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Abstract

The nonstochastic multi-armed bandit problem, first studied by Auer, Cesa-Bianchi, Freund, and Schapire in 1995, is a game
of repeatedly choosing one decision from a set of decisions (“experts”), under partial observation: In each round t , only the cost
of the decision played is observable. A regret minimization algorithm plays this game while achieving sublinear regret relative to

each decision. It is known that an adversary controlling the costs of the decisions can force the player a regret growing as t
1
2 in the

time t . In this work, we propose the first algorithm for a countably infinite set of decisions, that achieves a regret upper bounded by

O(t
1
2 +ε), i.e. arbitrarily close to optimal order. To this aim, we build on the “follow the perturbed leader” principle, which dates

back to work by Hannan in 1957. Our results hold against an adaptive adversary, for both the expected and high probability regret
of the learner w.r.t. each decision. In the second part of the paper, we consider reactive problem settings, that is, situations where
the learner’s decisions impact on the future behaviour of the adversary, and a strong strategy can draw benefit from well chosen

past actions. We present a variant of our regret minimization algorithm which has still regret of order at most t
1
2 +ε relative to such

strong strategies, and even sublinear regret not exceeding O(t
4
5 ) w.r.t. the hypothetical (without external interference) performance

of a strong strategy. We show how to combine the regret minimizer with a universal class of experts, given by the countable set of
programs on some fixed universal Turing machine. This defines a universal learner with sublinear regret relative to any computable
strategy.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

For the last 15 years, online regret minimization algorithms have played an important role in learning theory. The
setup for online regret minimization is most easily and accurately formalized as a game between a learner and an
adversary. The game proceeds in discrete time t = 1, 2, . . . , In each round t , the learner selects a decision from a set
of possible decisions, while the adversary assigns costs to all possible decisions, both players without knowing the
other’s move. Then the learner’s decision is revealed, and the learner incurs the corresponding cost.

I This research was done while the author was with Hokkaido University, Graduate School of Information Science and Technology.
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A crucial issue which impacts on both the learner’s algorithm and its achievable performance is what or how
much does the learner observe. In the full information game, also widely known as “prediction with expert advice”,
decisions are also called experts, and the learner observes the costs of all experts. This enables him to play a
randomized strategy that guarantees, with high probability, a performance almost as well as the best decision in
hindsight. More precisely, there are algorithms that achieve a regret of order

√
T log n at any horizon time T . Here, n

is the (finite) number of available decisions, and regret is the difference between the learner’s cumulative performance
and the best expert in hindsight (after time T ) [19,26,10]. (The reader who is not familiar with expert algorithms at
all, should see the references, but at least Sections 2.1 and 2.2 for a formal definition of regret.)

Games where the learner does not observe the full cost vectors are termed “partial observation”. The most important
and widely studied partial observation game is the so-called “bandit” setup, where in each round t , the learner observes
just the cost of the decision played, not of the alternatives. In analogy to gambling slot machines, decisions are also
called “arms of the bandit” in this setup. Bandits have an important motivation in and were originally considered for
medical treatment, where different available treatments for a certain disease need to be explored, but on the other
hand, it is highly desirable to apply successful treatments as often and others as rarely as possible. In this way, bandits
are one of the most simple mathematical formalizations of an exploration vs. exploitation tradeoff. Much work has
been done on stochastic bandits, i.e. situations where each arm obeys a stationary probability distribution [5].

It may be surprising at a first glance that performance guarantees can be proved for adversarial bandits. The first
respective result was shown by [2], who proved that there is an algorithm such that after any time T , the regret of
the learner w.r.t. each arm (however not the best arm in hindsight) is at most O(

√
T n log n), with high probability,

where again n is the finite number of arms. This bound is almost sharp, since the same authors show that an oblivious
adversary (this is even weaker than an adaptive one, see Section 1.4) can force any learner a regret of Ω(

√
T n).

1.1. Results of this work

Most of the literature restricts to a finite number of decisions. In contrast, in this work we consider nonstochastic
bandits with countably many arms. In this case, we cannot treat all arms equally, but we must introduce a prior: Each
decision i , where they are enumerated i = 1, 2, . . . , is assigned with a prior weight wi , such that

∑
∞

i=1w
i

≤ 1.
(The reader may have noticed that we use the terms “decision”, “expert”, and “arm” interchangeably.) The following
theorem is the main result of Section 2.1

Theorem 1. Consider a nonstochastic bandit problem with countably many arms i = 1, 2, . . . , endowed with prior
weights wi such that

∑
∞

i=1w
i

≤ 1. The costs of the arms are controlled by an adaptive adversary. Then, for any
ε > 0, there is an algorithm which achieves, for any time T and w.r.t. any arm i and with arbitrarily high probability,
a regret of at most

O
(

T (
1
2 +ε) logwi

+ (wi )−
1
2ε

)
.

Since a lower bound of
√

T is known, this says that the regret growth rate is close to optimal.

This result is new and improves on the best known bound before (T
2
3 +ε) from [23]. In the following, we give

a sketch of where are the difficulties to accomplish this and what are the contributions of this work. A key part of
regret minimization algorithms is the learning rate, a parameter that balances exploration and exploitation and has to
be tuned dynamically if the algorithm is supposed to perform well uniformly over time (that is, after any time T ).
Dynamic learning rate however hampers the analysis, in particular for the well-studied weighted averaging schemes.
It was [15] who made popular a different type of algorithm, “follow the perturbed leader” (FPL), which dates back
to [11] and substantially facilitates working with dynamic learning rate. The present work builds on the FPL strategy.
However, another central ingredient for bandit regret minimizers is the concept of unbiased performance estimates,
which is achieved by dividing the actually observed cost by the probability of selecting the actual arm. Since this
probability is not directly available for the FPL strategy (as opposed to weighted averaging schemes), we propose a

1 The results in this section are stated in order to provide an overview. The exact definitions, in particular of “long-term” and “hypothetical”
regret used in Theorem 3, will be given later on in the technical parts.
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way to estimate it with a Monte-Carlo sampling. Hence we need to bound the regret caused by this estimation error.
In contrast, all FPL variants before were based on the “label efficient” (or rather “wasteful”) way of using only the
observations from designated exploration rounds. As one can show [7], this necessarily implies a worse regret bound

of order at least t
2
3 . For the analysis to go through, some steps require a finite set of decisions. We therefore need to

restrict the number of arms we work with at any time and successively introduce the arms into the game.
A second contribution of this work concerns reactive environments. In this case, which is is subject of Section 3,

we assume that the future behaviour of the adversary (we will also call it the environment) depends on the learner’s
decisions or actions, in a way, such that well chosen actions cause low cost in future. Then, there may be strong
experts that propose such favourable actions. However, such a strong expert usually needs more than just one time
step to act in a favourable way and then reap the benefits, we refer to this performance as the long-term performance
of the expert. A special case is an expert optimal after t0 steps, which displays optimal performance after it is followed
for a fixed contiguous number t0 of steps, from any start state of the system. We call this type of performance after t0
time steps (that is, ignoring the initial t0 adaptation steps) the hypothetical performance of the expert. It may be much
stronger than the actual performance, which is repeatedly disturbed by other experts, after which the optimal expert
needs to “recover”.

