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Abstract. In this paper, an extension of the well known set union problem is considered, where 
backtracking over sequences of Union operations is allowed. A data structure is presented which 
maintains a partition of zn n-item set making it possible to perform each Union in O(1g lg n) 
time, each Find in O(lg n) time and allows backtracking over the Unions in O(1) time. Moreover, 
it is shown that the data structure can be slightly modified as to present an O(k i- in lg n) time 
complexity on a sequence of k Unions and Backtracks and m Finds. The space complexity of 
both versions of such a data structure is O(n). 

The set-union problem, togl;ther with its variants, is certainly one of the most 
extensively studied problems in recent years [l, 3, 4, 9, H-13, 15, 18, 19, 21, 22, 
241. The original problem is that of maintaining a representation of a partition of 
aset S={l,2,..., n} in equivalence classes under the following two operations: 

Unio&K, f): return a new partition of S in which classes X, Y are merged into 
a new equivalence class X u Y named X. 

Find (x) : given an item y E s, return the name of the equivalence class containing 
A. 

At the begirnning, t artition consists o if singletons {I}, {2}, . . . 5 { e 

of the initial set {i} is i. 
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Tne best solution for such problem has been presented in [21]: it requires 
space and O( ma(m + n, n) + n) running time, where m is the number of 
operations performed and cy ( - l . , . l . ) is a very slowly growing (almost constant) 
function. This results in an amortized time complexity [2Q] (1) for Unions and 
O( cy (m + n, n)) for Finds. 

This has also been proved in [21] to be a lower bound for the amortized complexity 
of the problem in the (quite general) class of separable algorithms. 

An interesting extension of the problem has been proposed in [13]. In it, a new 
operation Deunion is introduced defined as follows: 

Reunion: undo the last Union performed so far, i.e. return to the state immediately 
preceding the execution of the last Union. 

This operation was suggested by motivations arising from the implementation of 
tracking in the framework of Prolog environment design [ 10, 14, 231. In such 

a context, a sequence of Unions models a sequence of unifications between terms 
and performing a Deunion corresponds to backtrack to a preceding state in the 
deduction process. 

An algorithm is proposed in [13] which is efficient with respect to amortized time 
complexity, while the space complexity of the data structure is left as an open 
problem. Successively, the problem has been completely characterized in [24], where 
Ig n/(lg lg n) upper and lower bounds on the amortized time complexity are derived. 
The space complexity of the data structure used to establish the upper bound is 
O(n lg ra). 

In this paper, a generalizationof such a problem is considered to the case where 
a (real) weight w is associated with each Union performed and the Deunion operation 
is substituted by: 

acktrack: return to the partition immediately preceding the execution of the 
n of largest weight performed so far, i.e. undo all Unions performed as long 

as the Union of largest weight is removed. 
Moreover, a slight v&ant of the Union operation is considered where each set 

has an associated name equal to its canonical element (let us define an element of 
canonical if it is associated with the root of the tree r”;arf:enting X). 
efinition of the Union operation is the following: 

Union(x, y, w): return a new partition of S in which classes of canonical elements 
X, y are merged in a unique class (with canonical element either x or y). A weight 
w is asseziated with the operation. 

It is easy to note that the union&d-backtrack problem reduces easily to the 
’ -find-damion problen simply by letting all Unions have the same weight. 

ations for such an extei. on derive by the implementation of search heuristics 
[nsJ and fast backtracking in rolog environments. The impact of the technique 

71 while in [6, S] other extensions of 

, generally, in all t 
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possibility of eficiently testing whether or not two items are in the same set, without 
caring about the actual name of such a set. ence, from a practical point of view, 
the definition of Unions given is equivalent to the classical one. 

The main results of this paper are concerned with the worst case analysis of the 

Union, Find and Backtrack operations. In particular, a data structure is introduced 

which supports each Union in O(lg lg n) time, each Find in O(lg n) time and each 

track in 0( 1) time, requiring only O(n) space. 
oreover, a second data structure is given whit presents an 0( 1) amortized 

time complexity on Unions and Backtracks and an O(lg n) amortized time com- 

plexity on Finds. Also this data structure presents an O(n) space complexity. 

