
Theoretical Computer Science 68 (1989) 57-70
North-Holland

57

Giorgio GAMBOSI*
Istituto di Analisi dei Sistemi ed Informatica -C.N.R., viale Manaoni 30, 00185 Roma, Italy

Giuseppe I?. I
Dipartimento di hjonnatica e Sistemistica, Universitd di Roma “La Sapienta”,
via Buonarroti 12, 061.9 Roma, Italy

Maurizio TALA
Dipartimento di Informatica ed Applicazioni, Universita’ di Salerno, 84100 Salerno, Italy and lstituto
di Analisi dei Sistemi ed Informatica-C. N.R., Roma, Italy

Communicated by M. Nivat
Received December 1987
Revised February 1988

Abstract. In this paper, an extension of the well known set union problem is considered, where
backtracking over sequences of Union operations is allowed. A data structure is presented which
maintains a partition of zn n-item set making it possible to perform each Union in O(1g lg n)
time, each Find in O(lg n) time and allows backtracking over the Unions in O(1) time. Moreover,
it is shown that the data structure can be slightly modified as to present an O(k i- in lg n) time
complexity on a sequence of k Unions and Backtracks and m Finds. The space complexity of
both versions of such a data structure is O(n).

The set-union problem, togl;ther with its variants, is certainly one of the most
extensively studied problems in recent years [l, 3, 4, 9, H-13, 15, 18, 19, 21, 22,
241. The original problem is that of maintaining a representation of a partition of
aset S={l,2,..., n} in equivalence classes under the following two operations:

Unio&K, f): return a new partition of S in which classes X, Y are merged into
a new equivalence class X u Y named X.

Find (x) : given an item y E s, return the name of the equivalence class containing
A.

At the begirnning, t artition consists o if singletons {I}, {2}, . . . 5 { e

of the initial set {i} is i.

* Partially supported by Enidata S.p.A. in the framework of thi. ALPES Esprit Project.
** Partially supported by the MPI Project “Design and analysis ai’algorithms” and by Selenia S.p.A.

Present affiliation: Department of Computer Science, Columbia University, New York, NV 10027, U.S.A.

0304-3975/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland)

58 G. Gambosi et al.

Tne best solution for such problem has been presented in [21]: it requires
space and O(ma(m + n, n) + n) running time, where m is the number of
operations performed and cy (- l . , . l .) is a very slowly growing (almost constant)
function. This results in an amortized time complexity [2Q] (1) for Unions and
O(cy (m + n, n)) for Finds.

This has also been proved in [21] to be a lower bound for the amortized complexity
of the problem in the (quite general) class of separable algorithms.

An interesting extension of the problem has been proposed in [13]. In it, a new
operation Deunion is introduced defined as follows:

Reunion: undo the last Union performed so far, i.e. return to the state immediately
preceding the execution of the last Union.

This operation was suggested by motivations arising from the implementation of
tracking in the framework of Prolog environment design [10, 14, 231. In such

a context, a sequence of Unions models a sequence of unifications between terms
and performing a Deunion corresponds to backtrack to a preceding state in the
deduction process.

An algorithm is proposed in [13] which is efficient with respect to amortized time
complexity, while the space complexity of the data structure is left as an open
problem. Successively, the problem has been completely characterized in [24], where
Ig n/(lg lg n) upper and lower bounds on the amortized time complexity are derived.
The space complexity of the data structure used to establish the upper bound is
O(n lg ra).

In this paper, a generalizationof such a problem is considered to the case where
a (real) weight w is associated with each Union performed and the Deunion operation
is substituted by:

acktrack: return to the partition immediately preceding the execution of the
n of largest weight performed so far, i.e. undo all Unions performed as long

as the Union of largest weight is removed.
Moreover, a slight v&ant of the Union operation is considered where each set

has an associated name equal to its canonical element (let us define an element of
canonical if it is associated with the root of the tree r”;arf:enting X).
efinition of the Union operation is the following:

Union(x, y, w): return a new partition of S in which classes of canonical elements
X, y are merged in a unique class (with canonical element either x or y). A weight
w is asseziated with the operation.