An example is playing repeated prisoner’s dilemma against the “tit-for-tat” adversary (see the beginning of
Section 3 if you are not familiar with this game): Although in prisoner’s dilemma, defecting is the dominant
action, repeatedly cooperating is optimal after two steps. Thus, the long-term performance of cooperating is strong.
Its hypothetical performance is even optimal (against tit-for-tat), since this is just the performance of exclusively
cooperating, without disturbance from the defecting expert.

Our main tool for obtaining assertions for reactive environments is considering unbounded costs, precisely we
allow the costs to grow in time. We will show (please compare again the previous footnote).

Theorem 2. Suppose that the actual costs are bounded by a function increasing in time sufficiently slowly, hence,
over all time steps, the costs are unbounded. Then a regret of at most

O
(

T (
1
2 +ε) logwi

+ (wi )−(
1
ε
+

1
2 )

)
is achievable.

Basing on Theorem 2, we will prove the following statement on the long-term and hypothetical regret in Section 3.

Theorem 3. Suppose a reactive environment. For any ε > 0, there is an algorithm which achieves, for any time T ,
any t0, and relative to the long-term performance of each expert, a regret of at most

O
(

T (
1
2 +ε) logwi

+ (wi )−(
1
ε
+

1
2 )

)
,

where wi is the prior weight of the reference expert.
Moreover, there is an algorithm that performs well relative to the hypothetical performance of each expert, where

the regret does not exceed

O
(

T
4
5 (logwi

+ t0)+ (wi )−12.5
)
.

Hence, if one strategy i is optimal after t0 steps, this algorithm is performed almost optimally, with the above regret.

Reactive bandit problems have been first considered by [9]. We propose a technically much simpler way to achieve
similar results, building on standard regret minimization algorithms. Moreover, while they do not state the growth
rate of the regret for their algorithm explicitly, we show close to optimal growth rate. The idea is the following:
Given the bounds for a regret minimization algorithm under the assumption that the instantaneous costs may slowly
grow in time, we use this algorithm with uniformly bounded costs, but instead we yield the control to the respective
selected expert for a gradually increasing number of time steps. In other words, we perform a change of time
scale.
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1.2. Motivation

Considering countably many arms or decisions or experts, straightforwardly generalizes the finite case. Moreover,
the large body of literature dealing with finitely many arms, in reality only covers the special case of uniform prior
weights: no prior preference is given to any decision. If we want to do otherwise and deal with nonuniform weights
(for instance, we might trust some experts more than others), then even in the finite case we need techniques as
proposed in this work.

There is a strong motivation for countable expert classes in the theory of computation. It is straightforward to
interpret any program on some fixed universal Turing machine as an expert, by running it on the complete history of
past observations (or on the part of it we decided to memorize) and interpreting its output appropriately as an action
or decision. Since the set of all programs is countable, this construction naturally yields a countable expert class,
and thus, combined with an appropriate regret minimization algorithm, a universal regret minimization algorithm or
“universal agent”.

There is a dual way to use the set of all programs on a universal Turing machine for learning, namely Bayesian
learning. In fact, each program can be related to a (semi-)probability distribution, this construction is at the core
of algorithmic information theory, see e.g. [18] (however it is more complicated than the direct correspondence to
an expert). Then one can use the Bayes mixture over all these distributions for learning, actually it turns out that
this Bayes mixture is equivalent to the a-priori probability distribution of the Turing machine. It has excellent learning
properties, as first shown by Solomonoff [25]. For reactive environments, a construction of a universal agent (AIξ ) has
been suggested by Hutter [12]; however, this differs technically from the universal agent based on regret minimization
constructed here.

1.3. Related work

We have already mentioned some relations of our work to others: Our regret minimization algorithm will basically
solve similar problems (but with countably many arms) as does the “Exp3” algorithm for nonstochastic bandits due to
Auer, Cesa-Bianchi, Freund, and Schapire [2,3]. However, it is not based on weighted averaging schemes [19,26,10],
but on the follow the perturbed leader (FPL) principle [11,15]. The first full observation FPL algorithm for countable
experts classes was suggested in [13,14], the first bandit FPL algorithm (with finite expert class) in [20]. The results in
this work build and improve on [23,22]; however, these papers used explicit exploration as suggested by [20], which

we abandon in this work. Actually, [20] construct a label efficient learner [6,7], which has a worse lower bound (t
2
3 )

on the regret than our upper bound (t
1
2 +ε).

The present work is possibly the first to consider countable decisions sets in the bandit setup. However, continuous
decision spaces have been studied in [16,17]. Moreover, [4] proposed an alternative method of using a nonuniform
prior in the case of finitely many experts.

We indicated that FPL, as opposed to weighted averaging algorithms, may greatly facilitate the analysis, in
particular for dynamic learning rate, which should be used if the time horizon T is not known in advance. We will now
further discuss another feature of FPL: It permits the efficient treatment of geometrical online optimization problems,
where the learner’s decisions are linearly composed of base decisions, and it is assumed that the set of base decisions
is of reasonable size, while the set of decisions is exponentially large. An example is the online shortest path problem
in a graph with adversarially changing path costs. Most literature dealing with FPL actually considers this type of
problem ([15,20] and many others).

The important issue of adaptive vs. oblivious adversary is discussed in the next subsection.

1.4. Adaptive and oblivious adversaries

In the context of game playing, it is natural to assume that the adversary is adaptive, i.e. it observes our decisions
and adapts future behaviour accordingly. The other model frequently considered is that of oblivious adversary, which
is equivalent to requiring that the adversary decides all cost vectors before the game starts. In the full information
game, there is actually no difference in the worst case: Regret minimization strategies based on randomized sampling
according to past costs have the same performance guarantees against oblivious and adaptive adversary, as shown in
[14, Lemma 12]. In particular, all regret bounds are relative w.r.t. the best expert in hindsight.
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In partial observation games, things are more complicated. In order to treat the adaptive adversary correctly, costs
need to be modelled as a stochastic process, and there is no tool like [14, Lemma 12] which allows us to conclude
from oblivious to adaptive adversary. As a consequence, many authors (e.g. [3]) focused their exposition on oblivious
adversaries. For weighted averaging learners, it is, however, not hard to see that the same regret bounds relative to each
fixed expert (not w.r.t. the best expert in hindsight) hold for adaptive adversary. For FPL in contrast, this is not obvious,
since the analysis crucially builds on “lazy” randomization which does not perform well for adaptive adversary. The
key assertion of [22] is that still, as soon as we switch from “lazy” to usual randomization, the desired regret bounds
do hold for FPL.