As a consequence, our first approach compares favorably with Westbrook and 

Tarjan’s algorithms not only when the single operation worst-case time complexity 

is taken into account, but also according to the space x time complexity of any 

sequence of operations. In fact, if we assume to perform a sequence of m Finds, 
Unions and Backtracks (or the corresponding Deunions), Westbrook and Tarjan’s 

algorithms require 0( nm lg2 n/lg lg n) space x time, while our approach leads to an 

0( nm lg n) space x time complexity. This ratio can also be improved by considering 

the second data structure introduced. 

The paper is organized as follows: in Section 2 some simplified approaches to 

the problem are considered. For the sake of comparison, in Section 3 the results 

given in [ 13, 241 are extended to the case of the union-find-backtrack problem. In 
Section 4 a data structure for the union-@d-backtrack problem is introduced and 

its worst case time and space complexities are derived. Moreover, a modification 

of such a data structure which performs better in terms of amortized complexity is 

presented. Section 5 contains some concluding remarks. 

In this section, algorithms are presented for the on-line maintenance of a collection 

of disjoint sets under an arbitrary sequence of Union, Find and Backtrack operations. 

Let us start by presenting a rather simplified algorithm: next, more efficient and 

sophisticated approaches will be introduced. 

2.1. A naive algorithm 

The above operations can be performed using the classical set union data structure 

[21], where each set is represented by a rooted tree whose nodes correspond to the 

elements of the set. 

In order to make Backtrack possible, an additional stack is used. 

has to be performed, linking by rank 

pointer to thb new link together wit 

introduced IZ pushed on the stack. N 

easily fo as t axi 
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and the weight on the top of the stack (i.e. the largest weight beforc the execution 

of suck Union). 
.%ccorciItig to this technique, the time required to carry out a Unio 

the hei; ht’ of all trees created by linking by rank or by size is S(!g 

takes 2 r%lost O(lg n) time to return to the root of the tree containing X. In c\rder 

to back+,r,ack, it is necessary to pop from the stack the pointers to be cancelled until 

a weight, value different from the one on the top of the stack is encountered. 
Unfortu!>ately, the reconstruction of the old configuration can even require O(n) 

worst-ctiise time. iience., the following theorem I”ollows. 

3 1. It is possible to perform a Union in 0( 1) time, a Find in O(lg n) time 

and a Backtrack in O(n) time. The space required is O(n). 

soof. Derives from the considerations given above. Cl 

2.2. A lazy algorithm 

The tim.e required for backtracking can be reduced by using a lazy approach in 
which the links cancelled by Backtracks are not removed immediately. 

In such a framework, a link (p, q) is considered live as long as it corresponds to 

a Union wftich has not been cancelled by backtracking. More formally, if we denote 

by L( p, 9) the Union of largest weight performed at the time link (p, q) was 
introduced, ( p, q) is five if and only if L( p, q) has not been removed by Backtracks. 

While dealing with a Union which introduce5 a link from p to q, if its weight 

exceeds tile weight value on the top of the stack, the Union is pushed onto the stack 

in the form of the pair of names of the (canonical elements of the) united sets and 

L( p, q) is set to (p, q). Otherwise, nothing is r;rilshed onto the stack and L( p, q) is 

the top elemeni of the stack. In both cases, we associate with the link (p, q) a pointer 

to the top clement of the stack (i.,:. co L( b, q)). 
Notice that COW the stack contains only Unions which were of largest weight 

when introduced (referred in the sequel as L-unions) and that the liveness of any 

link (p, q) can be tested by checking whether the corresponding L-union L( p, q) 
is still in the stack. 

lr, order to reuse stack yecords as soon as they are popped, without waiting for 

all the links pointing to them to be remVaved, a stamping technique is introduced: 

namely, we store in each link (p, 4) a mark which properly characterizes the 
corresponding L( p, q) Union. Stack records also contain the corresponding stamp. 