It is easy to note that the union&d-backtrack problem reduces easily to the
’ -find-damion problen simply by letting all Unions have the same weight.

ations for such an extei. on derive by the implementation of search heuristics
[nsJ and fast backtracking in rolog environments. The impact of the technique

71 while in [6, S] other extensions of

, generally, in all t

The set uniort problem with extended backtrackirs ” 59

possibility of eficiently testing whether or not two items are in the same set, without
caring about the actual name of such a set. ence, from a practical point of view,
the definition of Unions given is equivalent to the classical one.

The main results of this paper are concerned with the worst case analysis of the

Union, Find and Backtrack operations. In particular, a data structure is introduced

which supports each Union in O(lg lg n) time, each Find in O(lg n) time and each

track in 0(1) time, requiring only O(n) space.
oreover, a second data structure is given whit presents an 0(1) amortized

time complexity on Unions and Backtracks and an O(lg n) amortized time com-

plexity on Finds. Also this data structure presents an O(n) space complexity.

As a consequence, our first approach compares favorably with Westbrook and

Tarjan’s algorithms not only when the single operation worst-case time complexity

is taken into account, but also according to the space x time complexity of any

sequence of operations. In fact, if we assume to perform a sequence of m Finds,
Unions and Backtracks (or the corresponding Deunions), Westbrook and Tarjan’s

algorithms require 0(nm lg2 n/lg lg n) space x time, while our approach leads to an

0(nm lg n) space x time complexity. This ratio can also be improved by considering

the second data structure introduced.

The paper is organized as follows: in Section 2 some simplified approaches to

the problem are considered. For the sake of comparison, in Section 3 the results

given in [13, 241 are extended to the case of the union-find-backtrack problem. In
Section 4 a data structure for the union-@d-backtrack problem is introduced and

its worst case time and space complexities are derived. Moreover, a modification

of such a data structure which performs better in terms of amortized complexity is

presented. Section 5 contains some concluding remarks.

In this section, algorithms are presented for the on-line maintenance of a collection

of disjoint sets under an arbitrary sequence of Union, Find and Backtrack operations.

Let us start by presenting a rather simplified algorithm: next, more efficient and

sophisticated approaches will be introduced.

2.1. A naive algorithm

The above operations can be performed using the classical set union data structure

[21], where each set is represented by a rooted tree whose nodes correspond to the

elements of the set.

In order to make Backtrack possible, an additional stack is used.

has to be performed, linking by rank

pointer to thb new link together wit

introduced IZ pushed on the stack. N

easily fo as t axi

eiJ G. Gambosi et al.

and the weight on the top of the stack (i.e. the largest weight beforc the execution

of suck Union).
.%ccorciItig to this technique, the time required to carry out a Unio

the hei; ht’ of all trees created by linking by rank or by size is S(!g

takes 2 r%lost O(lg n) time to return to the root of the tree containing X. In c\rder

to back+,r,ack, it is necessary to pop from the stack the pointers to be cancelled until

a weight, value different from the one on the top of the stack is encountered.
Unfortu!>ately, the reconstruction of the old configuration can even require O(n)

worst-ctiise time. iience., the following theorem I”ollows.

3 1. It is possible to perform a Union in 0(1) time, a Find in O(lg n) time

and a Backtrack in O(n) time. The space required is O(n).

soof. Derives from the considerations given above. Cl

2.2. A lazy algorithm

The tim.e required for backtracking can be reduced by using a lazy approach in
which the links cancelled by Backtracks are not removed immediately.

In such a framework, a link (p, q) is considered live as long as it corresponds to

a Union wftich has not been cancelled by backtracking. More formally, if we denote

by L(p, 9) the Union of largest weight performed at the time link (p, q) was
introduced, (p, q) is five if and only if L(p, q) has not been removed by Backtracks.