However, the regret against the best arm in hindsight is still a strictly stronger notion, as pointed out by [20,8]:
If Ri

T is the random variable denoting the regret relative to expert i at time T , then strictly E maxi Ri
T > maxi ERi

T
holds. [20] sacrifice some regret growth rate in order to prove bounds w.r.t. the best expert in hindsight. The recent

and sophisticated construction in [8] achieves this goal with optimal t
1
2 growth rate for a finite expert class.

In this work, we will consider adaptive adversary, and prove regret bound relative to each (fixed) expert.

1.5. Discussion

Before starting the technical presentation in the next section, we discuss our results and some open question on an
informal level. What is the use of our regret minimization algorithm, and what are the new contributions of this work?

Although a regret growth rate t
1
2 +ε arbitrarily close to optimal can be achieved, the bounds seem hardly relevant

for practical applications. The quantity that worries most is the 1/poly(wi ), which is exponential in the complexity ki

of the reference arm’s complexity and typically huge. This quantity also appears in the lower bounds [3]. Hence it is
important and, to our knowledge, open so far to find special cases which do not have this problem.

Another interesting nontrivial question is the following: Are the learning properties of regret minimization
algorithms really desirable? What does “good” or even “optimal” learning mean for reactive settings? For illustration,
we briefly present an example from [24], the reader can find more discussion there. Consider the repeated game
of “chicken”.2 In this game, it is desirable for the learner to become the “dominant defector”, i.e. to defect in the
majority or even all of the cases while the opponent cooperates. Let’s call an opponent “primitive” if he/she agrees to
cooperate after a fixed number of consecutive defecting moves of the learner, and let’s call “stubborn” if this number
is high. Then reFPeL, which is the algorithm we propose for reactive environments, learns to be the dominant defector
against any primitive opponent, however stubborn. On the other hand, if the opponent is some learning strategy which
also tries to maximize profit and learns faster (we conducted the experiment with AIξ [12]), then reFPeL settles for
cooperating, and the opponent will be the dominant defector. Interestingly, however, AIξ would not learn to defect
against a stubborn primitive opponent. Hence, already in this simple reactive setting, it is not clear which learning
behavior should be really considered “good” or even “optimal”.

Although this work is possibly the first to consider countable decision spaces, an assertion like our first main result
Theorem 1 can be proved for the Exp3 algorithm from [3], if the doubling trick is used and in each phase only finitely
many, namely O(t2ε), decisions are considered. The result then follows3 without much effort from [3, Theorem 3.1].
The result of the present paper is still interesting, as it avoids the doubling trick but uses a smooth adaptation of the
learning rate, and it is based on the FPL principle, as opposed to weighted averaging. Moreover, we will present the
whole analysis against an adaptive adversary.

Compared with the Exp3 variant sketched in the last paragraph, parts of the present proofs may seem complicated.
As the basic FPL analysis is quite elegant [15], this is primarily due to the fact that the explicit sampling probabilities
for FPL algorithms are not known. On the other hand, they are necessary in order to get close to optimal bounds in

2 This game, also known as “Hawk and Dove”, can be interpreted as follows. Two coauthors write a paper, but each tries to spend as little effort
as possible. If we succeed in letting the other do the whole work, there will be no cost. On the other hand, if no one does anything, there will be
no paper, this translates to high costs for both. Finally, if both decide to cooperate, both incur some costs. We chose the cost matrix as

(1 0.8
0 0.5

)
, the

learner is the column player, and choosing the first column means to defect, the second to cooperate. The opponent is the row player, whose cost
matrix is the transpose, i.e.

( 1 0
0.8 0.5

)
. For example, if the player defects and the opponent cooperates, then the player has no cost, while the opponent

has cost of 0.8. Hence, in the repeated game, it is “socially optimal” to take turns cooperating and defecting.
3 I am grateful to the referee who pointed this out.
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the Bandit setup. Therefore, the error introduced by using estimated probabilities instead of true ones needs to be
bounded, which the present work is probably the first to do.

Although technically not difficult, the unbounded losses, which are also possibly a new contribution of this work,
allow some nice constructions. In particular, the treatment of reactive environments can be considerably simplified
relative to [9]. Moreover, we define a “universal” learner based on expert advice, which is probably the first one that
has provable guarantees w.r.t. all algorithms on some universal Turing machine.

2. Bandits with countably many arms

2.1. Notation

The learner’s task is to choose repeatedly one arm of a bandit with countably many arms. We will use the terms
“arm” and “expert” and “decision” interchangeably. Each arm i ≥ 1 is assigned a weight wi

∈ (0, 1), such that∑
i w

i
≤ 1. We set ki

= − logwi (and mean the natural logarithm), this is the complexity of the arm. By Kraft’s
inequality, the ki correspond to description lengths in “nats” for the arms, relative to some prefix code.

Our regret minimization game involves sequence c1, c2, . . . of cost vectors in time t . Each cost vector ct has
countably infinite dimension, ct = (ci

t )
∞

i=1, thus it contains the cost of each arm i at time t . Superscript indices always
refer to arms, subscript indices to time. If we have an algorithm A, then the arm the algorithm chooses at time t is

denoted by I A
t , and its cost incurred by cA

t = c
I A
t

t . Note that, since in general the adaptive adversary depends on the
randomized decisions of the learner, all costs are random variables.

Cumulative costs up to time T are denoted by c1:T =
∑T

t=1 ct if time T is included and c<T = c1:T −1 otherwise.
Observe that c1:T , c<T are infinite dimensional vectors. Similarly, we define quantities ci

1:T , ci
<T , and moreover cA

1:T
for an algorithm A etc. The regret of the cumulative cost of an algorithm A w.r.t. a fixed decision i is denoted by

∆1:T [cA, ci
] = cA

1:T − ci
1:T .

Note that we prefer this to the slightly heavier notation ∆1:T [cA
1:T , ci

1:T ], which is of course equivalent. If B is another
algorithm, we define the regret of algorithm A relative to algorithm B analogously as ∆1:T [cA, cB

]. Instantaneous
regret (i.e. just at time t) is given by ∆t [cA, cB

]. The notion of regret is sufficiently important to spend an extra
symbol ∆. Actually, the regret is a stochastic process developing in time, and we will be always able to give bounds
on the expected regret E∆1:T [cA, cB

], although there are no nontrivial bounds on any of the parts of the difference,
EcA

1:T or EcB
1:T .

2.2. The game

The following is the protocol of the nonstochastic bandit game we study:

For t = 1, 2, 3, . . . , T
Adversary selects cost vector ct ∈ [0, Bt ]

∞

Learner selects decision i = I Learner
t

Learner incurs and observes cost ci
t

After time T , Learner’s regret ∆1:T [cLearner, ci0 ] is evaluated

Here, the regret is measured relative to any arm i0. The horizon T , the time at which the game ends and regret is
evaluated, is not known in advance to the learner.

