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This paper deals with pricing and investment decision problems of multi-route and multi-period highway systems in which the congestion is a
significant factor in the assessment of system costs. This study approaches this congestion pricing scheme with two different social welfare maximi-
zation problems, both of which search for the optimal solutions through general equilibrium analysis. These two optimization problems have an identi-
cal structure except financial constraints that reflect different decision environments.

One welfare maximization problem involves estimating the first-best social optimal solution. This problem yields the optimal solution for the
implementation scheme to impose the differentiated congestion charge for each trip alternative in terms of travel route and trip period. The optimal
congestion charge for this problem has the expression similar to that derived in previous studies dealing with congestion pricing.

Another maximization problem involves characterizing the second-best optimal solution. In this problem, it is assumed to impose the conges-
tion toll only on a single highway link. This problem yields the second-best congestion toll different from the first-best one. This second-best optimal
congestion toll has the structure to reflect its impact on other highway links exempt from the congestion charge program.
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1. INTRODUCTION

Highway transportation systems have a number of
peculiar characteristics that seem responsible for their
being dealt with as separate topics of marginal cost pric-
ing. One is ‘congestion phenomena’ that the average user
cost increases as the number of users increase. Another
one is ‘peaking phenomena’ that the demand concentrates
on a certain period of the day or week. The other one is
‘network situation’ that more than one alternative route
is available to trip-makers.

Congestion pricing might be the most appropriate
pricing scheme to accommodate these characteristics of
highway systems. This economic analysis scheme is a
special kind of marginal cost pricing, which deals with the
optimal decision rules for the investment and pricing of ex-
cludable public goods. This pricing scheme has an ad-
vantage of reflecting the effects of congestion and peaking
demand in searching for the optimal decision rules.

This aspect of congestion pricing is well examined
in the pricing and investment decision problem of urban
highways1. This example deals with the optimization
problem to maximize the net benefit, NB, namely:

max NB ≡ ∑   t [∫  Pt (qt)dqt – Qt Ft (Qt;y)] – SC(y)
Qt

0t
α

Here, the parameter αt represents the duration of the

t th period for every t  ∈ 〈 1, T〉, and satisfies the condition
that ∑αt = 1.0 and αt 〉 0. The benefit of highway users is
expressed as the inverse demand function Pt . The cost is
expressed as the sum of user cost ∑αtQtFt (Qt;y) in T  peri-
ods and supplier cost SC(y), where Ft refers to the average
user cost function, and y represents the highway capacity.

This net benefit maximization problem searches for
the optimal investment and pricing rules through partial
equilibrium analysis. This optimization problem reflects
the congestion effect by using the average user cost func-
tion Ft (Qt), which is monotonically increasing with respect
to Qt. In addition, the optimization problem expresses the
total benefit and costs as the sum of T  periods, in order to
accommodate the effect of peaking phenomena.

However, this approach has a limitation associated
with partial equilibrium analysis, which is not suitable to
assess the impact of the congestion charge on other trans-
portation facilities or services. This approach therefore
has the difficulty to address a number of relevant policy
questions related to the congestion charge. One such
policy question would be to characterize the optimal so-
lution for investment and pricing decisions, which can
attain the first-best social optimality in welfare econom-
ics. Another one would be to find the optimal pricing
scheme for a certain highway route, which can compre-
hend its effect on the welfare changes of trip-makers us-
ing other competing alternative routes.
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The main objective of this study is to find the opti-
mal decision rules for the investment and pricing of multi-
route and -period highway systems in the presence of
congestion. One of our key concerns is to compare the
decision rule for the multi-route highway system with the
rule for single highway route, which has been examined
in most studies for congestion pricing1,2. Another one is
to assess a number of relevant policy questions associ-
ated with congestion pricing, including those mentioned
above.

We approach these policy questions with two dif-
ferent social welfare maximization problems, which search
for the optimal investment and pricing rules through gen-
eral equilibrium analyses. One maximization problem
involves estimating the optimal congestion charge corre-
sponding to the first-best optimal solution. This maximi-
zation problem is defined to estimate the adequate amount
of congestion charges for all the highway routes. Another
involves estimating the second-best optimal solution for
the case that the congestion charge is levied only upon a
particular route.

These two welfare maximization problems have an
identical structure except for the constraint about the
implementation program of congestion charges. Specifi-
cally, the objective function of these two problems cor-
responds to the social welfare function, which was firstly
applied in assessing marginal cost pricing by Mohring3.
The structure of constraints is similar to the one used in ana-
lyzing the optimal taxation rule by Diamond and Mirrles4.
One set of constraints to the optimization problems rep-
resents the process of transportation services in the pres-
ence of congestion. Another constraint involves the
financial requirements faced by the supplier of transporta-
tion services.

The structure of the paper is as follows. In Section
2, we introduce an alternative approach to specifying the
service process of highways, which is outlined above. In
Section 3, we examine the welfare maximization prob-
lem, which searches for the solution to attain the first-
best social optimality. Subsequently, in Section 4, we
assess the amended welfare maximization problem de-
fined to address a policy question, namely, the effective-
ness of congestion charges on a single highway link.

2. HIGHWAY SERVICE PROCESS

The objective of this section is to explain our ap-
proach to specifying the constraints of the welfare maxi-

mization examined in subsequent sections. We firstly in-
troduce an alternative specification for the highway ser-
vice process equivalent to the production process of
ordinary goods. Subsequently, we set up the highway cost
function and the user equilibrium condition with the speci-
fication for the service process defined in the previous step.

2.1 Specification for service processes
To start, we examine the approach to specifying the

production process of a public good free from conges-
tion. Suppose that this public good g is the output of the
production process G with the input of ordinary goods
x ≡ (x1, x2, …, xJ). Then, this public production process
could be expressed as follows:

g – G(x) ≤ 0

where g ≥ 0 and x ≥ 0.
On the other hand, the service mechanism of high-

way systems could be decomposed into two separate pro-
cesses. The first involves the production process of
highway facility with ordinary goods. The second is as-
sociated with the congestion process, which determines
the average user cost of the system. These two processes
are interconnected with the highway capacity correspond-
ing to the output of the first process and also the input of
the second process.

