
Comonadic Notions of Computation

Tarmo Uustalu1

Institute of Cybernetics at Tallinn University of Technology,
Akadeemia tee 21, EE-12618 Tallinn, Estonia

Varmo Vene2

Dept. of Computer Science, University of Tartu,
J. Liivi 2, EE-50409 Tartu, Estonia

Abstract

We argue that symmetric (semi)monoidal comonads provide a means to structure context-dependent notions
of computation such as notions of dataflow computation (computation on streams) and of tree relabelling
as in attribute evaluation. We propose a generic semantics for extensions of simply typed lambda calculus
with context-dependent operations analogous to the Moggi-style semantics for effectful languages based on
strong monads. This continues the work in the early 90s by Brookes, Geva and Van Stone on the use of
computational comonads in intensional semantics.
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1 Introduction

Since the seminal work by Moggi in the late 80s [25], monads, more precisely, strong
monads, have become a generally accepted tool for structuring effectful notions of
computation, such as computation with exceptions, output, computation using an
environment, state-transforming, nondeterministic and probabilistic computation
etc. The idea is to use a Kleisli category as the category of impure, effectful func-
tions, with the Kleisli inclusion giving an embedding of the pure functions from
the base category. Although finer and coarser accounts of effects based on Lawvere
theories [27] (this reference is only the first in a series of papers; for more recent pre-
sentations, see [28,18]) and arrows/Freyd categories [17,30] also exist, the monadic
approach remains central and best known. In particular, monads are part of the
standard libraries of Haskell.
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But monads do not capture all meaningful kinds of impure computation. In
particular, they exclude some natural notions where, instead of producing effects,
computations consume something beyond just values (“contexts” of values). Hence
it is natural to ask whether comonads, likely with some additional structure (as
strength for monads), can deliver a solution for such cases. (Combinations of mon-
ads and comonads via distributive laws can then hopefully account for notions of
computation that are both effectful and context-dependent.) That this may well be
so was hinted very early on by Brookes et al. [8,9] who demonstrated that what they
called computational comonads can be used to make denotational semantics inten-
sional. While that work was not directly involved with general context-dependent
computation, intensional semantics is a form of impure instrumentation of denota-
tional semantics that fits well into this idiom.

In functional programming, Kieburtz [20] was first to advocate comonads as tools
for structuring context-dependent computations and gave some interesting exam-
ples. The specific application of comonads to environment-passing computation or
implicit parameters has been discussed by Lewis et al. [22].

In this paper, we proceed directly from the motivation to treat some impor-
tant notions of context-dependent computation, namely notions of dataflow com-
putation (stream-based computation) and notions of computation on trees such
as tree relabellings in attribute evaluation. We demonstrate that a rather elegant
framework for working with these notions of computation is given by symmetric
(semi)monoidal comonads. Reassuringly, strong monads appear associated with
symmetric monoidal comonads also in works on the categorical semantics of intu-
itionistic linear and modal logic [4,7]. We describe some aspects of the structure of
coKleisli categories corresponding to symmetric (semi)monoidal comonads and de-
scribe then a general interpretation of languages for context-dependent computation
into such categories.

We have previously described our proposal at work on language processors for
dataflow computation [34] and attribute evaluation [35] implemented in Haskell. In
this paper, written with a different slant, we look into the underlying theory, con-
centrating on the issue of the most appropriate additional structure for comonads.

The organization of the paper is the following. First, we present a compressed
recap of strong monads, their Kleisli categories and the semantics of effectful lan-
guages à la Moggi. Then we develop our analogous account of context-dependent
computation based on coKleisli categories of symmetric (semi)monoidal comonads.
We emphasize the important differences resulting from the fact that, despite dual-
izing from monads to comonads, we are still interested in transferring as much of a
given Cartesian closed structure (possibly with coproducts and a uniform parame-
terized fixpoint operation) as possible. Finally, we briefly comment on the relation
to computational comonads and some important advanced issues that we intend to
treat in due detail elsewhere.

We assume that the reader knows symmetric monoidal closed and Cartesian
closed categories and the categorical semantics of simply typed lambda calculus.
We reproduce some basics about monads, comonads, strong functors/monads and
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symmetric monoidal functors/comonads.

2 Monads and effectful computation

We begin by a schematic review of the monad-based approach to effectful compu-
tation. The purpose is to recall the central ideas, the technical machinery and the
big “scheme of things” of this case, so we can establish a standard of what we want
to achieve in the case of comonads and context-dependent computation.

2.1 Monads

The starting-point in the monadic approach to (call-by-value) effectful computation
is the idea that impure, effectful functions from A to B must be nothing else than
pure functions from A to TB. Here pure functions live in a base category C and T

is an endofunctor on C that describes the notion of effect of interest; it is useful to
think of TA as the type of effectful computations of values of a given type A.

For this to work, impure functions must have identities and compose. Therefore
T cannot merely be a functor, but must be a monad.

