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Abstract

Let G = G(V; E; F) be a polyhedral graph with vertex set V , edge set E and face set F .
e = (x; y; 	; 
)∈E(G) denotes an edge incident with the two vertices x; y∈V (G); d(x)6d(y)
and incident with the two faces 	; 
∈F(G); d(	)6d(
). [K=d(x); L=d(y);M=d(	); N=d(
)]
is the type of e = (x; y; 	; 
). A graph which contains no two edges of a common edge-type is
called edge-oblique and if it contains at most z edges of each type it is called z-edge-oblique. In
this work we shall prove, that there is only a ;nite number of edge-oblique and z-edge-oblique
graphs. For the ;rst case some bounds for the maximum degree and the number of edges are
given.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

By P we denote the set of polyhedral graphs, and let G = G(V; E; F)∈P. The
degree d(x) of a vertex x∈V (G) is the number of edges incident with x. The degree
d(	) of a face 	∈F(G) is the number of edges incident with 	. e=(x; y; 	; 
)∈E(G)
denotes an edge incident with the two vertices x; y∈V (G); d(x)6d(y) and incident
with the two faces 	; 
∈F(G); d(	)6d(
). [K =d(x); L=d(y);M =d(	); N =d(
)]
is the type of e=(x; y; 	; 
). A face 	∈F(G) is an 〈a1; a2; : : : ; al〉-face if 	 is an l-gon
and the degrees of the vertices x1; x2; : : : ; xl incident with 	 in the cyclic order are
a1; a2; : : : ; al. The lexicographic minimum 〈b1; b2; : : : ; bl〉 : 	 is a 〈b1; b2; : : : ; bl〉-face is
called the type of 	.
A(G) := max{d(a) : a∈V ∪ F} is the maximum degree of G.
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Fig. 1. Edge-oblique graph.

Fig. 2. Selfdual edge-oblique graph.

Because G is a polyhedral graph there is no edge of type 〈3; 3; 3; 3〉 in G except if
G is the tetrahedron.
If e∈E(G) is incident with an element a∈V ∪ F we write a ∼ e or e ∼ a.
At the 9. High Tatras Conference on Cycles and Colourings in 2000 P.J. Owens

asked the following question:

Let k,l be two integers with 16 l6 k. Does there exist a polyhedral graph G
with k = |E(G)| edges and l di7erent types of edges?

The cases l∈{1; 2} are solved by Jendrol’ and Tkáč in [2–4]. In this paper we are
interested in the case k = l.
G is called edge-oblique if for any type of edges there is at most one edge in E(G)

having this type.
G is called face-oblique if for any type of faces there is at most one face in F(G)

having this type.
It has been proved that:

(1) The set of face-oblique graphs is not empty but ;nite [5,6].
(2) The set of so called z-face-oblique graphs, which may contain up to z faces of

each type, is ;nite too [5].
(3) If G is a face-oblique graph, then it contains a vertex of degree 3 [1].
(4) There are face-oblique graphs having only triangles as faces [6], but there is no

face-oblique graph having vertices of degree 3 only.
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(5) The set of self-dual face-oblique graphs is not empty [1].
(6) There are face-oblique graphs G having no common face type with their face-

oblique duals G∗ (so-called super-face-oblique graphs) [1].

Obviously, if G is edge-oblique, its dual G∗ is edge-oblique, too.
Fig. 1 shows an edge-oblique graph G1.
Fig. 2 shows an edge-oblique self-dual graph G2.

2. Results and proofs

Theorem.

(1) The set of edge-oblique graphs is 9nite. If G is an edge-oblique graph then
A(G)6 30 and |E(G)|¡ 880.

(2) The set of so called z-edge-oblique graphs, which may contain up to z edges of
each type is 9nite, too.

(3) If G is an edge-oblique graph then G contains a vertex of degree 3 as well as a
triangle.

(4) There is neither an edge-oblique graph having only vertices of degree 3 nor one
having only triangles as faces.