The output of the first process is assumed to be the
highway capacity, which corresponds to the measure for
the size of facilities. This highway capacity is also as-
sumed to be a sole variable that determines the service
characteristics. Furthermore, it is assumed that the capac-
ity, denoted by y, is a real number, i.e., the highway is a
divisible facility.

 At this stage, it would be necessary to comment
on the validity of the second assumption. The capacity
of highways is not determined solely by number of lanes;
but also by many other physical variables, such as width
of lanes, access control method, grade, alignment, etc. It
would therefore be acceptable that the image of the func-
tion to estimate the capacity with the inputs of these
physical variables could be real numbers.

The input of the first process corresponds to ordi-
nary goods x ≡ (x1, x2, …, xJ), which represent the quan-
tities of goods traded at the market, such as fuel,
manpower, construction material, etc. These inputs are
assumed to be available to the supplier of highway ser-
vices, at the before-tax price p ≡ (p1, p2, …, pJ). Also an
identical type of good is represented as different goods,
if their consumption periods are different.

The production of output y with inputs x involves
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a production process G, which is assumed to fulfill the
following. First, the process G satisfies:

y – G(x) ≤ 0 ································································· (1)

Second, the function G is concave and differentiable
with respect to x.

The second process involves the service mechanism
to determine its average user cost. This user cost com-
monly refers to the value of the resources consumed from
the viewpoint of society, and usually excludes highway
tolls. This user cost is short-run in nature. Accordingly,
the user cost of each period t is determined by a process
Ft , which is separated from those of other periods.

The process Ft is actually the average user cost
function, which is a kind of delay function of queuing
systems. One relevant way of expressing the process Ft

is:

Ft (gt;y) – Ct ≤ 0 ························································· (2)

where Ct is a non-negative continuous variable, and rep-
resents the average user cost at the t th period. The in-
equality in (2) reflects that the average user cost C ≡ (C1,
C2, …, CT) is the supplier’s independent decision vari-
able. Alternatively, the inequality implies that the sup-
plier could choose C larger than the technically attainable
value determined by the function Ft.

We make an additional number of assumptions
about the structure of the average user cost function Ft.
First, the function Ft is convex, increasing and differen-
tiable with respect to output gt. The delay function of
queuing systems is of this form. Second, the function Ft

is convex, decreasing, and differentiable with respect to
capacity y. These assumptions are also satisfied by the
delay functions that are commonly used in transportation
studies, except for the differentiability, which is an ex-
tension of divisibility assumption mentioned earlier.

One example that fulfills these assumptions about
convexity and differentiability is the average user cost
function proposed in “Highway Capacity Manual5”. This
function is:

Ft (gt;y) ≡ t0 + t1 (gt/y)s
··············································· (3)

Here, the first term t0 represents the user cost in the
free flow condition of highways. The second term t1 (gt/y)s

represents the additional cost accrued by congestion,
where constant s is reported to be 4.0 ~ 6.0.

2.2 Cost functions for highway services
The total cost function, by definition, estimates the

minimum social costs necessary for the production of av-

erage output rates g ≡ (g1, g2, …, gT) . The total cost func-
tion is composed of supplier cost function and user cost
function. The supplier cost function involves the produc-
tion process G to yield capacity y with input x. The user
cost function is related with the queuing process Ft  to de-
termine the average user cost Ct  for the given gt  and y .

We define the total cost function as the solution to
the social cost minimization problem associated with the
production of output rate g. This social cost minimiza-
tion problem could be formulated in two steps, which are
interrelated. The first step involves estimating the sup-
plier cost function, which is the solution to the cost mini-
mization problem to choose the optimal value of x
necessary for the production of a given y. The Lagrangian
for this minimization problem is:

j
SC (y;p) ≡ min ∑pj xj + ø(y – G(x))*

························· (4)

where φ ≥ 0 is a Lagrangian coefficient. The second step
involves searching for the optimal capacity y, which mini-
mizes the total cost in producing a given vector of out-
put rate g ≡ (g1, g2, …, gT). The decision variables for
this minimization problem are y and C. The Lagrangian
for this problem, denoted by TC, is:

t

t

TC (g;p) ≡ min {SC (y;p)  + ∑   t gt Ct }
+ ∑  t   t (Ft (gt;y)  – Ct )

α

αλ
···················· (5)

where λt  ≥ 0 is the Lagrangian coefficient.
Substituting the supplier cost function in equation

(4) into the total cost function in equation (5) yields the
alternative expression that can provide a more compre-
hensive picture about the decision variables. This alter-
native expression involves estimating the optimal values
of x, y and C necessary for yielding the output rate g.
This problem is:

j

t

t
TC (g;p) ≡ min {∑pj xj + ∑   t gt Ct } + ø(y – G(x))

+ ∑  t   t (Ft (gt;y)  – Ct )
α

αλ
··· (6)

Note that this cost function yields the identical so-
lution with the problem in equation (5) for any combi-
nation of non-negative g and p.

Subsequently, we estimate the marginal cost func-
tion with respect to outputs for the total cost function TC
in equation (6). To this end, we first determine the unit
for measuring the outputs of each period. We also find

* For simplicity of the presentation, we omit the terms representing the
constraints for the boundaries of the decision variables, such as y ≥ 0 and
x ≥ 0. Note also that we describe the Lagrangian of the other optimization
problems in this abbreviated form throughout this study.
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that the quantity of output in the t th period is not gt rep-
resenting the output rate; but rather α t  gt, corresponding
to the actual number of outputs produced during the time
interval α t.

We define the factor demand functions of x, y and
C with respect to independent variables g and p, which
are denoted by x̂ ≡ ( x̂1, x̂2, …, x̂J), ŷ and  Ĉ ≡ (  Ĉ1,  Ĉ2,
…,  ĈT) respectively. Each factor demand function by
definition estimates the optimal value of the correspond-
ing decision variable, which satisfies the necessary con-
ditions for the minimization problem in equation (6). We
also define the functions  φ̂ and ë̂ ≡ ( λ̂1, λ̂2, …, λ̂T), for φ
and ë ≡ (λ1, λ2, …, λT) respectively, in the same manner.

