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1. Introduction

The Wadge reducibility of subsets of the Baire space [26,27] is a classical object of descriptive set theory. In this paper,

which is a slight extension of the conference paper [23], we consider a generalization of theWadge reducibility from the case

of subsets A of a topological space X (identified with the characteristic functions cA : X → {0, 1}) to the case of k-partitions

ν : X → k of X (such functions ν are in a natural bijective correspondence with tuples (A0, . . . ,Ak−1) of pairwise disjoint sets

with A0 ∪ · · · ∪ Ak−1 = X) for an integer k ≥ 2 which is identified with the set {0, . . . , k − 1}. Study of the Wadge reducibility

of k-partitions was initiated in [3,25,13,5,6,16,17,19,22].1

We establish some results on the Wadge degrees and on the Boolean hierarchy of k-partitions of some spaces, where

k is a natural number. The main attention is paid to the Baire space, Baire domain and their close relatives. For the case

of �0
2-measurable k-partitions the structures of Wadge degrees are characterized completely. For many degree structures,

undecidability of the first-order theories is shown, for any k ≥ 3.

We start in Section 2 with introducing some notation. In Sections 3 and 4 we describe some relevant classes of posets,

remind some known and establish some new observations about them. Section 5 recalls definition and properties of the

Boolean hierarchy of k-partitions. In Section 6 we discuss some substructures of the structure of Wadge degrees in the Baire

and Cantor spaces. In Section 7 we establish some facts on the Wadge reducibility in two natural classes of ω-algebraic

domains while in Section 8 we provide additional information about this structure in the Baire and Cantor domains. We

conclude in Section 9 with a short discussion and open questions.
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1 I am grateful to Pierre Simonnet for providing a copy of [25].
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2. Notation

Levels of the Borel hierarchy in a space X are denoted �0
α ,�

0
α ,�

0
α , for α < ω1, so, in particular, �0

α = co-�0
α is the set of

complements of �0
α-sets and �0

α = �0
α ∩ �0

α . By Bwe denote the class of Borel sets. If the space is not clear from the context,

we may use more exact notation like �0
n(X) or B(X).

Let X be a space, μ, ν : X → k be k-partitions of X and C a class of k-partitions of X . We say that μ is Wadge reducible to

ν (in symbols, μ ≤W ν) if μ = ν ◦ f for some continuous function f on X . For k = 2 this definition coincides with the Wadge

reducibility of subsets of X . Let C ≤W ν denote that any element of C is Wadge reducible to ν, and ν ≡W C denote that ν is

Wadge complete in C, i.e. ν ∈ C and C ≤W ν.

Since for many natural spaces (e.g., for the space of reals) the structure of Wadge degrees of �0
2 is complicated [6] we

restrict our attention mainly to the Baire space, Baire domain and some of their close relatives. For such spaces we give a

complete characterization of the structure ofWadge degrees of�0
2-measurable k-partitions. We extend themain facts about

theHausdorff difference hierarchy of sets in the Baire space [7] and in theω-algebraic domains [18] to the case of k-partitions.

We also show that many substructures of the Wadge degrees of k-partitions have undecidable first-order theories for k ≥ 3.

Recall that first-order theory FO(A) of a structure A of signature σ is the set of first-order sentences of signature σ which are

true in A. A theory of signature σ is hereditary undecidable if any of its subtheories of the same signature σ is undecidable. Of

course, any hereditary undecidable theory is undecidable.

Weuse standard set-theoretic notation. The class of subsets ofX is denoted P(X). For any class C ⊆ P(X), let co-C be the class

of all complements of sets in C, BC(C) the Boolean closure of C and Ck the set of C-partitions (or, more exactly, C-measurable

k-partitions), i.e. partitions ν ∈ kX such that ν−1(i) ∈ C for each i < k. We assume the reader to be familiar with the notion of

ordinal, in particular with the first non-countable ordinal ω1.

Let us recall definition of the Baire and Cantor spaces and domains that are of primary importance for mathematics and

computer science. Let ω* be the set of finite sequences (strings) of natural numbers. Let ω+ be the set of finite non-empty

strings of natural numbers. The empty string is denoted by ∅, the concatenation of strings σ , τ by σ�τ or just by στ . By σ � τ

we denote that the string σ is an initial segment of the string τ (please be careful in distinguishing � and ⊆). Let ωω be the

set of all infinite sequences of natural numbers (i.e., of all functions ξ : ω → ω). For σ ∈ ω* and ξ ∈ ωω , we write σ � ξ to

denote that σ is an initial segment of the sequence ξ . Define a topology on ωω by taking arbitrary unions of sets of the form

{ξ ∈ ωω | σ � ξ}, σ ∈ ω*, as open sets. The space ωω with this topology is known as the Baire space, and the subspace 2ω of ωω

is known as the Cantor space. It is well known that 2ω is homeomorphic to the space nω for each n, 2 ≤ n < ω.

The Baire domain is the set ω≤ω = ω* ∪ ωω of finite and infinite strings of natural numbers, with the unions of sets of the

form {ξ ∈ ω≤ω | σ � ξ}, σ ∈ ω*, as open sets. For any 2 ≤ n < ω, the Cantor domain is the set n≤ω = n* ∪ nω of finite and infinite

words over the alphabet n considered as the subspace of the Baire domain. Note that the Cantor domains n≤ω and m≤ω are

not homeomorphic for distinct n andm. A computability theory for the Baire domain was developed in [24].

We use some standard notation and terminology on partially ordered sets (posets) which may be found e.g. in [2]. We

will not be very cautious when applying notions about posets also to preorders; in such cases we mean the corresponding

quotient-poset of thepreorder. Aposet (P; ≤)will beoften shorter denoted just byP. Any subset of aposetPmaybe considered

as a poset with the induced partial order. In particular, this applies to the “upper cones” x̌ = {y ∈ P | x ≤ y} defined by any

x ∈ P. A well preorder is a preorder P that has neither infinite descending chains nor infinite antichains. For such preorders

(as well as for the well-founded preorders) there is a canonical rank function rkP assigning ordinals to the elements of P;

rank of P is by definition the supremum of ranks of its elements. With any well preorder P we associate also its width w(P)

defined as follows: if P has antichains with any finite number of elements, then w(P) = ω, otherwise w(P) is the greatest

natural number n for which P has an antichain with n elements.