(5) There are self-dual edge-oblique graphs.
(6) There is no edge oblique graph G such that G and G∗ have no common edge-type

(no super-edge-oblique graph).
(7) There is an edge oblique graph which is face-oblique, too.

Let G = G(V; E; F)∈P.
If e = (x; y; 	; 
)∈E(G) is of type [K; L;M;N ] we de;ne charges:
w(e) := w(K; L;M;N ) := 1− ( 1K +

1
L +

1
M + 1

N ).
Summing up the charges of all edges and using Euler’s formula one gets

∑
e∈E(G)

w(e) = |E(G)| −
∑
x∈V (G)

d(x) · 1
d(x)

−
∑
	∈F(G)

d(	) · 1
d(	)

= |E(G)| − |V (G)| − |F(G)|
=−2

for any G ∈P.

Proof of (1). In the following let G = G(V; E; F) be an edge-oblique graph.

Let E−
k := E−

k (G) := {e∈E(G) : w(e)6 0 ∧ k = max{K; L;M; N}} be the set of
edges with nonpositive charges and maximum degree k.
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Let E− := E−(G) :=
⋃A(G)
k=4 E−

k be the set of all edges with nonpositive charges.
w(E−) :=

∑
e∈E− w(e) =

∑A(G)
k=4

∑
e∈E−

k
w(e) sums up the charges of all these

edges.
Apart from the two in;nite sets {[3; 3; 3; N ] : N=13; 14; : : :} with w(3; 3; 3; N )=−1=N

and {[3; L; 3; 3] : L=13; 14; : : :} with w(3; L; 3; 3)=−1=L there are exactly 78 types of
edges with nonpositive charges:

w(3; 3; 3; N )N=4;5; :::;12 =− 1
N
, w(3; L; 3; 3)L=4;5; :::;12 =−1

L

w(3; 3; 4; N )N=4;5; :::;12 =
1
12

− 1
N
, w(4; L; 3; 3)L=4;5; :::;12 =

1
12

− 1
L

w(3; 3; 5; N )N=5;6;7 =
2
15

− 1
N
, w(5; L; 3; 3)L=5;6;7 =

2
15

− 1
L

w(3; 3; 6; 6) = 0, w(6; 6; 3; 3) = 0

w(3; 4; 3; N )N=4;5; :::12 =
1
12

− 1
N
, w(3; L; 3; 4)L=5;6; :::12 =

1
12

− 1
L

w(3; 4; 4; N )N=4;5;6 =
1
6
− 1
N
, w(4; L; 3; 4)L=4;5;6 =

1
6
− 1
L

w(3; 5; 3; N )N=5;6;7 =
2
15

− 1
N
, w(3; L; 3; 5)L=6;7 =

2
15

− 1
L

w(4; 4; 3; N )N=5;6 =
1
6
− 1
N
, w(3; L; 4; 4)L=5;6 =

1
6
− 1
L

w(3; 6; 3; 6) = 0, w(4; 4; 4; 4) = 0

It is easy to calculate, that the sum of the charges of these 78 edges is

12∑
k=4

∑
e∈E−

k

w(e) =−7891
1540

=−5:1240 : : : :

First we prove that A(G) = max{d(a) : a∈V (G) ∪ F(G)}6 30.

Proof. If there is an a∈V (G) ∪ F(G) with d(a) = A(G)¿ 31 we 9rst estimate the
sum w(a) of charges of all edges incident with a. For this purpose we may assume
without loss of generality that a is a vertex.

w(a) =
∑
e:a∼e

(
1− 1

K
− 1
A

− 1
M

− 1
N

)
=

∑
e:a∼e

(
1− 1

K
− 1
M

− 1
N

)
− 1:

Inserting for K;M; N the 31 degree combinations which yield the lowest possible charge
and estimating all further addends by the next lowest possible value for 1−1=K−1=M



J. Schreyer, H. Walther / Discrete Applied Mathematics 136 (2004) 315–327 319

−1=N one gets the following inequality:

w(a) =
∑
e:a∼e

w(e)¿
470117
90090

+ (A− 31)
11
42
:

