Edge-oblique polyhedral graphs

Jens Schreyer, Hansjoachim Walther
Institut fur Mathematik, Technische Universität Ilmenau, Germany

Received 20 September 2001; received in revised form 28 August 2002; accepted 19 February 2003

Abstract

Let $G=G(V, E, F)$ be a polyhedral graph with vertex set V, edge set E and face set F. $e=(x, y ; \alpha, \beta) \in E(G)$ denotes an edge incident with the two vertices $x, y \in V(G), d(x) \leqslant d(y)$ and incident with the two faces $\alpha, \beta \in F(G), d(\alpha) \leqslant d(\beta)$. $K K=d(x), L=d(y) ; M=d(\alpha), N=d(\beta)]$ is the type of $e=(x, y ; \alpha, \beta)$. A graph which contains no two edges of a common edge-type is called edge-oblique and if it contains at most z edges of each type it is called z-edge-oblique. In this work we shall prove, that there is only a finite number of edge-oblique and z-edge-oblique graphs. For the first case some bounds for the maximum degree and the number of edges are given.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Oblique graphs; Asymmetric graphs

1. Introduction

By \mathfrak{P} we denote the set of polyhedral graphs, and let $G=G(V, E, F) \in \mathfrak{P}$. The degree $d(x)$ of a vertex $x \in V(G)$ is the number of edges incident with x. The degree $d(\alpha)$ of a face $\alpha \in F(G)$ is the number of edges incident with $\alpha . e=(x, y ; \alpha, \beta) \in E(G)$ denotes an edge incident with the two vertices $x, y \in V(G), d(x) \leqslant d(y)$ and incident with the two faces $\alpha, \beta \in F(G), d(\alpha) \leqslant d(\beta)$. $[K=d(x), L=d(y) ; M=d(\alpha), N=d(\beta)]$ is the type of $e=(x, y ; \alpha, \beta)$. A face $\alpha \in F(G)$ is an $\left\langle a_{1}, a_{2}, \ldots, a_{l}\right\rangle$-face if α is an l-gon and the degrees of the vertices $x_{1}, x_{2}, \ldots, x_{l}$ incident with α in the cyclic order are $a_{1}, a_{2}, \ldots, a_{l}$. The lexicographic minimum $\left\langle b_{1}, b_{2}, \ldots, b_{l}\right\rangle: \alpha$ is a $\left\langle b_{1}, b_{2}, \ldots, b_{l}\right\rangle$-face is called the type of α.
$\Delta(G):=\max \{d(a): a \in V \cup F\}$ is the maximum degree of G.

Fig. 1. Edge-oblique graph.

Fig. 2. Selfdual edge-oblique graph.

Because G is a polyhedral graph there is no edge of type $\langle 3,3 ; 3,3\rangle$ in G except if G is the tetrahedron.

If $e \in E(G)$ is incident with an element $a \in V \cup F$ we write $a \sim e$ or $e \sim a$.
At the 9. High Tatras Conference on Cycles and Colourings in 2000 P.J. Owens asked the following question:

Let k, l be two integers with $1 \leqslant l \leqslant k$. Does there exist a polyhedral graph G with $k=|E(G)|$ edges and l different types of edges?

The cases $l \in\{1,2\}$ are solved by Jendrol' and Tkáč in [2-4]. In this paper we are interested in the case $k=l$.
G is called edge-oblique if for any type of edges there is at most one edge in $E(G)$ having this type.
G is called face-oblique if for any type of faces there is at most one face in $F(G)$ having this type.

It has been proved that:
(1) The set of face-oblique graphs is not empty but finite $[5,6]$.
(2) The set of so called z-face-oblique graphs, which may contain up to z faces of each type, is finite too [5].
(3) If G is a face-oblique graph, then it contains a vertex of degree 3 [1].
(4) There are face-oblique graphs having only triangles as faces [6], but there is no face-oblique graph having vertices of degree 3 only.
(5) The set of self-dual face-oblique graphs is not empty [1].
(6) There are face-oblique graphs G having no common face type with their faceoblique duals G^{*} (so-called super-face-oblique graphs) [1].

Obviously, if G is edge-oblique, its dual G^{*} is edge-oblique, too.
Fig. 1 shows an edge-oblique graph G_{1}.
Fig. 2 shows an edge-oblique self-dual graph G_{2}.