We conclude this sectionwith introducing somemore special terminology. By a base in X wemean a classL ⊆ P(X) closed

under finite unions and intersections. A base L is a σ -base if it is closed also under countable unions. As is well-known, any

level �0
α , α > 0, of the Borel hierarchy in X is a σ -base. A base L is reducible if it has the reduction property [7], i.e. for all

C0,C1 ∈ L there are disjoint C ′
0
,C ′

1
∈ L such that C ′

i
⊆ Ci for both i < 2 and C0 ∪ C1 = C ′

0
∪ C ′

1
. A base L is σ -reducible, if for

each countable sequence C0,C1, . . . in L there is a countable sequence C ′
0
,C ′

1
, . . . in L (called a reduct of C0,C1, . . .) such that

C ′
i
∩ C ′

j
= ∅ for all i �= j and

⋃
i<ω C ′

i
= ⋃

i<ω Ci. It is well-known [7] that any class �0
α , α > 1, is σ -reducible. For the class �0

1

of open sets the situation is more subtle: it is σ -reducible for some natural spaces (e.g., for the Baire and Cantor spaces and

domains) while it is not reducible for some other natural spaces (e.g., for the space of reals).

3. Discrete weak semilattices

In this section we summerize some auxiliary algebraic notions and facts. Recall that semilattice is a structure (P; ≤,∪)

consisting of a preorder (P; ≤) and a binary operation ∪ of supremum in (P; ≤) (thus, we consider only upper semilattices).

By σ -semilattice we mean a semilattice in which every countable set of elements has a supremum. With a slight abuse of

notation, we apply the operation ∪ also to finite non-empty subsets of P. This causes no problem because the supremum of

any non-empty finite set is unique up to the equivalence relation ≡ induced by ≤.
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We start with a definition which is a slight modification of the corresponding notions introduced in [14,15].

Definition 3.1. Let I be a non-empty set. By I-discrete weak semilattice (dws, for short) we mean a structure (P; ≤, {Pi}i∈I)
with Pi ⊆ P such that:

(i) (P; ≤) is a preorder;

(ii) for all n < ω, x0, . . . , xn ∈ P and i ∈ I there exists ui = ui(x0, . . . , xn) ∈ Pi which is a supremum for x0, . . . , xn in Pi, i.e.

∀j ≤ n(xj ≤ ui) and for any y ∈ Pi with ∀j ≤ n(xj ≤ y) it holds ui ≤ y;

(iii) for all n < ω, x0, . . . , xn ∈ P, i �= i′ ∈ I and y ∈ Pi′ , if y ≤ ui(x0, . . . , xn) then y ≤ xj for some j ≤ n.

By σ -dws we mean a dws (P; ≤, P0, . . . , Pk−1) that has the same properties also for all ω-sequences x0, x1, . . . in P.

Throughout the paper, we are interested in the case when I = k for some integer k ≥ 2; in this case we write the dws also

in the form (P; ≤, P0, . . . , Pk−1). Note that the operations ui above may be considered as n-ary operations on P for each n > 0

(in σ -dws’s even as ω-ary operations). These operations are associative and commutative. The following properties of dws’s

are immediate (see [14,15]).

Proposition 3.2. Let (P; ≤, P0, . . . , Pk−1) be a dws and y, x0, . . . , xn ∈ P0 ∪ · · · ∪ Pk−1.

(i) If xj ≤ y for all j ≤ n then ui(x0, . . . , xn) ≤ y for some i < k.

(ii) If y ≤ ui(x0, x . . . , xn) for all i < k then y ≤ xj for some j ≤ n.

(iii) If {x0, . . . , xn} has no greatest element then it has no supremum in P0 ∪ · · · ∪ Pk−1.

Note that if (P; ≤, P0, . . . , Pk−1) is a σ -dws then the last proposition holds true also for ω-sequences

x0, x1, . . . ∈ P0 ∪ · · · ∪ Pk−1.

The next easy assertion shows that considering of only binary operations ui is sufficient to recover the structure of a dws.

Proposition 3.3

(i) Let (P; ≤, P0, . . . , Pk−1) be a dws. Then the binary operations u0, . . . ,uk−1 on P have for all x, y, z, t ∈ P and distinct i, j < k

the following properties: x, y ≤ ui(x, y); x, y ≤ ui(z, t) → ui(x, y) ≤ ui(z, t);uj(z, t) ≤ ui(x, y) → (uj(z, t) ≤ y ∨ uj(z, t) ≤ z).

(ii) Let (P; ≤) be a preorder and u0, . . . ,uk−1 binary operations on P satisfying the properties in (i). Then (P; ≤, P0, . . . , Pk−1),

where Pi = {ui(x, y) | x, y ∈ P}, is a dws.

(iii) The maps (P; ≤, P0, . . . , Pk−1) �→ (P; ≤,u0, . . . ,uk−1) and back are inverses of each other, up to isomorphism of the quotient-

structures.

By the last proposition, we may apply the term “dws” also to the structures (P; ≤,u0, . . . ,uk−1) satisfying the three

properties in (i). Note that the class of dws’s written in this form is universally axiomatizable, so any substructure of a

dws (P; ≤,u0, . . . ,uk−1) is also a dws.

Note that for any dws the unary operations ui are closure operators on (P; ≤), i.e. they satisfy ∀x(x ≤ ui(x)), ∀x∀y(x ≤ y →
ui(x) ≤ ui(y)) and ∀x(ui(ui(x)) ≤ ui(x)). They have also the discreteness property: ∀x∀y(ui(x) ≤ uj(y) → ui(x) ≤ y), for all i �= j.

This shows a close relation of dws’s to the semilattices with discrete closures (dc-semilattices, for short) introduced in [15].

Definition 3.4. By semilattice with discrete closures (dc-semilattice for short) we mean a structure (S; ≤,∪, p0, . . . , pk−1)

satisfying the following axioms:

(1) (S; ∪) is an upper semilattice, i.e. it satisfies (x ∪ y) ∪ z = x ∪ (y ∪ z), x ∪ y = y ∪ x and x ∪ x = x, for all x, y, z ∈ S.

(2) ≤ is the partial order on S induced by ∪, i.e. x ≤ y iff x ∪ y = y, for all x, y ∈ S.

(3) Every pi, i < k, is a closure operation on (S; ≤), i.e. it satisfies x ≤ pi(x), x ≤ y → pi(x) ≤ pi(y) and pi(pi(x)) ≤ pi(x), for

all x, y ∈ S.

