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A cutting-plane procedure for facial disjuctive programs is presented. At each step the point 
to be cut away and the disjunction used to generate the cut may be chosen freely. Some general 
comments on finiteness proofs for discrete programs are also given. 

Many discrete optimization problems can be viewed as systems of linear 
inequalities together with restrictions of an “either-or” type, e.g., either x1 = 0 OI 

x5 = 0 or x7 = 0. Balas [ 1,2] introduced facial disjunctive programs to develop the 
general theory of such problems. P = (x 1 Ax 3 b} c R” is a polytope given by the 
usual inequality constraints. A facial disjunctive constraint is a requirement that 
the feasible set satisfy at least one of the inequalities 4x 3 e,, i = 1, . . . k ; where 
P n 4x 9 e, is a face of I? The constraints of a facial disjunctive program consist of 
the inequalities defining P, together with t facial disjunctive constraints, each of 
the form 

XE U (m&m+) j=i,...,t. 

Disjunctive programs include as special cases zero-one integer programs and 
linear complementarity problems. 

We consider cutting-plane methods of obtaining the feasible set S. For Q c P 
the inequality ax a p is said to be valid for Q if (YZ 3 6 for all z c 0. For 1 + c t 

define 

E(j,Q)= U (Qn+ae,) 
iED, 

(2) 

Hence 

s= li Eaj,P) 
jz 1 

(3 

NO method of obtaining all valid inequalities for S directly is known. However, 
Balas [1, see also 31 has sirown how valid inequalities for E(j, Q) may be obtained 
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by solving certa... ;~i linear programs. It is also shown in [1] that 

S = E(t, conv(E(t- 1, conv(E(t-2.. . . E(2, conv(E(1, P) l l l ). 

In principle, the feasible set may be obtained by adding all the inequalities 
generated by the first disjunctive constraint, then adding all cuts generated by the 
second constraint (applied to E(1, P)), and SO forth. Since the number of facets of 
E( 1, p) is typically exponential, other methods are needed. 

Jeroslow [IS] considered schemes in which cutting-planes are added one at a 
time. One started with Q0 = P. At the kth step one has Qk c a__* and an extreme 
point zk of Qk. If zk E S the algorithm stops. Otherwise j is determined such that 
zk $ E(j, Qk ). An inequality QX a @ is obtained (using the linear program tech- 
niques mentioned above) which is valid for E(j, Qk) and such that ezk < pI i.e., the 
point zk is cut away. Then Qk+l = Qk n ax 3 p, an extreme point zk+l of Q+1 is 
located, and so forth. 

Jeroslow showed that if j, a, fi are suitably chosen at each step, then conv(S) 
will be obtained in finitely many steps, regardless of the choice of extreme point 
zk at each step. The finiteness proof is non-trivial. We give a small example at the 
end of this paper to show that finiteness may fail if one simply chooses at each 
step an arbitrary facet of E(j, Q,,) which cuts away z,,. 

The problem is posed in [S] whether one can still obtain finite convergence if 
one is allowed to choose zk and also the jk such that z& E(jR, a) at each step 
(i.e., one chooses both the extreme point and the disjunctive constraint to be used 
to cut it away -arbitrarily). We will show that this can be done, although the cuts 
used may be difficult to compute. Then we present the example illustrating a way 
in which finiteness may fail. Finally we discuss a general approach to the proof of 
finiteness for cutting-plane methods on discrete optimization problems. 

Preliminary amdysis 

We begin with a formal description of cutting-plane procedures in general. Let 
W be the set of all finite sequences of quadruples (Zi, ai, pi, ji) 

W = {((zi, ai, pi, ji))o~i~~} [zi, ai E R” ; pi E R; 1 s ji s t] (4) 

such that (i) a0 = 0, & = ii; (ii) 2, is an extreme point of 

Qnl =P fi aiixa@i; 
i=O 

(5) 

(iii) z, 4 W,,,, Q,,, i; (iv) a,,,~,,,-, < P,,,, and (v) Q,,, =S for all OGror SK. We will 
denote those w E W of length k + 1 [i.e., last term is (z,, ark, &, jk)] by Wk. Thus, 
M/= Uk Wk. 

VVe identify a cutting-plane procedure with a function A : W + R”+l that 
assigns to each w E Wk A(w) = (ar k+lY &+ 1) such that (iv) and (v) are satisfied for 
m = k + 1. 11 is finitely convergent if and only if 

there is no infinite sequence ((Zi, Cwi, pi, ji)) (6) 
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such that, for every m, w,,, E W’” and (G, &,) = A(w,,,_,) [w,,, =first m + 1 mem- 
bers of the infinite sequence]. 

In other words, regardkw of the choice of zi and jr at each step, one eventually 
reaches a situaticur, in which every extreme point of Qn is in n;* 1 E(j, P) = S, 
hence Qn = conv(S). 