Replacing all the unknown decision variables in
equation (6) with their corresponding functions defined
above, differentiating this alternative expression with re-
spect to α t  gt, and simplifying the resulting expression
by substituting the necessary conditions of the optimiza-
tion problem yields:

MCt (g;p) ≡ 

= Ft (g;ŷ(g;p))+gt 

∂TC(g;p)
∂   t gt

∂Ft (gt;y)
∂gt y = ŷ(g;p)

α

···················· (7)

This long-run marginal cost function estimates the
additional increase in total costs accrued by an increase
in outputs from α t gt to α t gt +1.

The first term of equation (7) corresponds to the
average user cost function, which estimates the average
user cost per unit of trip at the t th period. This function
is alternatively expressed as:

AUCt (g ;p) ≡ Ft (gt; ŷ(g;p)) ············································· (8)

The second term of equation (7) is called the mar-
ginal congestion cost function. This function estimates the
additional user cost per trip caused by adding one more
unit of trip to the system:

MCCt (g;p) ≡ gt 
∂Ft (gt;y)
∂gt y = ŷ(g;p) ························ (9)

Note also that the functional structure of the long-
run marginal cost function MCt in equation (7) is identi-
cal to that of the short-run marginal cost function for the
total user cost.

This long-run marginal cost function MCt for a
given output g0 has the same value as the short-run mar-
ginal cost function of the system with the optimal capaci-
ties for the given g0. To clarify this point, suppose the
highway has the capacity y0

 ≡ ŷ (g 0;p). Then, the short-
run marginal cost for the given y0, denoted by SRMCt,

satisfies the following:

SRMCt (gt
0 ; y0)  ≡ Ft (gt

0 ; y0)  + gt
0        ∂Ft (gt;y0)

∂gt gt = gt
0 

= MCt (g0;p)
·· (10)

where the second equality is a direct consequence of the
definition of MCt in equation (7).

Finally, we illustrate the configurations of various
cost functions derived above with a simple example. To
this end, assume that the supplier cost function SCa has
a linear relationship with the capacity y:

SCa = a + by ····························································· (11)

where a ≥ 0 and b 〉 0. Assume further that the average
output rate g is constant across all periods, and that the
average user cost function has the functional form in
equation (3).

Then, the highway cost function in equation (5) can
be simplified as:

TCa (g) ≡ min{a + by + gC} + λ (F(g;y) – C) ·········· (12)

For this cost function, the first order condition with
respect to y is:

b = – t1 g
∂ƒa

∂y ···························································· (13)

where  fa ≡ (g/y)s. Solving the above equation with re-
spect to y yields the following factor demand function:

 ŷ(g) = δ1/s+1g ··························································· (14)

where δ = t1s /b. Note that δ 〉 1, since T = 1. Otherwise,
the output rate exceeds the capacity.

Substituting equation (14) into equation (12), and
differentiating the resulting expression with respect to g
yields the following long-run marginal cost function:

MCa (g) = AUCa (g) + MCCa (g) ······························· (15)

Here, AUCa and MCCa have the following specific
expressions:

AUCa(g) = t0
 + t1  -s/s+1 = t0

 +      1/s+1δ δb
s ······················· (16)

MCCa(g) = t1
 s  -s/s+1 = b  1/s+1δ δ ·································· (17)

In addition, the marginal cost function MCCa has
the following relationships with supplier costs:

∂ŷ(g)
∂g

ŷ(g)
g

MCCa (g)  = MSCa (g)  = b    

= AVSCa (g)  = b ······························ (18)
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where MSCa refers to the marginal supplier cost
function, and AVSCa represents the average variable sup-
plier cost function.

g

 AUCa(g)

 MCa(g)

 Fa(g;y0)

 SRMCa(g;y0)

Cost

0 y0 = δ1/(s+1)g0g0

t0
Fa(g0, y0)

MCCa(g)=bδ1/(s+1)

 (b/s)δ1/(s+1)

Fig. 1  Schematic illustration of highway cost function

   Figure 1 schematically depicts the above results.
The figure shows that the marginal cost function MCa is
equal to the sum of AUCa and MCCa. The figure also il-
lustrates the relationship between MCa and SRMCa for a
given output g0, and the relationship between MCCa and
MSCa in equation (18).

2.3 Specification for user equilibrium
So far, we have assumed that the output rate g in the

average user cost function Ft is the independent decision
variable of suppliers. Instead, this output rate g is actually
a dependent variable of the interaction process between a
highway facility and its users. More precisely, the output
corresponds to the user demand at user equilibrium, which
refers to the stable state reached through the process of a
trip-maker’s search for optimal choices in terms of fre-
quency of trips, time of day, route and so on.

To start, we identify a number of requirements that
a specification of user equilibrium should fulfill. First, the
formulation can reasonably depict user equilibrium con-
ditions from the viewpoint of the trip-maker’s behaviors.
Second, it can formulate the user equilibrium of multi-
route and multi-period highway systems. Third, the speci-
fication for user equilibrium should have the solution that
is not necessary to be a unique one. Finally, it should be
an expression that allows the analysis of congestion pric-
ing in combination with the production process in equa-
tion (1) and the congestion process in equation (2).

We first explain our specification with a simple hy-
pothetical market characterized as follows. Suppose only

the single trip alternative serves trip-makers. Suppose also
that the demand for the alternative, denoted by Q, is a
function of real trip cost C + R, where C refers to the av-
erage user cost, and R is the congestion charge imposed
by the supplier. Suppose further that the average user cost
function F has a single capacity variable y.

In addition, suppose that the supplier has already
made the decisions about congestion charge R and capac-
ity y. Note that these decisions are a prerequisite to prop-
erly defining the user equilibrium. Moreover, the congestion
pricing issue dealt with later involves searching for the
optimal congestion charge and capacity.

Under these assumptions, one way of specifying the
user equilibrium is to express it using the following two
equations:

g = Q(C + R) and C = F(g;y) ·································· (19)

The first equation corresponds to the demand func-
tion. The second one represents the average user cost func-
tion identical to equation (2). The user equilibrium refers
to the state characterized by the solutions C* and g*,
which satisfy the two equations simultaneously.