(4) The operations pi have the following discreteness property: for all distinct i, j < k, pi(x) ≤ pj(y) → pi(x) ≤ y, for all

x, y ∈ S.

(5) Every pi(x) is join-irreducible, i.e. pi(x) ≤ y ∪ z → (pi(x) ≤ y ∨ pi(x) ≤ z), for all x, y, z ∈ S.

By dcσ -semilattice we mean a dc-semilattice (S; ≤,∪, p0, . . . , pk−1) such that (S; ∪) is a σ -semilattice and the axiom 5) of

dc-semilattices holds also for supremums of countable subsets of S, i.e. pi(x) ≤ ⋃
j<ω yj implies that pi(x) ≤ yj for some j < ω;

we express this by saying that pi(x) is σ -join-irreducible.

The next easy assertion shows that dws’s that are semilattices essentially coincide with the dc-semilattices.

Proposition 3.5

(i) Let (P; ≤, P0, . . . , Pk−1) be a dws and (P; ≤,∪) is a semilattice. Then the structure (P; ≤,∪,u0, . . . ,uk−1) with the unary

operations ui on P is a dc-semilattice.

(ii) If (P; ≤,∪, p0, . . . , pk−1) is a dc-semilattice then (P; ≤, P0, . . . , Pk−1), where Pi = {pi(x) | x ∈ P} is a dws.

(iii) The maps (P; ≤,∪, P0, . . . , Pk−1) �→ (P; ≤,∪,u0, . . . ,uk−1)) and back are inverses of each other, up to isomorphism of the

quotient-structures.

(iv) Similar relationship exists between dcσ -semilattices and σ -dws’s.
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In [15] we considered also some variations of dws’s and dc-semilattices. By 2-dws we mean a structure (P; ≤, {Pj
i
}i,j∈I)

with the properties similar to those of dws’s with the only exception: this time the property (iii) states that for all n < ω,

x0, . . . , xn ∈ P, i �= i′, j �= j′ and y ∈ P
j′
i′ , if y ≤ u

j
i
(x0, . . . , xn) then y ≤ xl for some l ≤ n. By a 2-dc-semilatticewemean a structure

(P; ≤,∪, {rj
i
}i,j∈I) satisfying the same properties as dc-semilattices with a similar modification of the discreteness property:

for all x, y ∈ P, i �= i′, j �= j′, rj
i
(x) ≤ r

j′
i′ (y) → r

j
i
(x) ≤ y. Analogs of Propositions 3.2–3.5 are easily seen to be true also for 2-dws’s

and 2-dc-semilattices. We state also the following evident relationship between the introduced notions.

Proposition 3.6. (i) If (P; ≤, {Pj
i
}i,j∈I) is a 2-dws then (P; ≤, {Pi

i
}i∈I) is a dws.

(ii) If (P; ≤,∪, {rj
i
}i,j∈I) is a 2-dc-semilattice then (P; ≤,∪, {ri

i
}i∈I) is a dc-semilattice.

(iii) Similar relationship exists between 2-σdc-semilattices and 2-σ -dws’s.

In [21] it was shown that most non-trivial dws’s and 2-dws’s have undecidable first-order theories. In particular, the

following fact holds true.

Proposition 3.7. Let k ≥ 3 and P be a dws or a 2-dws that is not linearly ordered. Then FO(P) is hereditary undecidable.

4. The homomorphic preorder

In this section we recall some definitions and facts about the so called homomorphic preorders studied in [5,6,8,9,16,

19,10,11], and make some additional remarks. The homomorphic preorders provide minimal models for some theories

discussed in the previous section. Most posets considered here are assumed to be (at most) countable and without infi-

nite chains. The absence of infinite chains in a poset (P; ≤) is of course equivalent to well-foundednes of both (P; ≤) and

(P; ≥).

Bya forestwemeanaposetwithout infinite chains inwhicheveryupper cone x̌ is a chain.A tree is a foresthaving thebiggest

element (called the root of the tree). Let (T; ≤) be a tree without infinite chains; in particular, it is well-founded. As for each

well-foundedpartial order, there is a canonical rank function rkT fromT toordinals definedby rkT (x) = sup{rkT (y) + 1 | y < x}.
The rank rk(T) of (T; ≤) is by definition the ordinal rkT (r), where r is the root of (T; ≤). It is well-known that rank of any

countable treewithout infinite chains is a countable ordinal, and any countable ordinal is the rank of such a tree. Since (ω*; �)

is the infinite branching tree, any tree (resp., forest) (P; ≤) without infinite chains is isomorphic to a tree (resp., forest) (P ′; �)

where P′ is an initial segment of (ω*; �) (resp., of (ω+; �)).

A k-poset is a triple (P; ≤, c) consisting of a poset (P; ≤) and a labeling c : P → k. Rank of a k-tree (or a k-poset) (T; ≤, c) is by

definition the rankof (T; ≤). Amorphism f : (P; ≤, c) → (P′; ≤′, c′)betweenk-posets is amonotone function f : (P; ≤) → (P′; ≤′)
respecting the labelings, i.e. satisfying c = c′ ◦ f . Let P̃k , F̃k , T̃k and T̃ i

k
denote the classes of all countable k-posets, countable

k-forests, countable k-trees and countable i-rooted k-trees without infinite chains, respectively. The homomorphic preorder

≤ on P̃k is defined as follows: (P,≤, c) ≤ (P′,≤′, c′), if there is a morphism from (P,≤, c) to (P′,≤′, c′). Let Pk , Fk , Tk and T i
k
be

the subsets of the corresponding tilde-sets formed by finite posets only. Note that the empty poset ∅ is assumed to be in Fk

but not in T̃k; it is the smallest element of (P̃k; ≤).

As observed in [8,16], the structure (P̃k; ≤) has for k > 2 infinite antichains and infinite descending chains. In contrast, the

following result from [19] shows that the structure of k-forests has much better properties. This is of interest for our topic

because the structure is closely related to theWadge reducibility of k-partitions. We call a k-tree (T; ≤, c) ∈ T̃k repetition free

if c(x) �= c(y) whenever y is an immediate successor of x in (T; ≤).

Proposition 4.1. (i) For any k ≥ 2, (F̃k; ≤) is a well preorder of rank ω1.