Secondly, we estimate the sum of charges of all imaginable edges with nonpositive
charge:

w(E−)¿
12∑
k=4

∑
e∈E−

k

w(e) +
A∑
k=13

∑
e∈E−

k

w(e)¿− 7891
1540

− 2
A∑
k=13

1
k

⇒ w(G) =
∑
e∈E(G)

w(e)¿w(a) + w(E−)

¿
470117
90090

+ (A− 31)
11
42

− d7891
1540

− 2
A∑
k=13

1
k

¿
470117
90090

− 7891
1540

+ (A− 31)
11
42

− 2
31∑
k=13

1
k
− 2

A∑
k=32

1
k

¿
16987
180180

+ (A− 31)
(
11
42

− 2
32

)
− 2(ln(31)− ln(12))

¿− 4387217
720720

+
(
67
336

A− 2ln
(
31
12

))
:

This bound is a function of A which is monotonic increasing, and its value for A=31
is greater than −2 which is a contradiction.
The set {[K; L;M;N ] : max{K; L;M; N}6A6 30} of edge-types is ;nite. Because

an edge-type occurs at most once in an edge-oblique graph, we have proved, that the
set of edge-oblique graphs is ;nite.
Now let us prove: |E(G)|¡ 880.
Because A(G)6 30 there are at most 114 edges with a nonpositive charge namely

the 78 edges listed above and the 36 edges of type [3; 3; 3; N ], N = 13; 14; : : : ; 30 and
[3; L; 3; 3]; L= 13; 14; : : : ; 30 with a charge

w(E−)¿− 7891
1540

− 2
(
1
13

+
1
14

+ · · ·+ 1
30

)
=−6:9075 : : : :

A trivial estimation for the cardinality of E(G) is the following:
The minimum value min{w(e) : e∈E(G)\E−(G)} of the charge of an edge with

positive charge is w(e) = w([3; 3; 4; 13]) = 1
156 . If we choose l in such a way, that

l · 1
156 + w(E

−)¿− 2, that means l¿ 766 it results:
If |E(G)|¿ 766 + 114 = 880 then the graph is not edge-oblique.
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Remark. Re;ning our arguments by taking into consideration not only one element
a∈V ∪ F with d(a) = A but two further elements b; c with

d(a)¿d(b)¿d(c)¿d(t);∀t ∈ (V ∪ F)\{a; b};
it is possible to show, that A6 18 and |E(G)|6 138. Since those bounds are also
not sharp and the proofs are mainly done by computers and a computation by hand is
rather long, we omit the longer proofs.

Proof of (2). We prove the ;niteness of the family P(z) of z-edge-oblique graphs by
applying the discharging method:
The original charges w(t); t ∈V ∪ E ∪ F are

w(t) =




1−
(
1
K
+
1
L
+

1
M

+
1
N

)
if t = e = (x; y; 	; 
)∈E(G)

is of type [K; L;M;N ];

0 if t ∈V ∪ F:
The new charges are denoted by w∗(t). w∗(e)=w(e) if e∈E(G) is of type [K; L;M;N ]
with max{K; L;M; N}6 2z + 13. If max{K; L;M; N}¿ 2z + 14 we shift charges from
e to
x if K¿ 2z + 14,
y if L¿ 2z + 14,
	 if M¿ 2z + 14,

 if N¿ 2z + 14
in accordance with the following rules:

Rule no. Type of e = (x; y; 	; 
) Discharging rule

1 [3; L; 3; 3], L¿ 2z + 14 Shift − 1
13

− 1
L− 1

from e to y

2 [3; 3; 3; N ], N¿ 2z + 14 Shift − 1
13

− 1
N − 1

from e to 


If rule 1 and 2 are not applicable

3 [K; L;M;N ], K¿ 2z + 14 Shift
1
13

− 1
K − 1

from e to x

(in this case L¿ 2z + 14, too)

4 [K; L;M;N ], L¿ 2z + 14 Shift
1
13

− 1
L− 1

from e to y

5 [K; L;M;N ], M¿ 2z + 14 Shift
1
13

− 1
M − 1

from e to 	

(in this case N¿ 2z + 14, too)

6 [K; L;M;N ], N¿ 2z + 14 Shift
1
13

− 1
N − 1

from e to 
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In some cases more than one of rules 3–6 must be used for one edge. After the
discharging process, the charges w(e) have changed into new charges w∗(e). Further-
more, the vertices and faces have got charges w∗(x) and w∗(	), too, which may be
diHerent from zero now.