2. Results and proofs

Theorem.

(1) The set of edge-oblique graphs is finite. If G is an edge-oblique graph then $\Delta(G) \leqslant 30$ and $|E(G)|<880$.
(2) The set of so called z-edge-oblique graphs, which may contain up to z edges of each type is finite, too.
(3) If G is an edge-oblique graph then G contains a vertex of degree 3 as well as a triangle.
(4) There is neither an edge-oblique graph having only vertices of degree 3 nor one having only triangles as faces.
(5) There are self-dual edge-oblique graphs.
(6) There is no edge oblique graph G such that G and G^{*} have no common edge-type (no super-edge-oblique graph).
(7) There is an edge oblique graph which is face-oblique, too.

Let $G=G(V, E, F) \in \mathfrak{P}$.
If $e=(x, y ; \alpha, \beta) \in E(G)$ is of type $[K, L ; M, N]$ we define charges:
$w(e):=w(K, L ; M, N):=1-\left(\frac{1}{K}+\frac{1}{L}+\frac{1}{M}+\frac{1}{N}\right)$.
Summing up the charges of all edges and using Euler's formula one gets

$$
\begin{aligned}
\sum_{e \in E(G)} w(e) & =|E(G)|-\sum_{x \in V(G)} d(x) \cdot \frac{1}{d(x)}-\sum_{\alpha \in F(G)} d(\alpha) \cdot \frac{1}{d(\alpha)} \\
& =|E(G)|-|V(G)|-|F(G)| \\
& =-2
\end{aligned}
$$

for any $G \in \mathfrak{P}$.
Proof of (1). In the following let $G=G(V, E, F)$ be an edge-oblique graph.
Let $E_{k}^{-}:=E_{k}^{-}(G):=\{e \in E(G): w(e) \leqslant 0 \wedge k=\max \{K, L, M, N\}\}$ be the set of edges with nonpositive charges and maximum degree k.

Let $E^{-}:=E^{-}(G):=\bigcup_{k=4}^{\Delta(G)} E_{k}^{-}$be the set of all edges with nonpositive charges.
$w\left(E^{-}\right):=\sum_{e \in E^{-}} w(e)=\sum_{k=4}^{\Delta(G)} \sum_{e \in E_{k}^{-}} w(e)$ sums up the charges of all these edges.

Apart from the two infinite sets $\{[3,3 ; 3, N]: N=13,14, \ldots\}$ with $w(3,3 ; 3, N)=-1 / N$ and $\{[3, L ; 3,3]: L=13,14, \ldots\}$ with $w(3, L ; 3,3)=-1 / L$ there are exactly 78 types of edges with nonpositive charges:

$$
\begin{array}{ll}
w(3,3 ; 3, N)_{N=4,5, \ldots, 12}=-\frac{1}{N}, & w(3, L ; 3,3)_{L=4,5, \ldots, 12}=-\frac{1}{L} \\
w(3,3 ; 4, N)_{N=4,5, \ldots, 12}=\frac{1}{12}-\frac{1}{N}, & w(4, L ; 3,3)_{L=4,5, \ldots, 12}=\frac{1}{12}-\frac{1}{L} \\
w(3,3 ; 5, N)_{N=5,6,7}=\frac{2}{15}-\frac{1}{N}, & w(5, L ; 3,3)_{L=5,6,7}=\frac{2}{15}-\frac{1}{L} \\
w(3,3 ; 6,6)=0, & w(6,6 ; 3,3)=0 \\
w(3,4 ; 3, N)_{N=4,5, \ldots 12}=\frac{1}{12}-\frac{1}{N}, & w(3, L ; 3,4)_{L=5,6, \ldots 12}=\frac{1}{12}-\frac{1}{L} \\
w(3,4 ; 4, N)_{N=4,5,6}=\frac{1}{6}-\frac{1}{N}, & w(4, L ; 3,4)_{L=4,5,6}=\frac{1}{6}-\frac{1}{L} \\
w(3,5 ; 3, N)_{N=5,6,7}=\frac{2}{15}-\frac{1}{N}, & w(3, L ; 3,5)_{L=6,7}=\frac{2}{15}-\frac{1}{L} \\
w(4,4 ; 3, N)_{N=5,6}=\frac{1}{6}-\frac{1}{N}, & w(3, L ; 4,4)_{L=5,6}=\frac{1}{6}-\frac{1}{L} \\
w(3,6 ; 3,6)=0, & w(4,4 ; 4,4)=0
\end{array}
$$