(ii) For any k ≥ 2, (Fk; ≤) is an initial segment of (F̃k; ≤) that consists exactly of the elements of finite rank.

(iii) w(F̃2) = 2 and w(F̃k) = ω for k > 2.

(iv) For any k ≥ 2, the quotient structure of (F̃k; ≤) is a distributive lattice and a σ -semilattice.

(v) Every T ∈ T̃k is equivalent to some repetition free S ∈ T̃k.

Let P � Q be the join of k-posets P,Q and
⊔

i Pi = P0 � P1 � · · · the join of an infinite sequence P0, P1, . . . of k-posets. For a

k-forest F and i < k, let pi(F) be the k-tree obtained from F by adjoining a new biggest element and assigning the label i to

this element. It is clear that the introduced operations respect the homomorphic equivalence and that any finite (countable)

k-forest is equivalent to a finite (respectively, countable) term of signature {�, p0, . . . , pk−1, 0, . . . , k − 1}without free variables

(the constant symbol i in the signature is interpreted as the singleton tree carrying the label i). For k-trees T0, T1, . . . and i < k,

define the k-tree Ui(T0, T1, . . .) = pi(T0 � T1 � · · ·). The following facts were observed in [16,19].
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Proposition 4.2. (i) The quotient structure of (F̃k; �, p0, . . . , pk−1) (resp., of (Fk; �, p0, . . . , pk−1)) is a dcσ -semilattice (resp., a

dc-semilattice).

(ii) The quotient structure of (T̃k; ≤, T̃ 0
k
, . . . , T̃ k−1

k
) (of (Tk; ≤,T 0

k
, . . . ,T k−1

k
)) is a σ -dws (resp., a dws).

For a dcσ -semilattice S, let σ ji(S) (ji(S)) denote the set of σ -join-irreducible (resp., join-irreducible) elements of S, then

of course σ ji(S) ⊆ ji(S). The next assertion characterizes irreducible elements in F̃k and gives a canonical representation of

elements in this lattice. By canonical representation of x ∈ F̃k we mean a representation x = ⊔
Y for some finite antichain

Y ⊆ ji(F̃k). The following fact was established in [22], Proposition 6.3.

Proposition 4.3. (i) σ ji(F̃k) = T̃k.

(ii) ji(F̃k) coincides with the set of elements of the form T0 � T1 � · · · , for some ascending chain T0 ≤ T1 ≤ · · · in T̃k.

(iii) Any element of F̃k has a unique canonical representation.

The following result shows that the structures from Proposition 4.2 have natural minimality properties.

Proposition 4.4. (i) Let (S; ≤,∪, p0, . . . , pk−1) be a dcσ -semilattice and let a be an element of S such that a < pi(a) for all i < k.

Then the sub-dcσ -semilattice (a) of S generated by a is isomorphic to the quotient structure of (F̃k; ≤,�, p0, . . . , pk−1). A similar

assertion holds true for the dc-semilattices and Fk.

(ii) Let (S; ≤,u0, . . . ,uk−1) be a σ -dws and {a0, . . . , ak−1} an antichain in (S; ≤). Then the sub-σ -dws (a0, . . . , ak−1) of S generated

by {a0, . . . , ak−1} is isomorphic to the quotient structure of (T̃k; ≤,U0, . . . ,Uk−1). A similar assertion holds true for the dws’s and Tk.

Proof (sketch). The assertion (i) was proved in [19]. First define a function f : T̃k → (a) by induction on the rank of trees

as follows: if T is a singleton tree carrying the label i then f (T) = pi(a); if T = pi(T0 � T1 � · · ·) is not singleton and Tj ∈ T̃k \ T̃ i
k

(such a representation exists by Proposition 4.1(v)) then f (T) = pi(f (T0) � f (T1) � · · ·). Nowextend f to the set F̃k in the natural

way: for every countable set U ⊆ T̃k , set f (�U) = �{f (T) | T ∈ U}. It is not hard to see that in this way we obtain a correctly

defined function f from the quotient structure of F̃k onto (a). An induction shows that this function is indeed a desired

isomorphism. Note that the function f actually preserves countable unions of arbitrary elements.

(ii) is checked in a similar way, so we define only the function f : T̃k → (a0, . . . , ak−1) by induction on the rank of trees as

follows: if T is a singleton tree carrying the label i then f (T) = ai; if T = pi(T0 � T1 � · · ·) is not singleton and Tj ∈ T̃k \ T̃ i
k
then

f (T) = Ui(f (T0), f (T1), . . .). �
In [10,11] some facts about definability, automorphisms and undecidability in the introduced structureswere established,

e.g.:

Proposition 4.5. For any k ≥ 3, each element of the quotient structure of (Fk; ≤, 0, . . . , k − 1) is first-order definable. The same

is true for the quotient structure of (Tk; ≤, 0, . . . , k − 1).

In [12] we show that similar definability result holds true also for (F̃k; ≤, 0, . . . , k − 1) and (T̃k; ≤, 0, . . . , k − 1), only in this

case we have to replace first-order definability by Lω1,ω-definability.

Let Sk be the symmetric group on k elements, i.e. the group of permutations of the elements 0, . . . , k − 1. Let Aut(A) denote

the automorphism group of a structure A. By � we denote the isomorphism relation. The next result is a straightforward

generalization of the corresponding fact in [11].

Proposition 4.6. (i) For any k ≥ 2 we have Aut(Fk; ≤) � Aut(Tk; ≤) and Aut(F̃k; ≤) � Aut(T̃k; ≤).

(ii) Aut(T2; ≤) � Sω
2
and Aut(T̃2; ≤) � S

ω1

2
.

(iii) For any k ≥ 3,Aut(Fk; ≤) � Sk � Aut(F̃k; ≤).

(iv) For all k ≥ 2 and i < k,Aut(T i
k
; ≤) � Sk−1 � Aut(T̃ i

k
; ≤).

The next fact strengthens Proposition 3.7 for the structures considered here.

Proposition 4.7. (i) For all k > 2 and i < k, the first-order theories of the quotient structures of (Fk; ≤), (T i
k
; ≤) and (Tk; ≤) are

computably isomorphic to the first-order arithmetic FO(ω,+, ·).
(ii) For all k > 2 and i < k, the theory FO(ω; +, ·) is m-reducible to any of the theories FO(F̃k; ≤), FO(T̃k; ≤), FO(T̃ i

k
; ≤).

