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Abstract

This paper presents some fundamental aspects of the design and the implementation of an
automated prover for Zermelo–Fraenkel set theory within the Theorema system. The method applies
the “Prove–Compute–Solve” paradigm as its major strategy for generating proofs in a natural style for
statements involving constructs from set theory.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The set theory prover in Theorema adapts the “Prove–Compute–Solve” (for short: PCS)
proving strategy for proofs containing language constructs from set theory. The PCS paradigm
was introduced originally in Buchberger (2001) and it has already been applied successfully
for proofs in elementary analysis in Vasaru-Dupré (2000). The main strategy in a PCS-oriented
prover is to structure the proof generation into phases of

• proving (P), i.e. using inference rules for propositional connectives, the standard quantifiers
from predicate logic, and for theory-specific language constructs,

• computing (C), i.e. rewriting w.r.t. formulae in the knowledge base,
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• solving (S), i.e. finding appropriate instances of existential variables occurring in the proof
goal.

In general, of course, unification serves as the key method for solving formulae in arbitrary
theories. For special theories, however, specialized solving techniques may be required and
special techniques for solving from computer algebra may be applied. In particular, for solving
formulae involving polynomial expressions there are powerful computer algebra methods such
as the Gröbner bases method for systems of algebraic equations, see Buchberger (1985), or
Collins’ cylindrical algebraic decomposition method for systems of polynomial inequalities over
the real closed fields, see Collins (1975). Having the computer algebra system Mathematica in the
background of Theorema, we aim at applying these methods during the S-phase of our provers.
In the context of set theory, solving can also lead to “solving for sets”, i.e. finding sets that fulfill
certain properties, but the set theory prover in its current state does not yet fully cover this aspect.

Many mathematicians are used to building up their theories in the frame of set theory, hence,
computer support for doing proofs involving language constructs from set theory is a basic
ingredient for computer-supported mathematics. The Theorema set theory prover aims to be
primarily an educational tool that can support proving at an (under-)graduate university level
in arbitrary theories that are built up in the frame of set theory. For this type of application it
is important to incorporate also other proving techniques apart from sole set theory, notably
arithmetic simplification in basic number domains or computational simplification involving
finite sets. Moreover, since the Theorema syntax offers commonly used language constructs
from set theory and the computational aspect of (finite) sets has always been supported in the
Theorema computation environment, the set theory prover significantly enlarges the domain of
applications for the Theorema system, because with this prover the Theorema system now offers
integrated support for both proving and computing using set theory. It is important to mention
that this prover is not intended as an automated prover for proving set theory itself based on only
the axioms. Rather, it should be a tool that supports automated generation of “elegant proofs” in
arbitrary mathematical theories that involve set theory.

Following the philosophy of most of the Theorema provers, the set theory prover aims at
generating automated proofs in human-like natural style. In our experience, for mathematicians
the acceptance of machine-generated proofs depends heavily on the readability of the proof for
a human. In the automated theorem proving community, however, this aspect has not played a
major role for a long time. Of course, as long as one does not display the proof, one can expand
set-theoretic language constructs into first-order predicate logic and then apply powerful first-
order theorem provers, like Otter, Vampire, or SPASS. The Theorema set theory prover, on the
other hand, implements proof strategies applied by humans in an attempt to generate machine-
proofs in a style acceptable by a human. Among other things, this will have considerable impact
on computer-aided math education, which we currently see as one of the application areas for the
Theorema system. It is attractive for the teacher to compose material in a mathematical language
that is at the same time suitable for rigorous formal proofs and for execution of mathematical
algorithms. It is attractive for the students to be able to perform computations immediately
without translating mathematics into a programming language in order to execute the algorithms
and to have certain proofs generated automatically in their lecture notes being able to do their
own experiments. Of course, both the didactical potential and the dangers of such systems at
certain levels of maths education need to be studied separately.

The current design of provers in the Theorema system requires a so-called “user prover” to be
composed from “special provers”, see Tomuta (1998). A special prover consists of a collection
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of inference rules, whereas the user prover guides the strategy, through which the proof search
procedure applies the inference rules. The P–C–S structure of the set theory prover is reflected in
the composition of the set theory user prover from several special provers implementing the ‘P’,
‘C’, and ‘S’ phase, respectively. It consists of a set theory proving unit handling set-theory-related
connectives and quantifiers in the goal or in the knowledge base, a set theory computing unit
responsible for rewriting and simplification, and a set theory solving unit capable of instantiating
existential goals resulting from unfolding definitions for set operations. In addition to these set
theory specific components, the set theory prover re-uses several special provers already available
in the Theorema system.

The description is structured as follows: Section 2 describes the theoretical basis upon which
the set theory prover is built, Section 3 explains the interplay between user prover and special
provers and gives an overview of the theorem proving procedure used in the Theorema system,
Section 5 introduces the set theory proving units STP and STKBR, Section 6 describes the set
theory computing unit STC, Section 7 presents the set theory solving unit STS, and finally we
conclude with some examples of proofs generated by the set theory prover in Section 8.

2. The theoretical basis of the set theory prover

2.1. Set theory in the Theorema system

The use of “set theory” in the Theorema system is not tied to one particular axiomatization
of set theory. Instead, a syntax for “sets” is introduced on the level of the “Theorema expression
language”, we refer to Windsteiger (2001a) for a detailed description of the language layers in
the Theorema system. The language supports sets by providing the braces ‘{’ and ‘}’ as a flexible
arity matchfix function symbol used for constructing finite sets, the set quantifier as a means
for describing sets by a characteristic property, and several other language constructs commonly
used in mathematics, such as e.g. ‘⊆’, ‘∪’, ‘∩’, or ‘\’, see Kriftner (1998) for an overview on
supported set syntax. By this, expressions such as {a, b, c}, {x |

x
Px }, {Tx |

x
Px }, A ⊆ B , A ∪ B ,

A ∩ B , or A \ B are syntactically valid expressions in the Theorema language. In other words,
the syntax of Theorema allows so-called “naive set theory”, see Halmos (1960). However, the
Theorema language does not fix a semantics for all set expressions supported in its syntax.

Semantics is attached to expressions in Theorema on the “inference rule level”. The meaning
of expressions is defined by inference rules that describe how certain operations on expressions
can be performed. As an example, an inference rule for set expressions tells that in order to
prove x ∈ A ∩ B we need to prove both x ∈ A and x ∈ B . These inference rules are the
elementary building blocks for provers within the Theorema system, see Section 3 for the details.
The intended semantics of Theorema expressions is again that of naive set theory, i.e. {1, 4, 7}
is the proposed syntax for “the set containing exactly the elements 1, 4, and 7”, {x |

x
x < 10} is

meant to denote “the set of all x satisfying x < 10”, {x2 |
x

x < 10} is intended to mean “the set

of all x2, when x satisfies x < 10”, A ∩ B should stand for “the intersection of A and B” and the
like.

The Theorema language construct that deserves closer inspection in this context is the so-
called set quantifier, which can appear in two variants {x |

x
Px } and more generally {Tx |

x
Px }. In

its first form, the set quantifier allows us to define a set from a “characteristic property” Px .
In the literature, this is often addressed as set comprehension or as the abstraction of a set



438 W. Windsteiger / Journal of Symbolic Computation 41 (2006) 435–470

from a property and it goes back to G. Cantor, the founder of modern set theory. Naive set
theory allows unrestricted abstraction, i.e. for every formula Px the expression {x |

x
Px } denotes

the set of all x satisfying Px , in combination with an intuitive notion of membership, namely
x ∈ {x |

x
Px} ⇐⇒ Px . Although intuitively “reasonable”, this is the main drawback of naive set

theory, since this is the main source for contradictions derivable in naive set theory such as the
well known Russell paradox: We define R := {x |

x
x 
∈ x} and by straightforward reasoning on

“membership” in the above mentioned intuitive sense we can quickly derive the contradiction
R ∈ R ⇔ R 
∈ R.

Since naive set theory is inconsistent, it is not suitable as a theoretical basis for the inference
rules used in our set theory prover. Hence, some axiomatic set theory must serve as the underlying
theory for our prover. In axiomatic set theory the existence of certain sets and appropriate
membership rules are introduced via axioms. There are different axiomatizations of set theory
that provide fundamentally different solutions how to avoid Russell’s paradox (and others):

• Zermelo–Fraenkel set theory (ZF) restricts abstraction to what is called separation. Roughly,
it requires the structure x ∈ S ∧ Q for Px in an abstraction {x |

x
Px }, which disallows

constructions like R. We refer to Ebbinghaus (1979) and Shoenfield (1967) for detailed
treatments of ZF.

• Von-Neumann–Gödel–Bernays’ axiomatization (NGB) of set theory, see e.g. Bernays and
Fraenkel (1968) and Quine (1963), distinguishes between sets and classes and allows the
membership predicate only for sets. Russell’s paradox is avoided by showing that R is not a
set an therefore R ∈ R is not a well-formed assertion.

• Russell himself introduced type theory, where membership is only allowed for sets of different
type, see Russell and Whitehead (1910). R ∈ R is not allowed on the grounds that R and R
are not of different type.

2.2. Possible approaches for set theory proving in the frame of Theorema

Due to the inconsistency of naive set theory there cannot be a prover that supports the entire
language for set theory offered in the Theorema syntax and, at the same time, follows the
intended semantics of expressions in the Theorema language as described above. Similar to the
different approaches to axiomatization, there are different choices for how to integrate set theory
proving into the Theorema system:

• We restrict the language, for which the prover is applicable instead of trying to support the
entire language available for set theory in Theorema.

• We adapt the semantics of membership and deviate slightly from the intuitive semantics of
well-known language constructs.

• We introduce a typing concept into the Theorema system and obey the types in all set theoretic
language constructs either immediately on the syntax-level or on the inference-rule level. This
would, however, require a fundamental re-design of the entire system and we decided not to
follow this path for the moment.

It seemed most attractive to go for the first variant, thus we decided to choose ZF as the theoretical
frame for the Theorema set theory prover. In particular, this choice was also motivated by the
fact that evidently ZF is very popular among mathematicians and the principal target users of our
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prover are mathematicians who want to formulate some mathematical theory using the language
of set theory. In other words, the Theorema set theory prover does not support all of what the
Theorema language syntax offers for set theory; it supports just that fragment of the Theorema
language, which can safely be used according to the axioms of ZF as described in Section 2.3.