While dealing with a Union which introduce5 a link from p to q, if its weight

exceeds tile weight value on the top of the stack, the Union is pushed onto the stack

in the form of the pair of names of the (canonical elements of the) united sets and

L(p, q) is set to (p, q). Otherwise, nothing is r;rilshed onto the stack and L(p, q) is

the top elemeni of the stack. In both cases, we associate with the link (p, q) a pointer

to the top clement of the stack (i.,:. co L(b, q)).
Notice that COW the stack contains only Unions which were of largest weight

when introduced (referred in the sequel as L-unions) and that the liveness of any

link (p, q) can be tested by checking whether the corresponding L-union L(p, q)
is still in the stack.

lr, order to reuse stack yecords as soon as they are popped, without waiting for

all the links pointing to them to be remVaved, a stamping technique is introduced:

namely, we store in each link (p, 4) a mark which properly characterizes the
corresponding L(p, q) Union. Stack records also contain the corresponding stamp.

Accc~rding to this technique, a link (F, q) is live if and only if the record pointed

to by (p, q) is still VA the stack and has the same stamp as (p, q) itself. Such an

approach makes it possi le to bound the number of stamps used, as proved by the

’ The height of a node x in a tree is the length of the longest path from a leaf to x.

The set union prcblem with extended backtracking 61

It is possible to introduce a stamping on the Unio
&erent stamps equal to the maximum number of/i

Let I denote the maximum number of links which can be in the structure at

e. Stamps can be organized as an array 1~: size 1 named Stamp such that
entry Stamp[k] stores the number of links in the structure whose stamp is equal to
k. Furthermore, entries containing 0, corresponding to unused stamps, are linked
in a list, referred to as free list.

When a link is introduced, two cases are possible. If it gets a currently used stamp
k, the entry [k] is incremente y 1. Otherwise, an unused stamp is removed
from the free list and its entry is initialized to 1. On the other hand, the deletion of
a link involves a decrement of the corresponding Stamp entry or an insertion in the
free list (if it was the only link using that stamp). All these operations require
constant time, hence they do not affect the overall time bounds. Notice that the free
list is able to return a stamp each time it is required, since at most I stamps can be
used at the same time. Cl

The different operations can now be implemented as follows:
Union(p, q, w): remove the dead link!, leaving p and q. If w exceeds the weight

of the top element of the stack, then push the Union together with the actual stamp
onto the stack. Insert a link between p and q and associate with it a pointer to the
top of the stack and the actual stamp.

Find(x): starting from the node corresponding to X, follow the live link leaving
the node (if such link exists). The liveness of a link can be tested in 0(1) time as
described above. Repeat until a node with no outgoing live link is entered: return
the element associated with such a node.

Backtrack: remove the top element from the stack of L-unions.
The following lemma guarantees that each Union can be performed in O(1) time:

a 2.2. At any time there is at most one Iink (dead or alive) leaving a node in

the structure. Hence, the maximum number of links in the stwcture is n - 1.

roof. The only operations which introduce new links are Unions. Furthermore, a
link can only be created between roots, i.e. nodes with no leaving live links. Since
before creating a new iink from p to q all dead links leaving p and q are removed,
the lemma can easily be obtained by induction on the number of Unions per-
formed. Cl

acktrack also requires constant rime, but, unfortu

nstruction of the old con
he reinstantiated sets ar

worst-case time for inds, since a tee

62 G. Gambosi et al.

As a result, we obtain the following theorem:

Theorem 2.2. It is possible to perform both Union and Backtrack in O(a) time, w

each Find requires Q(n) worst-case time. I3e space required is O(n).

Proof. Derives by Lemma 2.2 and by the considerations given above. q

3. The Union-Find49eunion a

Mannila and Ukkonen extended [141 the classical set union problem by introduc-
ing a Dtwnion operation, whose effect is to undo the last Union performed not yet
undone. They gave an algorithm for it and claimed that it performs an intermixed
sequence of m Finds, k Unions and at most k Deunions on n originally singleton
sets in O((k + m) lg lg n) time, without characterizing the space complexity of their
approach.