Lemma. All vertices and faces have nonnegative charges.

Proof. (1) w∗(x)¿ 0; ∀x∈V (G): only if x is a vertex of degree d(x)¿ 2z + 14 it
has a charge diHerent from 0. In this case, x may get at most z times a charge of
− 1

13 − 1=(d(x)− 1) as x is incident with at most z edges of type [3; d(x); 3; 3] and at
least d(x)− z times a charge of 1

13 − 1=(d(x)− 1).

w∗(x)¿ z
(
− 1
13

− 1
d(x)− 1

)
+ (d(x)− z)

(
1
13

− 1
d(x)− 1

)
;

w∗(x)¿
d2(x)− (14 + 2z)d(x) + 2z

13(d(x)− 1)
;

w∗(x)¿ 0 since d(x)¿ 2z + 14:

(2) w∗(	)¿ 0; ∀	∈F(G): can be proved analogously.

−2 =
∑
e∈E

w∗(e) +
∑
x∈V

w∗(x) +
∑
	∈F

w∗(	):

So the following inequality holds:

−2¿
∑
e∈E

w∗(e);

−2¿
∑
e∈E−∗

w∗(e) +
∑
e∈E+∗

w∗(e);

where

E−∗ := {e∈E; w∗(e)6 0};

E+∗ := {e∈E; w∗(e)¿ 0}:

All edges without incident elements of degree ¿ 2z + 14 keep their original charges,
which are, as we have already seen either 6 0 or ¿ 1

156 . First we will prove, that all
edges with incident elements of degree ¿ 2z + 14 have charges ¿ 1

156 .

(1) Exactly one of the values K; L;M; N is ¿ 2z + 14



322 J. Schreyer, H. Walther / Discrete Applied Mathematics 136 (2004) 315–327

Applied rule w(e) w∗(e)

1 −1
L

−1
L
+

1
13

+
1

L− 1
¿

1
13
¿

1
156

2 − 1
N

− 1
N
+

1
13

+
1

N − 1
¿

1
13
¿

1
156

4 ¿
1
12

− 1
L

¿
1
12

− 1
L
− 1
13

+
1

L− 1
¿

1
156

6 ¿
1
12

− 1
N

¿
1
12

− 1
N

− 1
13

+
1

N − 1
¿

1
156

(2) Exactly two of the values K; L;M; N are ¿ 2z+14. Because of the de;nition of the
edge-type these can be K and L, M and N or L and N (w.l.o.g. K; L¿ 2z + 14)
w(e)¿ 1

3 − 1
K − 1

L
⇒ w∗(e)¿ 1

3 − 1
K − 1

L − 1
13 +

1
K−1 − 1

13 +
1
L−1¿

7
39¿

1
156

(3) Exactly three of the values K; L;M; N are ¿ 2z + 14. Because of the de;nition of
the edge-type these can be K; L; N or L;M; N (w.l.o.g. K; L; N¿ 2z + 14)
w(e)¿ 2