2.3. Zermelo–Fraenkel set theory as used in the set theory prover

ZF is an axiom system that guarantees the existence of certain sets. Based on these axioms,
several new functions and predicates useful for set theory can then be introduced by explicit
definitions. In the following, we will list those axioms and definitions from ZF, on which the
inference rules of the set theory prover rely. At the same time, this section will describe exactly
the fragment of the Theorema language that is actually supported by the set theory prover.
Furthermore, we introduce some convenient abbreviations for commonly used formulations in
set theory that are compatible with our prover. The Theorema set theory prover should, thus, be
a useful tool for mathematicians embedding their work in some variant of ZF set theory that is
consistent with these axioms, definitions, and abbreviations.

As already indicated above, the main challenge in an axiomatization of set theory is the
definition of membership in a set described by the set quantifier. We now give the axioms
of ZF forming the basis for those inference rules in the set theory prover that are applied for
membership in expressions involving the set quantifier.

Axioms 2.1 (Separation Axioms). For every formula1 Px and every S, s.t. x is not contained in
S and S is not contained in Px , we have an axiom

∃
z

∀
x

x ∈ z ⇐⇒ x ∈ S ∧ Px .

In the literature, the separation axioms are sometimes referred to as “subset axioms”. They allow
us—for any formula Px and any term S (fulfilling the side-conditions given in Axiom 2.1)—
to define “the set containing all x of S such that Px ”, see Shoenfield (1967, pp. 239). In the
Theorema syntax this set can be denoted as {x |

x∈S
Px} or {x ∈ S | Px }. From Axiom 2.1 we get

∀
x

(x ∈ {x |
x∈S

Px } ⇐⇒ x ∈ S ∧ Px ). (1)

Axioms 2.2 (Replacement Axioms). For every formula Qx and every S, s.t. S is not contained
in Qx , we have an axiom

∀
x

∃
z

∀
y

(y ∈ z ⇔ Qx ) �⇒ ∃
z

∀
y

( ∃
x∈S

Qx ⇒ y ∈ z).

In common mathematical practice, some special instances of the replacement axioms play a
crucial role, namely for Qx and S s.t. S is not contained in Qx and Qx has the form Px ∧ y = Tx

for some formula Px and some term Tx . For these special cases the respective replacement axioms
justify the definition of “the set of all Tx when x ∈ S satisfying Px ”. The Theorema syntax for
this set is {Tx |

x∈S
Px} and, as shown in detail in Shoenfield (1967, pp. 240), from Axiom 2.2 we

get

∀
y

(y ∈ {Tx |
x∈S

Px } ⇐⇒ ∃
x∈S

Px ∧ y = Tx). (2)

1 Px indicates that the variable x occurs free in Px . The expression Px may contain other free variables than x as well.
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At first sight, the construct {x |
x∈S

Px } appears to be just a special case of {Tx |
x∈S

Px }, just take

Tx = x . However, both the separation axioms and the replacement axioms are needed for the
existence proof of {Tx |

x∈S
Px }, see Shoenfield (1967), thus, the separation axioms cannot be

omitted.
The formulae (1) and (2) now define membership for special variants—note the required

property x ∈ S—of the Theorema set quantifier as it can safely be used in ZF. The inference
rules for membership as used in our set theory prover are, thus, based on (1) and (2). Once
having the set quantifier, elementary set theory can be built up by just explicit definitions. For
“sets” using variants of the set quantifier different from those shown in (1) and (2) ZF provides
additional axioms guaranteeing their existence, see e.g. Shoenfield (1967).

From now on, if not stated otherwise, we want to use P , Q, R, and C as typed variables on the
meta-level to denote formulae, all other letters shall denote terms. Free variables in formulae or
terms will be indicated by subscripts. As long as the existence of the sets {x |

x
Px } and {Tx |

x
Px }

is guaranteed by some axiom, we generalize (1) and (2) as follows:

∀
x

(x ∈ {x |
x

Px } ⇐⇒ Px ) (3)

∀
y

(y ∈ {Tx |
x

Px } ⇐⇒ ∃
x

Px ∧ y = Tx). (4)

Note that by this generalization we are now back at the naive set theory notion of membership
for sets whose existence is guaranteed by ZF. Membership as in (4) is supported even in the more
general case of a multiple range that binds more than one variable simultaneously. The multiple
range in the set quantifier translates literally to the respective multiple range in the existential
quantifier, i.e.

∀
y

(y ∈ {Tx1,...,xn |
x1,...,xn

Px1,...,xn } ⇐⇒ ∃
x1,...,xn

Px1,...,xn ∧ y = Tx1,...,xn ).

It is convenient to allow also an additional condition in the set quantifier. We follow the
convention to use for arbitrary range x

{ . . . |
x
C

P} (5)

as an abbreviation for

{ . . . |
x

C ∧ P}. (6)

Note, however, that we do not generalize the inference rules in the set theory prover to cover set
quantifiers with conditions, we rather convert any expression of the form (5) in the goal or in
the knowledge base into the corresponding form (6), before formulae are actually passed to the
prover.

Definition 2.1 (Subset, Set Equality).

S(1) ⊆ S(2) :⇐⇒ ∀
x

(x ∈ S(1) ⇒ x ∈ S(2)) (7)

S(1) = S(2) :⇐⇒ ∀
x

(x ∈ S(1) ⇔ x ∈ S(2)). (8)
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Definition 2.2 (Empty Set, Set Difference).

∅ := {x |
x

x 
= x} (9)

S(1) \ S(2) := {x |
x

x ∈ S(1) ∧ x 
∈ S(2)}. (10)

Definition 2.3 (Finite Set Construction). For any n ≥ 1:

{S(1), . . . , S(n)} := {x |
x

x = S(1) ∨ . . . ∨ x = S(n)}. (11)

Definition 2.4 (Union, Intersection, Product). For any n ≥ 2:

S(1) ∪ . . . ∪ S(n) := {x |
x

x ∈ S(1) ∨ . . . ∨ x ∈ S(n)} (12)

S(1) ∩ . . . ∩ S(n) := {x |
x

x ∈ S(1) ∧ . . . ∧ x ∈ S(n)} (13)

S(1) × . . . × S(n) := {〈x1, . . . , xn〉 |
x1,...,xn

x1 ∈ S(1) ∧ . . . ∧ xn ∈ S(n)}. (14)

The notion 〈. . .〉 is used for finite tuples provided as basic data type in Theorema. We do not
model tuples within set theory but we use built-in knowledge about tuples provided by the
semantics of the Theorema language.

Definition 2.5 (Union, Intersection, Power Set).
⋃

S := {x |
x

∃
s∈S

x ∈ s} (15)

⋂
S := {x |

x
∀

s∈S
x ∈ s} (16)

P[S] := {x |
x

x ⊆ S}. (17)

Frequently used combinations of
⋃

and
⋂

with the set quantifier can conveniently be abbreviated
when introducing

⋃
and

⋂
as quantifiers.

⋃
x∈I
Cx

Sx abbreviates
⋃

{Sx |
x∈I

Cx } (18)

⋂
x∈I
Cx

Sx abbreviates
⋂

{Sx |
x∈I

Cx }. (19)

When using the Theorema set theory prover one accepts the above definitions and assumes
an underlying axiomatic system such as ZF that guarantees the existence of all these sets. We do
not invent a new set theory that promises to be better suited for automated theorem proving, an
approach that is taken elsewhere, e.g. in Formisano (2000).

3. How provers are organized in Theorema

3.1. Preliminaries on terminology

We will use the following terminology: a proof situation K � G is made up from a knowledge
base of assumptions K and a goal G, and it should be understood as an abbreviation for the
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phrase: “We have to prove G from K ”. Typically, the goal will be a single formula of the
Theorema language, whereas the knowledge base consists of a collection of formulae, called
the assumptions.

The task of the special provers is essentially the execution of individual proof steps that reduce
the proof situation towards terminal proof situations, from which proof success or failure can
easily read off. Terminal proof situations will be denoted by just their “value”, e.g. ‘proved’
or ‘failed’. The rules applied by the special provers guiding the reduction of proof situations are
called inference rules. Thus, an inference rule turns a proof situation K � G into a proof situation
K ′ � G′ with a new goal G′ and a new knowledge base K ′. In the description of inference rules,
we will denote an inference rule named ‘I’ transforming K � G into K ′ � G′ by

I :
K ′ � G′

K � G

(read as: “The rule ‘I’ justifies a proof step to reduce the proof of G from K to a proof of G′ from
K ′”). This notation is similar to notations used in logic for describing inference rules in formal
proof calculi (e.g. the natural deduction calculus or the Gentzen calculus). Certain similarities to
these formalisms are desired, but we use it purely as a symbolic description for proof steps, and
we do not refer to any meaning of the symbols in any known logic system.

We give an example of a well-known inference rule from the natural deduction calculus for
predicate logic written in this style:

ArbitraryButFixed :
K � Px→x0

K � ∀
x

Px
(where x0 is a new constant).

The rule ‘ArbitraryButFixed’ tells us that, in order to prove ∀
x

Px (from K ) it suffices to prove

Px→x0 (from K ) for a new constant x0, where Px→x0 stands for “P with each free occurrence of
x substituted by x0”.

3.2. The generation of proofs in Theorema

The automated generation of proofs in the Theorema system is based on three main
components: the user prover, the special provers, and the global proof search procedure.

3.2.1. User provers
The Theorema user interface provides the command

Prove[G, using → K , by → M],
which initiates an attempt to prove the goal G using the knowledge base K by the method M . In
the Theorema terminology, we call the available prove-methods user provers. A user prover is a
program that sets up a particular two-row configuration grid (see Fig. 1) of special provers and
then passes control to Theorema’s global proof search procedure.

3.2.2. Special provers
A special prover is a sequential collection of inference rules. In Fig. 1 the sequential structure

of a special prover is visualized by a top-to-bottom line-up of the inference rules in each of
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Fig. 1. Proof search and prover composition.

the special provers. The arrangement of the special provers in the user prover’s configuration
grid results essentially in a hierarchical collection of inference rules structured by the placement
within the two-dimensional grid and, on a finer level, by the sequential arrangement within each
cell in the grid.