The above specification has long been used to ex-
plain the structure of the user equilibrium6. In addition,
this specification has the advantage of satisfying the first
three requirements mentioned above. Further, this speci-
fication has the structure that the existence of the user equi-
librium can readily be approached, as examined later in this
section. However, this specification is not an appropri-
ate expression to fulfill the last requirement.

For this reason, we combine these two equations
into one. This alternative approach yields the following
specification for user equilibrium:

C* = F(Q(C* + R);y) ·············································· (20)

Here, the left side C refers to the actual average user
cost determined by the average user cost function, which
is the outcome of the interaction between the highway
facility and its users. The right side C in the demand func-
tion corresponds to the average user cost perceived by the
trip-makers prior to their trip. Therefore, the user equi-
librium defined above refers to a state in which the users’
expected value of C prior to their trip equals their experi-
enced value of C in a trip.

The proof for the existence of user equilibrium de-
fined in equation (20) is worked out by introducing an
algorithm to search C* that satisfies the two equations
(19) simultaneously. One candidate algorithm involves
mapping Γ0 to update the value of C through the itera-
tion defined below:



ROAD PRICING

50 � IATSS RESEARCH Vol.26 No.1, 2002

Cn+1 = 0.5[Cn + F(Q(Cn + R)y)] ····························· (21)

On repeating a sufficiently large number of itera-
tions, the value of Cn will approach a certain limit, and
will satisfy the following:

Cn+1≅ Cn ≅ 0.5[Cn + F(Q(Cn + R); y)] ···················· (22)

This resulting relation is equivalent to the expres-
sion of the user equilibrium in equation (20). The search
process defined in equation (21) is illustrated schemati-
cally in Figure 2.

=

C

=

Cn  

 0 Q(Cn+R0)

Q(C+R0)Cn+1 

 F(Q(Cn+R0),y0)

 C*=F(Q(C*+R0),y0)

g or Q

 Fb(g;y0)

Fig. 2  Schematic illustration of user equilibrium

Subsequently, we examine the problem to specify
the user equilibrium for the multiple routes connecting
the two points. We approach this problem in two steps.
The first step is to set up an equation, similar to equa-
tion (11), for each link and for each period respectively.
The second step is to formulate the system-wide user
equilibrium as a set of simultaneous equations, each of
which corresponds to the one developed in the first step.

This approach can alternatively be stated as follows.
Suppose that the trip demand Qmt, for every m ∈ 〈 1, M〉
and t ∈ 〈1, T 〉, is a function of user’s real trip costs,
C + R ≡ (C11 + R11, C12 + R12, …, CMT + RMT), and the
after-tax prices of ordinary goods, P ≡ (P1, P2 , …, PJ),
where the items of goods consumed z ≡ (z1, z2, …, zJ) are
identical to those of input x as defined in equation (1).
Suppose also that the supplier has already set up the con-
gestion charge Rm ≡ (Rm1, Rm2, …, RmT) and capacity ym

for every m.
Then, the existence of the user equilibrium implies

that there exists at least one solution C* ≡ (C*
11, C*

12, …,
C*

MT), which satisfies the following M × T equations si-
multaneously:

C*
mt  = Fmt(Qmt (C*

 + R, P)/αt; ym),
           ∀m ∈ 〈 1, M), ∀t ∈ 〈 1, T ) ························· (23)

where Qmt /αt corresponds to the same quantity with
gt in equation (2).

The existence of user equilibrium for the specifi-
cation (23) calls for a number of assumptions. First, ev-
ery demand function Qmt  is single-valued and continuous
in C + R. Second, the function Qmt  is decreasing with
respect to Cmt  + Rmt , but non-decreasing with respect to
Ckl + Rkl, for every k ≠ m or l ≠ t. Third, the value of each
Cmt  belongs to the closed interval ICmt  ≡ [Cmt

min, C m
max],

where Cmt
min

 ≡ Fmt (0;ym) is the travel cost in the free flow
state that Qmt  = 0 . Fourth, each Rmt  also belongs to the
closed interval [0 , Rm

max ], where Rm
max is a positive finite

value.
We prove the existence of user equilibrium C* speci-

fied in equation (23) by applying Brower’s fixed point theo-
rem. To this end, we define a mapping Γ: IC → IC that:

Γ(C)  ≡  Γ11(C) × Γ12(C) × … × ΓΜΤ (C) and

Γmt (C) ≡ min{0.5[Cmt  + Fmt (Qmt (C + R, P)/αt;ym)]Cm
max}

···························· (24)

where IC ≡ IC11 × IC12 × … × ICMT . Then, the function
Γmt  is single-valued and continuous, since each Fm and
Qmt  is single-valued and continuous. Accordingly, the
function Γ  is also single-valued and continuous. There-
fore, by Brower’s fixed point theorem, there is a fixed
point corresponding to the solution to the simultaneous
equation system (23) as well as the equation system (24).

3. THE FIRST-BEST SOCIAL OPTIMALITY

This section deals with the first-best social
optimality for multi-route and multi-period highway
systems in the presence of congestion. This optimality
corresponds to the solution for the social welfare maximi-
zation problem faced by government, namely:
Objective : social welfare function
Constraints : production possibilities of capacity,

user equilibrium conditions, and
financial constraint ····························· (25)

The details of this maximization problem are ex-
plained below.

We define the social welfare function in an identi-
cal manner with the one introduced to assess the marginal
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cost pricing by Mohring3. This social welfare function
W(u1, u2, …, uI ) is monotonically increasing and concave
in the indirect utility function ui, for every individual i ∈
〈1, I〉. Every consumer i has a neo-classical utility func-
tion, and owns an initial endowment mi comprised of
monetary income and other human resources. Each con-
sumer i has to pay an income tax hi imposed by the gov-
ernment. In addition, every individual i maximizes his
utility by consuming private good zi ≡ (zi

1, z
i
2, …, zi

j ) and
making trips qi ≡ (qi

11, q
i
12, …, qi

MT) under the budget con-
straint of his disposable income mi – hi.

Subsequently, we make two assumptions about the
supply side of ordinary goods consumed z. First, every
good j ∈ 〈1, J〉 is supplied by competitive producers at
the before-tax price of pj , being equal to the marginal cost
denoted by MCj. Second, the government imposes an ex-
cise tax on every good j, which amounts to vj. Therefore,
the after-tax price of j is equal to pj + vj , and is denoted
by Pj.

