
Alexandria Engineering Journal (2016) 55, 1835–1840
HO ST E D  BY

Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
ORIGINAL ARTICLE
Dual solutions of slip flow past a nonlinearly

shrinking permeable sheet
* Corresponding author.

E-mail addresses: sudiptaghosh.math@gmail.com (S. Ghosh),

swati_bumath@yahoo.co.in (S. Mukhopadhyay), kuppalapalle.

vajravelu@ucf.edu (K. Vajravelu).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

http://dx.doi.org/10.1016/j.aej.2016.04.002
1110-0168 � 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Sudipta Ghosh a, Swati Mukhopadhyay a,*, Kuppalapalle Vajravelu b
aDepartment of Mathematics, The University of Burdwan, Burdwan 713104, West Bengal, India
bDepartment of Mathematics, University of Central Florida, Orlando, FL 32816-1364, USA
Received 4 September 2014; revised 7 July 2015; accepted 4 April 2016
Available online 26 April 2016
KEYWORDS

Dual solutions;

Velocity slip;

Mass transfer;

Nonlinear shrinking sheet
Abstract The aim of the paper is to investigate the flow of an incompressible viscous fluid past a

nonlinearly shrinking permeable sheet. Partial slip condition is considered instead of no slip condi-

tion at the boundary. The self similar equations are obtained and then solved numerically by a

shooting technique. Dual solutions are obtained for the flow past a nonlinearly shrinking sheet with

slip condition in the presence of suction. It is found that for the first solution the momentum bound-

ary layer thickness decreases with slip and suction parameters; but it increases with the power-law

index of the shrinking velocity. The dual solutions for the velocity field are obtained for the positive

values of power-law index n and for certain values of the other parameters in the study. Velocity slip

controls the boundary layer separation. However, the power-law index acts to accelerate the bound-

ary layer separation.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Viscous boundary layer flow due to a shrinking sheet is very
important for its applications in various types of manufactur-
ing processes in metallurgy and polymer industry which

involve packaging process, for example, shrink wrapping.
Recently, the flow induced by a shrinking sheet has drawn
attention of several researchers not only for its increasing tech-

nological applications but also for its interesting physical char-
acters, like rising shrinking balloon. Flow over a shrinking
sheet is quite different from the flow over a stretching sheet

as the flow over a shrinking sheet would give rise to a velocity
away from the sheet and vorticity generated at the shrinking
sheet is not confined within the boundary layer. As a result,

a steady flow is not possible unless adequate suction is applied
at the surface. Wang [1] first investigated the flow due to
shrinking sheet. Miklavcic and Wang [2] established the crite-
rion for the existence and uniqueness of the similarity solution

of the governing equation due to flow past a shrinking sheet.
Also, they observed that the flow depends on externally
imposed mass suction. Hayat et al. [3] obtained an analytical

solution of magnetohydrodynamic (MHD) flow of a second
grade fluid over a shrinking sheet. Later on, using homotopy
analysis method (HAM), Hayat et al. [4] obtained an analyti-

cal solution for MHD rotating flow of a second grade fluid
past a porous shrinking sheet. In an another paper, Hayat
et al. [5] discussed the mass transfer in case of a steady two
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dimensional MHD boundary layer flow of an upper-convected
Maxwell fluid past a porous shrinking sheet in the presence of
chemical reaction. Using HAM, Hayat et al. [6] obtained a ser-

ies of solution of three-dimensional MHD and rotating flow
over a porous shrinking sheet. Fang et al. [7] also investigated
unsteady viscous flow over a shrinking surface with mass suc-

tion. Nadeem et al. [8] obtained the series solution for stagna-
tion point flow of a second grade fluid over a shrinking sheet.
Noor et al. [9] established a series solution for MHD viscous

flow due to a shrinking sheet using Adomian decomposition
method (ADM). Fang et al. [11] solved analytically the viscous
flow over a porous shrinking sheet using second order slip
flow. Also, Fang and Zhang [10] found a closed form exact

solution for the thermal boundary layers over a shrinking sheet
subjected to wall mass transfer. Nadeem and Faraz [14] inves-
tigated the thin film flow of a second grade fluid over a stretch-

ing/shrinking surface with variable fluid properties.
Over the last few decades many investigations were carried

out for flow past a stretching/shrinking surface by considering

linear stretching/shrinking velocity of the flat sheet [12,13].
However, the boundary layer flow may occur due to a nonlin-
ear stretching/shrinking sheet. Akyildiz et al. [15] investigated

the flow due to a nonlinear stretching sheet by considering
the velocity u = cxn at y = 0, which was used for positive
odd integer values of n. But such profile would fail for even
integer values of n, since the flow at y = 0 would be in the

wrong direction for �1< x < 0 (see [16]). Nadeem et al.
[17] analysed the heat transfer characteristics for water based
nanofluid flow over an exponentially stretching surface. Nandy

et al. [18] investigated the combined effects of magnetic field
and thermal radiation on unsteady flow and heat transfer of
nanofluid over a porous shrinking sheet. They considered the