3 − 1
K − 1

L − 1
N

⇒ w∗(e)¿ 2
3 − 1

K − 1
L − 1

N − 1
13 +

1
K−1 − 1

13 +
1
L−1 − 1

13 +
1

N−1¿
17
39¿

1
156

(4) All of the values K; L;M; N are ¿ 2z + 14
w(e) = 1− 1

K − 1
L − 1

M − 1
N

⇒ w∗(e)¿ 1 − 1
K − 1

L − 1
M − 1

N − 1
13 +

1
K−1 − 1

13 +
1
L−1 − 1

13 +
1

M−1 − 1
13 +

1
N−1¿

9
13¿

1
156

Now an edge e = (x; y; 	; 
) of type [K; L;M;N ] with w∗(e)6 0 either belongs to
the 78 types listed above with max{K; L;M;N}6 12 or is of type [3; L; 3; 3] with
136L6 2z + 13 or [3; 3; 3; N ] with 136N6 2z + 13. Each of them occurs at most
z times in G, therefore we have

w∗(E−∗)¿− z · 7891
1540

− 2z
2z+13∑
k=13

1
k

and

|E−∗|6 z · 78 + 2z(2z + 13− 13 + 1) = 4z2 + 80z:

−2 = w∗(G)¿w∗(E+∗) + w∗(E−∗)

−2¿ 1
156

|E+∗| − z · 7891
1540

− 2z
2z+13∑
k=13

1
k
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Fig. 3. Selfdual edge-oblique graph.

−2¿ 1
156

|E+∗| − z · 7891
1540

− 2z
[
ln
2z + 13
12

]

⇒ |E+∗|6 156
[
−2 + z · 7891

1540
− 2z · ln 2z + 13

12

]
:

Since |E+∗| and |E−∗| are bounded, we have a limited number of edges for a z-edge-
oblique graph. Therefore the set of such graphs must be ;nite.

Proof of (3). Suppose the edge-oblique graph G has no vertex of degree 3. The only
possible edge-types with negative charges are

[4; 4; 3; 5]; [4; L; 3; 3]L=4;5; :::;11; [4; L; 3; 4]L=4;5; [5; L; 3; 3]L=5;6;7:

The sum of the charges of these 14 edges is − 4321
5544 =−0:77940 : : :¿−2 Contradiction.

In an analogous way we can prove that an edge-oblique graph contains a triangle.

Remark 1. Since the charge-sum − 4321
5544 is far away from −2 one can improve the

result easily and show that there must occur at least 3 vertices of degree 3 and at least
3 triangles.

Proof of (4). Suppose all vertices of a graph G have degree 3. Now consider a face
	 with maximum degree d(	)=A. There are A edges incident with 	 but only A− 1
possible edge-types for them namely [3; 3; M;A]M=3; :::;A. Therefore, one type must occur
at least twice and the graph cannot be edge-oblique.
In a similar way it can be proved that an edge-oblique contains not only

triangles.

Proof of (5). See Figs. 2 and 3.
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Proof of (6). Suppose there is a graph G ∈P whose dual G∗ is edge-oblique, too
and these graphs have no common edge-type. Therefore, G contains at most one
of the edge-types [K; L;M;N ] and [M;N ;K; L] and G contains no edge-type of the
form [K; L;K; L]. To prove the nonexistence of such a graph we de;ne a generalized
edge-type in the following way:
e = (x; y; 	; 
) is of the generalized edge-type 〈K; L;M;N 〉 if [K; L;M;N ] is lexico-

graphically smaller than [M;N ;K; L] and e is of one of these edge-types. Note that an
edge has no generalized edge-type if it is of type [K; L;K; L], but such an edge does
not occur in G.
G contains at most one edge of each generalized edge-type. Similarly to before we

de;ne

E− := {e∈E(G) : w(e)6 0};
Ek := {e∈E(G) : e is of type 〈K; L;M;N 〉 ∧max{K; L;M;N}= k};
E−
k := E− ∩ Ek:

Since −2 = ∑
e∈E(G)

w(e) =
A∑
k=4

∑
e∈Ek

w(e) the following two inequalities hold:

− 2¿
A−1∑
k=4

∑
e∈E−

k

w(e) +
∑
e∈EA

w(e); (1)

− 2¿
A∑
k=4

∑
e∈E−

k

w(e): (2)

Now let us consider all possible generalized edge-types with negative charges:

Generalized edge-type w(e)