We set up the utility maximization problem for each
consumer i. The decision variables of this consumer prob-
lem are nonnegative qi and z i. The Lagrangian of this de-
cision problem is:

U i ≡ max ui (qi, zi)  +     i [  mi –  hi –  ∑∑  (Cmt + Rmt)  

–  ∑qi
mt

  Pjzj
i]

m t

j

η

······ (26)

where ηi is the marginal utility of income. On arranging
the necessary conditions for this maximization problem,
we can have the following equation system:

si
qq si

qz C + R 0
      =

si
zq si

zz p + v 0 ··············································· (27)

where, the left-side matrix corresponds to a Slutsky sub-
stitution matrix for a bundle of (q, z) ≡ (q11, q12, …, qMT,
z1, z2, …, zJ), and each element of the matrix is a sub-
matrix such that [si

qq] ≡ {s i
kl,mt}, [si

qz] ≡ {s i
kl, j}, [s i

zq] ≡
{s i

n,mt} and s i
zz ≡ {s i

n,j}. For example, the (kl, mt) element
of sub-matrix [si

qq] or {s i
kl,mt} is s i

kl,mt = ∂qi
mt /∂Rkl – qi

kl·
∂qi

mt / ∂hi. The vector C + R represents the real cost of q
including user cost C, and p + v corresponds to the af-
ter-tax price of z (See Appendix A).

In addition, we make four sets of assumptions about
the constraints of the social welfare maximization prob-
lem. First, the production function of capacities, denoted
by Gm, for every m, satisfies a number of requirements
specified in Section 2.1. Second, the average user cost
function Fmt fulfills a number of assumptions identified
in Section 2.1. Third, the trip demand function Qmt ful-

fills the requirements that are necessary for the existence
of a user equilibrium C specified in equation (23). Fourth,
the decision of the government supplying all transport ser-
vices fulfills the balanced budget constraint expressed by:

m t m jji
∑hi +∑∑RmtQmt +∑vjZj –  ∑∑  pj xmj  ≥  0 ···················· (28)

where Zj ≡ ∑zi
j. In equation (28), ∑hi represents the sum

of income taxes, ∑∑Rmt Qmt refers to the sum of con-
gestion charge revenues, ∑vjZj corresponds to the sum
of excise taxes on goods consumed, and ∑∑pj xmj is the
production cost necessary for the provision of all the high-
way services.

At this stage, it would be necessary to clarify the
expression of the marginal cost function with the vari-
able Qm instead of gm. By definition, the value of α t gmt

is equal to that of Qmt. Therefore, equation (7) can alter-
natively be expressed as:

MCmt (Qm/á;p)         

= AUCmt (Qm/á;p) + MCCmt (Qm/á;p) ······················· (29)

where Qm/á ≡ (Qm1/α1, Qm2/α2, …, QmT/αT). The spe-
cific expression of the marginal congestion cost function
MCCmt is:

MCCmt (Qm/á;p)         

≡ Qmt
∂Fmt (Qmt /   t;ym)

∂Qmt ym = ŷm
 (g;p)

α ·························· (30)

We are now in a position to formulate the social
welfare maximization problem defined in equation (25).
This decision problem involves choosing optimal values
of xm, ym Cm, Rm for every m, h and v. The Lagrangian
of this welfare problem is:

··············· (31)

SW1 ≡ max W (u1, u2, …, u1 )  + ∑øm (Gm (xm)  –  ym)
m

m t

mi t mj j

+∑∑λmtα t (Cmt  – Fmt (Qmt /αt;ym))
+   (∑hi + ∑∑  Rmt Qmt+ ∑  vj Zj  –∑∑  pj xmj )ω

where φm , λmt and ω are nonnegative Lagrangian coeffi-
cients.

On arranging the first-order conditions with respect
to various decision variables yields the two types of re-
lationships characterizing the optimal solution. One group
of relationships is the efficient production conditions,
which characterize the decision rules for the optimal high-
way capacity. Another group involves the optimal pric-
ing and taxation rules associated with the provision of
highway services.

The efficient production conditions correspond to
the expressions characterizing the optimal capacity. One
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alternative to expressing the conditions could be:

mt /     = Qmt /  t ,             ∀t ∈〈1, T 〉ω αλ ··························· (32)

∂SCm

∂ym

∂Fmt

∂ym

= – ∑Qmt         ,     ∀t  ∈〈1, T 〉
t ·························· (33)

where SCm refers to the supplier cost function defined in
equation (4) (See Appendix B).

These conditions represent the relationships be-
tween the marginal supplier costs and the marginal user
costs. Specifically, equation (32) implies that one unit re-
duction in average user costs at the t th period calls for
the Qmt /αt  units of additional investment to increase ca-
pacities. On the other hand, equation (33) shows that the
marginal supplier cost with respect to ym should equal the
marginal user cost saving with respect to the same vari-
able, for every m.

The optimal pricing and taxation rules show the
structures of the optimal congestion charges and excise
taxes. One alternative of expressing the rules could be the
equation system similar to equation (27), namely:

Sqq Sqz R – MCC 0
      =

Szq Szz v 0 ········································· (34)

where [Sqq] ≡ ∑[s i
qq], [Sqz] ≡ ∑[s i

qz], [Szq] ≡ ∑[s i
zq], [Szz]

≡ ∑[s i
zz],   and  R – MCC ≡ (R11 – MCC11, R12 – MCC12,

…, RMT – MCCMT) (See Appendix B).
The optimal congestion charge R and excise tax v

should be simultaneous solutions to two different equa-
tion systems (27) and (34). Also, the two equation sys-
tems are homogeneous functions of degree one, with
respect to their left-side column vectors. Therefore, one
possible solution to these equation systems is:

C + R R –  MCC
       = (1+  )

p + v v

 R (1+  )MCC +   C
       

 v   p

β β

β β

β
or        = ················· (35)

where β ≥ 0 refers to the uniform excise tax rate.
According to equation (35), the uniform excise tax

rate β should be applied to all the highway services as
well as the consumption goods. This result coincides with
the optimal excise taxation rule for consumption goods7.
Further, this analysis result shows that the tax base for
the highway services should include the user cost in the
trip. This uniform taxation rule confirms that the excise
taxation has to maintain the proportionality of price to

marginal cost for all uses of resources8.
Subsequently, we show that a set of optimal solu-

tions to the welfare maximization problem in equation
(31) fulfills the conditions for the first-best social
optimality. Our analysis for this issue pinpoints the deri-
vation of the expressions relevant to the characterization
of the optimal taxation scheme and resource allocation
efficiency.