3.2.3. The global proof search procedure and the proof object
The proof search procedure uses inference rules as arranged in the user prover’s configuration

grid in order to manipulate the global proof object. The proof object has a tree structure with
each node containing one proof situation. The proof search procedure maintains a current proof
situation, which specifies the node that is to be manipulated next. Initially, the proof object
consists of only the root node containing the initial proof situation K � G given by the user
in the Prove-command. Each proof tree manipulation is the augmentation of the proof object at
the current proof situation by one or more new nodes, whose contents depend on the inference
rules found by the proof search procedure in the special provers. Fig. 1 visualizes the main phases
of one proof step:

1. The proof search procedure extracts the current proof situation Kc � Gc from the proof object.
2. Mathematica’s pattern matching mechanism is used to select appropriate inference rules that

allow to reduce the current proof situation. Inference rules are implemented as Mathematica
programs taking goal, knowledge base, and “additional facts” of the current proof situation
as input. We refer to Section 5 for more details on the role of the “additional facts” in a
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proof situation. As output, an inference rule returns a new node to be inserted into the proof
tree. In this phase, the configuration grid in the user prover set-up is crucial: The special
provers in the first row are tried left to right, in each prover the rules are tested top to
bottom. The first rule whose goal and assumptions match the current goal Gc and the current
knowledge base Kc will be selected. If none of the special provers in the first row applies, the
special provers in the second row are tried again left to right. In each special prover the rules
are tried again top to bottom, and from each applicable prover, the first rule matching the
current proof situation will also be selected. Note that the pattern language of Mathematica
contains conditionals. Thus, the selection of inference rules based on Mathematica’s pattern
matching is not restricted to purely syntactical matches but it allows also the test of certain
conditions.

3. All inference rules selected in the previous phase will be applied in this proof step to the
current proof situation resulting in new nodes to be inserted into the proof object.

4. If there is more than one new node, each node is assigned a new branch in the proof object.
Branches reflect alternative proof attempts in a proof.

5. Finally, the current proof situation is stepped to the new node on the leftmost new branch.
6. These steps are iterated until a terminal proof situation ’proved’ or the search depth limit is

reached. If a proof fails on one branch by reaching either a terminal proof situation ’failed’
or the maximal search depth then the proof search continues on the next branch. Once all
branches have failed, the entire proof has failed.

For details on the organization of the proof search within Theorema we refer to Tomuta (1998).
The implementation of the user prover arranges the special provers in the grid and the

implementations of the special provers arrange the inference rules within the special provers.
Thus, the experience of the prover programmer is reflected in a smart set-up of the user prover
and the special provers. The proof search as described above is completely automated with no
possibility for user-interaction. As an alternative, the Theorema system offers also an interactive
proof search mechanism, see Piroi (2004).

4. The Theorema set theory prover

As discussed in Section 3.2 the implementation of a prover for set theory must consist of
a user prover and several special provers. In the following, ‘set theory prover’ will refer to
the user prover for set theory, which combines newly developed special provers for set theory
with previously developed general purpose special provers available in the Theorema system,
such as TerminalND for detecting terminal proof situations, BasicND and PND for basic and
general predicate logic reasoning, QR for rewriting w.r.t. quantified equalities, equivalences, or
implications in the knowledge base, or CDP for treatment of case distinctions, see Buchberger
and Vasaru (2000), Vasaru-Dupré (2000) and Windsteiger (2001a). We will describe the four
new special provers that have been developed for set theory.

STP collects inference rules with some set-theoretic symbol as the outermost symbol in the
proof goal.

STKBR expands set-theoretic notions in the assumptions.
STC performs simplification by computation on finite sets.
STS applies special techniques for instantiation of existential formulae in the proof goal,

which are useful in the context of set theory.
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The set theory prover arranges TerminalND, STKBR, STC, STP, and STS in this order from left to
right in the first row of the configuration grid and BasicND, QR, CDP, and PND in the second row.
Roughly, this results in a heuristic to generally first expand set-theoretic language constructs in
the knowledge base when they appear as outermost symbols before working on the proof goal.
When reducing the proof goal, simplifications based on computational knowledge for finite sets
are applied before expanding set-theoretic language constructs by their definition. If non-set-
theory symbols appear as outermost symbols, proceed by the usual predicate logic reasoning and
rewriting. The set theory prover can be used in interactive proving like all other provers in the
Theorema system. The emphasis of this work is, however, to set up the prover for completely
automated proof generation.

5. STP and STKBR: The set theory proving units

The PCS proof strategy imposes a structure on proofs as alternating phases of proving,
computing, and solving, as already described in Section 1. Inference rules for set theory specific
proving are provided in the two new special provers STP and STKBR. During the Prove-phase,
we alternate steps of reducing the goal with steps of expanding the knowledge base. While
STP reduces set theory specific language constructs in the proof goal, STKBR expands them in
the knowledge base. The set theory prover arranges both special provers in the first row of the
configuration grid.

5.1. Set theory specific goal reduction

Set theory specific goal reduction is implemented as a special prover named STP (for Set
Theory Proving). The inference rules within STP differ mainly in the syntactic patterns for the
proof situation. A few inference rules are influenced in addition by global variables, by which,
for instance, certain inference rules can be deactivated. Some strategies depend on the proof
progress stored in STP’s local proof context, which is part of the “additional facts”-parameter in
the implementation of inference rules, see Section 3.

The inference rules are grouped into rules for membership, rules for inclusion, and rules for
set equality. The rules for membership cover proof situations, where the outermost symbol in
the proof goal is ‘∈’. There is at least one inference rule for each “kind of set” introduced in
Section 2, in some cases we provide specialized rules in order to offer special treatment for
special cases. We show some of the membership rules as they are used in STP.

MembershipSeparation :
K � t ∈ S ∧ Px→t

K � t ∈ {x |
x∈S

Px}

The inference rule ‘MembershipSeparation’ is just a reformulation of variant (1) of the
separation Axioms 2.1. Hence, its correctness is an immediate consequence of (1) and we do
not give a separate correctness proof for this rule. In fact, most of the rules in STP are just direct
translations of one of the axioms or one of the definitions listed in Section 2. For these cases
we do not give the correctness proofs of the inference rules used in our prover. Some of the
inference rules, however, condense several inference steps into one compact rule to be applied.
In these cases, we provide hand-proofs for the correctness of the respective rules. An example of
such a rule is the elimination of the union-quantifier in the goal. Simply using abbreviation (18)
would lead to an inference rule
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Membership-U :
K � t ∈ ⋃{Sx |

x∈s
Cx}

K � t ∈ ⋃
x∈s
Cx

Sx

The STP prover, however, implements the rule

MembershipUnionOf :
K � ∃

x∈s
(t ∈ Sx ∧ Cx )

K � t ∈ ⋃
x∈s
Cx

Sx

‘MembershipUnionOf’ reduces the proof of t ∈ ⋃
x∈s
Cx

Sx to prove ∃
x∈s

(t ∈ Sx ∧ Cx ).

Proof. Assume ∃
x∈s

(t ∈ Sx ∧ Cx ), thus t ∈ Sx0 ∧ Cx0 for some constant x0 ∈ s. With z := Sx0

we can infer from this t ∈ z ∧ Cx0 ∧ z = Sx0 , hence

∃
z

( ∃
x∈s

t ∈ z ∧ Cx ∧ z = Sx ). (20)

Separating the quantifiers in (20) gives ∃
z
(t ∈ z ∧ ∃

x∈s
(Cx ∧ z = Sx )), which, by (2), is equivalent

to ∃
z

(t ∈ z ∧ z ∈ {Sx |
x∈s

Cx }). By (15) this is equivalent to t ∈ ⋃{Sx |
x∈s

Cx }, thus t ∈ ⋃
x∈s
Cx

Sx

by (18). �

As special rules for membership in finite sets and finite unions, respectively, we provide for n ≥ 2

MembershipFinite :
t 
= S(2), . . . , t 
= S(n), K � t = S(1)

K � t ∈ {S(1), S(2), . . . , S(n)}

MembershipUnion :
t 
∈ S(2), . . . , t 
∈ S(n), K � t ∈ S(1)

K � t ∈ ⋃{S(1), S(2), . . . , S(n)}
Again, we omit the easy proofs of correctness. Note, that both membership in finite sets and
finite unions would reduce by definition to a disjunction of formulae. The majority of human
mathematicians would proceed by a smart choice of one of the alternatives and then just prove the
chosen alternative. The inference rules given above, however, reduce the proof of a disjunction
further to the proof of always the first alternative while assuming the negations of the remaining
alternatives. This has the advantage that the rule keeps the proof search space small because it
does not introduce additional branches into the proof object. On the other hand, the resulting
proofs appear “unnatural” for human mathematicians at the point where these rules are applied.
Thus, these rules might be adapted in future versions of the prover.

As we will see in Section 6, these rules will not be applied in the standard set-up of the set
theory prover, because as soon as the set theory computation unit is present, membership in
finite sets and finite unions will be decided based on computational semantics available in the
Theorema language. The two rules are contained in STP only because, in the spirit of modular
system design, we do not presuppose that all future Theorema user provers combine the available
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special provers for set theory in exactly the way in which they are combined in our set theory
prover now.

Furthermore, we provide one general inference rule for set inclusion and set equality,
respectively, which reduce inclusion and equality to membership according to Definition 2.1.
Additionally, we provide special rules for special cases in order to reduce the search depth in the
proof search procedure, like e.g.

ConjunctionSubset :
proved

K � {x |
x

. . . ∧ x ∈ S ∧ . . .} ⊆ S

SubsetSeparation :
Px→x0, x0 ∈ X, K � x0 ∈ Y ∧ Qy→x0

K � {x |
x∈X

Px} ⊆ {y |
y∈Y

Qy}

(where x0 is some new constant).
For the empty set, the expansion of Definition 2.2 would result in “unnatural” proof steps,

hence, we provide special rules for the empty set, like e.g.

EmptySetSubset :
proved

K � ∅ ⊆ S

EqualsEmptySet :
K � ¬Px→x0

K � {Tx |
x

Px } = ∅

(where x0 is some new constant). The proofs for these rules are again straightforward. For more
details and a complete listing of all inference rules used in STP we refer to Windsteiger (2001a).

5.2. Set theory specific knowledge expansion

5.2.1. Knowledge expansion by lazy level saturation
The special prover STKBR (for Set Theory Knowledge Base Rewriting) uses “lazy saturation”

in order to infer new knowledge from formulae already contained in the knowledge base using
knowledge about set theory specific language constructs. In contrast to classical level saturation
methods, which try to obtain all formulae that can be inferred from the knowledge base in one
saturation run, “lazy saturation” is somewhat more moderate in that it only finds formulae that
can be inferred from the original knowledge base at the beginning of the saturation run. This
has the advantage that usually less “potentially unimportant” formulae are generated before the
prover continues with some other steps. However, if no other proof steps can be performed,
the proof search procedure will continue with subsequent lazy saturation steps. This type of
“iterated lazy saturation” can ultimately lead to a completely saturated knowledge base, but
unlike classical saturation techniques it does not necessarily.