Accc~rding to this technique, a link (F, q) is live if and only if the record pointed 

to by (p, q) is still VA the stack and has the same stamp as (p, q) itself. Such an 

approach makes it possi le to bound the number of stamps used, as proved by the 

’ The height of a node x in a tree is the length of the longest path from a leaf to x. 
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It is possible to introduce a stamping on the Unio 
&erent stamps equal to the maximum number of/i 

Let I denote the maximum number of links which can be in the structure at 

e. Stamps can be organized as an array 1~: size 1 named Stamp such that 
entry Stamp[k] stores the number of links in the structure whose stamp is equal to 
k. Furthermore, entries containing 0, corresponding to unused stamps, are linked 
in a list, referred to as free list. 

When a link is introduced, two cases are possible. If it gets a currently used stamp 
k, the entry [k] is incremente y 1. Otherwise, an unused stamp is removed 
from the free list and its entry is initialized to 1. On the other hand, the deletion of 
a link involves a decrement of the corresponding Stamp entry or an insertion in the 
free list (if it was the only link using that stamp). All these operations require 
constant time, hence they do not affect the overall time bounds. Notice that the free 
list is able to return a stamp each time it is required, since at most I stamps can be 
used at the same time. Cl 

The different operations can now be implemented as follows: 
Union(p, q, w): remove the dead link!, leaving p and q. If w exceeds the weight 

of the top element of the stack, then push the Union together with the actual stamp 
onto the stack. Insert a link between p and q and associate with it a pointer to the 
top of the stack and the actual stamp. 

Find(x): starting from the node corresponding to X, follow the live link leaving 
the node (if such link exists). The liveness of a link can be tested in 0( 1) time as 
described above. Repeat until a node with no outgoing live link is entered: return 
the element associated with such a node. 

Backtrack: remove the top element from the stack of L-unions. 
The following lemma guarantees that each Union can be performed in O( 1) time: 

a 2.2. At any time there is at most one Iink (dead or alive) leaving a node in 

the structure. Hence, the maximum number of links in the stwcture is n - 1. 

roof. The only operations which introduce new links are Unions. Furthermore, a 
link can only be created between roots, i.e. nodes with no leaving live links. Since 
before creating a new iink from p to q all dead links leaving p and q are removed, 
the lemma can easily be obtained by induction on the number of Unions per- 
formed. Cl 

acktrack also requires constant rime, but, unfortu 

nstruction of the old con 
he reinstantiated sets ar 

worst-case time for inds, since a tee 
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As a result, we obtain the following theorem: 

Theorem 2.2. It is possible to perform both Union and Backtrack in O(a) time, w 

each Find requires Q(n) worst-case time. I3e space required is O( n ). 

Proof. Derives by Lemma 2.2 and by the considerations given above. q 

3. The Union-Find49eunion a 

Mannila and Ukkonen extended [ 141 the classical set union problem by introduc- 
ing a Dtwnion operation, whose effect is to undo the last Union performed not yet 
undone. They gave an algorithm for it and claimed that it performs an intermixed 
sequence of m Finds, k Unions and at most k Deunions on n originally singleton 
sets in O((k + m) lg lg n) time, without characterizing the space complexity of their 
approach. 

Recently, Westbrook and Tarjan [24] showed that Mannila and Ukkonen’s claim 
was faulty. In fact, they proved that any separable pointer-based algorithm for the 
union-$nd-deunion problem requires L! ( m lg n/lg lg n )) time in performing a 
sequence of m find, union and deunion operations. In the same paper, Westbrook 
and Tajan also gave several algorithms based on the approach of [ 133 with amortized 
running time of O(lg n/lg lg n), thus matching the introduced lower bound. The 
space required by all these algorithms is O(n lg n) [24]. 

It is not difficult to see that there is a relationship between Backtracks and 
Deunions. In fact, the union-jfnd-backtrack problem reduces to the union-Jind- 
deunion problem when all the Unions performed have the same weight. On the 
other side, each Backtrack operation could be implemented by a suitable number 
of Deunions. 