It is easy to calculate, that the sum of the charges of these 78 edges is

$$
\sum_{k=4}^{12} \sum_{e \in E_{k}^{-}} w(e)=-\frac{7891}{1540}=-5.1240 \ldots
$$

First we prove that $\Delta(G)=\max \{d(a): a \in V(G) \cup F(G)\} \leqslant 30$.

Proof. If there is an $a \in V(G) \cup F(G)$ with $d(a)=\Delta(G) \geqslant 31$ we first estimate the sum $w(a)$ of charges of all edges incident with a. For this purpose we may assume without loss of generality that a is a vertex.

$$
w(a)=\sum_{e: a \sim e}\left(1-\frac{1}{K}-\frac{1}{\Delta}-\frac{1}{M}-\frac{1}{N}\right)=\sum_{e: a \sim e}\left(1-\frac{1}{K}-\frac{1}{M}-\frac{1}{N}\right)-1
$$

Inserting for K, M, N the 31 degree combinations which yield the lowest possible charge and estimating all further addends by the next lowest possible value for $1-1 / K-1 / M$
$-1 / N$ one gets the following inequality:

$$
w(a)=\sum_{e: a \sim e} w(e) \geqslant \frac{470117}{90090}+(\Delta-31) \frac{11}{42} .
$$

Secondly, we estimate the sum of charges of all imaginable edges with nonpositive charge:

$$
\begin{aligned}
& w\left(E^{-}\right) \geqslant \sum_{k=4}^{12} \sum_{e \in E_{k}^{-}} w(e)+\sum_{k=13}^{\Delta} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{7891}{1540}-2 \sum_{k=13}^{\Delta} \frac{1}{k} \\
& \Rightarrow w(G)=\sum_{e \in E(G)} w(e) \geqslant w(a)+w\left(E^{-}\right) \\
& \quad \geqslant \frac{470117}{90090}+(\Delta-31) \frac{11}{42}-d \frac{7891}{1540}-2 \sum_{k=13}^{\Delta} \frac{1}{k} \\
& \quad \geqslant \frac{470117}{90090}-\frac{7891}{1540}+(\Delta-31) \frac{11}{42}-2 \sum_{k=13}^{31} \frac{1}{k}-2 \sum_{k=32}^{\Delta} \frac{1}{k} \\
& \quad \geqslant \frac{16987}{180180}+(\Delta-31)\left(\frac{11}{42}-\frac{2}{32}\right)-2(\ln (31)-\ln (12)) \\
& \quad \geqslant-\frac{4387217}{720720}+\left(\frac{67}{336} \Delta-2 \ln \left(\frac{31}{12}\right)\right) .
\end{aligned}
$$

This bound is a function of Δ which is monotonic increasing, and its value for $\Delta=31$ is greater than -2 which is a contradiction.

The set $\{[K, L ; M, N]: \max \{K, L, M, N\} \leqslant \Delta \leqslant 30\}$ of edge-types is finite. Because an edge-type occurs at most once in an edge-oblique graph, we have proved, that the set of edge-oblique graphs is finite.

Now let us prove: $|E(G)|<880$.
Because $\Delta(G) \leqslant 30$ there are at most 114 edges with a nonpositive charge namely the 78 edges listed above and the 36 edges of type $[3,3 ; 3, N], N=13,14, \ldots, 30$ and $[3, L ; 3,3], L=13,14, \ldots, 30$ with a charge

$$
w\left(E^{-}\right) \geqslant-\frac{7891}{1540}-2\left(\frac{1}{13}+\frac{1}{14}+\cdots+\frac{1}{30}\right)=-6.9075 \ldots
$$

A trivial estimation for the cardinality of $E(G)$ is the following:
The minimum value $\min \left\{w(e): e \in E(G) \backslash E^{-}(G)\right\}$ of the charge of an edge with positive charge is $w(e)=w([3,3 ; 4,13])=\frac{1}{156}$. If we choose l in such a way, that $l \cdot \frac{1}{156}+w\left(E^{-}\right)>-2$, that means $l \geqslant 766$ it results:

If $|E(G)| \geqslant 766+114=880$ then the graph is not edge-oblique.