The STKBR prover is implemented as just one inference rule implementing the mechanism of
lazy saturation based on knowledge from set theory combined with simplification of assumptions
based on computational semantics from the Theorema language. STKBR is considered to be
applicable to the current proof situation as soon as new formulae occur in the knowledge base
compared to its previous application. This check is done with the help of an entry in the local
proof context passed among the “additional facts” of the current proof situation, see Section 3.
Similar to STP, most of the set theory specific knowledge expansion rules used in this phase
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Fig. 2. Schematic flow of lazy level saturation as used in STKBR.

are just re-formulations of the axioms and the definitions in Section 2. Again they are grouped
into rules for membership, inclusion, and set equality. For each “kind of set” we provide a
membership rule for a proof situation, where ‘∈’ appears as outermost symbol in one of the
assumptions. Moreover, the prover contains rules for unfolding membership inside universally
quantified formulae and, like STP, some special rules based on elementary set theory knowledge.
We refer to the examples in Section 8.2.2 for more details on these special rules.

Knowledge expansion in STKBR happens in two phases:

1. New formulae are simplified using built-in semantic knowledge available in the Theorema
language semantics.

2. New knowledge is inferred from the simplified knowledge base by lazy saturation as described
above. The expansion rules used in lazy saturation are grouped into two groups:
• Group I containing rules for inferring new knowledge from one known formula and
• Group II containing rules for inferring new knowledge from two known formulae.

Matching rules from Group I are applied to the simplified new formulae, matching rules from
Group II are applied to all new pairs of formulae containing at least one new formula.

All formulae generated during these two phases are added to the knowledge base and, finally,
the formula labels of formulae contained in the expanded knowledge base are stored in the local
proof context in order to be accessible in the next saturation run. We call this stage a pre-saturated
knowledge level. Complete level saturation would iterate this process until no more new formulae
can be inferred. Lazy saturation, instead, passes control back to the proof search procedure after
one iteration.

The schematized flow of STKBR’s level saturation mechanism is shown in Fig. 2. Phase 1 is
accomplished by applying the function ‘SimplifiedAssumptions’ to two arguments: the entire
knowledge base and a list of labels ‘sat’ describing the pre-saturated knowledge level from
a previous saturation run. Each new formula from the knowledge base is sent through a
simplification function, which computes a simplified version of the formula w.r.t. semantic
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knowledge from the Theorema language. In fact, the same simplification function is used that
is applied also in the STC module for goal simplification by computation and in the top-level
Theorema-user command Compute, see Section 6. This guarantees utmost coherence between
all computations happening in different components of the Theorema system, be it on the user
level by calling Compute, be it on the prover level by doing simplifications on the goal or on
the knowledge base. Formulae that cannot be simplified as well as formulae from the previous
saturation level leave phase 1 unchanged. Actually, STKBR contributes to both the P- and the
C-phase, hence, it is not a pure proving unit! We allowed this mixture of P- and C-phase in one
special prover in the current implementation merely for reasons of efficiency.

Phase 2 is covered in the implementation by the function ‘AugmentedKnowledgeBase’,
which receives the simplified knowledge base resulting from phase 1 and again the list
‘sat’. ‘NewKnowledgeFromOne’ applies Group I of expansion rules to each (simplified) new
assumption, ‘NewKnowledgeFromTwo’ applies Group II of expansion rules to all new pairs that
can be formed using at least one new assumption. The new formulae obtained in phase 2 joined
with the simplified knowledge base resulting from phase 1 give the new pre-saturated knowledge
level.

5.2.2. Rule locking
Rule locking is a mechanism that helps to prevent cycles in the proof search during level

saturation. As an example, consider the two inference rules

I :
. . . , x ∈ A, x ∈ B, . . . � G

. . . , x ∈ A ∩ B, . . . � G
I’ :

. . . , x ∈ A ∩ B, . . . � G

. . . , x ∈ A, . . . , x ∈ B, . . . � G

occurring in STKBR. We call two rules inverse to each other if one rule neutralizes the effect
of the other. I and I’ are an example of rules being inverse to each other. Our prover contains
some pairs of inverse rules although, generally, we try to avoid to provide inverse rules wherever
possible. Inverse rules need special attention because their unrestricted use immediately results
in a cycle in the proof search. Rule locking allows us to dynamically disable certain inference
rules for certain values of the input parameters. In the above example, the application of rule I’
resulting in a new formula F will automatically prevent rule I from being applied to F in the
remainder of this proof branch. Similarly, the application of rule I producing new formulae F1
and F2 will block rule I’ on F1 and F2 in the remainder of this proof branch. Note, however, that
affected rules are only locked for particular values of the input parameters whereas they stay
applicable in all other situations.

In general, for each pair of inverse rules I and I’ we implement both I and I’ such that
they lock their inverse for certain inputs. There is no general law, however, for which inputs
a rule must be locked. As a special case, inference rules may even lock themselves in order to
avoid “uninteresting” expansions in the proof search. Consider again the example from above:
Applying rule I’ once would add the new assumption x ∈ A ∩ B . During the next saturation
run, I’ would add the new assumptions x ∈ A ∩ (A ∩ B) and x ∈ B ∩ (A ∩ B) and so forth.
Thus, rule I’ is implemented such that it locks both itself and also its inverse rule I on the new
formulae generated by I’. Rule locking utilizes STKBR’s local proof context to store this type of
information on the proof progress.

6. STC: The set theory computing unit

The Theorema language contains semantics essentially for finite sets, namely
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• sets that are constructed using the set braces ‘{’ and ‘}’ as set constructor applied to finitely
many arguments, and

• sets that are constructed using algorithmic versions of the set quantifiers introduced in
Section 2, see also Buchberger (1996), i.e. set quantifiers with finite and computable range
specifications, see Windsteiger (2001a). In particular, integer ranges and set ranges with finite
sets are algorithmic ranges, which lead to finite sets when used in combination with the set
quantifiers.

The Theorema language semantics allows the explicit construction of finite sets as an
enumeration of the (finitely many) elements contained in the set, i.e. the language contains some
data-structure representing a finite set. Set operations (such as union, intersection, power set, etc.)
on finite sets are implemented as operations on the data-structure for finite sets in a constructive
fashion, i.e. every operation on finite sets results again in a finite set. Tests for membership,
inclusion, or set equality for finite sets, thus, reduces to testing finitely many cases, which is
implemented in the frame of the Theorema language semantics as well.

Computation using built-in semantics knowledge is available in the Theorema system through
the top-level user command Compute. A typical computation involving finite sets and numbers
is

Compute[{3x |
x∈{1,2,3,4} is-prime[x]}, built-in→〈Built-in[“Sets”], Built-in[“Numbers”]〉]

resulting in the finite set {6, 9} and, of course,

Compute[6 ∈ {3x |
x∈{1,2,3,4} is-prime[x]}, built-in→〈Built-in[“Sets”], Built-in[“Numbers”]〉]

results in True. Internally, Compute sends the expression to be computed to a simplification
function, which simplifies the expression with respect to both user-defined knowledge given in
the “using”-option and built-in knowledge from the Theorema language semantics given in the
“built-in”-option to Compute. In the examples above, no user-defined knowledge is provided
and built-in knowledge about “Sets” (for the set quantifier and the finite set in the range of the
quantifier) and “Numbers” (for ‘is-prime’ and for the multiplication used in ‘3x’ is applied. It is
the intention of the STC (for Set Theory Computing) special prover to integrate the computational
power available for finite sets seamlessly into the Theorema proving machinery. Otherwise, all
algorithmic knowledge about finite sets needs to be re-implemented inside the set theory prover,
which would make it very difficult to guarantee consistent behavior in proving and computing.
In order to avoid this duplication of code and knowledge and in order to achieve coherent
simplifications on the top-level using Compute and on the proving-level in simplifications of
both the proof goal and the knowledge base, the STC prover simplifies the goal by sending the
goal formula to the same simplification function that is also used in Compute and in STKBR.

Basically, when the STC prover applies to a proof situation, one proof step consists of calling
the simplification function on the proof goal and, if the result differs from the original form,
of adding a new node to the proof object, from which the effect and a complete trace of the
computation can be displayed. In fact, the interface to the underlying simplification function is
implemented in a more flexible fashion. Namely, it allows arbitrary built-in knowledge available
in the Theorema language in addition to built-in knowledge about finite sets to be used during
simplification. Similar to the Compute-examples above, the user may specify built-in knowledge
in the call of any prover using the option “built-in”. The set theory prover sets up the environment
such that simplification uses set theory semantics by default and user-specified built-in semantics
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in addition. Given a proof goal such as 6 ∈ {3x |
x∈{1,2,3,4} is-prime[x]} the set theory prover will

produce different proof variants depending on the additional semantical knowledge provided by
the user:

• Using no semantic knowledge at all by completely deactivating STC, the proof goal will be
reduced by an inference rule from STP to prove

∃
x∈{1,2,3,4} is-prime[x] ∧ 6 = 3x,

and, by predicate logic reasoning using matching against formulae in the knowledge base,
this goal might eventually be proven since x = 2 is an appropriate choice for the existential
variable. Note, however, that formulae such as ‘is-prime[2]’ and ‘6 = 3 ∗ 2’ must be provided
explicitly in the knowledge base. Moreover, for the proof of subgoal 2 ∈ {1, 2, 3, 4}, STP
will apply the inference rule MembershipFinite described in Section 5.1 resulting in a very
fine-grained proof showing all details down to the axioms of set theory.

• Using the standard setting with only built-in sets, the resulting proof is essentially the same,
just that the subgoal 2 ∈ {1, 2, 3, 4} can be simplified to True by STC in one stroke. However,
the set quantifier does not simplify to a finite set, since ‘is-prime’ is unknown and, thus, the
expression stays unevaluated.

• Using built-in semantics of “Sets” and semantics of ‘is-prime’, the proof goal will be
simplified by STC to prove

6 ∈ {3 ∗ 2, 3 ∗ 3},
and again STP’s MembershipFinite will come into play. Still, 6 = 3 ∗ 2 must be available in
the knowledge base in order to finish the proof.

• Using built-in semantics of “Sets” and “Numbers”, the proof goal will be simplified by STC
in one step to True and the proof succeeds without any additional explicit knowledge.

Of course, each of these variants has its pros and cons and the Theorema user can decide which
path to follow. We consider it of utmost importance for practical applications and acceptance of
the system to offer this choice to the user. More details on combining computation with proving
can be found in Windsteiger (2001a). Furthermore, we refer to Section 8.2 for more examples of
interaction of proving and simplification by computing.

