, due to the robustness against
uncertainty, a Bayesian network-based approach performs
well under these conditions.

5.1. Lessons learned

In the phase of software maintenance or reverse engi-
neering, given a revision request that affects a software en-
tity, all the other entities are possible candidates for a co-
change. However, whether two entities change together de-
pends on numerous factors.

From a software engineering perspective, good designs
have the characteristics of high cohesion and low coupling
among the modules brought by information hiding and sep-
aration of concerns [21] which implies that ideally, changes
to one entity should entail changes to no or at least to only
a small set of other entities. Therefore it is neither nec-

essary, nor realistic—due to the size of modern software
systems—to consider all other entities as candidates; by
leveraging traditional dependency and change significance
analysis with software evolution techniques, such as change
coupling detection, we can narrow down the amount of data
to take into consideration and provide better tools for soft-
ware engineers.

5.2. Threats to Validity

The first group of potential threats to validity emerges
from the quality of the underlying data and of limitations
of the tools and algorithms used to extract the features that
are need to train the Bayesian network. For example static
source code dependency information is an important input
to our approach. The compilation level and the availability
of all the third-party libraries influence the quality of the
output of our FAMIX transformation tools. Furthermore
the algorithm for recovering the transactions from the CVS
system is based on heuristics and therefore not guaranteed

8



to produce optimal results.
The other group of potential threats is concerned with the

fact that there is partially subjectivity involved in our ap-
proach: First, we have selected a set of features for training
the Bayesian network that seemed reasonable for us. Sec-
ond, in the process of discretizing the dependency weights
and change significance levels into different classes, we re-
lied on experiences from past research on similar projects.

6. Related Work

Throughout this paper we presented our Bayesian net-
work based approach with a set of selected features to pre-
dict change couplings. Many other methods have been de-
veloped in this field. In [14], Kagdi and Collard provided
a taxonomy of the approaches for mining software respos-
itories (MSR). Our work fits in the category of MSR via
Data Mining. In this section, we will review related work
mainly in this class. Basically, the proposed approaches can
be identified with two key points: data source, and mining
techniques.

Ying et al. [29] developed an approach that applies as-
sociation rules to co-changed files. The hypothesis is that
past co-changed files can be used to recommend potentially
relevant source code changes to a change request. Associ-
ation rule algorithms extract frequently co-changed entities
of a transaction into sets which are regarded as change pat-
terns to guide future change couplings. Since this approach
uses co-change history in CVS, it avoids source code depen-
dency parsing process. Therefore it does not limit to predict
source file co-change. However, the association rule algo-
rithm just calculates the frequency co-changed items in the
past, it omits many other information and does not help to
reflect the cause-effect relation hidden in this change cou-
pling phenomenon. Besides, ‘frequently co-changed enti-
ties’ is a subjective variable, sometimes hard to define in
different projects. We believe that the reported performance
with around 20% to 30% recall rate suffered from the loss
of information.

Zimmerman et al. [30], similar to the work of Ying, used
co-change history and association rule algorithm to predict
change coupling. Although there is a slight difference in the
form of the algorithm, they share the common sets of char-
acteristics of this type of approach. And the performance of
both work are at the similar quantitative level.

Knab and Pinzger [15] applied a decision tree-based al-
gorithm to predict defect densities in source code files. They
extracted modifications, defect report metrics, number of
incoming and outgoing calls from source releases and ver-
sion history database. The attempt to focus more on the
understanding of the factors that lead to defects is similar to
our motivation of using Bayesian network.

Mirarab et al. [20], independently from us, noticed the

importance of Bayesian network to model the uncertainty of
the change coupling process and proposed a Bayesian net-
work based approach to predict change propagation. They
proposed three Bayesian network models, i.e., Bayesian De-
pendency Model (BDM), Bayesian Dependency and His-
tory Model (BDHM), and Bayesian History Model (BHM).
The first model relied only on the the dependency informa-
tion; the second incorporated the co-change history infor-
mation; the last relied only on the co-change history. The
average performance of BDHM is the best among these
three model evaluated in the case study of Azureus. The
idea of BDHM is similar to ours. However, the authors did
not consider any other features which we argued to be im-
portant factors for change coupling prediction. Our experi-
ment on the same case study reveals the outperformance of
our approach, especially with the improvement on the recall
rate.