Remark. Refining our arguments by taking into consideration not only one element $a \in V \cup F$ with $d(a)=\Delta$ but two further elements b, c with

$$
d(a) \geqslant d(b) \geqslant d(c) \geqslant d(t), \forall t \in(V \cup F) \backslash\{a, b\} ;
$$

it is possible to show, that $\Delta \leqslant 18$ and $|E(G)| \leqslant 138$. Since those bounds are also not sharp and the proofs are mainly done by computers and a computation by hand is rather long, we omit the longer proofs.

Proof of (2). We prove the finiteness of the family $\mathfrak{P}(z)$ of z-edge-oblique graphs by applying the discharging method:

The original charges $w(t), t \in V \cup E \cup F$ are

$$
w(t)= \begin{cases}1-\left(\frac{1}{K}+\frac{1}{L}+\frac{1}{M}+\frac{1}{N}\right) & \text { if } t=e=(x, y ; \alpha, \beta) \in E(G) \\ 0 & \text { is of type }[K, L ; M, N], \\ & \text { if } t \in V \cup F .\end{cases}
$$

The new charges are denoted by $w^{*}(t) . w^{*}(e)=w(e)$ if $e \in E(G)$ is of type $[K, L ; M, N]$ with $\max \{K, L, M, N\} \leqslant 2 z+13$. If $\max \{K, L, M, N\} \geqslant 2 z+14$ we shift charges from e to
x if $K \geqslant 2 z+14$,
y if $L \geqslant 2 z+14$,
α if $M \geqslant 2 z+14$,
β if $N \geqslant 2 z+14$
in accordance with the following rules:
Rule no. Type of $e=(x, y ; \alpha, \beta) \quad$ Discharging rule
1
$[3, L ; 3,3], L \geqslant 2 z+14$
Shift $-\frac{1}{13}-\frac{1}{L-1}$ from e to y
2
$[3,3 ; 3, N], N \geqslant 2 z+14$
Shift $-\frac{1}{13}-\frac{1}{N-1}$ from e to β

If rule 1 and 2 are not applicable
$[K, L ; M, N], K \geqslant 2 z+14$
(in this case $L \geqslant 2 z+14$, too)
4
$[K, L ; M, N], L \geqslant 2 z+14$
Shift $\frac{1}{13}-\frac{1}{K-1}$ from e to x
Shift $\frac{1}{13}-\frac{1}{L-1}$ from e to y
5

6
$[K, L ; M, N], M \geqslant 2 z+14$
(in this case $N \geqslant 2 z+14$, too)

$$
\text { Shift } \frac{1}{13}-\frac{1}{M-1} \text { from } e \text { to } \alpha
$$

$$
[K, L ; M, N], N \geqslant 2 z+14
$$

Shift $\frac{1}{13}-\frac{1}{N-1}$ from e to β

In some cases more than one of rules $3-6$ must be used for one edge. After the discharging process, the charges $w(e)$ have changed into new charges $w^{*}(e)$. Furthermore, the vertices and faces have got charges $w^{*}(x)$ and $w^{*}(\alpha)$, too, which may be different from zero now.

Lemma. All vertices and faces have nonnegative charges.
Proof. (1) $w^{*}(x) \geqslant 0, \forall x \in V(G)$: only if x is a vertex of degree $d(x) \geqslant 2 z+14$ it has a charge different from 0 . In this case, x may get at most z times a charge of $-\frac{1}{13}-1 /(d(x)-1)$ as x is incident with at most z edges of type $[3, d(x) ; 3,3]$ and at least $d(x)-z$ times a charge of $\frac{1}{13}-1 /(d(x)-1)$.

$$
\begin{aligned}
& w^{*}(x) \geqslant z\left(-\frac{1}{13}-\frac{1}{d(x)-1}\right)+(d(x)-z)\left(\frac{1}{13}-\frac{1}{d(x)-1}\right), \\
& w^{*}(x) \geqslant \frac{d^{2}(x)-(14+2 z) d(x)+2 z}{13(d(x)-1)}, \\
& w^{*}(x)>0 \text { since } d(x) \geqslant 2 z+14 .
\end{aligned}
$$