7. STS: The set theory solving unit

The special prover STS (for Set Theory Solving) collects inference rules for eliminating
existential quantifiers in the proof goal. Its name suggests that this prover deals with set
theory specific aspects of solving, but, since general predicate logic solving components in the
Theorema system are not yet far advanced, the STS prover in its current state collects inference
rules for existential goals as they result typically from proof goals containing language constructs
from set theory. Set theory specific solving in the sense of “solving for sets” meaning “finding
sets that fulfill certain properties” is not yet dealt with in this version of the prover. Rather, we
concentrate on using the special structure of the existential formula in order to devise efficient
instantiation methods for certain types of existential goals.

The inference rules in STS mainly cover proof situations of the form K � ∃
x

Px , i.e. we have

to find some term t such that K � Px→t . In many cases the choice of t can be made essentially
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on the basis of K . In these situations, the methods used for instantiating the existential goal are
matching parts of Px against ground formulae in K and unification of parts of Px with formulae
in K .

The more difficult cases, however, are those, where the choice of t depends strongly on the
inner structure of Px . In these situations, the instantiation of the existential goal requires, roughly
speaking, some further processing of Px before an appropriate choice of t is possible. Hence, we
introduce a solve-constant in place of the existential variable. A solve-constant differs from a
Skolem-constant in that it is a placeholder for the term t , whose exact “form” is not yet known
at the time when the solve-constant is introduced, whereas a Skolem-constant is a new constant
about which we do not know anything. For the proof to succeed, all solve-constants that have
been introduced must be expressed through appropriate ground terms in such a manner that the
resulting formula can be proven. The introduction of solve-constants, thus, allows us to delay the
instantiation of existential goal formulae to a later phase of the proof in order to be able to proceed
with standard reasoning techniques before actually instantiating the existential variable. What
we call a solve-constant is often addressed as a meta-variable by other authors. The technique of
meta-variables is well known and used also in other systems.

Essentially, solve-constants imitate what a human often does when proving ∃
x

Px , namely

to “pretend to know x” and then reason on Px in order to derive more knowledge on x until
we can identify a t that fulfills all the requirements collected for x . Of course, the strategy
after introducing solve-constants must always be to isolate the solve-constants, and then to
apply special solving techniques depending on the nature of the remaining formulae. Hence, this
strategy reduces proving to solving over various domains. Ideally, the formulae to be solved are
algebraic equalities or inequalities such that known solution techniques available from computer
algebra can be applied for finding an appropriate t . For this reason some of the inference rules
in STS employ the Mathematica Solve-function in situations where an existentially quantified
variable or a solve-constant appears inside an equality. For requirements formed by arbitrary
set-theoretic formulae we plan to develop an appropriate solving calculus as future work.

We present only one typical inference rule from STS.

IntroSolveConstant :
K � Qy→y∗ ∧ ∃

x∈s
(Px ∧ y∗ = Tx ) ∧ Ry→y∗

K � ∃
y

(Qy ∧ y ∈ {Tx |
x∈s

Px } ∧ Ry)

where Qy and Ry are possibly empty conjunctions of formulae and y∗ is a solve-constant. The
inference rule described above might appear random. It is part of STS since it applies exactly
to proof situations left after expanding membership in special unions, namely goals of the form
m ∈ ⋃{Tx |

x∈s
Px }. It can be observed in many examples involving proof goals of this form

(see in particular the example in Section 8.2.4) that this strategy leads to a well-structured proof.
The rule eliminates the outermost existential quantifier by introducing a solve-constant and it
introduces another existential quantifier by immediately expanding membership. STS contains
further rules, which allow the elimination of the remaining existential quantifier in this particular
case and even in other more general situations, see Windsteiger (2001a). Note, that the solve-
constant already appears in an isolated position, so that it can immediately be expressed by the
ground term Tx as soon as Px has been solved for x . In addition to rules introducing solve-
constants, the STS prover, of course, also contains several rules for instantiating solve-constants
as soon as they appear in an isolated position. We refer also to the discussion in Section 8.2.4,
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Table 1
Comparison to systems on examples from CASC-18

Example Theorema E-SETHEO Vampire DCTP Bliksem Saturate

SET010 3.0 15.8 23.9 1.2 >300 ?
SET014 3.2 >300 >300 281.0 >300 1.8
SET096 2.0 9.6 17.0 113.7 7.1 8.1
SET171 4.0 >300 >300 >300 >300 2.9
SET580 8.7 0.4 0.1 1.5 >300 1.7
SET612 2.1 >300 >300 >300 >300 9.9
SET624 43.7 0.7 0.8 1.7 >300 10.2
SET630 2.4 0.4 62.3 1.5 >300 116.8
SET716 6.8 >300 >300 >300 >300 8.8

where, in particular, the important role of solving as a sub-problem in proving is discussed in a
concrete example.

8. Comparison and examples

8.1. Comparison to state-of-the-art theorem provers

In this section, we test the Theorema set theory prover on some examples from the SET
section of TPTP, see TPTP: Thousands of Problems for Theorem Provers (n.d.). Timings refer to
CPU seconds consumed on a 1500 MHz Intel P4 running Mathematica 4.2 and include the time
needed for generating the proof, simplifying the successful proof, and displaying the formatted
proof as shown in Section 8.2. Table 1 shows a comparison of the computing times to state-of-
the-art theorem provers as they performed in CASC-182, see CADE-18 ATP System Competition
(CASC-18) (n.d.), which refer to CPU time on a 993 MHz Intel P4. The timings of the “Saturate”-
prover were taken from Ganzinger and Stuber (2003) and were measured on a 2000 MHz CPU
(timings are only available for examples from the FOF division (first-order form) of CASC-18).

The former winner of the FOF division of previous CASCs, SPASS, did not participate in
CASC-18. Table 2 compares timings of the Theorema set theory prover on some of the SET
examples contained in TPTP to the performance of a revised version of SPASS as reported in
Afshordel et al. (2001). SPASS’s timings have been recorded on a 333 MHz Intel P2, Theorema
timings refer to experiments on a 400 MHz Intel P2.

We want to emphasize, however, that the absolute computation times are not our main focus in
the current stage of development, mainly because the Theorema system is currently implemented
in the programming language of Mathematica, which does not offer possibilities for compiling
programs. Hence, comparing the run-time of interpreted Mathematica code to computing times
of optimized compiled machine code does not tell us much. The timings in Tables 1 and 2 are
meant to demonstrate that our set theory prover generates proofs “within a few seconds” even for
examples where other provers fail completely or need considerably more time, see e.g. (SET014),
(SET171), (SET612), or (SET716). The Saturate prover performs very well on the previously
mentioned examples, but interestingly it is slower by a factor of almost 50 in (SET630). Note,
on the other hand, that the Theorema set theory prover is considerably slower than the CASC

2 Software versions used: E-SETHEO csp02, Vampire 5.0, DCTP 10.1p, Bliksem 1.12a.
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Table 2
Theorema versus SPASS

Example Theorema SPASS 2.0

SET010 6.1 1
SET612 7.5 1
SET624 155.4 101
SET694 5.5 1
SET698 22.7 71
SET722 6.6 18
SET751 5.04 3

provers in (SET624), which will be discussed in detail in Section 8.2.5. Table 2 shows that the
Theorema set theory prover and SPASS show “similar” behavior.

Of course, proof generation should be fast, but we are currently much more interested in
having automatically generated “nice proofs” that are easily understandable for a human reader.
We therefore aim at designing provers that apply inference rules in a smart and “natural human-
like way” without too many failing branches during the proof search. Once this is achieved, the
absolute computation times depend only on the efficiency of executing the programs on particular
hardware. We can speed up the entire system (i.e. all provers available in the Theorema system!)
by improving the runtime environment, on which the Theorema system is based. One possibility,
which we are currently investigating for a re-design of Theorema, is to develop an efficient
execution engine (based on e.g. Java) for a certain fragment of the Mathematica programming
language that would allow the compilation of our provers. From first experiments an envisaged
speed-up by a factor between 50 and 100 seems realistic. One can observe in practical examples
as shown in the subsequent sections that the proofs generated by our set theory prover contain
only a few failing branches, and each branch contains only a few useless formulae.

8.2. Proofs generated by the Theorema set theory prover

In this section, we collect some representative proofs that were generated completely
automatically by the Theorema set theory prover. In order to justify our claim from Section 8.1
that “the set theory prover generates proofs that are easily understandable for a human reader”,
the examples in the subsequent sections will not only describe the methods and heuristics used
in our set theory prover, but they will also include the generated proofs. The proofs are displayed
in simplified form, i.e. they do not contain anymore failing proof branches and they do not show
any formulae that did not contribute to the final proof success. The fully automated simplification
of the “raw proof object” as it is produced by the set theory prover is a standard post-processing
feature available in the Theorema system and the timings given in Section 8.1 include also the
time needed for proof simplification.

The optical appearance of the proofs in the Theorema system corresponds exactly to how they
are typeset in this paper! Within Theorema, the standard presentation of proofs is generated in
a Mathematica notebook document, a document format provided by Mathematica that allows
typeset mathematical text to be intermixed with Mathematica input and output expressions as
well as graphics. The proofs have been translated from Mathematica notebook format into LATEX
as accurately as possible without manual beautification. Some of the features of the Theorema
standard proof presentation utilize, however, special capabilities of the Mathematica notebook
format and can therefore not be rendered in this paper:
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• Formulae in the knowledge base and goal formulae are displayed in different color.
• Formula labels in running text are “click-able” and show the entire referenced formula in a

popup-window when clicked.
• Proof branches are organized in a hierarchy of nested cells that reflects the structure of the

proof. Collapsing entire proof-branches by mouse-click allows us to quickly browse through
the structure of a proof and easily “zoom into” the interesting proof parts or skip uninteresting
proof parts, respectively.

8.2.1. Properties of functions built into the set theory prover
The Theorema mathematical language supports the notion f :: A → B denoting the predicate

“ f is a function from A to B (in intensional form)”. In intensional form, a function from A to B is
something that can be applied to some term in A resulting in a term in B . Alternatively, Theorema
offers the concept of a function from A to B in extensional form (written f : A → B) from set
theory, where a function is a certain subset of A × B . As an example, we take (SET722), where
the set theory prover succeeds for both intensional and extensional representation for functions.
The computing times do not essentially differ between the two variants. We present the proof of
(SET722) based on the intensional function concept, in order to demonstrate that the use of the
set theory prover does not require the user to force all of mathematics into set representation.