In the following, we shall see that the same amortized bounds proposed by 
Westbrook and Tarjan in [24] also hold for the new union-@d-backtrack problem. 
Furthermore, we shall analyse the worst-case per operation complexity of their 
algorithms when applied to the new problem. In such a framework, we derive an 
S{ 1) bound for each Union, tin Giig n j bound tbr each Find, and an O( n lg n) 
bound for each Backtrack. 

The ideas underlying the algorithms proposed in [13,24] are the following ones. 
A path compaction rule (either path splitting or path halving) is combined with a 
union rule (either linking by size or linking by rank) [2l], thus giving rise to four 
algorithms which have the same time and space performance. 

As usual, we refer to a Union operation not yet undone as live and as dead 
otherwise. In order to be prepared for Deunions, a union stack is maintained, which 
contains the tree roots made non roots by the performed live Unions. Furthermore, 
a link stack is maintained at each riode. All the iinks ieaving 8 :no$e are pushed on 
the link stack of the node in the order of their creation (the l:rst links at the to 
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New links are pu en a Union is performe 
correspondence o as a consequence of path compacti 
link is associated a Union operation, which is the one whose deletion would 
invalidate the link. A link is Zive if the associated Union is live, otherwise it is said 
to be dead. 

Uniokks are performe as in the set union algorithms without backtracking [Zl] 
with one of the union rules. oreover, the tree root made non root is pushed on 
the union stack. Also inds are performed as in the set union algorithms by means 
of either a path splitting or a path halving rule, except that each new link (p, 9) is 
pushed onto the link stack of p instead of replacing the old link leaving p. To 
perform Deunions, the top element of the union stack is popped and the link leaving 
the corresponding node deleted. Furthermore, all the dead links are popped from 
the link stacks. This obviously requires some bookkeeping. All the details of the 
method can be found in [24]. 

Westbrook and Tarjan called this approach the eager method, while they denoted 
the method followed by Mannila and Ukkonen [ 131 as the lazy method, since Mannila 
and Ukkonen’s algorithm destroys dead links in a lazy fashion. In [24] it is shown 
that both the eager and the lazy method requires Q( m lg m/lg lg n) time in performing 
a sequence of m Union, Find and Deunion operations. However, the eager Imethod 
is much more space efficient since it uses O(n lg n) space in the worst case, while 
the space usage of the lazy method cannot be bounded by any function of n (the 
number of elemerrts), but only by a function of m (the total number of operations). 

As a complete result, we now show that the space bound given for the eager 
method is tight, i.e. no better than 0( n lg n) space can be achieved. 

l’%ere exist instances of the union-Jnd-deunios problem for which the 

algorithms proposed in 1241 require space complexity S(n) > cn lg n, where c is a 

suitable constant. 

roof. We consider the algorithm obtained by combining the linking by size rule 
and the path splitting technique. The algorithms described in [24] which derives 
from the other cases can be analyzed very similarly. 

Let us first assume that n = 2” and that the set resulting after the operation 
union(a, b) is named b. Denote by Uk the sequence of Unions 

Uk = union((Zj - I)Zk-‘,j2”) j = I,. . . , n/2”, k = I,. . . , h. 

l[n a similar manner, define & as the se 

Fk = u,,jind(l),Jind(2), . . . ,jind(n) k =&a. -, h. 

Consider now the following sequence of o 
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It is easy to derive by induction that the structure resulting from such a sequence 
corresponds to the transitive closure of a binomial rooted tree [21] and that the 
number of links in such structure is given by 

m= 

The result derives by observing that 

The general case derives from a simple extension of the considerations above. Cl 

As far as the union-find-backtrack problem is concerned, The Union and Find 
operations can be performed as described above, while a Backtrack involving r 
Unions (1 s r s n - 1) can be performed by exactly r Deunions. Clearly, some 
bookkeeping is necessary in order to store the number of Unions which must be 
undone by each Backtrack. With this technique, the amortized cost of each Union 
and Find is still O(lg szjig !g rl), while the cost of each Backtrack can be Gharged 
to the corresponding set of removed Unions, thus resulting in an O( 1) amortized 
complexity for the Backtrack operation. 