(2) $w^{*}(\alpha) \geqslant 0, \forall \alpha \in F(G)$: can be proved analogously.

$$
-2=\sum_{e \in E} w^{*}(e)+\sum_{x \in V} w^{*}(x)+\sum_{\alpha \in F} w^{*}(\alpha) .
$$

So the following inequality holds:

$$
\begin{aligned}
& -2 \geqslant \sum_{e \in E} w^{*}(e), \\
& -2 \geqslant \sum_{e \in E^{-*}} w^{*}(e)+\sum_{e \in E^{+*}} w^{*}(e),
\end{aligned}
$$

where

$$
\begin{aligned}
& E^{-*}:=\left\{e \in E, w^{*}(e) \leqslant 0\right\}, \\
& E^{+*}:=\left\{e \in E, w^{*}(e)>0\right\} .
\end{aligned}
$$

All edges without incident elements of degree $\geqslant 2 z+14$ keep their original charges, which are, as we have already seen either $\leqslant 0$ or $\geqslant \frac{1}{156}$. First we will prove, that all edges with incident elements of degree $\geqslant 2 z+14$ have charges $\geqslant \frac{1}{156}$.
(1) Exactly one of the values K, L, M, N is $\geqslant 2 z+14$

Applied rule	$w(e)$	$w^{*}(e)$
1	$-\frac{1}{L}$	$-\frac{1}{L}+\frac{1}{13}+\frac{1}{L-1} \geqslant \frac{1}{13}>\frac{1}{156}$
2	$-\frac{1}{N}$	$-\frac{1}{N}+\frac{1}{13}+\frac{1}{N-1} \geqslant \frac{1}{13}>\frac{1}{156}$
4	$\geqslant \frac{1}{12}-\frac{1}{L}$	$\geqslant \frac{1}{12}-\frac{1}{L}-\frac{1}{13}+\frac{1}{L-1}>\frac{1}{156}$
6	$\geqslant \frac{1}{12}-\frac{1}{N}$	$\geqslant \frac{1}{12}-\frac{1}{N}-\frac{1}{13}+\frac{1}{N-1}>\frac{1}{156}$

(2) Exactly two of the values K, L, M, N are $\geqslant 2 z+14$. Because of the definition of the edge-type these can be K and L, M and N or L and N (w.l.o.g. $K, L \geqslant 2 z+14$) $w(e) \geqslant \frac{1}{3}-\frac{1}{K}-\frac{1}{L}$
$\Rightarrow w^{*}(e) \geqslant \frac{1}{3}-\frac{1}{K}-\frac{1}{L}-\frac{1}{13}+\frac{1}{K-1}-\frac{1}{13}+\frac{1}{L-1}>\frac{7}{39}>\frac{1}{156}$
(3) Exactly three of the values K, L, M, N are $\geqslant 2 z+14$. Because of the definition of the edge-type these can be K, L, N or L, M, N (w.l.o.g. $K, L, N \geqslant 2 z+14$)

$$
\begin{aligned}
& w(e) \geqslant \frac{2}{3}-\frac{1}{K}-\frac{1}{L}-\frac{1}{N} \\
& \Rightarrow w^{*}(e) \geqslant \frac{2}{3}-\frac{1}{K}-\frac{1}{L}-\frac{1}{N}-\frac{1}{13}+\frac{1}{K-1}-\frac{1}{13}+\frac{1}{L-1}-\frac{1}{13}+\frac{1}{N-1}>\frac{17}{39}>\frac{1}{156}
\end{aligned}
$$

(4) All of the values K, L, M, N are $\geqslant 2 z+14$

$$
\begin{aligned}
& w(e)=1-\frac{1}{K}-\frac{1}{L}-\frac{1}{M}-\frac{1}{N} \\
& \Rightarrow w^{*}(e) \geqslant 1-\frac{1}{K}-\frac{1}{L}-\frac{1}{M}-\frac{1}{N}-\frac{1}{13}+\frac{1}{K-1}-\frac{1}{13}+\frac{1}{L-1}-\frac{1}{13}+\frac{1}{M-1}-\frac{1}{13}+ \\
& \frac{1}{N-1}>\frac{9}{13}>\frac{1}{156}
\end{aligned}
$$