A monad on a category C is given by a functor T : C → C (the underlying
functor), two natural transformations η : IdC

.→ T (the unit) and μ : TT
.→ T (the

multiplication) satisfying the conditions

TA
ηTA ��

TηA �� ��������

�������� TTA
μA��

TTA μA
�� TA

TTTA
μTA ��

TμA ��

TTA
μA��

TTA μA
�� TA

This definition says that (T, η, μ) is a monoid in the endofunctor category [C, C] wrt.
its (IdC , ∗) monoidal structure.

A monad T on a category C induces a category Kl(T ) called the Kleisli category
of T defined by

• an object is an object of C,
• a map of from A to B is a map of C from A to TB,
• idT

A =df A
ηA−→ TA,

• if k : A →T B, � : B →T C, then � ◦T k =df A
k−→ TB

��−→ TC where
�� =df TB

T�−→ TTC
μC−→ TC.

Note that it is the unit η and multiplication μ that make the Kleisli identity idT

and composition ◦T possible; the laws of the identity and composition follow from
those of η and μ.

From C there is an identity-on-objects inclusion functor J to Kl(T ), defined on

maps by: if f : A → B, then Jf =df A
f−→ B

ηB−→ TB = A
ηA−→ TA

Tf−→ TB.
(It is truly an inclusion, if η is mono, but we ignore this.) It has a right adjoint
U : Kl(T ) → C given by: UA =df TA and, if k : A →T B, then Uk =df TA

k�−→ TB.
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In our application, we use the Kleisli category Kl(T ) as the category of effectful
functions and J as an embedding from the category of pure functions C. Accordingly,
for us, the function ηA = J idA : A → TA is the pure identity function on A

turned into a trivially effectful function. Jf : A → TB is a general pure function
f : A → B viewed as trivially effectful. μA = id�

TA : TTA → TA “flattens” an
effectful computation of an effectful computation. k� : TA → TB is an effectful
function k : A → TB extended into one that can input an effectful computation.

Well-known examples of monads on Cartesian categories 3 (optionally with co-
products, optionally closed), e.g., Set, include the following.

The exceptions monad is given by

• TA =df A + E where E is some object (of exceptions),

• ηA =df A
inl−→ A + E,

• μA =df (A + E) + E
[id,inr]−→ A + E

and is used for computation with exceptions. Properly impure functions are possible
thanks to the error-raise operation raiseA =df E

inr−→ A + E.
The output monad is given by

• TA =df A × E where (E, e, m) is some monoid (of output traces), e.g., the type
of lists of a fixed element type with nil and append,

• ηA =df A
ur−→ A × 1 id×e−→ A × E,

• μA =df (A × E) × E
a−→ A × (E × E) id×m−→ A × E

and is used to handle observable output or time. The important operation for

generating impure functions is print : E
〈!,id〉−→ 1 × E.

The environment monad is given by:

• TA =df E ⇒ A where E is some object (of environments),

• ηA =df Λ(A × E
fst−→ A) : A → E ⇒ A,

• μA =df Λ((E ⇒ (E ⇒ A)) × E
〈ev,snd〉−→ (E ⇒ A) × E

ev−→ A)
: E ⇒ (E ⇒ A) → E ⇒ A.

It is used to deal with a readable environment. The native operation is ask =df

Λ(1 × E
snd−→ E) : 1 → E ⇒ E.

Further important well-known examples include the state monad, the continua-
tions monad, free monads and free completely iterative monads [2].

2.2 Strong monads

To be able to use a Kleisli category as a category of computation, we also need it
to have datatypes. At the very least, it must support something product-like and
in particular something approximating local composition to interpret let.

3 By a Cartesian category we mean one with finite products (the word is also used to refer to categories
with finite limits).
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In order for these to exist, the monad must be strong.
A strong functor on a monoidal category (C, I,⊗) is given by an endofunctor

F on C together with a natural transformation slA,B : A ⊗ FB → F (A ⊗ B) (the
(tensorial) strength) satisfying

I ⊗ FA
slI,A ��

ulFA ��

F (I ⊗ A)
FulA��

FA FA

(A ⊗ B) ⊗ FC
slA⊗B,C ��

aA,B,FC ��

F ((A ⊗ B) ⊗ C)
FaA,B,C��

A ⊗ (B ⊗ FC)
idA⊗slB,C

�� A ⊗ F (B ⊗ C)
slA,B⊗C

�� F (A ⊗ (B ⊗ C))

(Note that a monad can generally have more than one strength.)
A strong natural transformation between two strong functors (F, slF ), (G, slG)

is a natural transformation τ : F
.→ G satisfying

A ⊗ FB
slFA,B ��

idA⊗τB ��

F (A ⊗ B)
τA⊗B��

A ⊗ GB
slGA,B

�� G(A ⊗ B)

A strong monad on a monoidal category (C, I,⊗) is a monad (T, η, μ) where T

is a strong functor and η, μ are strong natural transformations. The latter part
means that η, μ satisfy

A ⊗ B
idA⊗ηB ��

A ⊗ B
ηA⊗B��

A ⊗ TB
slA,B

�� T (A ⊗ B)