Bt is the cost growth parameter: The costs are not, as usual, uniformly bounded in [0, 1], but in [0, Bt ], where
Bt grows in t . As indicated in the introduction, Bt will be used in order to get to the long-term regret for reactive
problems in Section 3. We assume that Bt is controlled by the learner. It could be also externally given, but in no case
controlled by the adversary.

For simplicity, we assume the adversary to be deterministic throughout this paper. The results of this section
immediately generalize to randomized adversary, as usually bounds for regret minimization algorithms do. In
principle, this holds also for the results of Section 3, but the assertions regarding the time t0 there are more difficult to
state for a randomized adversary.
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2.3. The algorithm FPeL

We can now define our regret minimization algorithm, follow the perturbed estimated leader (FPeL). Note that we
do not need to care for explicit exploration, which is usually necessary (another algorithm that does not need explicit
exploration was given by Allenberg [1]). The intuitive reason is the following: As becomes clear when looking at the
algorithm, experts which are selected can only worsen their probability of being selected again; thus our FPeL explores
implicitly. This is the opposite in other algorithms like Exp3 [3]. The algorithm contains some new notation, which is
explained in the subsequent paragraphs.

Algorithm FPeL

For t = 1, 2, 3, . . .
Set ĉi

t := 0 for i ∈ {t ≥ τ } and ĉi
t :=

Bt
ψt

for i /∈ {t ≥ τ }

Select and play I FPeL
t := FPLsample

Invoke FPLsample for K :=
⌈

16t2 log(2
√

t)
⌉

times and
set a(K ) := the number of times I FPeL

t occurred

Set p̂
I FPL
t

t := max
{
ψt ,

a(K )
K −

ψ2
t√
2

}
Set ĉ

I FPL
t

t := c
I FPL
t

t / p̂
I FPL
t

t
——

Subroutine FPLsample

Sample q i d.
∼ Exp independently for all i ∈ {t ≥ τ }

Return imin
:= arg min

i :t≥τ i
{ηt ĉi

<t + ki
− q i

}

The subroutine FPLsample samples perturbation vectors q according to the exponential distribution. Recall that
wi are the weights and ki

= − logwi are the complexities of the experts. For each expert i , we define an introduction
time τ i , that is a time from which the expert is used. By

{t ≥ τ } := {i ≥ 1 : t ≥ τ i
}

we denote the set of experts that are active at time t . We choose the introduction times τ i such that in each time step,
always a finite number of experts is active.

Our algorithm makes use of a sequence of learning rates ηt that control the balance of exploration and exploitation,
this is common in experts’ algorithms. Moreover, we need denominator thresholds

ψt :=
1

2
√

t
,

bounding the denominator probability p̂
I FPL
t

t := max
{
ψt ,

a(K )
K −

ψ2
t√
2

}
, which is used for obtaining “almost unbiased”

cost estimates ĉFPeL
t . (The concept of unbiased cost estimates is widely used in weighted averaging based bandit

algorithms, where the sampling probabilities are explicitly known. For FPeL in contrast, they can be only explicitly
expressed for two experts.)

Each time randomness is used, it is assumed to be independent of the past randomness. Note in particular that the
random vectors q are reinstantiated each time FPLsample is invoked, that is, the symbol q is repeatedly “reused”, this
simplifies notation. Before we start with the analysis, the reader should observe the following easy but important fact.

Proposition 4. The algorithm FPeL is computationally feasible. In each time step, it employs only a finite number of
experts. Moreover, the sampling complexity in order to determine p̂FPeL

t is O(t2 log t).

2.4. Analysis

In this subsection, we will show the main technical results of this paper, ultimately arriving at the proof of
Theorem 1. Similar to other work before [15,13,23], the proof is accomplished by considering two “intermediate”
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t, T denote the time and the horizon time, respectively
i refers to an arm/expert/decision
ci

t ∈ [0, Bt ]: cost of arm i at time t
Bt ≥ 1: upper bound on the costs at time t , grows in t
c<T , c1:T cumulative cost vectors up to/including time T
ηt > 0: learning rate, decreases in t
τ i

≥ 1: introduction time for expert i
{t ≥ τ } = {i : t ≥ τ i

}: set of arms active at time t
ψt =

1
2
√

t
: denominator threshold

FPeL our main regret minimization algorithm
F* virtual FPeL variant using the “charging” perturbation q∗

IF* virtual F* variant knowing the current estimated costs ĉt

pi
t = P[I FPeL

t = i]: probability that FPeLselects arm i in time t
q vector of independently exponentially distributed pertur-

bations, instantiated repeatedly
q∗ vector of independently exponentially distributed “charging”

perturbations, instantiated once before the game starts
I FPeL
t = I F*

t = I IF*
t : arm selected by FPeL at time t

J F*
t arm that F* is charged at time t (selection w.r.t. q∗)

J IF*
t arm that IF* is charged at time t (selection w.r.t. q∗)

K =
⌈

16t2 log(2
√

t)
⌉

at time t : #samples for estimating p̂i
t

a(K ) #occurrences of I FPeL
t in sampling for the estimate p̂i

t

p̂i
t = max

{
ψt ,

a(K )
K −

ψ2
t√
2

}
: estimate for pi

t

ĉi
t = ci

t/ p̂i
t : “almost unbiased” estimate for ci

t
∆t [cA, cB

] instantaneous regret of algorithm A relative to algorithm B

Fig. 1. List of notation.

algorithms F* and IF*. We show a sequence of regret bounds from FPeL to F*, then from F* to IF*, and finally from IF*
to a fixed arm i . None of the intermediate algorithms is practically feasible within the protocol defined in Section 2.2,
they are “virtual” algorithms. However, all intermediate algorithms would be feasible with additional information, and
in order to facilitate the analysis, the reader should imagine that all algorithms are in fact executed the way they are
defined. Before we start, we introduce one more piece of notation, the true probability pi

t = P[I FPeL
t = i] that FPeL

selects expert i at time t (recall that this quantity is not known exactly to the learner). Our notation is recapitulated in
Fig. 1 (some notation displayed there is still to be introduced).

Our main analysis until Theorem 11 proceeds in expectation, we will state a high probability bound only at the very
end. However, since the high probability bound relies on martingales, we really need the analysis for the conditional
expectation, this will be stated as Corollary 12. The reader familiar with conditional expectation will notice that all
bounds to come are in fact proven in conditional expectation: Lemmas 5, 6 and 9 hold instantaneously at time t
in conditional expectation given the past randomness, while Lemma 10 holds in conditional expectation over the
charging perturbation vector q∗ (see (1)) given all other randomness. It will help the reader become familiar with
these concepts keeping the conditional expectations in mind.