Recently, Westbrook and Tarjan [24] showed that Mannila and Ukkonen’s claim
was faulty. In fact, they proved that any separable pointer-based algorithm for the
union-$nd-deunion problem requires L! (m lg n/lg lg n)) time in performing a
sequence of m find, union and deunion operations. In the same paper, Westbrook
and Tajan also gave several algorithms based on the approach of [133 with amortized
running time of O(lg n/lg lg n), thus matching the introduced lower bound. The
space required by all these algorithms is O(n lg n) [24].

It is not difficult to see that there is a relationship between Backtracks and
Deunions. In fact, the union-jfnd-backtrack problem reduces to the union-Jind-
deunion problem when all the Unions performed have the same weight. On the
other side, each Backtrack operation could be implemented by a suitable number
of Deunions.

In the following, we shall see that the same amortized bounds proposed by
Westbrook and Tarjan in [24] also hold for the new union-@d-backtrack problem.
Furthermore, we shall analyse the worst-case per operation complexity of their
algorithms when applied to the new problem. In such a framework, we derive an
S{ 1) bound for each Union, tin Giig n j bound tbr each Find, and an O(n lg n)
bound for each Backtrack.

The ideas underlying the algorithms proposed in [13,24] are the following ones.
A path compaction rule (either path splitting or path halving) is combined with a
union rule (either linking by size or linking by rank) [2l], thus giving rise to four
algorithms which have the same time and space performance.

As usual, we refer to a Union operation not yet undone as live and as dead
otherwise. In order to be prepared for Deunions, a union stack is maintained, which
contains the tree roots made non roots by the performed live Unions. Furthermore,
a link stack is maintained at each riode. All the iinks ieaving 8 :no$e are pushed on
the link stack of the node in the order of their creation (the l:rst links at the to

The set union problem with extended backtracking 63

New links are pu en a Union is performe
correspondence o as a consequence of path compacti
link is associated a Union operation, which is the one whose deletion would
invalidate the link. A link is Zive if the associated Union is live, otherwise it is said
to be dead.

Uniokks are performe as in the set union algorithms without backtracking [Zl]
with one of the union rules. oreover, the tree root made non root is pushed on
the union stack. Also inds are performed as in the set union algorithms by means
of either a path splitting or a path halving rule, except that each new link (p, 9) is
pushed onto the link stack of p instead of replacing the old link leaving p. To
perform Deunions, the top element of the union stack is popped and the link leaving
the corresponding node deleted. Furthermore, all the dead links are popped from
the link stacks. This obviously requires some bookkeeping. All the details of the
method can be found in [24].

Westbrook and Tarjan called this approach the eager method, while they denoted
the method followed by Mannila and Ukkonen [131 as the lazy method, since Mannila
and Ukkonen’s algorithm destroys dead links in a lazy fashion. In [24] it is shown
that both the eager and the lazy method requires Q(m lg m/lg lg n) time in performing
a sequence of m Union, Find and Deunion operations. However, the eager Imethod
is much more space efficient since it uses O(n lg n) space in the worst case, while
the space usage of the lazy method cannot be bounded by any function of n (the
number of elemerrts), but only by a function of m (the total number of operations).

As a complete result, we now show that the space bound given for the eager
method is tight, i.e. no better than 0(n lg n) space can be achieved.

l’%ere exist instances of the union-Jnd-deunios problem for which the

algorithms proposed in 1241 require space complexity S(n) > cn lg n, where c is a

suitable constant.

roof. We consider the algorithm obtained by combining the linking by size rule
and the path splitting technique. The algorithms described in [24] which derives
from the other cases can be analyzed very similarly.

Let us first assume that n = 2” and that the set resulting after the operation
union(a, b) is named b. Denote by Uk the sequence of Unions

Uk = union((Zj - I)Zk-‘,j2”) j = I,. . . , n/2”, k = I,. . . , h.

l[n a similar manner, define & as the se

Fk = u,,jind(l),Jind(2), . . . ,jind(n) k =&a. -, h.