Proof. (i) is established in [10].

(ii) We consider only FO(F̃k; ≤), the other cases are similar. By (i), it suffices to m-reduce FO(Fk; ≤) to FO(F̃k; ≤). For this

it suffices to show that the set Fk is first-order definable in (F̃k; ≤). By Proposition 4.1, Fk coincides with the set of elements

x ∈ F̃k such that any y ≤ x is either minimal or has an immediate predecessor; this informal definition of Fk may be written

as a first-order formula of signature {≤}. �
Note that, in contrast with the last proposition, the first-order theories of all structures above are decidable for k = 2.
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5. The Boolean hierarchy

In this section we recall definitions and some facts related to the Boolean hierarchy of k-partitions studied for the case of

finite k-posets in [8,9,16] and for the countable case in [19,22].

Let P = (P; ≤) be a countable poset without infinite chains, X a space and L a σ -base in X (see Section 2). Functions of the

form S : P → L are called P-families and are denoted also by {Sp}p∈P . A P-family ismonotone if it is a monotone function from

(P; ≤) into (L; ⊆). A P-family S is admissible if
⋃

p Sp = X and Sp ∩ Sq = ⋃{Sr | r ≤ p, q} for all p, q ∈ P. Note that any admissible

P-family ismonotone. Note also that if P is a forest then a P-family S is admissible iff it ismonotone,
⋃

p Sp = X and Sp ∩ Sq = ∅
for all p, q incomparable in P. For any P-family S, define a map S̃ : P → P(X) by S̃p = Sp \ ⋃

q<p Sq. It is easy to see that if S is

admissible then {S̃p}p∈P is a partition of X .

For a countable k-poset (P, c)without infinite chains, letL[P, c] = {c ◦ S̃ | S ∈ H(P,L)}whereH(P,L) is the set of admissible

P-families and S̃ is identifiedwith the function fromX to P sending x ∈ X to theuniquep ∈ Pwith x ∈ S̃p. Note thatL[P, c] ⊆ kX ,

i.e. L(P, c) is a class of k-partitions of X . The Boolean hierarchy of k-partitions over L is by definition the family {L[P]}P∈P̃k
; by

BHk(L) we denote the collection {L[P] | P ∈ P̃k} of levels of this hierarchy. We consider also a smaller collection of classes of

k-partitions FBHk(L) = {L[P] | P ∈ F̃k} defined by the k-forests.

In [8,19] it was observed that levels of the Boolean hierarchy are closely related to the homomorphic preorder, namely

for all countable k-posets P and Q without infinite chains P ≤ Q implies L(P) ⊆ L(Q ). Since, by the preceding section, the

homomorphic preorder of k-posets is far from being a well preorder, the Boolean hierarchy of k-partitions defined above

does not in general have properties one expects from a hierarchy. In [16,19] it was shown that the situation is better for the

Boolean hierarchies over σ -reducible bases.

Proposition 5.1. Over any σ -reducible σ -base L,BHk(L) = FBHk(L), and hence the poset (BHk(L); ⊆) is a well preorder of rank

≤ ω1.

The last result applies to the base L = �0
1 of open sets in the Baire and Cantor spaces because this base is well-known

to be σ -reducible (see Theorem 22.16 in [7]). For k = 2, the Boolean hierarchy over this base coincides with the Hausdorff

difference hierarchy. For k ≥ 3we obtain an extension of the difference hierarchy of sets to the case of k-partitions considered

in [22]).

The next easy fact establishes the reduction property for the Baire and Cantor domains.

Proposition 5.2. The base �0
1 of open sets in the Baire and Cantor domains is σ -reducible.

Proof. We consider the Baire domain but the argument works for the Cantor domains as well. Let An ∈ �0
1 for all n < ω. Let

B be the set of minimal elements in (ω* ∩ (
⋃

n<ω An); �). For any n < ω, set

Bn = {u ∈ B ∩ An | ∀m < n(u �∈ Am)}, A′
n = {ξ ∈ ω≤ω | ∃u ∈ Bn(u � ξ)}.

Then {Bn}n<ω is a partition of B and {A′
n}n<ω is a reduct of {An}n<ω . �

In Sections 7 and 8 we develop a complete theory of the Boolean hierarchy and Wadge reducibility for some classes of

domains.

6. Wadge reducibility in Baire and Cantor spaces

Herewe consider theWadge reducibility of k-partitions for the Baire and Cantor spaces. To our knowledge, the first result

about the Wadge reducibility of k-partitions of the Baire and Cantor spaces is Theorem 3.2 in [3]. The following assertion is

a particular case of that theorem.

Proposition 6.1. Let X ∈ {ωω , 2ω}. Then the structure (B(X); ≤W ) of Borel-measurable k-partitions is a well preorder.

This assertion gives important information about the structure (B(X); ≤W ) but it leaves open many questions. Let us

introduce some algebraic structure on this preorder. Define an operation μ ⊕ ν on k-partitions of ωω by (μ ⊕ ν)(0 · ξ) = μ(ξ)

and (μ ⊕ ν)(i · ξ) = ν(ξ) for all 0 < i < ω and ξ ∈ ωω . For a sequence ν0, ν1, . . . of k-partitions of ωω , define the k-partition

ν = ⊕
i<ω νi by ν(i · ξ) = νi(ξ), for all i < ω and ξ ∈ ωω . Note that the definition of the binary join operation μ ⊕ ν applies also

to the Cantor space but the ω-ary one does not. This leads to some minor distinctions in the structures of Wadge degrees.

For a k-partition ν ofωω and i < k, definea k-partitionpi(ν)ofωω as follows: [pi(ν)](ξ) = i, if ξ �∈ 0*1ωω , and [pi(ν)](ξ) = ν(η),

if ξ = 0n1η (here we use the self-evident notation in the style of regular expressions in automata theory). Note that the

definition of pi applies also to the Cantor space.

The next fact was established in [16,19].
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Proposition 6.2. (i) The quotient structures of (kωω ; ≤W ,⊕, p0, . . . , pk−1) and of ((�0
2)k; ≤W ,⊕, p0, . . . , pk−1) in the Baire space

are dcσ -semilattices, and in the Cantor space they are dc-semilattices.

(ii) The quotient structure of ((BC(�0
1))k; ≤W ,⊕, p0, . . . , pk−1) in the Baire and Cantor spaces is a dc-semilattice.