We now introduce the two intermediate algorithms F* and IF*.
F*: This algorithm proceeds exactly as FPeL and also uses identical randomization q (recall that q is reinstantiated
frequently). But additionally, in the beginning of the game, it samples a single infinitely dimensional “charging
perturbation vector”

q∗ = (q i
∗)

∞

i=1, where q i
∗ are distributed indep. exponentially, for all i. (1)
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By

J F*
t = arg min

i :t≥τ
{ηt ĉ

i
<t + ki

− q i
∗}, (2)

we denote F*’s selection relative to the cost perturbation vector q∗. Then F* still uses the original randomization q and

the decisions I F*
t = I FPeL

t in order to build the estimates ĉt , but it is charged cost c
J F*

t
t . Of course, we assume that the

adversary still plays against FPeL, the virtual algorithm participates by no means in the game. The following simple
observation, namely that the expected costs of FPeL and F* coincide in each time step, is obviously true and starts the
analysis.

Lemma 5. For each t ≥ 1, we have E∆t [cFPeL, cF*
] = 0.

IF* is the other intermediate algorithm. It proceeds exactly as FPeL and F*, using the identical randomness (meaning
identical realizations, not just identically distributed samples), including the charging perturbation vector q∗ from (1).
The only difference to F* is its selection J IF*

t relative to the charging perturbation vector, which assumes to know ĉt
already

J IF*
t = arg min

i :t≥τ
{ηt ĉ

i
1:t + ki

− q i
∗}. (3)

That is, IF* is charged c
J IF*

t
t , or if evaluated in terms of estimated costs, ĉ

J IF*
t

t , while the cost estimates are still obtained
using I IF*

t = I F*
t = I FPeL

t , hence, all three algorithms FPeL, F* and IF* are using identical cost estimates. Recall that
the intermediate algorithms are “virtual” and not actually feasible. Recall also that q∗ is fixed at the beginning at the
game, while the vector q is “reused” each time FPLsample is invoked.

Given Lemma 5, we may analyse F* instead of FPeL. The next Lemma relates the true costs ct to the estimates ĉt .

Lemma 6. When the denominator threshold is ψt =
1

2
√

t
, we have the following relations between c and ĉ for each

t ≥ 1.

(i) E∆t [c
F*, ĉF*

] ≤ 2ψt Bt ,

(ii) ĉi
t =

ci
t

p̂i
t

≤
ci

t
pi

t
+ ψt Bt (

√
m + 1) ≤

ci
t

pi
t
+ ψt Bt (m + 1) with probability

at least 1 − ψm
t for the expert i which was selected by F*,

for all m ≥ 1,

(iii) E∆t [ĉ
i , ci

] ≤ 6ψt Bt for all experts i ∈ {t ≥ τ }.

Remark 7. Recall that F* samples according to the perturbation qt , but is charged according to the perturbation q∗.
This means that F*’s expected estimated costs correctly evaluate to

EĉF*
t =

∑
i∈{t≥τ }

pi
t

∑
j∈{t≥τ }

p j
t 1i= j

ci
t

p̂i
t
.

That is, we need to sum over both probability distributions, and clearly, the cost is only different from zero if I FPeL
t and

J F*
t coincide.

Proof (Of the Lemma). Let i = I FPeL
t = I F*

t = I IF*
t be the expert selected by FPeL. Regarding the estimate ĉi

t =
ci

t
p̂i

t
for

ci
t

pi
t
, there are two possibilities of error: either p̂i

t overestimates pi
t , or it underestimates pi

t . The respective consequences

are different: If p̂i
t > pi

t , then the instantaneous cost of the selected expert is just underestimated. When evaluating the
algorithm in terms of estimated costs instead of true costs, we can account for this by adding a small correction to the
instantaneous regret: This is done in (i). At the end of the game, we perform well with respect to the underestimated
costs, which are upper bounded by the true costs.

The case p̂i
t < pi

t is covered by (ii)–(iv). It is more critical, since then at the end of the game we perform well only
w.r.t. overestimated costs.
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First we show (i). Problems would arise if the denominator p̂i
t were very close to 0. This explains the name and

the function of the denominator threshold ψt =
1

2
√

t
≤

1
2 . We assume that pi

t ≥ ψt . If this assumption is false but we

use p̂i
t ≥ ψt , then p̂i

t is an overestimate and we have to consider an additional instantaneous regret. In this case, we
would have selected expert i with probability at most ψt , therefore the case has probability at most ψt . Consequently,
as true instantaneous costs are always bounded by Bt , this causes an additional instantaneous regret of at most ψt Bt .

According to the definition of the algorithm FPeL, the perturbed leader is sampled K =
⌈

16t2 log(2
√

t)
⌉

=⌈
ψ−4

t log(ψ−1
t )

⌉
times, and a(K ) is the number of times the leader happens to be expert i . By Hoeffding’s inequality,

the distribution of a(K )
K is sharply peaked around its mean pi

t :

P
[

a(K )

K
− pi

t ≥
ψ2

t
√

2

]
≤ e−ψ4

t K and P
[

a(K )

K
− pi

t ≤ −
ψ2

t
√

2

]
≤ e−ψ4

t K .

Choosing p̂i
t = max

{
ψt ,

a(K )
K −

ψ2
t√
2

}
therefore implies that p̂i

t ≤ pi
t with probability at least 1 − ψt (recall the

assumption pi
t ≥ ψt ). Hence the possibility of overestimate p̂i

t > pi
t causes another additional regret of ψt Bt , which

proves (i).
In order to show (ii)–(iv), we need to deal with possible underestimates. For some integer m ≥ 1, the probability

that p̂i
t falls below pi

t −
(
√

m+1)ψ2
t√

2
is at most

P
[

a(K )

K
− pi

t ≤ −

√
mψ2

t
√

2

]
≤ e−mψ4

t K
≤ ψm

t (4)

by Hoeffding’s inequality. We partition the interval [ψt , pt
i ) of all possible underestimates into subintervals A1 =[

pi
t −

2ψ2
t√
2
, pi

t

)
and

Am =

[
pi

t −
(
√

m+1)ψ2
t√

2
, pi

t −
(
√

m−1+1)ψ2
t√

2

)
, m ≥ 2.

We do not need to consider m with the property Am ∩ [ψt , pt
i ) = ∅. That is, we can restrict to m small enough that

pt
i −

√
1
2 (

√
m + 1)ψ2

t ≥ ψt −

√
1
2ψ

2
t . Let M be the largest m for which this condition is satisfied, then we can easily

see
√

m + 1 ≤
√

M + 1 ≤
√

2(pi
t − ψt +

√
1
2ψ

2
t )/ψ

2
t .

Claim 8. If m ≤ M, then

ci
t

pi
t − (

√
m + 1)ψ2

t /
√

2
≤

ci
t

pi
t

+ ψt Bt (
√

m + 1) ≤
ci

t

pi
t

+ ψt Bt (m + 1).

This follows by a simple algebraic manipulation. The claim implies (ii), because according to (4), p̂i
t happens to be

left of Am with probability at most ψm
t .