Consider now the following sequence of o

64 G. Gambosi et al.

It is easy to derive by induction that the structure resulting from such a sequence
corresponds to the transitive closure of a binomial rooted tree [21] and that the
number of links in such structure is given by

m=

The result derives by observing that

The general case derives from a simple extension of the considerations above. Cl

As far as the union-find-backtrack problem is concerned, The Union and Find
operations can be performed as described above, while a Backtrack involving r
Unions (1 s r s n - 1) can be performed by exactly r Deunions. Clearly, some
bookkeeping is necessary in order to store the number of Unions which must be
undone by each Backtrack. With this technique, the amortized cost of each Union
and Find is still O(lg szjig !g rl), while the cost of each Backtrack can be Gharged
to the corresponding set of removed Unions, thus resulting in an O(1) amortized
complexity for the Backtrack operation.

The worst-case per operation complexity of the algorithms given in 1241, when
applied ;o the union-find-backtrack problem, can be characterized as follows.

TIwsr~rn 3.2. The algorithms proposed in [24] make it possible to support each Union
in 0(1) time, each Find in O(lg ri) and each Backtrack in time 0(n lg n). Their space
complexity is O(n lg n).

roof. The worst-case bounds on the Union and Find operations are the same as
in the set union problem without backtracking [21]. Consider now the sequence A
of Unions and Finds described in the proof of Theorem 3.1 and assume that the
first performed Union has the largest weight. After performing the sequence A,
perform a Backtrack. Clearly, all the links in the structure become dead and the
eager algorithms given in !24] have to destroy them. By Theorem 3.1, this Backtrack
operation has to delete Q(r, ifr P”) links, thus with a cost of O(n lg n). An upper
bound on the space complexity was given in [24]. This bound is tight as shown in
Theorem 3.1, 0

In this section, we shall see how a modified version of the lazy algorithm described
in Section 2 is able to efficiently deal with the union-jnd-backtrack problem. The
maj rawback of the lazy algorit m is that fast backtracking does not permit the

The set union problem with extended backtracking 65

heights (or the sizes) of the reinstated sets to be restored: in order to deal with this

problem, one could think of maintaining information about the ranks (sizes) of a
node during the evolution of the structure. This task can be accomplished by

associating with each node x a balanced tree 12, 5, 161 Rn&(x), such that it is
possible to insert a new value for the rank of x or delete an old ‘~‘alue for such a
rank in time O(lg k), where k is the number of different values stored.

Each item in Rank(x) (in the sequel referred to as a rank of x) uniquely
corresponds to a link I entering x and stores the height of x immediately after the
introduction of 1. If several links 2 l, I 2,. . . , I, caused x to have the same height h,
then there is only one rank of x containing the value la and corresponding to the
eldest live link in {I,, i2, . . . , !J.

The notion of liveness can now be extended to a rank of X. More precisely, a
rank of x is said to be live if and only if the corresponding link is live, otherwise
it is said to be dead.

In order to restore the height of a node x while backtracking, the largest live rank
of x must be individuated. This information clearly turns out to be useful while
implementing linking by rank.

With this additional structure, a Unio?r(p, q, w) requires the following three phases.
(1) Restoring phase: Remove the dead links leaving p and q together with their

corresponding ranks. Retrieve H9 and Hq, respectively, the actual heights of p and
q, as the largest live items in Rank(y) and Rank(q).

(2) Linking phase: If w exceeds t1.e weight of the top element of the stack, then
push that LJnion together with the ac:tual stamp on the stack. Link by rank p and
q and store in the link a liveness pointer to the top of the stack and the top time stamp.

(3) Rank updating phase: If HP = Hy, then break the tie by making y^ child of q
and insert into Rank(q) a rank value (Hy + 1).

On the other hand, Find and Backtrack can be performed as in the lazy algorithm.
The distribution of dead and live ranks into the rank trees obeys the rules given

in the following lemmas. As we did for the case of the lazy algorithm, we denote
by L(e) the Union with largest weight performed at the time in which the link e
was introduced in the structure. Such Unions are referred to as L-unions. Due to
the iinking phase of the algorithm, the stack can contain only L-unions.