The Theorema set theory prover does not require the definition of surjectivity in its knowledge
base. Rather, it recognizes surjectivity on the inference rule level, i.e. the prover contains
inference rules for proving surjectivity and for expanding surjectivity in the knowledge base,
respectively, regardless of whether the intensional or the extensional function concept is used.

Proof (SET722). ∀
A,B,C, f,g

f :: A → B ∧ g ◦ f :: A
surj.→ C ⇒ g :: B

surj.→ C ,

under the assumption:

(Definition (Composition)) ∀
f,g,x

(g ◦ f )[x] := g[ f [x]] .

We assume

(1) f0 :: A0 → B0 ∧ g0 ◦ f0 :: A0
surj.→ C0 ,

and show

(2) g0 :: B0
surj.→ C0 .

In order to show surjectivity of g0 in (2) we assume

(3) x10 ∈ C0 ,

and show

(4) ∃
B1

B1 ∈ B0 ∧ g0[B1] = x10 .

From (1.1) we can infer

(6) ∀
A1

A1 ∈ A0 ⇒ f0[A1] ∈ B0 .

From (1.2) we know by definition of “surjectivity”
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(7) ∀
A2

A2 ∈ A0 ⇒ (g0 ◦ f0)[A2] ∈ C0 ,

(8) ∀
x2

x2 ∈ C0 ⇒ ∃
A2

A2 ∈ A0 ∧ (g0 ◦ f0)[A2] = x2 .

By (8), we can take an appropriate Skolem function such that

(9) ∀
x2

x2 ∈ C0 ⇒ A20[x2] ∈ A0 ∧ (g0 ◦ f0)[A20[x2]] = x2 .

Formula (3), by (9), implies:

A20[x10] ∈ A0 ∧ (g0 ◦ f0)[A20[x10]] = x10 ,

which, by (6), implies:

f0[A20[x10]] ∈ B0 ∧ (g0 ◦ f0)[A20[x10]] = x10 ,

which, by (Definition (Composition)), implies:

(10) f0[A20[x10]] ∈ B0 ∧ g0[ f0[A20[x10]]] = x10 .

Formula (4) is proven because, with B1 := f0[A20[x10]], (10) is an instance. �

The use of the special inference rules for function properties like e.g. surjectivity can be
suppressed by an option in the Prove-call. The knowledge base would then need to contain
the definition of surjectivity explicitly. The proof of (SET722), however, succeeds even in
this setting. It differs only in that the special inference rule combines several proof steps into
one compact step. Special inference rules are available also for injectivity, which are used in
(SET716), where the proof takes just 6.8 s, which is about the same time that the “Saturate”-
prover needs. Note, however, that all the CASC provers fail in (SET716).

8.2.2. Set theory specific knowledge built into the prover
The examples in this section shall demonstrate how set theory specific knowledge is built into

the prover. As already mentioned in the description of the individual special provers, most of the
inference rules used in the set theory prover are in essence only re-formulations of the axioms and
definitions of ZF. Some rules it uses, however, are based on certain theorems that are valid in ZF.
Clearly, these theorems are themselves only consequences of the axioms, therefore all inference
rules in the set theory prover are based on the axioms of ZF. What we want to say is that there
are certain rules that correspond to direct application of an axiom and there are other rules that
hide a chain of logical arguments based on the axioms. The examples in this section try to show
that this is reasonable because the Theorema set theory prover is intended for mathematicians
who want to have support in their every-day work using sets. It is not intended to be a prover that
reduces every mathematical proof to the axioms of ZF.

Proof (Proposition (Intersection Powerset)).
⋂P[A] = ∅,

with no assumptions.
We have to prove (Proposition (intersection powerset)), hence, we have to show:

(1) A10 /∈ ⋂P[A].
We prove (1) by contradiction.
We assume
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(2) A10 ∈ ⋂P[A],
and show (a contradiction).
From (2) we can infer

(3) ∀
A2

A2 ∈ P[A] ⇒ A10 ∈ A2.

From (3) we can infer

(4) A10 ∈ ∅,

(5) A10 ∈ A.

Using available computation rules we can simplify the knowledge base:
Formula (4) simplifies to

(6) False.

Formula (a contradiction) is true because the assumption (6) is false. �

It can be proven in ZF that the power set P[A] always contains ∅ and A itself, and, of course,
the Theorema set theory prover can prove this. Thus, we can instantiate a universally quantified
variable running over the power set of A with ∅ and A. This theorem is coded into a special
inference rule in STKBR, which allows the instantiation of the universally quantified assumption
(3) to infer (4) and (5). The simplification of (4) to (6) is then accomplished in phase 1 of the
subsequent saturation run in STKBR by built-in semantic knowledge about finite sets (in particular,
the empty set) as described in Section 5.2.

The second example is taken from the case study on the mutilated checkerboard, see McCarthy
(1964, 1995) and Windsteiger (2001b,a). The theorem says that an 8 × 8 checkerboard with
two opposite corners missing can always be covered by dominos. A proof of this theorem can
be given using a formulation of the problem in set theory. A proof of the theorem has been
generated using Theorema by building up the theory of dominos, checkerboards, coverings, etc.
and by completely exploring new notions as they are defined. “Completely exploring”, in this
context, means that sufficiently many properties of a new notion are proven before the next notion
will be introduced, see Buchberger (1999). Although each of the proofs in this exploration is
generated completely automatically, the whole proof cannot be called “fully automated”, because
the exploration itself is the interaction of the user with the Theorema system. This is a highly
non-trivial, mathematically very interesting and challenging, and didactically very instructive
experience for the human user. Using systems such as Theorema, the mathematician can then
concentrate on this task of structuring mathematical knowledge in big theories, while the actual
proofs are then assisted by the computer. For students this opens the possibility to experiment on
building up own theories and to, in the optimal case, understand why certain known theories are
built up in a certain way.

During one of these so-called exploration rounds, we arrived at the proposition that whenever
X is a domino on the board then the domino covers two distinct fields that are adjacent to each
other.

Proof (Proposition (Dominos Adjacent)).

∀
X

domino-on-board[X] ⇒ X ⊆ Board ∧ ∃
x,y

x ∈ X ∧ y ∈ X ∧ x 
= y ∧ adjacent[x, y],
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under the assumption:

(Definition (Domino))

∀
x

(domino-on-board[x] :⇔ x ⊆ Board ∧ |x | = 2 ∧
∀

x1,x2
x1 ∈ x ∧ x2 ∈ x ∧ x1 
= x2 ⇒ adjacent[x1, x2]).

We assume

(2) domino-on-board[X0] ,

and show

(3) X0 ⊆ Board ∧ ∃
x,y

x ∈ X0 ∧ y ∈ X0 ∧ x 
= y ∧ adjacent[x, y] .

Proof of (3.1) X0 ⊆ Board: (SKIPPED)
Proof of (3.2):
Formula (2), by (Definition (Domino)), implies:

(5) |X0| = 2 ∧ X0 ⊆ Board ∧

∀
x1,x2

x1 ∈ X0 ∧ x2 ∈ X0 ∧ x1 
= x2 ⇒ adjacent[x1, x2].

From (5.1) we can infer

(6) X10 ∈ X0 ,

(7) X11 ∈ X0 ,

(8) X10 
= X11 .

Now, let y := X10. Thus, for proving (3.2) it is sufficient to prove:

(10) ∃
x

x ∈ X0 ∧ X10 ∈ X0 ∧ x 
= X10 ∧ adjacent[x, X10] .

Now, let x := X11. Thus, for proving (10) it is sufficient to prove:

(15) X11 ∈ X0 ∧ X10 ∈ X0 ∧ X11 
= X10 ∧ adjacent[X11, X10] .

Using available computation rules we evaluate (15) using (8) and (5.1) as additional
assumption(s) for simplification:

(16) X11 ∈ X0 ∧ X10 ∈ X0 ∧ adjacent[X11, X10] .

Proof of (16.1) X11 ∈ X0:

Formula (16.1) is true because it is identical to (7).

Proof of (16.2) X10 ∈ X0:

Formula (16.2) is true because it is identical to (6).

Proof of (16.3) adjacent[X11, X10]:
Formula (16.3), using (5.3), is implied by:

(17) X10 ∈ X0 ∧ X11 ∈ X0 ∧ X11 
= X10 .
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Using available computation rules we evaluate (17) using (8) and (5.1) as additional
assumption(s) for simplification:

(18) X10 ∈ X0 ∧ X11 ∈ X0 .

Proof of (18.1) X10 ∈ X0:

Formula (18.1) is true because it is identical to (6).

Proof of (18.2) X11 ∈ X0:

Formula (18.2) is true because it is identical to (7). �

In this proof, special knowledge about cardinality goes into the proof. STKBR uses an inference
rule that allows us to choose distinct elements from a finite set, i.e. if we know |A| = n for
some natural number n then we can choose new constants x1, . . . , xn such that xi ∈ A (for each
1 ≤ i ≤ n) and “all xi distinct”. This rule allows us to infer (6), (7), and (8) from (5.1) in the
proof above, the remaining proof is straightforward.

8.2.3. The interplay between Theorema and Mathematica
The two proofs in this section will show, how Theorema interacts with the underlying

Mathematica system. We want to emphasize the strict separation between Theorema and
Mathematica in the sense that no Mathematica algorithm from the rich computer algebra library
available through Mathematica is applied “quietly” during a proof in the Theorema system
unless the user explicitly allows the Theorema set theory prover to do so. The first example
uses Mathematica’s Solve function for instantiating existential variables in the proof goal.

Proof (SET751).

∀
A,B, f,X,Y

X ⊆ A ∧ Y ⊆ A ∧ X ⊆ Y ∧ f :: A → B ⇒ image[ f, X] ⊆ image[ f, Y ],

under the assumption:

(Definition (Image)) ∀
f,X

image[ f, X] := { f [x] |
x

x ∈ X} .

We assume

(1) X0 ⊆ A0 ∧ Y0 ⊆ A0 ∧ X0 ⊆ Y0 ∧ f0 :: A0 → B0 ,

and show

(2) image[ f0, X0] ⊆ image[ f0, Y0] .

For proving (2) we choose

(3) f 10 ∈ image[ f0, X0] ,

and show:

(4) f 10 ∈ image[ f0, Y0] .

From (1.3) we can infer

(8) ∀
X2

X2 ∈ X0 ⇒ X2 ∈ Y0 .