Nowwe turn to characterizingof some ideals of theWadgepreorder in theBaire space. Adjoining anewsmallest element⊥
to ((�0

2)k with pi(⊥) = iwe obtain (by Proposition 6.2) a dcσ -semilattice ((�0
2)k ∪ {⊥}; ≤W ,⊕, p0, . . . , pk−1). By Proposition 6.2

and the proofsketch of Proposition 4.4, there is a natural embeddingμ : F̃k → (�0
2)k ∪ {⊥} of dcσ -semilattices withμ(∅) = ⊥.

For a proof of the next result see [22].

Theorem 6.3. The map μ induces an isomorphism of the quotient structure of (F̃k \ {∅}; ≤,�, p0, . . . , pk−1) onto that of

((�0
2(ω

ω))k; ≤W ,⊕, p0, . . . , pk−1). Moreover, μ(F) ≡W �0
1[F] for each F ∈ F̃k.

Note that from earlier unpublished work of P. Hertling (see Satz 6.2 b) in [5] and Theorem 2.2.4 in [6]) it follows that the

quotient structures of ((BC(�0
1))k; ≤W ) and of (Fk; ≤) are isomorphic. From the results above it follows that μ induces such

an isomorphism and preserves the operations p0, . . . , pk−1. Thus, we have

Theorem 6.4. Let X ∈ {ωω , 2ω}. Then the quotient structure of structures ((BC(�0
1))k; ≤W ,⊕, p0, . . . , pk−1) and (Fk; ≤

,�, p0, . . . , pk−1) are isomorphic.

Taking into account that the Cantor space is compact it is not hard to see that the proof in [22] implies the following fact

in which (T̃k) denotes the dc-semilattice generated by T̃k in the dc-semilattice (F̃k).

Corollary 6.5. The restriction of μ to (T̃k) induces an isomorphism of the quotient structure of ((T̃k); ≤,�, p0, . . . , pk−1) onto the

quotient structure of S = ((�0
2(2

ω))k; ≤W ,⊕, p0, . . . , pk−1). Moreover, μ(T) ≡W �0
1[F] for each F ∈ T̃k. Thus, ji(S) = σ ji(S).

The next result follows from Theorem 6.3, Corollary 6.4 and Proposition 4.6.

Corollary 6.6. For the Baire and Cantor spaces we have:
(i) Aut(BC(�0

1); ≤W ) � Sω
2
and Aut(�0

2; ≤W ) � S
ω1

2
.

(ii) For any k ≥ 3,Aut((BC(�0
1)k; ≤) � Sk � Aut((�0

2)k; ≤).

The next result follows from Theorem 6.3, Corollary 6.4 and proposition 4.7.

Corollary 6.7. For the Baire and Cantor spaces we have:
(i) For any k ≥ 3, the theory FO((BC(�0

1))k; ≤W ) is undecidable and, moreover, it is computably isomorphic to the first-order

arithmetic FO(ω; +, ·).
(ii) For any k ≥ 3, FO((�0

2)k; ≤W ) is undecidable and, moreover, the theory FO(ω; +, ·) is m-reducible to FO((�0
2)k; ≤W ).

We conclude this section with a characterization of �0
2-measurable k-partitions ν in terms of their ranks rk(ν) in the well

preorder ((B(ωω))k; ≤W ).We consider only the Baire space; a slightly different proof establishes the similar fact for the Cantor

space.

Theorem 6.8. Let ν be a Borel measurable k-partition of the Baire space.

(i) ν is �0
2-measurable iff rk(ν) < ω1.

(ii) ν is BC(�0
1)-measurable iff rk(ν) < ω.

Proof. (i) Let ν be �0
2-measurable. Obviously, (�0

2)k is an initial segment of (B(ωω); ≤W ), hence rk(ν) coincides with the rank

of ν in ((�0
2)k; ≤W ). By Theorem 6.3 and Proposition 4.1(i), rk(ν) < ω1.

It remains to show that if ν is not �0
2-measurable then rk(ν) ≥ ω1. Let i < k satisfy ν−1(i) �∈ �0

2. By a well known property

of the Wadge reducibility of sets, �0
2 ≤W ν−1(i) or �0

2 ≤W ν−1(i), hence there is a sequence {Aα}α<ω1
of σ -join-irreducible

subsets of the Baire space such that Aα ≤W ν−1(i) and (
⊕

γ≤α Aγ ) <W Aβ for all α < β < ω1 (e.g., take Aα as aWadge complete

set in the α-th non-self-dual level of the difference hierarchy). For any α < ω1, let fα be a continuous function on the

Baire space that Wadge reduces Aα to ν−1(i), and let μα = ν ◦ fα . Then μα ≤W ν and μβ �≤W (
⊕

γ≤α μγ ) for all α < β < ω1
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(because Aα = μ−1
β (i)). For the sequence ρα = ⊕

γ≤α μγ we then have ρα ≤W ν and ρα <W ρβ for all α < β < ω1. Therefore,

ω1 ≤ rk(ν).

(ii) Follows from (i), Theorem 6.4 and Proposition 4.1 (ii). �

7. Wadge reducibility in domains

Here we discuss the Wadge reducibility in the ω-algebraic domains that are central objects of the domain theory (for

definitions and general properties of these objects see e.g. [1]). For an ω-algebraic domain X , let F(X) denote the countable

set of finitary (or compact) elements. The specialization order is denoted by ≤, and the bottom element of (X; ≤) is denoted

by ⊥.

Let X be an ω-algebraic domain. A set A ⊆ X is called approximable [17] if for any x ∈ A there is a finitary element p ≤ x

with [p, x] ⊆ A, where [p, x] = {y ∈ X|p ≤ y ≤ x}. Call a k-partition ν of X approximable if ν−1(i) is approximable for each i < k.

By a repetition-free ω-chain for ν wemean a sequence {pn}n<ω of finitary elements such that p0 ≤ p1 ≤ . . . and ν(pn) �= ν(pn+1)

for each n < ω.

Proposition 7.1. Let X be an ω-algebraic domain and ν a k-partition of X.

(i) ν is �0
2-measurable iff ν is approximable.

(ii) If ν is �0
2-measurable then it has no repetition-free ω-chain.

Proof. (i) Follows from the result in [18] that a set A ⊆ X is in �0
2 iff both A and its complement are approximable.