problem using boundary layer approximations. Flow induced
by a nonlinear shrinking sheet is not studied very much though
it is very important and realistic, and appears frequently in

many engineering processes. Using the homotopy analysis
method, Nadeem and Hussain [19] solved analytically the
problem of magnetohydrodynamic (MHD) flow of a viscous
fluid over a nonlinear porous shrinking sheet. Ali et al. [20]

extended the problem considered by Nadeem and Hussain
[19] by considering the magnetic effects and reported the exis-
tence of dual solutions. Prasad et al. [21] investigated the prob-

lem of flow and heat transfer past a nonlinear porous shrinking
sheet and obtained numerical solutions for asymptotically
large shrinking rates. But they reported only the single solution

which is one of the branches of the dual solutions.
Generally the first branch of the dual solutions is physically

stable which can be verified by a stability analysis. Keeping
this in mind, boundary layer flow past a shrinking sheet with

a more general nonlinear power-law shrinking velocity has
been considered. Dual solutions are obtained and analysed
in detail. Of late, Bhattacharyya et al. [22] analysed the Soret

and Dufour effects on stagnation point flow past a shrinking
sheet and double crossing over is found in dual dimensionless
temperature profiles for increasing Soret number and in dual

dimensionless concentration profiles for the increase in Dufour
number.

In all the studies mentioned above no-slip boundary condi-

tion was assumed. But fluids such as emulsions, suspensions,
foams, and polymer solutions exhibit slip at the boundary
and have important applications such as in the polishing of
artificial heart valves and internal cavities. Many researchers
such as Andersson [23], Bhattacharyya et al. [24], and
Mukhopadhyay [25] investigated boundary layer flow past a
stretching/shrinking sheet with slip at the boundary.

Moreover, due to the micro-scale dimensions of micro-
electro-mechanical systems (MEMS), fluid flow does not obey
the traditional no-slip flow. Navier [26] proposed a slip condi-

tion which is linearly proportional to the shear stress.
Recently, Uddin et al. [27] analysed the magnetic effect on
stretching/shrinking nonlinear nanomaterial sheet in the pres-

ence of Navier slip and convective heating. Devakar et al. [28]
obtained the analytic solution of couple stress fluid. They also
considered the slip boundary condition. In this paper the slip
model proposed by Navier [26] has been used.

In this paper, the boundary layer slip flow over a nonlinear
shrinking sheet with a more general shrinking velocity has been
investigated. Using similarity transformation, the governing

equations are transformed to a self similar ordinary differential
equation and then the equation is solved numerically by a
shooting method. Dual solutions of the flow problem for the

governing parameters are obtained and the flow characteristics
are discussed through graphs.
2. Flow analysis

Let us consider the flow of an incompressible viscous fluid past
a flat shrinking sheet coinciding with the plane y= 0. The

shrinking velocity is Uw(x). The flow is confined to y > 0.
The x-axis runs along the shrinking surface in the direction
opposite to the sheet motion, and the y-axis is perpendicular
to it (see, Fig. 1). The governing boundary layer equations

for the steady two-dimensional flow for the problem are as
follows:

@u

@x
þ @t
@y

¼ 0; ð1Þ

u
@u

@x
þ t

@u

@y
¼ m

@2u

@y2
ð2Þ

where u and t are the velocity components of the fluid, and m
denotes the kinematic viscosity.

The appropriate boundary conditions are [16,25]

u¼�csgnðxÞjxjnþNm@u
@y
;�1< x<1;t¼�twðxÞ at y¼ 0;

u! 0 as y!1

�

ð3Þ
where c (>0) is a constant, n (>0) is a nonlinear shrinking

parameter, N ¼ N1jxj�
n�1
2ð Þ is the velocity slip factor which

changes with x, and N1 is the positive slip constant. The

no-slip case is recovered for N = 0. tw(x) > 0 is the suction
velocity and tw(x) < 0 is the velocity of blowing. Here tw(x)
= t0x

(n�1)/2, t0 is a constant.

It is to be noted that if n > 1 then N become singular. As
the boundary layer does not start at x = 0, but it starts in
the vicinity of x = 0, the solution for n> 1 is possible.

Now we define the similarity variables as

g ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðnþ 1Þ=2m

p
jxjðn�1Þ=2

; ð4Þ

u ¼ c sgnðxÞjxjnf0ðgÞ; ð5Þ
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Figure 1 Sketch of the physical flow problem.
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Figure 2 Velocity profiles for different values of power-law

index n of the shrinking velocity.
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t ¼ �sgnðxÞ
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Upon the substitution of (4)–(6) into (1)–(3), the governing

equations and the boundary conditions reduce to

f 000ðgÞ þ fðgÞf 00ðgÞ � 2n

nþ 1

� �
½f 0ðgÞ�2 ¼ 0; ð7Þ

fð0Þ ¼ S; f 0ð0Þ ¼ �1þ Bf 00ð0Þ; f 0ðgÞ ! 0 as g ! 1; ð8Þ
where the prime denotes differentiation with respect to g,

S ¼ t0
ffiffiffiffiffiffiffiffiffiffiffi

2
cðnþ1Þm

q
is the mass transfer parameter, S> 0 corre-

sponds to mass suction and S< 0 corresponds to the mass

injection. B ¼ N1

ffiffiffiffiffiffiffiffiffiffiffi
cmðnþ1Þ

2

q
is the slip parameter. It is to be noted

that here we shall consider only the case of suction (S> 0).