Now an edge $e=(x, y ; \alpha, \beta)$ of type $[K, L ; M, N]$ with $w^{*}(e) \leqslant 0$ either belongs to the 78 types listed above with $\max \{K, L ; M, N\} \leqslant 12$ or is of type $[3, L ; 3,3]$ with $13 \leqslant L \leqslant 2 z+13$ or $[3,3 ; 3, N]$ with $13 \leqslant N \leqslant 2 z+13$. Each of them occurs at most z times in G, therefore we have

$$
w^{*}\left(E^{-*}\right) \geqslant-z \cdot \frac{7891}{1540}-2 z \sum_{k=13}^{2 z+13} \frac{1}{k}
$$

and

$$
\begin{aligned}
& \left|E^{-*}\right| \leqslant z \cdot 78+2 z(2 z+13-13+1)=4 z^{2}+80 z . \\
& -2=w^{*}(G) \geqslant w^{*}\left(E^{+*}\right)+w^{*}\left(E^{-*}\right) \\
& -2 \geqslant \frac{1}{156}\left|E^{+*}\right|-z \cdot \frac{7891}{1540}-2 z \sum_{k=13}^{2 z+13} \frac{1}{k}
\end{aligned}
$$

> Selfdual edge-oblique graph

Fig. 3. Selfdual edge-oblique graph.

$$
\begin{aligned}
& -2 \geqslant \frac{1}{156}\left|E^{+*}\right|-z \cdot \frac{7891}{1540}-2 z\left[\ln \frac{2 z+13}{12}\right] \\
& \Rightarrow\left|E^{+*}\right| \leqslant 156\left[-2+z \cdot \frac{7891}{1540}-2 z \cdot \ln \frac{2 z+13}{12}\right]
\end{aligned}
$$

Since $\left|E^{+*}\right|$ and $\left|E^{-*}\right|$ are bounded, we have a limited number of edges for a z-edgeoblique graph. Therefore the set of such graphs must be finite.

Proof of (3). Suppose the edge-oblique graph G has no vertex of degree 3. The only possible edge-types with negative charges are

$$
[4,4 ; 3,5],[4, L ; 3,3]_{L=4,5, \ldots, 11},[4, L ; 3,4]_{L=4,5},[5, L ; 3,3]_{L=5,6,7}
$$

The sum of the charges of these 14 edges is $-\frac{4321}{5544}=-0.77940 \ldots>-2$ Contradiction.
In an analogous way we can prove that an edge-oblique graph contains a triangle.
Remark 1. Since the charge-sum $-\frac{4321}{5544}$ is far away from -2 one can improve the result easily and show that there must occur at least 3 vertices of degree 3 and at least 3 triangles.

Proof of (4). Suppose all vertices of a graph G have degree 3. Now consider a face α with maximum degree $d(\alpha)=\Delta$. There are Δ edges incident with α but only $\Delta-1$ possible edge-types for them namely $[3,3, M, \Delta]_{M=3, \ldots, \Delta}$. Therefore, one type must occur at least twice and the graph cannot be edge-oblique.

In a similar way it can be proved that an edge-oblique contains not only triangles.

Proof of (5). See Figs. 2 and 3.

Proof of (6). Suppose there is a graph $G \in \mathfrak{P}$ whose dual G^{*} is edge-oblique, too and these graphs have no common edge-type. Therefore, G contains at most one of the edge-types $[K, L ; M, N]$ and $[M, N ; K, L]$ and G contains no edge-type of the form $[K, L ; K, L]$. To prove the nonexistence of such a graph we define a generalized edge-type in the following way:
$e=(x, y ; \alpha, \beta)$ is of the generalized edge-type $\langle K, L ; M, N\rangle$ if $[K, L ; M, N]$ is lexicographically smaller than $[M, N ; K, L]$ and e is of one of these edge-types. Note that an edge has no generalized edge-type if it is of type $[K, L ; K, L]$, but such an edge does not occur in G.
G contains at most one edge of each generalized edge-type. Similarly to before we define

$$
\begin{aligned}
& E^{-}:=\{e \in E(G): w(e) \leqslant 0\}, \\
& E_{k}:=\{e \in E(G): e \text { is of type }\langle K, L ; M, N\rangle \wedge \max \{K, L ; M, N\}=k\}, \\
& E_{k}^{-}:=E^{-} \cap E_{k} .
\end{aligned}
$$