Now, (iii) follows if we estimate the expectation over all Am . We have just shown that for p̂i
t ∈ Am , we have

Eĉi
t ≤ ci

t + (m + 1)ψt Bt , and moreover this occurs with probability at most ψm−1
t . So, when passing back from the

estimated to the true costs, this implies an upper bound on the additional regret of

∞∑
m=1

(m + 1)ψm
t Bt ≤

2ψt Bt

1 − ψt
+

ψ2
t Bt

(1 − ψt )2
≤ 6ψt Bt ,

since ψt ≤
1
2 . For all other experts i not selected by FPeL, we clearly have ∆t [ĉi

t , ci
t ] = 0, hence (iii) is proven. �

We now prove the step from F* to IF*, in terms of estimated costs.

Lemma 9. Provided that ηt Bt ≤ 1, we have

E∆t [ĉ
F*, ĉIF*

] ≤ ηt |{t ≥ τ }|B2
t + 20ψt Bt for all t ≥ 1.
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Proof. Abbreviate π i
t = P(I IF*

t = i) = P(J IF*
t = i). Denote the exponential distribution by µ and integration

with respect to q1 . . . qn (n = |{t ≥ τ }|) without the i th coordinate by
∫
. . . dµ(q 6=i ). Moreover, for x ∈ R, let

x+
= max{x, 0}. Then, similarly to the proof of [14, Theorem 4],

pi
t =

∫ ∫
∞

max
j 6=i

{ηt (ĉi
<t −ĉ j

<t )+q j
+ki

−k j
}

dµ(q i ) dµ(q 6=i ) =

∫
e
−(max

j 6=i
{ηt (ĉi

<t −ĉ j
<t )+q j

+ki
−k j

})+

dµ(q 6=i ) (5)

≤

∫
e
ηt Bt

p̂i
t e

−(max
j 6=i

{ηt (ĉi
<t −ĉ j

<t )+q j
+ki

−k j
}+

ηt Bt
p̂i

t
)+

dµ(q 6=i )

≤ e
ηt Bt

p̂i
t

∫
e
−(max

j 6=i
{ηt (ĉi

1:t −ĉ j
1:t )+q j

+ki
−k j

})+

dµ(q 6=i ) = e
ηt Bt

p̂i
t π i

t .

Hence, π i
t ≥ pi

t e
−
ηt Bt

p̂i
t ≥ pi

t

(
1 −

ηt Bt

p̂i
t

)
. From Lemma 6(ii), for each m ≥ 1, we know that

ci
t

p̂i
t

≤
ci

t

pi
t

+ ψt Bt (
√

m + 1) (6)

holds with high probability of at least 1 − ψm
t . Also, simultaneously

ηt Bt

p̂i
t

≤
ηt Bt

pi
t

+ ψt (
√

m + 1) (7)

holds because of ηt Bt ≤ 1. Denote by 1i= j the indicator function that i = j and recall Remark 7. Then, in the case
that (6) and (7) hold, we have

EĉF*
t =

∑
i∈{t≥τ }

pi
t

∑
j∈{t≥τ }

p j
t 1i= j

ci
t

p̂i
t

≤

∑
i∈{t≥τ }

pi
t

∑
j∈{t≥τ }

(
π

j
t + p j

t
ηt Bt

p̂i
t

)
1i= j

ci
t

p̂i
t

≤

∑
i∈{t≥τ }

pi
t

∑
j∈{t≥τ }

π
j

t 1i= j
ci

t

p̂i
t

+

∑
i∈{t≥τ }

(pi
t )

2
(
ηt Bt

pi
t

+ ψt (
√

m + 1)
) (

Bt

pi
t

+ ψt Bt (
√

m + 1)
)

≤ EĉIF*
t + |{t ≥ τ }|ηt B2

t + 4ψt Bt (m + 1),

where for the last estimate, we used ηt Bt ≤ 1, ψt ≤ 1, and (
√

m + 1)2 ≤ 2(m + 1). As in the proof of Lemma 6(iii),
we can bound the expectation over the sum from m = 1 . . .∞, which shows the assertion. �

The following step from IF* to any expert provides the last piece we need to complete the analysis in expectation.

Lemma 10. Suppose that
∑

i e−ki
≤ 1 and τ i depends monotonically on ki , i.e. τ i

≥ τ j if and only if ki
≥ k j .

Assume decreasing learning rate ηt . For any t0 ≥ 1, all T ≥ 1 and all experts i ,

E∆t0:T [ĉIF*, ĉi
] ≤

ki
+1
ηT
.

Proof. This is a modification of the proof of [14, Theorem 2]. Without loss of generality, assume t0 = 1. We will
show that for fixed randomization q (and consequently fixed estimated costs ĉt ),

EĉIF*
1:T ≤ min

i≥1

{
ĉi

1:T +
ki

+ 1
ηT

}
(8)

holds in expectation w.r.t. q∗. This implies the assertion. Recall that IF* is charged cost according to the perturbation
q∗ and the selection J IF*

t : throughout this proof, superscripts IF* refer to J IF*
t , e.g. cIF*

t = cJ IF*

t . Let η0 = ∞ and

λt = ĉt + (k − q∗)

(
1
ηt

−
1
ηt−1

)
, which implies λ1:t = ĉ1:t +

k − q∗

ηt
.
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We use the abbreviated notation “minT ≥τ ” instead of “mini :T ≥τ i ”. Then, for all T ≥ 1,

T∑
t=1

λIF*
t ≤ min

T ≥τ
λi

1:T + max
T ≥τ

{
q i
∗ − ki

ηT

}
(9)

can be shown by induction. It clearly holds for T = 0. For the induction step, we have to show

min
T ≥τ

λi
1:T + max

T ≥τ

{
q i
∗ − ki

ηT

}
+ λIF*

T +1 ≤ λ
J IF*

T +1
1:T + max

T +1≥τ

{
q i
∗ − ki

ηT +1

}
+ λ

J IF*
T +1

T +1 (10)

= min
T +1≥τ

λi
1:T +1 + max

T +1≥τ

{
q i
∗ − ki

ηT +1

}
.

The inequality is obvious if J IF*
T +1 ∈ {T ≥ τ }. Otherwise, let

M = arg max
{
q i
∗ − ki

: i ∈ {T ≥ τ }
}
.

Then

min
T ≥τ

λi
1:T + max

T ≥τ

{
q i
∗ − ki

ηT

}
≤ λM

1:T +
q M
∗ − k M

ηT
=

T∑
t=1

ĉM
t ≤

T∑
t=1

Bt

ψt

=

T∑
t=1

ĉ
J IF*

T +1
t ≤ λ

J IF*
T +1

1:T + max
T +1≥τ

{
q i
∗ − ki

ηT +1

}
shows (10). Rearranging terms in (9), we see

T∑
t=1

ĉIF*
t ≤ min

T ≥τ
λi

1:T +max
T ≥τ i

{
q i
∗ − ki

ηT

}
+

T∑
t=1

(q∗−k)J IF*
t

(
1
ηt

−
1
ηt−1

)
.