Because injection will not permit the existence of solutions to
the self-similar problem, it destroys the similarity flow over a
shrinking sheet [1,7].

3. Results and discussion

The self-similar Eq. (7) along with the boundary conditions (8)

is solved numerically by shooting method. In this method an
initial guess for the solution is needed which must satisfy the
boundary conditions of the problem. The problem may have

dual solutions and determining the initial guess for the first
solution is easier than the second solution. Numerical solu-
tions for several sets of the governing parameters are obtained
and presented through Figs. 2–6. To assess the accuracy of the

method, a comparison corresponding to the values of [f00ð0Þ]
for linear shrinking sheet in case of no-slip boundary condition

is made with the results of Prasad et al. [21] and is presented in
Table 1. From this table, it is clear that our results agree with
their results up to second decimal place.

Fig. 2 depicts the nature of velocity profiles for different
values of power-law index n of the shrinking velocity of the
sheet. Dual velocity profiles exist. Fluid velocity decreases with
increasing values of n in case of first branch while it increases
in the second branch of the solution. That is, the boundary
layer thickness increases with n in case of the first branch of

the solution.
Fig. 3(a) exhibits the effects of mass transfer parameter S

on the velocity field for linear shrinking sheet case while
Fig. 3(b) exhibits similar results for nonlinear shrinking sheet

case. In both cases the dual nature of velocity profiles is noted.
From these figures, we notice that the velocity increases with
increasing values of the mass transfer parameter S for first

branch solution while fluid velocity decreases with increasing
mass transfer parameter S in case of second branch solution.
Boundary layer thickness decreases with increasing suction in

case of first branch of solution. For larger value of S significant
change in velocity profile is noted in case of second branch
solution. One can notice that an increase in the value of the

power-law index n helps to smoothen the velocity profile. This
can be seen from the second branch solutions of Fig. 3(b)
compared to that of Fig. 3(a). This conforms to the findings
of Prasad et al. [21].
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Figure 3 Velocity profiles for different values of mass transfer

parameter S for (a) linear (b) nonlinear shrinking sheet.
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(b) nonlinear shrinking sheet.
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The effects of slip on velocity profiles can be found from
Fig. 4. Fluid velocity increases with increasing slip parameter
B in the first branch solution but the opposite behaviour is

noted in the case of second branch solution. That is, the
boundary layer thickness is less in the case of first branch solu-
tion compared to that in the second branch solution.

Fig. 5 displays the behaviour of the skin friction coefficient

f00ð0Þ with mass transfer parameter S for different values of slip
parameter B for linear [Fig. 5(a)] and nonlinear [Fig. 5(b)]

shrinking sheet. The skin friction coefficient f00ð0Þ increases
with increasing values of the suction parameter. The boundary

layer separates from the surface at a critical value (Sc) beyond
which boundary layer approximation is not valid. For increas-
ing slip at the boundary i.e. at the sheet, the generation of vor-

ticity due to shrinking velocity is slightly reduced and hence,
with the imposed suction, that vorticity remains confined to
the boundary layer region for larger shrinking velocity. That
is to say that due to increasing velocity slip, steady solution
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Table 1 Values of Skin-friction f00ð0Þ for different values of

mass transfer parameter S in case of linear shrinking sheet in

the absence of slip.

S= 4.0 S = 4.5 S= 5.0

Prasad et al. [21] with

m= 1

�1.038378 �2.228009 �3.798063

Present study with n = 1,

B= 0

�1.037634 �2.226580 �3.796187
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is possible even for larger shrinking velocity. It is noted that
the value of Sc decreases with slip parameter B for both linear

and nonlinear shrinking sheet cases [Fig. 5]. That is, the veloc-
ity slip parameter controls the boundary layer separation.

From Fig. 6, it is found that f00ð0Þ decreases with increasing
n. The critical value of the suction parameter Sc decreases as
n increases; that is, the power-law index n accelerates the
boundary layer separation.

4. Concluding remarks

Steady boundary layer flow past a nonlinear shrinking perme-

able sheet is investigated. A more general power-law shrinking
velocity along with the slip at the boundary is considered in
this study. Dual solutions are obtained and the effects of the

pertaining parameters are analysed with the help of the graph-
ical representations. The range of shrinking velocity parameter
for which the solution exists increases as the velocity slip

parameter increases. Velocity slip parameter acts to control
the boundary layer flow separation whereas the power-law
index n of shrinking velocity acts to accelerate the boundary

layer separation.
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