Lemma 4.1 (rank consistency). If in a rank tree a live rank corresponding to a (live)
link el is greater than a rank corresponding to a link 2, then L(e,) cannot be below

L(e,) in the stack of L-unions.

Proof. Since only a Union oi?eration can insert a live item in a rank tree, we shall
prove the lemma by induction on the number of Unions performed.

At the beginning, the lemma trivially holds, since there are no live ranks.
Assume now that rank consistency holds before performing a Union which

introduces a link from p to q. Let ;.ZS denote by H,, and PBy the largest live ranks
respectively in Ravtk(p) and Rank(q). If IT!,, Z I&, then no new rank is created and

66 G. Gambosi et al.

hence rank consistency still holds. If HP = ZYq = H, only a new rank H + 1 is created.
This new rank is inserted into Rank(q) and is now the largest live item in this rank
tree. This rank value H + 1 correqonds to the link (p, q) and satisfies the rank
consistency property since I(p, q) is at this time on the top of the stack of k-unions.
This completes the induction step and gfi. ts the Lemma. Cl

Lemma 4.2 (Rank compressions). 1pz any rank tree, no dead rank can be smaller than
a live rank. That is, in any rank tree there exists a rank value v such that all the ranks
less or equal to v are live, while the others are dead (v is clearly the largest live item
in the rank tree).

proof. We proceed by induction on the number of operations performed.
At the beginning, all the rank trees are empty and thus trivially satisfy the rank

compression property.
Assume now that the lemma holds before executing the ith operation and consider

the following three cases.
(a) If a Union introducing a link from F to q is performed and no new ranks

are created, the lemma still holds. Otherwise, a new rank can be created only if the
previous largest live items in Rank(p) and Rank(q) had the same value, say H. In
this case, only a new live rank of value H + 1 is inserted into Rank(q). Notice that
if there was a previous rank of q whose value was H + 1, it cannot be live (otherwise
H was not the largest live rank of q). In this case, the new rank can be stored in
the same node of the rank tree, thus implicitly deleting the old value. This also
assures that each balanced tree can never contain two ranks with the same value.
Hence, rank compression still holds for Rank(p) (with largest live item of value
H) and for Rank(q) (with the !argest live item of value H + I).

(b) If a Find is performed, then no rank tree is modified and clearly the lemma
still holds.

(c) If a Backtrack is performed, then by Lemma 4.1 only the live ranks of greater
value can become dead in a rank tree. Once again, the lemma still holds. Cl

The following lemma characterizes the worst-case time complexity of maintaining
the rank trees.

Lemma 4.3. It is possible to delete an arbitrary item, to insert an arbitrary item, or to
search Jar the largest live item in a rank tree in O(lg lg n) worst-case time.

Proof. Since any node x may have at most lg n different heights during the execution
of the Union, Find and Backtrack operations [21] and no rank tree may contain a
pair of ranks with the same value, the size of each rank tree is bounded by lg n. As
a consequence, any deletion or insertion of it in the rank trees takes at most O(lg lg n)
time.

The set union problem with exteplded backtracking 67

Due to the rank compression property proved in Lemma 4.2, the largest live item
in a rank tree separates live ranks from dead ranks and hence may be accessed by
traversing at most O(lg Ig n) nodes in the rank tree. By introducing a bidirectional
connection between every rank stored in a balanced tree and the corresponding
link, the liveness of a rank can be tested in 0(1) time, thus yielding to an O(l) time
spent at each node of the rank tree during the search. Hence, an O(lg lg n) time for
searching the largest live item in a rank tree also follows. q

The worst case complexity of the data structure is analyzed in the following
theorem.

Theorem 4.1. IP is possi& to perform each Union in O(lg lg n), each Find in O(lg n)
and each Backtrack in 0(1) time. The space required is O(n).