The assertion (8) then follows by taking expectations and using

E min
T ≥τ

λi
1:T ≤ min

T ≥τ

{
ĉi

1:T +
ki

ηT
− E

q i

ηT

}
≤ min

i≥1

{
ĉi

1:T +
ki

− 1
ηT

}
and (11)

E
T∑

t=1

(q − k)J IF*
t

(
1
ηt

−
1
ηt−1

)
≤ E max

T ≥τ

{
q i

− ki

ηT

}
≤

1
ηT
. (12)

The second inequality of (11) holds because τ i depends monotonically on ki , and Eq i
= 1, and maximality of ĉi

1:T
for T < τi . The second inequality of (12) can be proven by a simple application of the union bound, see [14, Lemma
1]. �

We now combine the above results and derive an upper bound on the expected regret of FPeL against an adaptive
adversary.

Theorem 11. Suppose
∑

i e−ki
≤ 1. Choose introduction times τ i

= d(wi )−
1
α e, learning rate ηt = t−

1
2 −ε,

denominator threshold ψt =
1

2
√

t
, and instantaneous bounds on the costs Bt = tβ . Select α, β ≥ 0 such that

α
2 + β = ε. Let ct be some possibly adaptive assignment of cost vectors satisfying ‖ct‖∞ ≤ Bt . Then for each expert
i , we have

E∆1:T [cFPeL, ci
] ≤ 2(wi )−

1
α
(1+β)

+ T
1
2 +ε(ki

+ 31).

Proof. Set t0 = τ i . For t < t0, the cost of FPeL, hence also the regret, is bounded by
∑τ i

−1
t=1 Bt ≤ 2(wi )−

1
α
(1+β). The

rest for t ≥ t0 follows by summing up all regret bounds in (this is the correct order) Lemmas 6(i), 9, 10, and 6(iii),
observing that |{t ≥ τ }| ≤ tα . �
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The leading constant 31 of the (lower order) term T
1
2 +ε is not sharp; it stems from the necessity of taking into

account the cost estimation error several times during the analysis.
In order to complete the proof of Theorem 1, we need a high probability bound. We will obtain this from

Azuma’s inequality. However, in order to apply Azuma’s inequality, we first need to slightly generalize Theorem 11
to conditional expectations. Let At be the sigma algebra generated by all randomness up to time t , and consider

E(X |At−1),

which is the conditional expectation of some random variable X w.r.t. the sigma algebra At−1. The sequence (At )t≥1
obviously is a filtration of sigma algebras.

Corollary 12. Under the conditions of Theorem 11, we have

T∑
t=1

E
(
∆t [c

FPeL, ci
]
∣∣At−1

)
≤ 2(wi )−

1
α
(1+β)

+ T
1
2 +ε(ki

+ 31).

Proof. We need to check that the Lemmata shown so far also hold in conditional expectation. This is easy to see in all
cases. Note in particular that Lemma 10 has been proven for any fixed randomness, where the expectation was taken
only over the charging perturbation q∗. �

Now, the required high probability bound can be obtained from Azuma’s inequality.

Lemma 13. For each T ≥ 1 and δ ∈ (0, 1), with probability at least 1 − δ we have

∆1:T [cFPeL, ci
] ≤

T∑
t=1

E
(
∆t [c

FPeL, ci
]
∣∣At−1

)
+

√(
2 ln

4
δ

) ∑T
t=1 B2

t .

Proof. It is straightforward that the sequence of random variables

XT = ∆1:T [cFPeL, ci
] −

T∑
t=1

E
(
∆t [c

FPeL, ci
]
∣∣At−1

)
is a martingale w.r.t. the filtration At generated by the past randomness, since

E(X t |At−1) = X t−1 + E
(
∆t [c

FPeL, ci
]|At−1

)
− E

(
∆t [c

FPeL, ci
]
∣∣At−1

)
= X t−1

holds. Its differences are bounded: |X t − X t−1| ≤ Bt . Hence, it follows from Azuma’s inequality (see e.g. [21]) that
the probability that XT exceeds some λ > 0 is bounded by 2 exp

(
−

λ2

2
∑

t B2
t

)
. Requesting δ = 2 exp

(
−

λ2

2
∑

t B2
t

)
and

solving for λ gives the assertion. �

We can now prove the following concretized version of Theorem 1:

Theorem 14. Let Bt ≡ 1, i.e. costs are uniformly bounded. For given ε > 0, choose introduction times τ i
=

d(wi )−
1
2ε e and learning rate ηt = t−

1
2 −ε. Then both the expected and high probability regret of FPeL relative to

any arm i and at any time T can be bounded:

E∆1:T [cFPeL, ci
] = O

(
T (

1
2 +ε) logwi

+ (wi )−
1
2ε

)
and

∆1:T [cFPeL, ci
] = O

(
T (

1
2 +ε) logwi

+ (wi )−
1
2ε

)
with probability

at least 1 − T −2.

Moreover, FPeL is asymptotically optimal w.r.t. each expert, i.e. for all i ,

lim sup
T →∞

cFPeL
1:T − ci

1:T

T
≤ 0 almost surely.
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The asymptotic optimality is sometimes termed Hannan-consistency, in particular if the limit equals zero. We only
show the upper bound.

Proof. Expected and high probability bounds follow from Theorem 11 and Corollary 12 combined with Lemma 13.

Hence, only the asymptotic optimality remains to be shown. Since P
[ cFPeL

1:T −ci
1:T

T > CT −
1
2 +ε

]
≤

1
T 2 holds for

appropriate C > 0, this follows from the Borel–Cantelli Lemma. �

3. Reactive environments

The FPeL algorithm considered so far performs well relative to any expert. In this section, we show an easy way
to possibly improve the performance of some experts (and thus also of FPeL) for a broad class of tasks, namely for
reactive environments.

The reader is asked to think of broader learning tasks than just pulling the arm of a bandit repeatedly in this section,
such as an agent which learns and acts in some environment. Also, the experts could be possibly complex procedures,
performing some complicated computation and thereafter suggesting some decision or action. On the technical level,
however, nothing changes: The learner repeatedly selects an expert and follows its advice.

As a motivating example, consider the repeated “prisoner’s dilemma” against the tit-for-tat4 strategy (this
motivating example was also considered in [9]). If we use two strategies as experts, namely “always cooperate”
and “always defect”, then it is clear that always cooperating will have the best long-term reward. However, a standard
expert advice or bandit learning algorithm will not discover this, since it compares only the costs in one step, which
are always lower for the defecting expert (defecting is the “dominant action”). To put it differently, minimizing short-
term regret is not at all a good idea here. E.g. always defecting has no regret, while for always cooperating the regret
grows linearly. But this is only the case for short-term regret, i.e. if we restrict ourselves to time intervals of length
one. Prisoner’s dilemma is an example for a broader class of reactive online decision problems where evaluating the
long-term performance renders some experts significantly stronger. In particular, there is an expert that is optimal
after t0 time steps, namely the cooperating expert.

Definition 15. (i) From the perspective of the learner, an online decision problem is just a game as defined in
Section 2.2. However, we do not assume here that the goal of the adversary is necessarily maximizing the learner’s
regret.