A crucial role in our subsequent analysis is played by the fact that E(j, P) is a 
union of faces of P. Let 

P(m) = {x ! x‘ c F for some face F of P of dimension G m}. (7) 

Suppose we have &t&d a polytope Q 3 S. Since the extreme points of conv(S) 
are extreme points of P, S is contained in the convex hull of those extreme points 
of P which are members of Q, i.e., conv(Q n P(0)) 3 S. More generally, 

Proof. Since P(m + 1) 3 P(m) it suffices to show this for m = 0. By (2), (3), and de 
Morgan’s law, xve may write S as a union of intersections of faces of P. Since the 
intersection of faces is a face, this establishes that S is a union of faces of R Since 
a face of P is the convex hull of certain extreme points of P, it follows that 
conv(S) is the convex hull of extreme points of P, as claimed above. Iz1 

We describe informally our cutting-plane scheme. At each step we have (1, 3 S 
and z,,, an extreme point of Q,,,. Let 

4?I = 0 if z, is an extreme point of P otherwis;! d, = dimension (8) 
of the unique face F,, of P such that t, E interior (F,). 

If d,=O, we cut 2, away using any inequality valid for S. Since P has a finite 
number of extreme points this only happens finitely often. If d,,, >O, then 

z, 4 conv(Q, n PM,, - l)), (9) 

conv(F, n Qm (7 P(d, - 1)) 3 F,,, n E(j,,,, 0,). (1O:l 

(9) follows from the fact that z,,, is an extreme point of 0,. (10) holds because 
F, n ECj,, Q,,,) is a union of proper faces of F,,. 

We construct an inequality ar,, 1 x a@,,,+, which is valid for E(j,, 0,) and cuts 
away z,. To ensure finite convergence we arrange that F, n (Y, +1~ = p,,, + 1 is 

(roughly speaking) a facet of conv(F, n Q, n P(d, - 1). 

The convergence theorem 

For WE Wk and lsdsn let 

L(d, w) = largest in=~!c-l such that d,,,<d. (13 

For Q c P and F a d-dimensional face of P a finite set S(Q, F)c l?‘+l is 
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defined to be a sharp set of inequalities if 

conv(QnFnP(d-- l))= QnF n ~rmp. 
(ad3)eWQ.F) 

(12) 

SMIJI sets of inequalities exist, e.,+, the facets of Q n P(d - 1). 

Theorem. Suppose that for every F, Q S(Q, F) is a sharp set of inequalities. Suppose 
A: W+R”+’ is a cutting-plane procedure such that for every w E wk if A(W) = 

(%+,9 &+l), &en 

(Yk+lLkc@k+l; 

if&=% Qkn&+lx~&+lzs; 

if dk >o, then for some (a, p> E S(QL(4.w)+lr 5) 

Fkr)Qk~FknQ,ncxxap~Fkna,nCYk+lX~Pk+l; 

if dk>O, Qkncu,+~X~pk+,~QknP(dk-l). 

(13) 

(14) 

(15) 

(16) 

Then A is a finitely convergent procedure, i.e., (6) holds. 

Pro&. With each w E Wk we associate C(w) = (a,,, a,, . . . a,,), an (n + 1).tuple of 
natural numbers measuring the complexity of Qk. a0 is the number of extreme 
points of P in Qk. For 1 G d S n we define 

cx, = c N(F) 
F 

(13 

where N(F) is the number of (ar, @)E S(QLld,wI+l, F) such that Ok nFn cyx 2 
/3 f Qk n F, and the sum is over all d-dimensional faces F of P. Let w* E W“+l be 
such that (&+I, &+I) = A(w) and w = the first (k + 1) terms of w*. Let c(w”)= 
(a,“, . . . a:). If dk = 0 a$ ( a0 because zk E Qk -a+l. If dk >O and is& then 
L(i, w) = L(i, w*). Since Qk il c Qk, a”Ga,. Further ax rc adt because, by (1% 
N*(F,_,) C N(F,_,). Hence c( w*) is lexicographically smaller than c(w). By well 
ordering, no infinite sequence is possible. D 

Condition (16) is not used directly in the convergence proof. Its purpose is to 
insure that, at each step of the algorithm, if dk >O, then there is some (ar, @) E 

S(Qt(c+~+u Fk) SUCK that azk Co. This follows from the fact that, for all 

d >o, ok = QLtd.wl+l n P(d - 1). 

Solation of the proMem of Jeroslow [5] 

We must construct a finitely convergent A such that, for w E Wk A(w) = 
((Yk+,, &+,:I iS such that 
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We require a variant af the separating hyperplane theorem, which can be proved 
by the usual convex analysis methods. 