Formula (3), by (Definition (Image)), implies:
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(11) f 10 ∈ { f0[x] |
x

x ∈ X0} .

From (11) we know by definition of
{
Tx |

x
P

}
that we can choose an appropriate value such that

(12) x10 ∈ X0 ,

(13) f 10 = f0[x10] .

Formula (4), using (13), is implied by:

f0[x10] ∈ image[ f0, Y0] ,

which, using (Definition (Image)), is implied by:

(19) f0[x10] ∈ { f0[x] |
x

x ∈ Y0} .

In order to prove (19) we have to show

(20) ∃
x

x ∈ Y0 ∧ f0[x10] = f0[x] .

Since x := x10 solves the equational part of (20) it suffices to show

(21) x10 ∈ Y0 .

Formula (21), using (8), is implied by:

(22) x10 ∈ X0 .

Formula (22) is true because it is identical to (12). �

Since a sub-formula of the existential goal (20) is an equality containing the existential variable,
we instantiate the existential variable x in the proof goal with the help of Mathematica. In this
example, a candidate for x was found by solving the equation f0[x10] = f0[x] for x , which is
done by a call to the Mathematica function Solve for solving (systems of) equations. Of course,
unification or even matching would have done this job as well, but, in the case of equational
sub-formulae, the STS-prover tries to apply the specific rule using Solve before it tries general
predicate logic solving using matching and unification.

The second example shows, how arithmetic knowledge on natural numbers provided by
Mathematica is accessible for the set theory prover. As already discussed in Section 6 on the
set theory computation unit STC, semantic knowledge about natural numbers from the Theorema
language is not available in the set theory prover by default, but it can be provided by the user on
demand in the call of the prover using the “built-in”-option.

Proof (G). 36 ∈ ⋃
i∈N

{ j2 |
j∈N j ≥ i ∧ j ≤ i + 5}

under the assumption

(A) ∀
m,n

n > m ⇒ ∃
i

i ≤ n ∧ i ≥ m ∧ i ∈ N.

In order to show (G) we have to show

(1) ∃
i

36 ∈ { j2 |
j∈N

j ≥ i ∧ j ≤ i + 5} ∧ i ∈ N.
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In order to prove (1) we have to show

(2) ∃
i

∃
j

j ≥ i ∧ j ∈ N ∧ j ≤ i + 5 ∧ i ∈ N ∧ 36 = j2.

Since j := 6 solves the equational part of (2) it suffices to show

(4) ∃
i

i ∈ N ∧ 6 ≥ i ∧ 6 ∈ N ∧ 6 ≤ 5 + i .

Using available computation rules we evaluate (4):

(6) ∃
i

i ≤ 6 ∧ i ≥ 1 ∧ i ∈ N.

Formula (6), using (A), is implied by:

(7) 6 > 1.

Using available computation rules we evaluate (7):

(8) True.

Formula (8) is true because it is the constant True. �

The derivations of formulae (1) and (2) result from applying STP inference rules for membership
in a union and membership in a set abstraction, respectively. Reduction of (2) to (3) is
accomplished by instantiating j by a solution of a quadratic equation done in STS. Similar to
the previous example, since a sub-formula of the existential goal (2) is an equality containing
the quantified variable, the Mathematica Solve function is used internally to solve the quadratic
equation 36 = j2 for j , which finds two solutions j = −6 and j = 6. Of course, in this example
matching and unification would not be an alternative, since theory-specific arithmetic knowledge
is necessary for solving this formula. The first solution results in a failing proof attempt, since
−6 ∈ N simplifies to False by built-in knowledge about N. The failing branch is eliminated when
finally simplifying the successful proof. Note that the labels of the formulae indicate a “missing
branch”. Formulae (3) and (5) do not appear in the proof presentation because they have been
eliminated during proof simplification. Simplifications from (4) to (6) and from (7) to (8) were
made using available semantic knowledge about natural numbers by STC (6 ∈ N and 6 > 1,
respectively) and, finally, reduction from (6) to (7) and the detection of proof success were made
by standard predicate logic inference rules. We have no specialized solving methods for natural
numbers available, therefore we needed assumption (A) in the knowledge base. An appropriate
solver for N would be able to verify (6) without any additional knowledge. We will investigate
necessary solving techniques in future work.

8.2.4. Theory exploration versus isolated theorem proving
We consider (SET770), an example from the TPTP library concerning equivalence classes,

namely the theorem that two equivalence classes are equal or disjoint. Note again, that none of
the provers in the CASC competition could solve this problem. In Windsteiger (2001a), an entire
exploration of the theory of equivalence relations, equivalence classes, factor sets, partitions,
induced relations, etc. is given. Instead of proving (SET770) from first principles, i.e. from the
axioms, it is preferable to first prove some auxiliary lemmata, which later facilitate the proof of
the theorem. This is just what a human mathematician would be doing. We present here the proof
of (SET770) using the two auxiliary propositions (equal classes) and (not in distinct classes) in
the knowledge base. The computing time for the proof is 5.8 s on a 2000 MHz Intel P4, the proofs
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of the auxiliary propositions take 8.5 and 8.6 s, respectively. Of course, this example using the
two additional propositions is not anymore (SET770) in the sense of TPTP! It should be clear that
the timings for the examples given in Section 8.1 refer to the problem formulation as specified
in the TPTP library, except that, of course, we may omit definitions in the knowledge base that
refer to set theory specific constructs, which are covered by inference rules in our prover. We do
not claim this example to be a “solution for (SET770) as given in TPTP” and, therefore, we also
did not include it in the tables of timings in Section 8.1. We rather show this example in order to
advocate for “theory exploration” being superior to “proving from first principles”, in particular
if we want mathematicians to appreciate our systems.

Proof (SET770). ∀
R,x,y

is-symmetric[R] ∧ is-transitive[R] ⇒
(class[x, R] = class[y, R]) ∨ (class[x, R]) ∩ class[y, R] = {}).

under the assumptions:

(Proposition (equal classes)) ∀
R,x,y

is-transitive[R] ∧ is-symmetric[R] ∧
〈x, y〉 ∈ R ⇒ class[x, R] = class[y, R],

(Proposition (not in distinct classes)) ∀
R,x,y,z

is-symmetric[R] ∧ is-transitive[R] ∧
x ∈ class[y, R] ∧ x ∈ class[z, R] ⇒ 〈y, z〉 ∈ R.

We assume

(1) is-symmetric[R0] ∧ is-transitive[R0] ,

and show

(2) (class[x0, R0] = class[y0, R0]) ∨ (class[x0, R0]) ∩ class[y0, R0] = {}) .

We prove (2) by proving the first alternative negating the other(s).
We assume

(4) class[x0, R0] ∩ class[y0, R0] 
= {} .

We now show

(3) class[x0, R0] = class[y0, R0] .

From (4) we know that we can choose an appropriate value such that

(5) x30 ∈ class[x0, R0] ∩ class[y0, R0] .

From (5) we can infer

(7) x30 ∈ class[x0, R0] ,

(8) x30 ∈ class[y0, R0] .

Formula (3), using (Proposition (equal classes)), is implied by:

(11) is-symmetric[R0] ∧ is-transitive[R0] ∧ 〈x0, y0〉 ∈ R0 .

Proof of (11.1) is-symmetric[R0]:
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Formula (11.1) is true because it is identical to (1.1).

Proof of (11.2) is-transitive[R0]:
Formula (11.2) is true because it is identical to (1.2).

Proof of (11.3) 〈x0, y0〉 ∈ R0:

Formula (11.3), using (Proposition (not in distinct classes)), is implied by:

(12) ∃
x

is-symmetric[R0] ∧ is-transitive[R0] ∧ x ∈ class[x0, R0] ∧ x ∈ class[y0, R0].

Now, let x := x30. Thus, for proving (12) it is sufficient to prove:

(13) is-symmetric[R0] ∧ is-transitive[R0] ∧ x30 ∈ class[x0, R0] ∧ x30 ∈ class[y0, R0].
Proof of (13.1) is-symmetric[R0]:
Formula (13.1) is true because it is identical to (1.1).

Proof of (13.2) is-transitive[R0]:
Formula (13.2) is true because it is identical to (1.2).

Proof of (13.3) x30 ∈ class[x0, R0]:
Formula (13.3) is true because it is identical to (7).

Proof of (13.4) x30 ∈ class[y0, R0]:
Formula (13.4) is true because it is identical to (8). �

The same case study has been carried out for an intensional concept of relations. Similar to the
intensional concept of a function described in Section 8.2.1, an intensional relation is something
that can be applied to terms yielding true or false. An intensional relation is nothing else than
a predicate in the sense of logic. We show one of the proofs and explain its key steps, since
this proof shows the natural interplay between P-, C-, and S-phases as implemented in the
Theorema set theory prover very nicely. This example also demonstrates that the PCS-strategy,
which has already been used in a prover for elementary analysis within the Theorema system, see
Buchberger (2001); Vasaru-Dupré (2000), yields natural proofs very similar to the style a human
mathematician would give the proof.

Proof (Lemma (Union Inverse Factor Set)). ∀
A

is-reflexiveA[∼] ⇒ ⋃
factor-set∼[A] = A,

under the assumptions:

(Definition (relation sets): class) ∀
A,x

classA,∼[x] := {a |
a

a ∈ A ∧ a ∼ x},

(Definition (relat. sets): factor-set) ∀
A

factor-set∼[A] := {classA,∼[x] |
x

x ∈ A},

(Definition (reflexivity)) ∀
A

is-reflexiveA[∼] :⇔ ∀
x

(x ∈ A ⇒ x ∼ x).

We assume

(1) is-reflexiveA0 [∼],
and show

(2)
⋃

factor-set∼[A0] = A0.
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Formula (2), using (Definition (relation sets): factor-set), is implied by:
⋃{classA0,∼[x] |

x
x ∈ A0} = A0,

which, using (Definition (relation sets): class), is implied by:

(3)
⋃{{a |

a
a ∈ A0 ∧ a ∼ x} |

x
x ∈ A0} = A0.

Formula (1), by (Definition (reflexivity)), implies:

(4) ∀
x

(x ∈ A0 ⇒ x ∼ x).

We show (3) by mutual inclusion:
⊆: We assume

(5) x10 ∈ ⋃{{a |
a

a ∈ A0 ∧ a ∼ x} |
x

x ∈ A0}
and show:

(6) x10 ∈ A0.

From (5) we know by definition of the big
⋃

-operator that we can choose an appropriate value
such that

(7) x20 ∈ {{a |
a

a ∈ A0 ∧ a ∼ x} |
x

x ∈ A0},

(8) x10 ∈ x20.