Proof. As far as Unions are concerned, a result completely analogous to Lemma
2.2 can be proved. Hence each Union may cause the deletion of at most two dead
links. By Lemma 4.3, removing a link (together with the corresponding rank, if any)
takes O(lg lg n) time. Furthermore, the actual height of the two roots p and q to be
linked can be restored in O(lg lg n) by means of a search for the largest live item
in Rank(p) and Rank(q). The linking phase of a Union requires 0(1) time, while
Rank(q) can be updaTed in O(lg lg n) time, together with the introduction of a
bidirectional connection to the link (p, q).

Find and Backtrack are implemented as in the lazy algorithm. Since linking by
rank is now possible, each Fi_ad requires at most O(lg n) time, while each Backtrack
may be performed in O(X) time.

The space complexity of the data structure can be characterized as follows. The
size of the stack of L-unions cannot exceed n - 1. By Lemma 2.2 there are at most
n - 1 (dead or live) links at the same time in the structure. Even if a rank tree may
contain as many as lg n ranks, each rank corresponds to a (dead or live) link in the
structure. This alao implies that the total number of items in the rank trees is bounded
by n - 1. Finally, since there are at most n - 1 links in the structure, Lemma 2.1
assures that at most n - 1 different stamps are required. This results in an overall
O(n) space complexity. U

Let us now consider the case in which rank trees are substituted by rank stacks,
i.e. for each node x the ranks associated with x in correspondence to the live Unions
performed on x are organized in stack order.

The Union operation Union(p, q, IV) is n3w modified as follows:
(1) Restoring phase: In order to retrieve and Hq, respectively, the actual

heights of p and q, pop dead ranks from both
live rank is encountered. he correctness of sue
rank compression property of Lemma
are deleted. H,, and Hq are now stor

68 G. Gambosi et al.

by the rank compression property, all ranks remaining in Rank(p) and
are live.

(2) Linking phase: If w exceeds the weight of the top element of the stack, t
push that Union together with the actual stamp on the stack. Link by rank p and
4 and store in the link a liveness pointer to the top of the stack and the top time stamp.

(3) Rank updating phases: If HP = H4, then break the tie by making p child or q

and push into Rank(q) a rank value (Hq + I).

It is possible to design a data structure of space complexity S(n) = 0(n)
which makes it possible to perform a sequence of k Unions and Baci -acks and of m
Finds in time O(k+ m lg n).

. The proof uses the banker’s technique introduced in [20]. Let us associate
with each item r pushed in rank stacks ozre credit c(r), to be used by Union operations
in order to pop such an item from the corresponding rank stack. Thus, a sequence
of k unions pops at most k items and, since apart from popping of items each
Union takes a constant time, the overall complexity of a sequence of k Unions is O(k).

Since the complexities of the Find and Backtrack operations are not affected by
this modification of Unions, it turns out that the time complexity of a sequence of
k Unions and Backtracks and m Finds is 0(k + m lg n). Finally, all considerations
given in Theorem 4.1 regarding the space complexity remain valid, thus resulting
in an O(n) space complexity. q

As a consequence of these bounds, our first approach compares favorably to
Westbrook and Tarjan’s algorithms not only when the single operation worst case
time complexity is taken into account, but also according to the spacex time
complexity of any sequence of operations. In fact, if we assume a sequence of m

Finds, Unions and Backtracks (or the corresponding Deunions), Westbrook and
Tarjan’s algorithms require O(nm lg2 n/lg lg n) space x time, while our approach
leads to an 0(mn lg n) space x time complexity. This ratio can also be improved by
considering the second data structure introduced.

In this paper, we have considered an extension of the set union problem, where
a more powerful form of backtracking than the one usually considered is allowed.

d data structures which support Finds in O(lg n) time, Backtracks
(lg lg n) time per aperation or 0(1) amortized

The set union problem with extended backtracking 69

An interesting open problem is whether backtracking increases the lower bound
of the single operation worst case time complexity of the set union problem which
is known to be O(lg n/lg Ig n) [3].