LRmmrp, LetTcPbeapolytope. FafaceofP, UER*,~ER,ZEF-T.I~~~<~ 
and Fn wx ~6 =I F~I T, then there are (CT, @) such that P (I iyx 2 p 3 T and 
(Fnax=p)=Fhx=tk 

Now we specify the desired A. S(Q, F) consists of all the facets of Q n P(d - I). 
If 4 = 0. we cut zk away using any valid inequality for E(jk, Qk). If dk > 0, then 
by (9) and (10) there are (u, 6)~ S(QL(dc.Fc)+l, W) ‘such that vzk < 8 and 
Qkr)Fknvx~s~COI1V(~nFknP(d,-l))~QknFknE(i,Qk). ‘we kt T= 

COnV((c& nP(t& - l))UE(j, Q*)) and apply the lemma to obtain q&+1, &+l satis- 
fying (13), (M), (16), and (18). 

The cutting-plane procedure described above is impractical because, among 
other things, each Step depends on locating a facet of conv(Q, n P(d, - 1)). 
However, the convergence theorem yields finiteness results for many different 
algorithms, depending on different choices of the sharp sets S(Q, F). Larger sharp 
sets make each individual cut (at,, pi) easier to compute, but the cuts become 
shallower. 

An examMe of 

The finiteness proofs here and in [S] are surprisingly messy. We offer an 
example of a non-convergent cutting-plane procedure, which suggests that some 
delicacy is required to insure finiteness. 

Let PC R3 be the polytope whose extreme points are 

(3, 3, 0) (3, 3, 5) 

(0, 8, 0) (0, 8, 0) 

(8, 0, 0) 
(3, l&O) 

(1093, 0) 

(8, 8, 0) 

(89 ” @ [0 and b, to be specified later]. 
(3, IO,@) 

(109 3, 4) 

(1% 

Geometrically P has a hexagon base and an upper surface that is a “creased 
hexagon”. The two are joined at the point (8,&O). 

There are two disjunctive constraints 

E(l,P)={(x,y,z)~x=O or y=O or z=O}, 

E(2,P)={(x,y,x)lx+y=6 or x= 10 or y= 10 or t=Oj. 

~=P~E(~,P)~E(~,P‘,={~,Y,z)~PJz=o}. 

(20) 



Let 6,a satisfy 

4<0<5, (Ib=$g. (21) 

Then the extreme point ,O, 8,0) can be cut away by the inequality 

(5-&x+(5-4)y+7~~65-64. (22) 

(22) 5d r a facet of E(2, P) which goes through (3,3,5); (3,lO,<b); and (l&3,+). 
Q1 = Pn (22) has the same extreme points as Q0 = f except that (0, &@) and 

(8,&e) are replaced by (0,8, e’); (8,0,@‘) such that 

4>3’, #9’=54+7. (23) 

The extreme point (3,10,4) can be cut away by the inequality 

e’x + 8’ y + 82 s 168’. (24) 

(24) is a facet of P( 1, Q1) which goes through (0, 8,0’); (8,0,0’) and (8,8,0). 
Qz = Q1 n (24) has the extreme points (10,3,4) (3,10,4) replaced by 

{IO, 3,4’) and (3,lCr, 4’) where 

Since (25) is the same as (21) the process can be continued indefinitely. 
Two remarks should be made about this example. At each step there is only 

one i such that the present extreme point is not in Eu, Qa). This is not a case of 
choosing the wrong disjunction but rather the wrong facet, which keeps creating 
undesirable new extreme points. Secondly, it should be noted that the sequence of 
extreme points does not approach a member of S as a limit. 

Concluding remarks 

The finiteness questions are still rather mysterious. Both the methods described 
here and in [5] have the irritating property that the finiteness proof may fail if 
deeper cuts than ones specified are used (this is related to the creation of 
unwanted extreme points in our example). The author feels that present finiteness 
proofs are more cumbersome than they should be, and that a theory unifying the 
various techniques is needed. 

Many Eaiteness proofs (perhaps all) are based on the idea that the polytope 
after a cut is simpler than the polytope before the cut. Different cutting-plane 
algorithms correspond to different definitions of “simpler”. The definition used in 
this paper was determined by the numbers ad in (l?). The Gomory method of 
integer forms (in its usual presentation) uses a measure of complexity (cyO,. . . Qlk) 

where (x0 = largest integer value obtainable for the objective function z by a point 
in the polytope; ai = largest integer value obtainable for x1 by a point in the 
polytope such that z = a0 and xi = ai for all i < i. We hope to study the V~OUS 
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algorithms and their corresponding definitions of %rnpler” (equivalently, com- 
plexity measures defined on polytopes) later. 

Finally, we wish to mention a question related to Gomory’s method of integer 
forms. Gomory [4& after showing that certain row selection rules guaranteed 
finite convergence, he knew of no exampie of non-convergence 
arising from an aon of rows at each step. Twenty years later, no 
such example has been constructed. 
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