〈3; 3; 3; 4〉 −1
4

〈3; 3; 4; 4〉 −1
6

〈3; 4; 4; 4〉 − 1
12

∑
e∈E−

4

w(e)¿− 1
2

4∑
k=4

∑
e∈E−

k

w(e)¿− 1
2

〈3; 3; 3; 5〉 −1
5

〈3; 3; 4; 5〉, 〈3; 4; 3; 5〉 − 7
60
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〈3; 3; 5; 5〉 − 1
15

〈3; 4; 4; 5〉, 〈3; 5; 4; 4〉 − 1
30

∑
e∈E−

5

w(e)¿− 17
30

5∑
k=4

∑
e∈E−

k

w(e)¿− 16
15

〈3; 3; 3; 6〉 −1
6

〈3; 3; 4; 6〉, 〈3; 4; 3; 6〉 − 1
12

〈3; 3; 5; 6〉, 〈3; 5; 3; 6〉 − 1
30

∑
e∈E−

6

w(e)¿− 2
5

6∑
k=4

∑
e∈E−

k

w(e)¿− 22
15

〈3; 3; 3; 7〉 −1
7

〈3; 3; 4; 7〉, 〈3; 4; 3; 7〉 − 5
84

〈3; 3; 5; 7〉, 〈3; 5; 3; 7〉 − 1
105

∑
e∈E−

7

w(e)¿− 59
210

7∑
k=4

∑
e∈E−

k

w(e)¿− 367
210

〈3; 3; 3; 8〉 −1
8

〈3; 3; 4; 8〉, 〈3; 4; 3; 8〉 − 1
24

∑
e∈E−

8

w(e)¿− 5
24

8∑
k=4

∑
e∈E−

k

w(e)¿− 1643
840

〈3; 3; 3; 9〉 −1
9

〈3; 3; 4; 9〉, 〈3; 4; 3; 9〉 − 1
36

∑
e∈E−

9

w(e)¿− 1
6

9∑
k=4

∑
e∈E−

k

w(e)¿− 1783
840

〈3; 3; 3; 10〉 − 1
10

〈3; 3; 4; 10〉, 〈3; 4; 3; 10〉 − 1
60

∑
e∈E−

10

w(e)¿− 2
15

10∑
k=4

∑
e∈E−

k

w(e)¿− 379
168

〈3; 3; 3; 11〉 − 1
11

〈3; 3; 4; 11〉, 〈3; 4; 3; 11〉 − 1
132

∑
e∈E−

11

w(e)¿− 7
66

11∑
k=4

∑
e∈E−

k

w(e)¿− 1455
616

〈3; 3; 3; N 〉; N¿12 − 1
N

∑
e∈E−

N

w(e)¿− 1
N

N∑
k=4

∑
e∈E−

k

w(e)¿ − 1455
616

− ln(N )+ln(11)
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Fig. 4. Face- and edge-oblique graph.

For A6 8 the fourth column yields a contradiction to inequality (2). For A¿ 9 let
us consider the edges of EA with the lowest possible charges:

Generalized edge-type w(e)

〈3; 3; 3;A〉 − 1
A

〈3; 3; 4;A〉 1
12

− 1
A

〈3; 4; 3;A〉 1
12

− 1
A

〈3; 3; 5;A〉 2
15

− 1
A

〈3; 5; 3;A〉 2
15

− 1
A

All other types ¿
1
6
− 1
A

Since there are at least A edges belonging to EA, we have

∑
e∈EA

w(e)¿− 1
A
+ 2

(
1
12

− 1
A
+

2
15

− 1
A

)
+ (A− 5)

(
1
6
− 1
A

)
;

∑
e∈EA

w(e)¿
A
6

− 7
5
:

In combination with column 4 this leads to a contradiction to inequality (1) for
96A6 12.
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If A¿ 13 we have

−2¿
A−1∑
k=4

∑
e∈E−

k

w(e) +
∑
e∈EA

w(e);

−2¿− 1455
616

− ln(A) + ln(11) +
A
6

− 7
5
;

−2¿− 1:37 +
A
6

− ln(A)¿− 2;

a contradiction and (6) has been proved.

Proof of (7). See Fig. 4.
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