Since $-2=\sum_{e \in E(G)} w(e)=\sum_{k=4}^{\Delta} \sum_{e \in E_{k}} w(e)$ the following two inequalities hold:
$-2 \geqslant \sum_{k=4}^{\Delta-1} \sum_{e \in E_{k}^{-}} w(e)+\sum_{e \in E_{\Delta}} w(e)$,
$-2 \geqslant \sum_{k=4}^{\Delta} \sum_{e \in E_{k}^{-}} w(e)$.
Now let us consider all possible generalized edge-types with negative charges:

Generalized edge-type	$w(e)$	
$\langle 3,3 ; 3,4\rangle$	$-\frac{1}{4}$	
$\langle 3,3 ; 4,4\rangle$	$-\frac{1}{6}$	
$\langle 3,4 ; 4,4\rangle$	$-\frac{1}{12} \quad \sum_{e \in E_{4}^{-}} w(e) \geqslant-\frac{1}{2} \quad \sum_{k=4}^{4} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{1}{2}$	
$\langle 3,3 ; 3,5\rangle$	$-\frac{1}{5}$	
$\langle 3,3 ; 4,5\rangle,\langle 3,4 ; 3,5\rangle$	$-\frac{7}{60}$	

$\langle 3,3 ; 5,5$
$-\frac{1}{15}$
$\langle 3,4 ; 4,5\rangle,\langle 3,5 ; 4,4\rangle \quad-\frac{1}{30} \quad \sum_{e \in E_{5}^{-}} w(e) \geqslant-\frac{17}{30} \quad \sum_{k=4}^{5} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{16}{15}$
$\langle 3,3 ; 3,6\rangle$
$-\frac{1}{6}$
$\langle 3,3 ; 4,6\rangle,\langle 3,4 ; 3,6\rangle \quad-\frac{1}{12}$
$\langle 3,3 ; 5,6\rangle,\langle 3,5 ; 3,6\rangle \quad-\frac{1}{30} \quad \sum_{e \in E_{6}^{-}} w(e) \geqslant-\frac{2}{5} \quad \sum_{k=4}^{6} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{22}{15}$
$\langle 3,3 ; 3,7\rangle$
$-\frac{1}{7}$
$\langle 3,3 ; 4,7\rangle,\langle 3,4 ; 3,7\rangle \quad-\frac{5}{84}$
$\langle 3,3 ; 5,7\rangle,\langle 3,5 ; 3,7\rangle \quad-\frac{1}{105} \quad \sum_{e \in E_{-}^{-}} w(e) \geqslant-\frac{59}{210} \quad \sum_{k=4}^{7} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{367}{210}$
$\langle 3,3 ; 3,8\rangle$
$-\frac{1}{8}$
$\langle 3,3 ; 4,8\rangle,\langle 3,4 ; 3,8\rangle \quad-\frac{1}{24} \quad \sum_{e \in E_{8}^{-}} w(e) \geqslant-\frac{5}{24} \quad \sum_{k=4}^{8} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{1643}{840}$
$\langle 3,3 ; 3,9\rangle$
$-\frac{1}{9}$
$\langle 3,3 ; 4,9\rangle,\langle 3,4 ; 3,9\rangle \quad-\frac{1}{36} \quad \sum_{e \in E_{9}^{-}} w(e) \geqslant-\frac{1}{6} \quad \sum_{k=4}^{9} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{1783}{840}$
$\langle 3,3 ; 3,10\rangle$
$-\frac{1}{10}$
$\langle 3,3 ; 4,10\rangle,\langle 3,4 ; 3,10\rangle \quad-\frac{1}{60} \quad \sum_{e \in E_{10}^{-1}} w(e) \geqslant-\frac{2}{15} \quad \sum_{k=4}^{10} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{379}{168}$
$\langle 3,3 ; 3,11\rangle$

$$
-\frac{1}{11}
$$

$\langle 3,3 ; 4,11\rangle,\langle 3,4 ; 3,11\rangle \quad-\frac{1}{132} \quad \sum_{e \in E_{11}^{-1}} w(e) \geqslant-\frac{7}{66} \quad \sum_{k=4}^{11} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{1455}{616}$
$\langle 3,3 ; 3, N\rangle, N \geqslant 12 \quad-\frac{1}{N} \quad \sum_{e \in E_{N}^{-}} w(e) \geqslant-\frac{1}{N} \quad \sum_{k=4}^{N} \sum_{e \in E_{k}^{-}} w(e) \geqslant-\frac{1455}{616}$ $-\ln (N)+\ln (11)$