The worst-case per operation complexity of the algorithms given in 1241, when 
applied ;o the union-find-backtrack problem, can be characterized as follows. 

TIwsr~rn 3.2. The algorithms proposed in [ 24 ] make it possible to support each Union 
in 0( 1) time, each Find in O(lg ri) and each Backtrack in time 0( n lg n). Their space 
complexity is O( n lg n ). 

roof. The worst-case bounds on the Union and Find operations are the same as 
in the set union problem without backtracking [21]. Consider now the sequence A 
of Unions and Finds described in the proof of Theorem 3.1 and assume that the 
first performed Union has the largest weight. After performing the sequence A, 
perform a Backtrack. Clearly, all the links in the structure become dead and the 
eager algorithms given in !24] have to destroy them. By Theorem 3.1, this Backtrack 
operation has to delete Q(r, ifr P”) links, thus with a cost of O(n lg n). An upper 
bound on the space complexity was given in [24]. This bound is tight as shown in 
Theorem 3.1, 0 

In this section, we shall see how a modified version of the lazy algorithm described 
in Section 2 is able to efficiently deal with the union-jnd-backtrack problem. The 
maj rawback of the lazy algorit m is that fast backtracking does not permit the 
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heights (or the sizes) of the reinstated sets to be restored: in order to deal with this 

problem, one could think of maintaining information about the ranks (sizes) of a 
node during the evolution of the structure. This task can be accomplished by 

associating with each node x a balanced tree 12, 5, 161 Rn&(x), such that it is 
possible to insert a new value for the rank of x or delete an old ‘~‘alue for such a 
rank in time O(lg k), where k is the number of different values stored. 

Each item in Rank(x) (in the sequel referred to as a rank of x) uniquely 
corresponds to a link I entering x and stores the height of x immediately after the 
introduction of 1. If several links 2 l, I 2,. . . , I, caused x to have the same height h, 
then there is only one rank of x containing the value la and corresponding to the 
eldest live link in {I,, i2, . . . , !J. 

The notion of liveness can now be extended to a rank of X. More precisely, a 
rank of x is said to be live if and only if the corresponding link is live, otherwise 
it is said to be dead. 

In order to restore the height of a node x while backtracking, the largest live rank 
of x must be individuated. This information clearly turns out to be useful while 
implementing linking by rank. 

With this additional structure, a Unio?r( p, q, w) requires the following three phases. 
(1) Restoring phase: Remove the dead links leaving p and q together with their 

corresponding ranks. Retrieve H9 and Hq, respectively, the actual heights of p and 
q, as the largest live items in Rank(y) and Rank(q). 

(2) Linking phase: If w exceeds t1.e weight of the top element of the stack, then 
push that LJnion together with the ac:tual stamp on the stack. Link by rank p and 
q and store in the link a liveness pointer to the top of the stack and the top time stamp. 

(3) Rank updating phase: If HP = Hy, then break the tie by making y^ child of q 
and insert into Rank(q) a rank value ( Hy + 1). 

On the other hand, Find and Backtrack can be performed as in the lazy algorithm. 
The distribution of dead and live ranks into the rank trees obeys the rules given 

in the following lemmas. As we did for the case of the lazy algorithm, we denote 
by L(e) the Union with largest weight performed at the time in which the link e 
was introduced in the structure. Such Unions are referred to as L-unions. Due to 
the iinking phase of the algorithm, the stack can contain only L-unions. 

Lemma 4.1 (rank consistency). If in a rank tree a live rank corresponding to a (live) 
link el is greater than a rank corresponding to a link 2, then L(e,) cannot be below 

L(e,) in the stack of L-unions. 

Proof. Since only a Union oi?eration can insert a live item in a rank tree, we shall 
prove the lemma by induction on the number of Unions performed. 