First, marginal social welfare with respect to in-
come (or income tax) of every individual i is identical,
as shown below:

∂W
∂ui

∂ui

∂mi

∂W
∂ui

∂ui

∂hi

ω
1 +  

MSW i ≡               = —

=           ,
β

∀i ∈〈1, I 〉 ······························ (36)

where MSWi stands for marginal social welfare with re-
spect to the income of the consumer i (See Appendix C).

Equation (36) shows the characteristics of the op-
timal taxation rule for the first-best social optimality. Ac-
cording to this equation, the optimal taxation should fulfill
the condition that marginal social welfare of each indi-
vidual with respect to his income is identical to others.
This marginal social welfare is equal to ω/(1 + β), where
ω is the marginal social welfare with respect to govern-
ment expenditures, and β represents the uniform excise
tax rate applied to all goods and services.

Second, the optimal congestion charge and excise
tax satisfy the resource allocation efficiency, namely:

·························· (37)

where MCj refers to the marginal cost of good j supplied
by perfectly competitive producers (See Appendix C).

Equation (37) represents the Pareto efficiency con-
dition for highway services. The term MSUi

mt /MSUh
j re-

fers to the marginal social rate of substitution (MSRS) of
qmt for zj, for every m, t and j. The last term presents the
rate of product transformation (RPT) of qmt for zj. There-
fore, equation (37) depicts the Pareto efficiency that the
value of MSRS between qmt and zj is equal to the value
of RPT between them.

Finally, we schematically illustrate the implication
of the first-best social optimality conditions depicted
above under a number of strong assumptions. First, the
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economy consists of one person. Second, there is only one
input to the highway service, denoted by z. Third, the out-
put, the average trip demand rate, is constant across all
periods, and is denoted by q. Fourth, the highway cost
function has the structure depicted in Figure 1.

g

z

C

BA(za,g0)

Production possibility set    

Indifference curve

Fig. 3 Schematic illustration of first-best social
optimality conditions

For this hypothetical economy, Figure 3 depicts the
first-best social optimality conditions. The frontier of the
production possibility set in the figure corresponds to the
optimal solution to the cost minimization problem in
equation (6). Specifically, every point on the frontier rep-
resents the optimal value of z necessary for the produc-
tion of the optimal capacity y, and this capacity has a
linear relationship with the given output q in equation
(14). The indifference curve corresponds to the social in-
difference curve for the economy consisting of one per-
son. The point A ≡ (z0, q0) depicts the social optimal
solution that can attain the maximum social welfare.

At the point A, the production possibility frontier
is tangent to the social indifference curve. This condition
implies that the values of RPT and MSRS satisfy the fol-
lowing equalities:

RPT (q for z)
MSRS (q for z)

MCq /MCz

MUq /MUz

 =  = 1.0
BC/AB
BC/AB

 = ········ (38)

where MUq ≡ ∂u/∂q and MUz ≡ ∂u/∂z.

4. THE SECOND-BEST SOCIAL OPTIMALITY

In this section, we assess the congestion charge pro-
gram to impose a charge upon a single highway link. We
approach this policy question with the amended versions
of the social welfare maximization problem examined
above. We construct the amended maximization problems

by modifying the constraint in a manner to reflect the dif-
ferent decision environment. Note also that, for the sim-
plicity of analysis, we formulate the optimization
problems under the assumption that the average demand
flow rate is constant over the entire period.

Suppose that the government imposes an additional
congestion charge R1 on a major urban arterial link ‘1’
as a measure for alleviating a congestion problem. Sup-
pose also that the government levies the user charges R0

m,
for every m ∈ 〈2, M 〉, on other highway links. Assume
further that the user charges of other links, R0

m, do not
include any direct charge such as an expressway toll, but
includes indirect user charges such as a fuel tax.

Then, the decision problem of the government is to
choose optimal values of xm, ym, for every m , h and R1,
for the following welfare maximization problem:

··························(39)

SW2 ≡ max W (u1, u2, …, u1 )  + ∑øm (Gm (ym; xm)  –  ym)
m

m

i m=2 m j

M

+∑   m (Cm  – Fm (Qm ;ym))
+   (∑hi + R1 Q1 + ∑  R0

m Qm –  ∑∑  pj xmj)ω

λ

where the last term represents the government’s budget
constraint.

Proceeding with the analysis using equation (38)
along the same lines that lead to equations (32)~(33)
yields the following efficient production conditions.

λm/ω = Qm  and ························································· (40)

∂Fm
 

∂ym

∂SCm

∂ym

= Qm ,        m ∈〈1, M 〉�∀ ······························ (41)

Similarly, the analysis used to lead to (35) results
in the following pricing rule:

m=2

M

(R1 – MCC1)S11
 + ∑(Rm

0 – MCCm)  Sm1 = 0       ··············· (42)

where Sm1 refers to the Slusky substitution term.
Accordingly, the optimal value of R1 can be esti-

mated using the following equation:

m=2

M

m=2

M

∂F1

∂Q1

∂Fm

∂Qm

Sm1

S11

R1
 = Q1         + ∑      (Qm                – Rm

0  )
≅ MCC1

  + ∑  m1 (MCCm – Rm
0 )ρ

······················ (43)

where 
∂Qm

∂R1

∂Q1

∂R1

∆Qm

∆R1

∆Q1

∆R1

ρ
m1  ≡                      ≅                      〈 0.  Here,

 
∆Q1

represents the amount of decrease in Q1 by an increase
in R1 of ∆R1, and ∆Qm corresponds to the increase of Qm ,
for every m ∈ 〈2, M 〉, increased by the increase in R1.
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Therefore,  ρm 1 can be interpreted as the diversion ratio
of ∆Q1 to other competing highway services.