From (7) we know by definition of {Tx |
x

P} that we can choose an appropriate value such that

(9) a10 ∈ A0,

(10) x20 = {a |
a

a ∈ A0 ∧ a ∼ a10}.
Formula (8), by (10), implies:

(23) x10 ∈ {a |
a

a ∈ A0 ∧ a ∼ a10}.
From (23) we can infer

(24) x10 ∈ A0 ∧ x10 ∼ a10.

Formula (6) is true because it is identical to (24.1).
⊇: Now we assume

(6) x10 ∈ A0.

and show:

(5) x10 ∈ ⋃{{a |
a

a ∈ A0 ∧ a ∼ x} |
x

x ∈ A0}.
In order to show (5) we have to show

(29) ∃
x4

x10 ∈ x4 ∧ x4 ∈ {{a |
a

a ∈ A0 ∧ a ∼ x} |
x

x ∈ A0}.
In order to solve (29) we have to find x4∗ such that

(30) x10 ∈ x4∗ ∧ ∃
x

(x ∈ A0 ∧ x4∗ = {a |
a

a ∈ A0 ∧ a ∼ x}).
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Since (6) matches a part of (30) we try to instantiate, i.e. let now x := x10.
Thus, by (30), we choose x4∗ := {a |

a
a ∈ A0 ∧ a ∼ x10}.

Now, it suffices to show

(32) x10 ∈ A0 ∧ x10 ∈ {a |
a

a ∈ A0 ∧ a ∼ x10}.
Proof of (32.1) x10 ∈ A0:
Formula (32.1) is true because it is identical to (6).
Proof of (32.2) x10 ∈ {a |

a
a ∈ A0 ∧ a ∼ x10}:

In order to prove (32.2) we have to show:

(33) x10 ∈ A0 ∧ x10 ∼ x10.

Formula (33), using (4), is implied by:

(34) x10 ∈ A0.

Formula (34) is true because it is identical to (6). �

We briefly comment on the essential steps in the proof:

• The proof starts with a P-phase, in which the universally quantified implication in the proof
goal is reduced by natural deduction inference rules for predicate logic from the special prover
BasicND, see (1) and (2).

• In a C-phase, the special prover QR rewrites the goal and the knowledge base using the
definitions in the knowledge base, see (3) and (4).

• The prover switches back again to a P-phase, but now the STP prover reduces set equality
X = Y to the two subgoals X ⊆ Y and X ⊇ Y . In fact, the inference rule for set equality
reduces the subgoals by Definition of ‘⊂’ immediately, see (5) and (6).

• For proving the first subgoal (6), staying in a P-phase, STKBR expands membership in a union
and a set quantifier in the knowledge base in two subsequent level saturation runs, see (7), (8),
(9) and (10).

• In a C-phase, QR uses the equality (10) for rewriting (8) into (23).
• In the final P-phase, expanding membership proves the subgoal (6).
• For proving the second subgoal (5), first STP reduces membership in a union during a P-phase

into the existential goal (29).
• The set theory prover enters an S-phase. The goal (29) has the special structure ∃

x4
x10 ∈

x4 ∧ x4 ∈ {Tx |
x

Px }, which can be handled by rule ‘IntroSolveConstant’ from Section 7.

Thus, the existential quantifier is eliminated by introducing the solve constant x4∗, and the
expansion of the inner membership x4∗ ∈ {Tx |

x
Px } introduces another existential quantifier

(now for x), see (30).
• The existential sub-formula in (30) is solved for x by unification with formulae in the

knowledge base. In fact, in this example matching is sufficient, but we provide unification in
this step for the general case. Having solved for x , the solve constant x4∗ can be instantiated
from the equational sub-formula x4∗ = . . . in (30), reducing the solve problem (30) again to
a proof problem, see (32).

• In the P-phase, the goal (32) is split using general predicate logic, subgoal (32.1) is trivially
true, and subgoal (32.2) is handled first by a set theory specific proof rule from STP, see (33).
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• Finally, the goal (33) is proved by simple rewriting using implications from the knowledge
base in a C-phase, see (34).

8.2.5. An example of “Weak Performance” of the set theory prover

Proof (SET624). ∀
B,C,D

B ∩ (C ∪ D) 
= {} ⇔ B ∩ C 
= {} ∨ B ∩ D 
= {}.

For proving (SET624) we take all variables arbitrary but fixed and prove:

(1) B0 ∩ (C0 ∪ D0) 
= {} ⇔ B0 ∩ C0 
= {} ∨ B0 ∩ D0 
= {} .

Direction from left to right:
We assume

(3) B0 ∩ (C0 ∪ D0) 
= {}
and show

(2) B0 ∩ C0 
= {} ∨ B0 ∩ D0 
= {} .

From (3) we know that we can choose an appropriate value such that

(6) B10 ∈ B0 ∩ (C0 ∪ D0) .

From (6) we can infer

(8) B10 ∈ B0 ,

(9) B10 ∈ C0 ∪ D0 .

From (9) we can infer

(11) B10 ∈ C0 ∨ B10 ∈ D0 .

We prove (2) by proving the first alternative negating the other(s).
We assume

(13) ¬(B0 ∩ D0 
= {}) .

We now show

(12) B0 ∩ C0 
= {} .

Formula (12) means that we have to show that

(14) ∃
B2

B2 ∈ B0 ∩ C0 .

We prove (14) by splitting up the intersection into its individual components:
We have to prove:

(15) ∃
B2

B2 ∈ B0 ∧ B2 ∈ C0 .

Formula (13) is simplified to

(16) B0 ∩ D0 = {} .

From (16) we can infer



W. Windsteiger / Journal of Symbolic Computation 41 (2006) 435–470 467

(17) ∀
B3

B3 /∈ B0 ∩ D0 .

From (17) we can infer

(18) ∀
B3

B3 /∈ B0 ∨ B3 /∈ D0 .

We prove (15) by case distinction using (11).
Case (11.1) B10 ∈ C0:
Now, let B2 := B10. Thus, for proving (15) it is sufficient to prove:

(20) B10 ∈ B0 ∧ B10 ∈ C0 .

Proof of (20.1) B10 ∈ B0:

Formula (20.1) is true because it is identical to (8).

Proof of (20.2) B10 ∈ C0:

Formula (20.2) is true because it is identical to (11.1).

Case (11.2) B10 ∈ D0:

From (8), by (18), we obtain:

(29) B10 /∈ D0 .

Formula (15) is proved because (29) and (11.2) are contradictory.
Direction from right to left:
We assume

(5) B0 ∩ C0 
= {} ∨ B0 ∩ D0 
= {}
and show

(4) B0 ∩ (C0 ∪ D0) 
= {} .

Formula (4) means that we have to show that

(30) ∃
B4

B4 ∈ B0 ∩ (C0 ∪ D0) .

We prove (30) by splitting up the intersection into its individual components:
We have to prove:

(31) ∃
B4

B4 ∈ B0 ∧ B4 ∈ C0 ∪ D0 .

We prove (31) by case distinction using (5).
Case (5.1) B0 ∩ C0 
= {}:
From (5.1) we know that we can choose an appropriate value such that

(32) B50 ∈ B0 ∩ C0 .

From (32) we can infer

(34) B50 ∈ B0 ,

(35) B50 ∈ C0 .

Now, let B4 := B50. Thus, for proving (31) it is sufficient to prove:

(38) B50 ∈ B0 ∧ B50 ∈ C0 ∪ D0 .
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We prove the individual conjunctive parts of (38):

Proof of (38.1) B50 ∈ B0:

Formula (38.1) is true because it is identical to (34).

Proof of (38.2) B50 ∈ C0 ∪ D0:

In order to prove (38.2) we may assume

(40) B50 /∈ D0

and show:

(39) B50 ∈ C0 .

(Note, that in all other cases the formula (38.2) trivially holds!)
Formula (39) is true because it is identical to (35).
Case (5.2) B0 ∩ D0 
= {}:
From (5.2) we know that we can choose an appropriate value such that

(41) B60 ∈ B0 ∩ D0 .

From (41) we can infer

(43) B60 ∈ B0 ,

(44) B60 ∈ D0 .

Now, let B4 := B60. Thus, for proving (31) it is sufficient to prove:

(47) B60 ∈ B0 ∧ B60 ∈ C0 ∪ D0 .

We prove the individual conjunctive parts of (47):

Proof of (47.1) B60 ∈ B0:

Formula (47.1) is true because it is identical to (43).

Proof of (47.2) B60 ∈ C0 ∪ D0:

In order to prove (47.2) we may assume

(49) B60 /∈ D0

and show:

(48) B60 ∈ C0 .

(Note, that in all other cases the formula (47.2) trivially holds!)
Formula (48) is proved because (49) and (44) are contradictory. �

Although the prover does not generate any failing branches in this example it is substantially
slower than the CASC provers. SPASS shows similar behavior like the Theorema prover in that
(SET624) is the example in which SPASS performs by far worst. Most probably, the reason
for the weak performance of the Theorema set theory prover is an inefficient implementation of
matching the existentially quantified variable against constants available in the knowledge base,
which is needed several times in this example. Note, however, that the proof is straightforward
and easy to comprehend for a human reader.
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9. Conclusion

This paper describes the design and the implementation of an automated prover for Zermelo–
Fraenkel set theory (ZF) in the frame of the Theorema system. In particular, we describe how the
PCS paradigm for structuring automated theorem provers, which has already been used in other
provers provided in Theorema, has been accommodated to set theory. The prover is intended to
support mathematicians working in arbitrary areas of mathematics that are formulated using ZF
rather than for proving theorems of ZF from the axioms. This means, we aim at proving theorems
in the flavor of the examples shown in Sections 8.2.2 and 8.2.4 much more than most of the
examples from the TPTP library. The proofs shown in Section 8 demonstrate that the Theorema
set theory prover is able to produce proofs of non-trivial theorems in a human-comprehensible
style. On average, the computing times for automatically generating the formatted proofs are
comparably low. The set theory prover as described in this paper is contained in the public version
of the Theorema system, which is freely available at http://www.theorema.org.

From the point of view of prover design, the set theory prover is the first prover in the
Theorema system that interfaces proving with computing based on available language semantics.
The special provers STKBR and STC will be used as models for future special provers requiring
access to the Theorema computation engine. Further investigations will be necessary in order to
handle conditional rewriting more efficiently and to improve the S-phase by developing more
powerful special solvers and by interfacing solvers available in the computer algebra and the
constraint solving community.
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