Fig. 4. Face- and edge-oblique graph.

For $\Delta \leqslant 8$ the fourth column yields a contradiction to inequality (2). For $\Delta \geqslant 9$ let us consider the edges of E_{Δ} with the lowest possible charges:

Generalized edge-type	$w(e)$
$\langle 3,3 ; 3, \Delta\rangle$	$-\frac{1}{\Delta}$
$\langle 3,3 ; 4, \Delta\rangle$	$\frac{1}{12}-\frac{1}{\Delta}$
$\langle 3,4 ; 3, \Delta\rangle$	$\frac{1}{12}-\frac{1}{\Delta}$
$\langle 3,3 ; 5, \Delta\rangle$	$\frac{2}{15}-\frac{1}{\Delta}$
$\langle 3,5 ; 3, \Delta\rangle$	$\frac{2}{15}-\frac{1}{\Delta}$
All other types	$\geqslant \frac{1}{6}-\frac{1}{\Delta}$

Since there are at least Δ edges belonging to E_{Δ}, we have

$$
\begin{aligned}
& \sum_{e \in E_{\Delta}} w(e) \geqslant-\frac{1}{\Delta}+2\left(\frac{1}{12}-\frac{1}{\Delta}+\frac{2}{15}-\frac{1}{\Delta}\right)+(\Delta-5)\left(\frac{1}{6}-\frac{1}{\Delta}\right) \\
& \sum_{e \in E_{\Delta}} w(e) \geqslant \frac{\Delta}{6}-\frac{7}{5}
\end{aligned}
$$

In combination with column 4 this leads to a contradiction to inequality (1) for $9 \leqslant \Delta \leqslant 12$.

If $\Delta \geqslant 13$ we have

$$
\begin{aligned}
& -2 \geqslant \sum_{k=4}^{\Delta-1} \sum_{e \in E_{k}^{-}} w(e)+\sum_{e \in E_{\Delta}} w(e), \\
& -2 \geqslant-\frac{1455}{616}-\ln (\Delta)+\ln (11)+\frac{\Delta}{6}-\frac{7}{5}, \\
& -2 \geqslant-1.37+\frac{\Delta}{6}-\ln (\Delta)>-2
\end{aligned}
$$

a contradiction and (6) has been proved.
Proof of (7). See Fig. 4.

Acknowledgements

We want to thank Peter Owens of the University of Surrey, UK, for the first two examples of edge-oblique graphs (see Figs. 1, 2), Leonid Melnikov \& Andrej Dobrynin from the Academy of Sciences in Novisibirsk for some further examples (including Figs. 3 and 4) and last but not least the referees, who showed us some calculation and drawing errors in our previous version of the paper.

References

[1] A. Dobrynin, L. Melnikov, J. Schreyer, H. Walther, Some news about oblique graphs, discussiones mathematicae, Graph Theory 22 (2002) 39-50.
[2] S. Jendrol', Konvexne mnohosteny s prave jednym typom hran, Mat. Obzory 25 (1986) 75-82 (in Slovak).
[3] S. Jendrol', M. Tkáč, On the simplicial 3 polytopes with only two types of edges, Discrete Math. 48 (1984) 229-241.
[4] S. Jendrol', M. Tkáč, Convex 3 polytopes with exactly two types of edges, Discrete Math. 84 (2) (1990) 143-160.
[5] M. Voigt, H. Walther, Polyhedral graphs with restricted number of faces of the same type, Discrete Math. 244 (2002) 473-478.
[6] H. Walther, Polyhedral graphs with extreme numbers of types of faces, Discr. Appl. Math. 120 (2002) 263-274.