(ii) Suppose the contrary: ν has a repetition-free ω-chain. Then for some i < n the characteristic function of ν−1(i) has a

repetition-free ω-chain. By a result in [18], ν−1(i) �∈ �0
2, a contradiction. �

Let X be an ω-algebraic domain, ν a k-partition of X and T = (T ,≤, t) ∈ T̃k . By a ν-representation of T wemean a monotone

function g : (T; ≤) → (F(X); ≤) such that t = ν ◦ g; T is ν-representable if there exists a ν-representation of T .

Proposition 7.2. Let X be an ω-algebraic domain T = (T ,≤, t) ∈ T̃k , and ν a k-partition of X. If T is ν-representable then

�0
1[T ] ≤W ν.

Proof. Let g : T → F(X) be a ν-representation of T . Let μ ∈ �0
1[T ], then μ = t ◦ S̃ for some admissible S : T → �0

1. Define a

function f on X by f (x) = g(a) where a is the unique element of T with x ∈ S̃a. Then f is continuous and μ(x) = t(a) = νg(a) =
νf (x), hence μ ≤W ν. �

Proposition 7.3. Let X be an ω-algebraic domain and ν a �0
2-measurable k-partition of X. Then there exists a ν-representable

T ∈ T̃k such that S ≤ T for each ν-representable S ∈ T̃k.

Proof. Let us construct initial segments T0 ⊆ T1 ⊆ · · · of (ω*; �) and functions fn : Tn → F(X) by induction on n as follows. Set

T0 = {∅}, f0 = {(∅,⊥)} and assume that Tn, fn are already defined. For any leaf τ of Tn, let {pτ
i
}i<k(τ ), k(τ ) ≤ ω, be an enumeration

without repetitions of the set

{q ∈ F(X) | fn(τ ) ≤ q ∧ ν(fn(τ )) �= ν(q))}
(recall that F(X) is always assumed countable). Set

Tn+1 = Tn ∪ {σ�i|σ ∈ leaf (Tn), i < k(τ )}
and

fn+1 = fn ∪ (∪{(σ�i, pτ
i )|σ ∈ leaf (Tn), i < k(τ )}).

Finally, set T = ⋃
n Tn and f = ⋃

n fn. The tree (T; �) has no infinite chains because if ∅ � i0 � i0i1 � · · · were such a chain

then f (∅) ≤ f (i0) ≤ f (i0i1) ≤ · · · would be a repetition-free ω-chain for ν, contradicting Proposition 7.1. Therefore, the k-tree

T = (T ,�, ν ◦ f ) ∈ T̃k is ν-representable. Now let S ∈ T̃k be arbitrary ν-representable tree. By Proposition 4.1(v). w.l.o.g. we

may assume S to be repetition-free. One easily constructs a homomorphism h : S → T (by a similar induction) that witnesses

S ≤ T . �
Next we discuss two classes of ω-algebraic domains introduced and studied in [17]. By a reflective domain we mean

an ω-algebraic domain X such that for some continuous functions q0, e0, q1, e1 : X → X there hold q0e0 = q1e1 = idX , and

e0(X), e1(X) are disjoint open sets. Examples of reflective domains are the Baire and Cantor domains, the domainωω⊥ of partial

functions g : ω ⇀ ω, and many other natural (in particular, functional) domains, see [17].

Define continuous functions sk , rk(k < ω) on X by s0 = e0, sk+1 = e1sk and r0 = q0, rk+1 = rkq1. Let also Dk = sk(X). In [17]

we observed that in any reflective domain X the following properties of the introduced objects hold true: for any k < ω,

rksk = idX ; the sets Dk are open, pairwise disjoint and satisfy Dk = {x|sk(⊥) ≤ x}; {∪kDk ,D0,D1 . . .} is a partition of X .
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For any i < k, define an operation ui sending sequences of k-partitions ν0, ν1, . . . of X to k-partitions of X by letting

ui = ui(ν0, ν1, . . .) to be the map

ui(x) =
{

i if x �∈ ⋃
k Dk

νkrk(x) if x ∈ Dk.

In [17] we observed that the operations ui witness the following

Proposition 7.4. Let X be a reflective domain and Pi = {ν ∈ kX | ν(⊥) = i} for any i < k. Then (kX ; ≤W , {Ps}s∈S) is a σ -dws.

Note that, by Section 3, any subset of kX closed under u0, . . . ,uk−1 is a σ -dws as well. In particular, this applies to �0
α-

measurable k-partitions for α ≥ 2 and to BC(�0
α)-measurable k-partitions for α ≥ 1. The next result generalizes Theorem 5.8

in [17] from the case of sets to the case of k-partitions.

Theorem 7.5. In any reflective domain X , the Boolean hierarchy of k-partitions does not collapse, i.e., for all S, T ∈ T̃k ,�
0
1[S] ⊆

�0
1[T ] iff S ≤ T . Moreover, any level of the Boolean hierarchy has a Wadge complete k-partition.

Proof. Assume w.l.o.g. that S, T are repetition-free and are initial segments of (ω*; �). We need to check only the implication

from left to right. Suppose that S �≤ T , then, by Propositions 7.4 and by the proof sketch of Proposition 4.4(ii), μS �≤ μT

where μS = f (S) for the unique isomorphic embedding f : (T̃k; ≤) → (kX ; ≤W ) sending the one-element tree i to the constant

partition λx.i. So it suffices to show that μS is Wadge complete in �0
1[S] (and μT is Wadge complete in �0

1[T ]). The relation

μS ∈ �0
1[S] is checked by a straightforward induction on the rank of S. It remains to show that �0

1[S] ≤W μS . By Proposition

7.2, it suffices to show that S is μS-representable.

For any σ ∈ ω*, define continuous functions sσ and rσ on X by s∅ = idX , sσk = sσ sk and r∅ = idX , rσk = rkrσ . It is easy

to see that rσ sσ = idX , the sets Dσ = sσ (X) = {x|s(⊥) ≤ x} are open, sσ (⊥) ∈ F(X), Dσ ⊃ Dσn and Dσm ∩ Dσn = ∅ for all m �=
n. Therefore, σ �→ sσ (⊥) is an embedding of (ω*; �) into (F(X); ≤). Moreover, the restriction of this embedding to S is a

μS-representation of S. �
In [17] also another class of domains was considered. By a 2-reflective domain we mean an ω-algebraic domain X with a

top element � such that there exist continuous functions q0, e0, q1, e1 : X → X and open sets B0,C0,B1,C1 with the following

properties: q0e0 = q1e1 = idX ; B0 ⊇ C0 and B1 ⊇ C1; e0(X) = B0 \ C0 and e1(X) = B1 \ C1; B0 ∩ B1 = C0 ∩ C1. Examples of 2-

reflective domains are the domain Pω, and many other natural (in particular, functional) domains, see [17]. The following

fact is Theorem 7.5 in [17].