At the beginning, the lemma trivially holds, since there are no live ranks. 
Assume now that rank consistency holds before performing a Union which 

introduces a link from p to q. Let ;.ZS denote by H,, and PBy the largest live ranks 
respectively in Ravtk(p) and Rank(q). If IT!,, Z I&, then no new rank is created and 
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hence rank consistency still holds. If HP = ZYq = H, only a new rank H + 1 is created. 
This new rank is inserted into Rank(q) and is now the largest live item in this rank 
tree. This rank value H + 1 correqonds to the link (p, q) and satisfies the rank 
consistency property since I(p, q) is at this time on the top of the stack of k-unions. 
This completes the induction step and gfi. ts the Lemma. Cl 

Lemma 4.2 (Rank compressions). 1pz any rank tree, no dead rank can be smaller than 
a live rank. That is, in any rank tree there exists a rank value v such that all the ranks 
less or equal to v are live, while the others are dead (v is clearly the largest live item 
in the rank tree). 

proof. We proceed by induction on the number of operations performed. 
At the beginning, all the rank trees are empty and thus trivially satisfy the rank 

compression property. 
Assume now that the lemma holds before executing the ith operation and consider 

the following three cases. 
(a) If a Union introducing a link from F to q is performed and no new ranks 

are created, the lemma still holds. Otherwise, a new rank can be created only if the 
previous largest live items in Rank(p) and Rank(q) had the same value, say H. In 
this case, only a new live rank of value H + 1 is inserted into Rank(q). Notice that 
if there was a previous rank of q whose value was H + 1, it cannot be live (otherwise 
H was not the largest live rank of q). In this case, the new rank can be stored in 
the same node of the rank tree, thus implicitly deleting the old value. This also 
assures that each balanced tree can never contain two ranks with the same value. 
Hence, rank compression still holds for Rank(p) (with largest live item of value 
H) and for Rank(q) (with the !argest live item of value H + I). 

(b) If a Find is performed, then no rank tree is modified and clearly the lemma 
still holds. 

(c) If a Backtrack is performed, then by Lemma 4.1 only the live ranks of greater 
value can become dead in a rank tree. Once again, the lemma still holds. Cl 

The following lemma characterizes the worst-case time complexity of maintaining 
the rank trees. 

Lemma 4.3. It is possible to delete an arbitrary item, to insert an arbitrary item, or to 
search Jar the largest live item in a rank tree in O(lg lg n) worst-case time. 

Proof. Since any node x may have at most lg n different heights during the execution 
of the Union, Find and Backtrack operations [21] and no rank tree may contain a 
pair of ranks with the same value, the size of each rank tree is bounded by lg n. As 
a consequence, any deletion or insertion of it in the rank trees takes at most O(lg lg n) 
time. 
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Due to the rank compression property proved in Lemma 4.2, the largest live item 
in a rank tree separates live ranks from dead ranks and hence may be accessed by 
traversing at most O(lg Ig n) nodes in the rank tree. By introducing a bidirectional 
connection between every rank stored in a balanced tree and the corresponding 
link, the liveness of a rank can be tested in 0( 1) time, thus yielding to an O(l) time 
spent at each node of the rank tree during the search. Hence, an O(lg lg n) time for 
searching the largest live item in a rank tree also follows. q 

The worst case complexity of the data structure is analyzed in the following 
theorem. 

Theorem 4.1. IP is possi& to perform each Union in O(lg lg n), each Find in O(lg n) 
and each Backtrack in 0( 1) time. The space required is O(n). 

Proof. As far as Unions are concerned, a result completely analogous to Lemma 
2.2 can be proved. Hence each Union may cause the deletion of at most two dead 
links. By Lemma 4.3, removing a link (together with the corresponding rank, if any) 
takes O(lg lg n) time. Furthermore, the actual height of the two roots p and q to be 
linked can be restored in O(lg lg n) by means of a search for the largest live item 
in Rank(p) and Rank(q). The linking phase of a Union requires 0( 1) time, while 
Rank(q) can be updaTed in O(lg lg n) time, together with the introduction of a 
bidirectional connection to the link (p, q). 