(ii) We say an online decision problem to be reactive if the learner’s actions impact on the adversary’s behaviour in
future. We are particularly interested in situations where the learner can benefit from well-chosen decisions in the
past.

(iii) The T -long-term performance of an expert i is its cost ci
T0+1 :T0+T for T time steps, starting from time T0, if

this expert i plays all the time from T0 on, no other experts are allowed to interfere. We say that the long-term
performance of the experts is evaluated, if for each T , from some time in the game on, each expert invoked is
followed for T time steps or more.

(iv) The hypothetical cost or performance of an expert i after t0 time steps is its long-term cost ci
T1+1 :T1+T , where it

plays all the time from T0 on, and the performance is evaluated from time T1 = T0 + t0 on (so the initial t0 steps
are ignored). An expert is strong or even optimal after t0 steps if its hypothetical cost after t0 steps is low or even
optimal, starting from any state of the environment. Here, the notions “low” and “optimal” depend on what is
achievable for the respective environment.

For instance, in the prisoner’s dilemma, where the opponent plays tit-for-tat, cooperating is optimal after two steps.
If the learner chooses to defect in one round, the cooperative expert needs two contiguous rounds to recover, i.e. to get
the opponent to cooperate again.

Recall from Section 2.2 that the adversarial (environment) is assumed to be deterministic throughout this work,
which makes it possible to restrict to a fixed number t0 of time steps. Also, we left the notions of strength and

4 In the prisoner’s dilemma, two players both decide independently if thy are cooperating (C) or defecting (D). If both play C, they get both a
small cost, if both play D, they get a large cost. However, if one plays C and one D, the cooperating player gets a very large loss and the defecting
player no cost at all. Thus defecting is a dominant strategy. Tit-for-tat plays C in the first move and afterwards the opponent’s respective preceding
move.
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optimality unspecified. Using more technical tools than we are willing to afford in this presentation, it is possible
to treat stochastic environments, and to unambiguously define the optimal performance for a very broad class
of environments (the “value”). Then, quantitative bounds for the regret minimization algorithms can be derived
accordingly, which hold for a broad class of Markov decision processes (and even apply to POMDPs, provided that at
least one of the experts suggests optimal actions). We leave the details to the interested reader.

The algorithm reFPeL. It is surprisingly easy to state an algorithm which performs well relative to the long-term
performance and the even hypothetical performance of any expert after t0 steps. We just have to make sure that
the long-term performance of all experts is evaluated. We therefore define the algorithm reFPeL, reactive follow the
perturbed estimated leader, as follows: Take the algorithm FPeL from Section 2.3 and rename the learner’s scale from t
to t̃ . Then, in each time step t̃ , give the control to a selected expert for periods of increasing length Bt̃ . The costs at the

learner’s new time scale t̃ are defined as c̃i
t̃
=

∑t (t̃)+Bt −1
t=t (t̃)

ci
t . (The points t (t̃) in basic time are defined recursively.) If

the basic costs are uniformly bounded, ci
t ∈ [0, 1], the new learner’s costs c̃i

t are then in [0, Bt ]. The algorithm reFPeL
has the following two performance guarantees, which imply Theorem 2 and Theorem 3 from the introduction.

Theorem 16 (Performance Guarantee Relative to the Actual Costs). For given ε > 0, choose Bt̃ = bt̃
ε
2 c, introduc-

tion times τ i
= d(wi )−

1
ε e, and learning rate ηt̃ = t̃−

1
2 −ε. Then, both the expected regret E∆1:T [creFPeL, ci

] and the high
probability (probability at least 1 − T −2) regret ∆1:T [creFPeL, ci

] of reFPeL relative to the actual long-term performance
of any expert i and after any horizon T , are bounded by

O
(
T (

1
2 +ε) logwi

+ (wi )−(
1
ε
+

1
2 )

)
. (13)

Also, reFPeL is asymptotically optimal: lim supT →∞
1
T (c

reFPeL
1:T − ci

1:T ) ≤ 0 almost surely for all experts i .

Proof. A bound such as (13) in terms of T̃ instead of T follows from Theorem 11. Since T̃ ≤ T , this immediately
implies (13). �

Theorem 17 (Performance Guarantee Relative to the Hypothetical Costs). Let Bt̃ = bt̃
1
4 c, introduction times τ i

=

d(wi )−
1
10 e, and learning rate ηt̃ = t̃−

2
5 . Then, for any t0, the regret (expected and high probability) relative to the

hypothetical performance after t0 steps of any expert i is at most

O
(
T

4
5 (logwi

+ t0)+ (wi )−12.5), (14)

at the horizon time T . Hence, if an expert i is strong or even optimal after t0 time steps, the same holds for reFPeL with
the above regret (14). Also, reFPeL is asymptotically optimal relative to the hypothetical costs.

Proof. On the learner’s time scale t̃ , we have the regret of expert i’s actual performance w.r.t. its hypothetical

performance is at most t̃ · t0. Since t is of order t̃
5
4 , on the original time scale t this regret is of order t0 · t

4
5 . Selecting

ε =
3

10 , α =
1

10 , β =
1
4 in Theorem 11 and observing T̃ ≤ T hence implies the assertion. �

Since we can handle countably infinite expert classes, we may specify a universal experts algorithm. To this aim,
let expert i be derived from the i th (valid) program progi on some fixed universal Turing machine. The i th program
can be well-defined, e.g. by representing programs as binary strings and lexicographically ordering them [12]. Before
the expert is consulted, the relevant input, consisting e.g. of the complete history of observations, is written to the input
tape of the corresponding program. If the program halts, an appropriate part of the output is interpreted as the expert’s
recommendation. E.g. if the decision is binary, then the first bit suffices. (If the program does not halt, we may go for
well-definedness; just fill its output tape with zeros, see the next paragraph for the computability issue.) Each expert
is assigned a prior weight by wi

= 2−length(progi ), where length(progi ) is the length of the corresponding program and
we assume the program tape to be binary. This construction parallels the definition of Solomonoff’s universal prior
[25].

Corollary 18. If reFPeL is used together with a universal expert class as specified in the preceding paragraph, then
it displays long-term performance asymptotically at least as well as any computable strategy i . The upper bound on

the regret growth is exponential in the complexity ki and proportional to t
1
2 +ε (against the actual performance) or t

4
5

(against the hypothetical performance).
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Note that our universal learner is not computable, since we cannot check if the computation of an expert halts. (This
is just like other universal learners, e.g. AIξ [12].) On the other hand, if used with computable experts, the algorithm
is computationally feasible (at each time t we need to consider only finitely many experts). Moreover, it is easy to
impose an additional constraint on the computation time of each expert and abort the expert’s computation after Ct
operations on the Turing machine. We may choose some (possibly rapidly) growing function Ct , e.g. Ct = 2t . The
resulting learner is fully computable and has small regret with respect to all resource bounded strategies.
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