After sending the final version of this paper to the publisher, we learnt that
Tlestbrook and Tarjan improved to O(n) the space complexity of their data structure.

We are indebted to Giorgio Ausiello for many stimulating discussions and to Zvi
Galil for his helpful suggestions. We wish also to thank an anonymous referee for
pointing out the amortized analysis of Union operations.

eferenees

[I] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, New York, 1972).

[2] G.M. Adelson-Velskii and Y.M. Landis, An algorithm for the organization of the information,
Soviet Math. Dokl. 3 (1962) 1259-1262.

[3] N. Blum, On the single operation worst-case time complexity of the disjoint set union problem,
SIAM J. Comput. 15 (1986) 1021-1024.

[4] B. Bollobas and I. Simon, On the expected behaviour of disjoint set union problems, in: Proc. 17th
ACM Symp. on 7Xeory of Computing (1985) 224-23 1.

[S] R. Bayer and E. McCreight, Organization and maintenance of large ordered indices, Acta Inform.
t !972) 173-179.

[6] C. Gaibisso, G. Gambosi and M. Talamo, A partially persistent data structure for the set-union
problem, KH**. ’ ‘DO-Theoretical In$ormatics and Applications, to be published (1989).

[7] G. Gambosi, G.F. Italian0 and M. Talamo, Getting back to the past in the Union-Find problem,
5th Symp. on Theoretical Aspects ~9‘ Computer Science (1988) 8- 17.

[8] G. Gambosi, G.F. Italian0 and M. Talamo, The Union-Find problem with dyn,,mic weighted
backtracking, Algorithmica, submitted.

[9] H.N. Gabow and R.E. Tarjan, A linear time algorithm for a special case of disjoint set union, in:
froc. 15th ACM Symp. on Theory of Computing (1983) 246-25 1.

[lo] C.J. Hogger, Introduction to Logic Programming (Academic Press, New York, 1984).
[llj J.E. Hopcroft and J.D. Ullman, Set merging algorithms, SIAM J. Comput. 2 (1973) 294-303.
[12] M. Loebl and J. NeSetfil, Linearity and unprovability of set union problems, in: Proc. 20th AC-M

Symp. on Theory of Computing (1988). 360-366.
[133 H. Mannila and E. Ukkonen, The set union problem with backtracking, in: fioc. 13th SCALP

(1986) 236-243.
[14] H. Mannila and E. Ukkonen, On the complexity of unification sequences, in: hoc. 3rd Con$ on

Logic Programming (1986) 122-133.
[IS] K. Mehlhorn, S. Naher and H. Alt, A lower bound for th p complexity of the union-split-find

problem, in: Proc. 14th SCALP (1987) 479-488.
[16] J. Nievergelt and E.M. Reingold, Binary search trees of bounded balance, SIAM J. Cornput. 2

(1973) 33-43.
[17] J. Pearl, Heuristics (Addison-Wesley, Reading, MA, 1984).
[I$] R.E. Tarjan, Efficiency of a good but not linear set union algorithms, 9. ACM 22 (1975) 215-225.
[191 R.E. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput.

Sys. Sci. 18 (1979) 110-127.
.E. Tarjan, Amortized computational complexity, SIAM 9. AIg. Discr. Meth. 6 (1985) 306-318.

70 6. Gdwhosi et al.

[21] R.E. Tarjan and J. van Leeuwen, Worst-case analysis of set union algorithms, J, AC

245-281.
[22] J. van Leeuwen and T. van der Weide, Alternative path compression techniques, Tech. Rept.

RUU-CS-77-3, Rijksuniversiteit Utrecht, The Netherlands (1977).
[23] D.H.D. Warren and L.M. Pereira, Prolog-the ianguage and its implementation compared with

LISP, ACM SIGPLAN Notices 12 (1977) 109-l 15.
[24] J. Westbrook and R.E. Tarjan, Amortized analysis of algorithms for set union with backtracking,

Tech. Rept. TR-103-87, Dept. of Computer Science, Princeton University (1987).