Ratzinger et al. [26], investigated different kinds of data
mining techniques on the features, such as growth mea-
sures, relationships between classes, authors information
etc., extracted from versioning systems, and compared the
prediction results for future refactoring locations. Although
the prediction target is different, the consideration of in-
corporating different factors besides co-change history and
code dependency is similar to ours.

Besides the work from the MSR via Data Mining cate-
gory, there are many approaches developed from other per-
spectives. Hassan et al. [13] introduced several heuristics
to be used to predict change propagation by suggesting enti-
ties that could possibly co-change. This approach chose the
candidates from the heuristic data source first and pruned
them. The average prediction performance (precision and
recall rate) of the hybrid heuristics on the five studied soft-
ware systems is around 50%. Gall and Jazayeri [11] ap-
plied relation analysis technique to detect similar change
patterns in different parts of systems (a.k.a., logical cou-
plings). Though this technique is useful to identify even ar-
chitectural weakness, it does not predict change couplings.

7. Conclusion and Future Work

In this paper, we presented an approach based on the
idea of Bayesian networks to predict the change coupling
behavior between source code entities. We extract a set
of features, i.e., static source code dependency, past co-
change frequency, change significance level, age of change,
author information, change request, change candidate, and
co-changed entity. The Bayesian network models the un-
certainty in the change coupling process based on these
features. We conducted experiments on two medium open
source systems, i.e., Azureus and ArgoUML. The results
of the case study support our contributions: first, given a
change request, we showed that the set of features we chose

9



to build the Bayesian network provides useful predictions
about the change coupling candidates. Second, compared
to the results of previous work on Bayesian network mod-
els in the context of change prediction, we achieve a better
performance in terms of precision and recall. Our approach
shows a precision rate of 60% and a recall rate of 40% al-
ready after a few training phases. These rates increase up to
80% for precision and 60% for recall once the initial train-
ing has been completed.

For instance, our approach can be used to extend or aug-
ment existing tools in the domain of version control systems
or integrated development environments in order to provide
recommendations of the kind ”If you change this package,
then you will probably also have to consider changing these
packages...” to the developer.

Possibilities for future work are the investigation
whether additional features and other combinations of fea-
tures will give better prediction results. Such new sets of
features can be validated by means of more case studies.
Of special interest are industrial projects that have different
properties, e.g., strict code ownership, and how they impact
our results.

8. Acknowledgements

Sincere thanks are given to Beat Fluri, Martin Pinzger
and Jiwen Li for their suggestions in improving the quality
of the paper. Special thanks are given to Siavash Mirarab
for his sharing of the release information with us on the case
study. This work was supported by the Hasler Foundation
as part of the ProMedServices project.

References

[1] K. Bennett and V. Rajlich. Software maintenance and evolution: a
roadmap. Proceedings of the conference on The future of Software
engineering, pages 73–87, 2000.

[2] D. Chickering. Learning Bayesian Networks is NP-Complete.
Learning from Data: Artificial Intelligence and Statistics V, 1996.

[3] G. Cooper and E. Herskovits. A Bayesian method for the induction
of probabilistic networks from data. Machine Learning, 9(4):309–
347, 1992.

[4] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0-the
FAMOOS information exchange model. URL: http://www. iam.
unibe. ch/famoos/FAMIX, 9, 1999.

[5] N. Fenton, P. Krause, and M. Neil. Software measurement: uncer-
tainty and causal modeling. Software, IEEE, 19(4):116–122, 2002.

[6] N. E. Fenton and M. Neil. A critique of software defect prediction
models. IEEE Trans. Softw. Eng., 25(5):675–689, 1999.