The optimal congestion charge in equation (43) dif-
fers from the one derived from the net benefit maximiza-
tion problem for a highway link in other studies1,2. The
congestion charge estimated in those previous studies does
not include the second term on the right side of equation
(43), ∑ρm 1(MCCm – R0

m). This additional term can be
zero, only if the user charge R0

m, for every m ∈ 〈2, M 〉,
is equal to MCCm, the optimal user charge.

To obtain more specific information, we make an-
other assumption that the traffic diversion to public tran-
sit is negligible. Then, the sign of ∑ρm1(MCCm – R0

m) is
surely negative, since the ρm1 values for competing high-
way links are negative, and the MCCm – R0

m values are posi-
tive. Accordingly, the congestion charge imposed only upon
highway link ‘1’ should be smaller than the MCC1value,
as long as alternative highway links are available to the
trip-makers.

This interpretation of equation (43) could be appli-
cable for assessing the two alternative implementation
programs of an urban congestion toll. One alternative is
to impose the congestion toll on the user of one or two
from the many arterial roads connecting to the CBD. An-
other alternative is to collect the congestion toll from trip-
makers using all the roads to the CBD, and/or to add the
congestion toll on the parking fee inside the CBD.

The first alternative has a high potential to yield an
optimal congestion toll smaller than the MCC value with
a large margin, as indicated earlier. Therefore, the net
welfare gain of this congestion toll program would not
be significant. Also, the congestion toll equal to the MCC
value would cause an excessive amount of diverted traf-
fic to other arterial roads exempted from the congestion
toll, and thus the consequence would be worse-off than
the optimal toll estimated by using equation (43).

 On the other hand, the second alternative could
have the optimal congestion toll, which approximates the
MCC value. Such a congestion toll program has the po-
tential to improve the resource allocation efficiency close
to the maximum level. Therefore, it would be fair to say
that the second alternative is a more effective policy mea-
sure to improve economic efficiency.

6. CONCLUDING REMARKS

So far, we have examined the two different social
welfare maximization problems, in order to obtain the

decision rules for the optimal investment and pricing of
highway systems in the presence of congestion. One wel-
fare maximization problem involves searching for the
decision rules that can attain the first-best social
optimality. Another is to find the second-best optimal so-
lutions, which can provide useful information about the
congestion charge scheme to impose congestion tolls on
a highway link.

We have confirmed that the analysis outputs are
compatible with the results for a highway link in previ-
ous studies dealing with a congestion pricing scheme.
More importantly, we have been able to obtain more pre-
cise expressions about the optimal decision rules with the
analysis framework of general equilibrium. Associated
with this advantage, we introduce some of the findings
and their economic implications below.

One of the main analysis topics involves efficient
production conditions, which characterize the decision
rule for the optimal highway capacity. The analysis re-
sult shows that the efficient production conditions for the
first-best solution are identical with those for the second-
best solutions. These conditions are:
• Providing that the optimal capacity is chosen, one unit

reduction in average user costs at the t th period calls
for the Qt /αt units of monetary investments to increase
the highway capacity; and

• The marginal supplier cost with respect to the capac-
ity of a certain highway link should be equal to the mar-
ginal user cost saving attainable by one unit increase
in the capacity.

Another analysis topic has been the pricing rule for
highway services. This analysis involves searching for the
congestion charge that can reach maximum social wel-
fare, under a certain constraint associated with financial
requirements. Of course, the analysis result for the dif-
ferent social welfare maximization problems yields the
different expressions for the optimal congestion charges.
In spite of that, all the optimal user charges share the fol-
lowing common property: they are the functions of the
marginal congestion cost, MCC (≡ Q ·∂F/∂Q).

Specifically, the user charge for the first-best social
optimality equal to (1 + β) MCC + βC for all highway
services, where β is an uniform excise tax rate applied to
highway services as well as ordinary goods, and C is the
average user cost. This result suggests that the govern-
ment would be better to impose the excise tax, β (MCC
+ C), on all the highway services to enhance resource al-
location efficiency.

Also, the second-best optimal congestion charge
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examined in Section 4 is expressed with the MCC terms
of all the available highway links. Like the first-best op-
timal solution, this optimal congestion charge is the out-
come of analyses comprehending their impacts on the
demands for other competing routes. Accordingly, the
pricing rules listed in Section 4 could be more appropri-
ate guidelines for the corresponding policy questions.

In addition, the second-best pricing rule in equation
(43) provides a useful guideline in designing the imple-
mentation program of congestion charges. According to
this result, the congestion toll imposed on one or two links
from many arterial roads connecting to the CBD would
not be an effective measure to improve the resource al-
location efficiency. To avoid this problem, it would be
desirable to impose the congestion toll upon the users of
all roads inside the congested area.
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APPENDIX: ESTIMATION OF THE FIRST-BEST
OPTIMAL SOLUTIONS

Here, we show the detailed derivation of optimal
pricing and investment decision rules for multi-route
highway systems from the social welfare maximization
problem in equation (31).

A.  Proof of Equation (27)
The utility maximization problem of consumer i is:

Ui ≡ max ui (qi, zi) +   i[mi – hi – ∑∑ (Cmt + Rmt)η

– ∑qi
mt pj zi

j ]

m t

j
·············(26)

The first-order conditions of this maximization prob-
lem are:

η–    (Cmt + Rmt) = 0, ∀m ∈ 〈1, M 〉, ∀t ∈ 〈1, T 〉�∂ui 

∂qi
mt

i ···(A.1)

– η ∂ui 

∂zi
j

i Pj = 0               ∀m ∈ 〈1, M 〉 ···················· (A.2)

mi – hi – ∑∑(Cmt + Rmt) qi
mt – ∑pj zi

j = 0
m t j

···················· (A.3)

Solving the above equation system yields the de-
mand functions for qi

mt and zi
j , denoted by q̂i

mt and ẑi
j , re-

spectively. Substituting these demand functions into the
utility function, and differentiating this indirect utility
function obtained in the previous step with respect to the
government’s decision variables results in:

η 
∂ui 

∂hi
i, η 
∂ui 

∂Rmt

i qi
mt,

 = –  = –  η = –  
∂ui 

∂vi
i zi

j ················· (A.4)

for every m, t and j.
On the other hand, substituting the demand func-

tions q̂i
mt and ẑi

j  into equation (A.3), and differentiating the
resulting equation with respect to the government’s de-
cision variables yields:

·················· (A.5)
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··············· (A.6)

·················· (A.7)

Further, these 3 sets of equation systems can be re-
arranged as:

∂qi
mt 

∂Rkl

= ∑∑ (Cmt + Rmt)　        – qi
kl 

+ ∑ Pj　         – qi
kl 

t

j

m

ˆ

ˆ
∂zi

j 

∂Rkl

ˆ ∂zi
j 

∂hi

ˆ

ˆ

ˆ

∂qi
mt

∂hi

ˆ

(A.6) – qi
kl × (A.5)

= 0

················· (A.8)

∂qi
mt 

∂vn

=∑∑ (Cmt + Rmt)　        – zi
n 

+ ∑ Pj　        – zi
n 

t

j

m

ˆ

ˆ∂zi
j 

∂vn

ˆ ∂zi
j 

∂hi

ˆ

ˆ

ˆ

∂qi
mt

∂hi

ˆ

(A.7) – zi
n × (A.5)

= 0 ··················· (A.9)

Expressing equations (A.8) and (A.9) in matrix, we
have equation (27).

B.  Proof of Equations (32)~(34)
The welfare maximization problem to be analyzed is:

SW1 ≡ max W (u1, u2, …, u1 )  + ∑øm (Gm (xm)  –  ym)
m

m t

i m mt jj

+∑∑                 (Cmt  – Fmt (Qmt /   ;ym))
+    (∑ hi + ∑∑  Rmt Qmt + ∑vj Zj – ∑∑   pj xmj)

λ  α

ω

α mt t t ··········· (A.10)

For this maximization problem, the first-order con-
ditions with respect to xmj and ym are:

øm ω∂Gm

∂xmj

– pj = 0,   ··········································· (A.11)

··········································· (A.12)

The first-order conditions with respect to hi, Rkl, Ckl,
and vn are:

·········· (A.13)
m t

jm t
+     1  + ∑∑  Rmt                 + ∑  vj        

λ    α

ω

∂SW1

∂hi

∂ui

∂hi

∂Fmt 

∂Qmt 

∂qi
mt

∂hi

∂W
∂ui=  –  ∑∑

ˆ

∂zi
j

∂hi

ˆ∂qi
mt

∂hi

ˆ
= 0,

mt t

······· (A.14)

········ (A.15)

··· (A.16)

Replacing ∂ui /∂Ckl and ∂Qmt /∂Ckl in equation
(A.15) with ∂ui/∂Rkl and ∂Qmt/∂Rkl, respectively, and sub-
tracting the resulting equation from equation (A.14)
yields:

λmt /ω = Qmt /αt , ∀m ∈ 〈1, M 〉, ∀t ∈ 〈1, T 〉  ·············· (32)

Substituting equations (32) and equation (A.10) into
equation (A.11) yields:

t

∂Gm

∂xmj

∂Fmt

∂ym

= –  ∑Qmt pj ······································· (A.17)
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On the other hand, the first-order condition of the
supplier decision in equation (4) satisfies the following:

∂Gm

∂xmj

∂SCm 

∂ym 

=pj ················································· (A.18)

where SCm refers to the supplier cost function. Thus,
equation (34) can readily be obtained by combining equa-
tions (A.17) and (A.18).

Using equations (A.4) and (33), the optimal condi-
tions in equations (A.13), (A.14) and (A.16) can be re-
stated as:

i∂SW1

∂hi

∂W
∂ui

= – η
m t

+    [1  +∑∑  (Rmt – MCCmt)ω

ω

∂qi
mt  

∂hi

ˆ

∂zi
j  

∂h1

ˆ
+∑vj ] = 0,

j

························· (A.19)

························· (A.20)
i

∂Qi
mt 

∂Rkl 

∂W
∂ui

= – η ωqi
kl  +    [Qkl + ˆ

∂Zj  

∂Rkl 

+∑vj ] = 0

∂SW1

∂Rkl

+∑∑  (Rmt – MCCmt)
m t j

i ∂Qmt 

∂Rkl 

∂W
∂ui

= – η ωzi
n +   [
∂Zj  

∂vn

+Zn +∑vj ] = 0

∂SW1

∂vn

∑∑  (Rmt – MCCmt)m t

j

························· (A.21)

The above three sets of equations can be rearranged
as follows:

im t

i

i

j

=∑∑  (Rmt – MCCmt) ·∑        − qi
kl 

ˆ ˆ
ˆ

∂qi
mt  

∂Rkl

∂qi
mt  

∂h1

ˆ ˆ
ˆ

∂zi
j 

∂Rkl

∂zi
j   

∂hi

ˆ (Α.20) −∑qi
kl × (Α.19) 

+∑∑vj − qi
kl            = 0

··· (A.22)

im t

i

i

j

=∑∑  (Rmt – MCCmt) ·∑        − zi
n  

ˆ ˆ
ˆ

∂qi
mt  

∂vn

∂qi
mt

∂hi

ˆ ˆ
ˆ

∂zi
j 

∂vn

∂zi
j   

∂hi

ˆ (Α.21) −∑zi
n × (Α.19) 

+∑∑vj − zi
n            = 0

····· (A.23)

Expressing these two equation systems in matrix
becomes equation (34).

C.  Proof of Equations (36) and (37)
Firstly, the proof of equation (36) is worked out by

combining the previous analysis results, as shown below:

····························· (36)

In the above, the first equality is obtained by sub-
stituting equation (A.19). The second and last equalities
are derived by using equations (24) and (A.5) respec-
tively.

Subsequently, the proof of equation (37) is ap-
proached in the following manner:

 

MSW i
mk

 

MSW h
j
 

MCmt
 

MCj
 

∂W
∂ui

∂W
∂ui

∂ui

∂qi
mt

∂W
∂uh

∂uh

∂zh
j

pj  
(Cmt + MCCmt )

 ≡

=

=

=
∂W
∂uhη i ηh(Cmt + Rmt ) Pj

·············· (37)

Here, the first equality is obtained by substituting
equation (A.1)
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