Find and Backtrack are implemented as in the lazy algorithm. Since linking by 
rank is now possible, each Fi_ad requires at most O(lg n) time, while each Backtrack 
may be performed in O(X) time. 

The space complexity of the data structure can be characterized as follows. The 
size of the stack of L-unions cannot exceed n - 1. By Lemma 2.2 there are at most 
n - 1 (dead or live) links at the same time in the structure. Even if a rank tree may 
contain as many as lg n ranks, each rank corresponds to a (dead or live) link in the 
structure. This alao implies that the total number of items in the rank trees is bounded 
by n - 1. Finally, since there are at most n - 1 links in the structure, Lemma 2.1 
assures that at most n - 1 different stamps are required. This results in an overall 
O(n) space complexity. U 

Let us now consider the case in which rank trees are substituted by rank stacks, 
i.e. for each node x the ranks associated with x in correspondence to the live Unions 
performed on x are organized in stack order. 

The Union operation Union( p, q, IV) is n3w modified as follows: 
(1) Restoring phase: In order to retrieve and Hq, respectively, the actual 

heights of p and q, pop dead ranks from both 
live rank is encountered. he correctness of sue 
rank compression property of Lemma 
are deleted. H,, and Hq are now stor 
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by the rank compression property, all ranks remaining in Rank(p) and 
are live. 

(2) Linking phase: If w exceeds the weight of the top element of the stack, t 
push that Union together with the actual stamp on the stack. Link by rank p and 
4 and store in the link a liveness pointer to the top of the stack and the top time stamp. 

(3) Rank updating phases: If HP = H4, then break the tie by making p child or q 

and push into Rank(q) a rank value ( Hq + I). 

It is possible to design a data structure of space complexity S(n) = 0(n) 
which makes it possible to perform a sequence of k Unions and Baci -acks and of m 
Finds in time O(k+ m lg n). 

. The proof uses the banker’s technique introduced in [20]. Let us associate 
with each item r pushed in rank stacks ozre credit c(r), to be used by Union operations 
in order to pop such an item from the corresponding rank stack. Thus, a sequence 
of k unions pops at most k items and, since apart from popping of items each 
Union takes a constant time, the overall complexity of a sequence of k Unions is O(k). 

Since the complexities of the Find and Backtrack operations are not affected by 
this modification of Unions, it turns out that the time complexity of a sequence of 
k Unions and Backtracks and m Finds is 0( k + m lg n). Finally, all considerations 
given in Theorem 4.1 regarding the space complexity remain valid, thus resulting 
in an O(n) space complexity. q 

As a consequence of these bounds, our first approach compares favorably to 
Westbrook and Tarjan’s algorithms not only when the single operation worst case 
time complexity is taken into account, but also according to the spacex time 
complexity of any sequence of operations. In fact, if we assume a sequence of m 

Finds, Unions and Backtracks (or the corresponding Deunions), Westbrook and 
Tarjan’s algorithms require O(nm lg2 n/lg lg n) space x time, while our approach 
leads to an 0( mn lg n) space x time complexity. This ratio can also be improved by 
considering the second data structure introduced. 

In this paper, we have considered an extension of the set union problem, where 
a more powerful form of backtracking than the one usually considered is allowed. 

d data structures which support Finds in O(lg n) time, Backtracks 
(lg lg n) time per aperation or 0( 1) amortized 
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An interesting open problem is whether backtracking increases the lower bound 
of the single operation worst case time complexity of the set union problem which 
is known to be O(lg n/lg Ig n) [3]. 

After sending the final version of this paper to the publisher, we learnt that 
Tlestbrook and Tarjan improved to O(n) the space complexity of their data structure. 

We are indebted to Giorgio Ausiello for many stimulating discussions and to Zvi 
Galil for his helpful suggestions. We wish also to thank an anonymous referee for 
pointing out the amortized analysis of Union operations. 
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