[7] M. Fischer, M. Pinzger, and H. Gall. Populating a Release History
Database from version control and bug tracking systems. Software
Maintenance, 2003. ICSM 2003. Proceedings. International Con-
ference on, pages 23–32, 2003.

[8] B. Fluri and H. Gall. Classifying Change Types for Qualifying
Change Couplings. Proceedings of the 14th International Confer-
ence on Program Comprehension (ICPC), pages 35–45, 2006.

[9] B. Fluri, H. Gall, and M. Pinzger. Fine-Grained Analysis of Change
Couplings. Fifth IEEE International Workshop on Source Code
Analysis and Manipulation, pages 66–74, 2005.

[10] B. Fluri, M. Wuersch, M. PInzger, and H. Gall. Change Distill-
ing: Tree Differencing for Fine-Grained Source Code Change Ex-
traction. Software Engineering, IEEE Transactions on, 33(11):725–
743, 2007.

[11] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for
detecting logical couplings. Software Evolution, 2003. Proceedings.
Sixth International Workshop on Principles of, pages 13–23, 2003.

[12] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s Weather: guid-
ing early reverse engineering efforts by summarizing the evolution
of changes. Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on, pages 40–49, 2004.

[13] A. Hassan and R. Holt. Predicting change propagation in software
systems. Software Maintenance, 2004. Proceedings. 20th IEEE In-
ternational Conference on, pages 284–293, 2004.

[14] H. Kagdi, M. Collard, and J. Maletic. Towards a taxonomy of ap-
proaches for mining of source code repositories. ACM SIGSOFT
Software Engineering Notes, 30(4):1–5, 2005.

[15] P. Knab, M. Pinzger, and A. Bernstein. Predicting defect densi-
ties in source code files with decision tree learners. Proceedings of
the 2006 international workshop on Mining software repositories,
pages 119–125, 2006.

[16] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. Codecrawler: an
information visualization tool for program comprehension. In ICSE
’05: Proceedings of the 27th international conference on Software
engineering, pages 672–673, New York, NY, USA, 2005. ACM.

[17] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski. Metrics
and laws of software evolution-the nineties view. Proc. Metrics,
97:5–7, 1997.

[18] M. Madden. The Performance of Bayesian Network Classifiers
Constructed using Different Techniques. Proceedings of Euro-
pean Conference on Machine Learning, Workshop on Probabilistic
Graphical Models for Classification, pages 59–60, 2003.

[19] T. Mens and S. Demeyer, editors. Software Evolution. Springer-
Verlag Berlin Heidelberg, 2008.

[20] S. Mirarab, A. Hassouna, and L. Tahvildari. Using Bayesian Be-
lief Networks to Predict Change Propagation in Software Systems.
Proceedings of the 15th IEEE International Conference on Program
Comprehension, pages 177–188, 2007.

[21] D. Parnas. On the criteria to be used in decomposing systems in
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[22] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[23] M. Pinzger. ArchView-Analyzing Evolutionary Aspects of Com-
plex Software Systems. Vienna University of Technology, 2005.

[24] M. Pinzger, K. Graefenhain, P. Knab, and H. Gall. A tool for vi-
sual understanding of source code dependencies. Proceedings of
the International Conference on Program Comprehension (ICPC),
2008.

[25] R. Purushothaman and D. Perry. Toward understanding the rhetoric
of small source code changes. IEEE Transactions on Software En-
gineering, 31(6):511–526, 2005.

[26] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall. Mining Soft-
ware Evolution to Predict Refactoring. Empirical Software Engi-
neering and Measurement, 2007. ESEM 2007. First International
Symposium on, pages 354–363, 2007.

[27] I. Stamelos, L. Angelis, P. Dimou, and E. Sakellaris. On the use of
Bayesian belief networks for the prediction of software productivity.
Information and Software Technology, 45(1):51–60, 2003.

[28] I. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2005.

[29] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting source
code changes by mining change history. IEEE Transactions on Soft-
ware Engineering, 30(9):574–586, 2004.

[30] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining
version histories to guide software changes. Software Engineering,
IEEE Transactions on, 31(6):429–445, 2005.

10