Proposition 7.6. Let X be a 2-reflective domain. Then (kX ; ≤W , {P j
i
}i,j<k),where P j

i
= {ν ∈ kX |ν(⊥) = i ∧ f (�) = j} for all i, j < k,

is a 2-dws.

As an immediate corollary of Propositions 7.6, 3.6 and 3.7 we obtain

Theorem 7.7. Let X be a reflective or a 2-reflective domain, k ≥ 3 and C is one of the classes P(X),B, BC(�0
1),�

0
n,�

0
n,BC(�0

n),�
0
n+1

in X , where n > 1. Then FO(Ck; ≤W ) is hereditary undecidable.

8. Wadge Reducibility in Baire and Cantor Domains

In this section we consider in more detail the Wadge reducibility of k-partitions of the Baire and Cantor domains. Since

these domains are reflective, the results of the previous section apply to them. Themain result of this section is the following

Theorem 8.1. Let X be the Baire or a Cantor domain. Then the quotient structure of ((�0
2(X))k; ≤W ) is isomorphic to the quotient

structure of (T̃k; ≤).

Proof. We give the proof only for the Baire domain but the argument applies to the other case as well. By Propositions 7.4

and 4.4 (ii), the map T �→ μT from the proof of Theorem 7.5 induces an isomorphic embedding of the quotient-structure

of (T̃k; ≤) into the quotient structure of ((�0
2(ω

ω))k; ≤W ). It remains to show that any �0
2-measurable k-partition ν of ω≤ω

is Wadge equivalent to μT for some T ∈ T̃k . Let T be the biggest ν-representable k-tree that exists by Proposition 7.3. Let

f : T → ω* be the ν-representation of T constructed in the same way as in the proof of Proposition 7.3, only this time we

require in the induction step that {pτ
i
}i<k(τ ), k(τ ) ≤ ω, is an enumeration without repetitions of the set of minimal elements

in ({q ∈ ω* | fn(τ ) ≤ q ∧ ν(fn(τ )) �= ν(q))}; �). Since T is ν-representable, �0
1[T ] ≤W ν by Proposition 7.2. Since μT ∈ �0

1[T ] by
Theorem 7.5, μT ≤W ν.
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It remains to show that ν ≤W μT . Since μT is Wadge complete in �0
1[T ] by Theorem 7.5, it suffices to show that ν ∈ �0

1[T ].
Define S : T → �0

1 by S(σ ) = {ξ ∈ ω≤ω | f (σ ) � ξ}. Since f is an embedding of T into (ω*; �), S is admissible. So it remains to

show that ξ ∈ S̃(σ ) implies ν(ξ) = ν(f (σ )). Suppose the contrary, so f (σ ) � ξ , f (σ i) �� ξ for all σ i ∈ T , and ν(ξ) �= ν(f (σ )). Since

ν is approximable by Proposition 7.1(i), ν([τ , ξ ]) = ν(ξ) for some τ � ξ , τ ∈ ω*. Take the minimal such τ . We have f (σ ) � τ or

τ � f (σ ). The second case is impossible because ν(ξ) �= ν(f (σ )), hence f (σ ) � τ . By construction of f , τ = f (σ i) for some i < m.

A contradiction. �
Restricting the argument above to finite k-trees we obtain

Corollary 8.2. Let X be the Baire or a Cantor domain. Then the quotient structure of (Tk; ≤) is isomorphic to that of

((BC(�0
1(X)))k; ≤W ).

The next result follows from Theorem 8.1, Corollary 8.2 and Proposition 4.6.

Corollary 8.3. For the Baire and Cantor domains we have:
(i) Aut(BC(�0

1); ≤W ) � Sω
2
and Aut(�0

2; ≤W ) � S
ω1

2
.

(ii) For any k ≥ 3,Aut((BC(�0
1)k; ≤) � Sk � Aut((�0

2)k; ≤).

The next result follows from Theorem 8.1, Corollary 8.2 and Proposition 4.7.

Corollary 8.4. Let X be the Baire or a Cantor domain.

(i) For any k ≥ 3, the theory FO((BC(�0
1(X)))k; ≤W ) is computably isomorphic to the first-order arithmetic FO(ω; +, ·).

(ii) For any k ≥ 3, FO(ω; +, ·) is m-reducible to FO((�0
2)(X)))k; ≤W ).

9. Conclusion

This paper extends essentially all previously known results on the difference hierarchy of sets in the Baire and Cantor

spaces to the case of k-partitions. Several facts on the Wadge hierarchy of sets are also extended to the case of k-partitions.

Interestingly, many natural substructures of the structure of Wadge degrees become undecidable for k ≥ 3.

At the same time, many natural open question about the Wadge reducibility of k-partitions remain open. Though the

results of Section 6 provide a complete extension of the theory of Wadge degrees of �0
2-sets (see Section C of Chapter I of

[27]) to the �0
2-measurable k-partitions, very little is known outside this class. We believe that actually all the main facts

about the Wadge reducibility of Borel sets in [27] may be lifted to the case of k-partitions but this of course requires a lot of

additional work.

Section8developsa complete theoryof theBooleanhierarchyandof theWadge reducibilityof�0
2-measurablek-partitions

in the Baire and Cantor domains. Beyond this class, almost nothing is known. In particular, we do not currently knowwhether

the structure of Borel (or even �0
3) sets in the Baire domain is a well preorder.

In [24], a computability theory on the Baire domain was developed. This theory suggests a natural effective version of the

Wadge reducibility on the Baire domain (namely, the many-one reducibility by computable functions). Most probably, as is

usual in computability theory, the corresponding degree structures are complicated even for topologically simple sets and

partitions. But for subclasses with sufficient computability constraints the degree structures may turn out manageable and

useful. It seems natural to make a systematic search for structures of this kind.
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