A ⊗ TTB
slA,TB��

idA⊗μB ��

T (A ⊗ TB)
T slA,B�� TT (A ⊗ B)

μA⊗B��
A ⊗ TB

slA,B

�� T (A ⊗ B)

(Note that Id is canonically strong and strong F , G make GF canonically strong.)
A strong functor (F, sl) on a symmetric monoidal category (C, I,⊗) is automat-

ically bistrong: it is also endowed with a costrength srA,B : FA ⊗ B → F (A ⊗ B)
whose properties are symmetric to those of a strength. It is defined by

srA,B =df FA ⊗ B
cFA,B−→ B ⊗ FA

slB,A−→ F (B ⊗ A)
F cB,A−→ F (A ⊗ B)

A bistrong monad (T, sl, sr) is called commutative, if it satisfies

TA ⊗ TB
slTA,B ��

srA,TB ��

T (TA ⊗ B)
T srA,B�� TT (A ⊗ B)

μA⊗B

��

T (A ⊗ TB)
T slA,B ��
TT (A ⊗ B) μA⊗B

�� T (A ⊗ B)

Strength is not a very restrictive condition. In particular, on Set, every monad
is strong, with a unique strength. The reason is that any endofunctor F on Set
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has a unique functorial strength fsX,Y : X ⇒ Y → FX ⇒ FY (internalizing
its functoriality) and any natural transformation between endofunctors on Set is
functorially strong. Functorial strength implies tensorial strength. Commutativity
is rarer. An example of a commutative monad is the exponent monad.

Given a Cartesian category C and a (1,×) strong monad T on it, we can manu-
facture “preproducts” in Kl(T ) using the products of C and the strength sl like
this:

1T =df 1 A0 ×T A1 =df A0 × A1

fstT =df η ◦ fst

sndT =df η ◦ snd

!T =df η ◦ ! 〈k0, k1〉T =df sl� ◦ sr ◦ 〈k0, k1〉
With this definition, the typing rules for products hold, but not all laws. In

particular, the beta-laws fstT ◦T 〈k0, k1〉T = k0 and sndT ◦T 〈k0, k1〉T = k1 do not hold.
And the binary operation ×T on objects does not extend to a bifunctor (although it
is a functor in each argument separately). But some other important laws, such as,
e.g., the eta-law 〈fstT , sndT 〉T = idT , survive. In particular, (Kl(T ), J) is a Freyd
category on C, i.e., a symmetric premonoidal category with an identity-on-objects
functor from C strictly preserving the (1,×) symmetric premonoidal structure of C
and also centrality. (Since all maps of C are central, the latter part really means
sending all maps of C to central maps of Kl(T )).

If C is Cartesian closed, then “pre-exponents” in Kl(T ) can be defined from the
exponents of C by

A ⇒T B =df A ⇒ TB

evT =df ev

ΛT (k) =df η ◦ Λ(k)

It is not true that A ⇒T − : Kl(T ) → Kl(T ) is right adjoint to − ×T A :
Kl(T ) → Kl(T ). So ⇒T is not a true exponent functor wrt. the preproduct functor
×T . However A ⇒T − : Kl(T ) → C is right adjoint to J(−× A) : C → Kl(T ):

J(C × A) →T B

C × A → TB

C → A ⇒ TB

C → A ⇒T B

2.3 Semantics of effectful languages

Given a strong monad T on a Cartesian closed category C, the pure part of an
effectful language can be interpreted into Kl(T ) in the standard way, relying on the
generic pre-(Cartesian closed) structure of Kleisli categories of strong monads.
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�K�T =df an object of Kl(T ) = that object of C
�A × B�T =df �A�T ×T �B�T = �A�T × �B�T

�A ⇒ B�T =df �A�T ⇒T �B�T = �A�T ⇒ T �B�T

�C�T =df �C0�T ×T . . . ×T �Cn−1�T = �C0�T × . . . × �Cn−1�T

�(x) xi�
T =df πT

i = η ◦ πi

�(x) let x ← t in u�T =df �(x, x) u�T ◦T 〈idT , �(x) t�T 〉T = (�(x, x) u�T )� ◦ sl ◦ 〈id, �(x) t�T 〉
�(x) fst t�T =df fstT ◦T �(x)t�T = T fst ◦ �(x)t�T

�(x) snd t�T =df sndT ◦T �(x)t�T = T snd ◦ �(x)t�T

�(x) (t0, t1)�T =df 〈�(x)t0�T , �(x)t1�T 〉T = sl� ◦ sr ◦ 〈�(x)t0�T , �(x)t1�T 〉
�(x) λxt�T =df ΛT (�(x, x)t�T ) = η ◦ Λ(�(x, x)t�T )

�(x) t u�T =df evT ◦T 〈�(x)t�T , �(x)u�T 〉T = ev� ◦ sl� ◦ sr ◦ 〈�(x)t�T , �(x)u�T 〉

(The notation (x) t denotes a term t with free variables x; we have left out types;
for well-typed terms, the interpretation is well-defined.) In the second column,
there is the “standard” semantics in terms of the pre-(Cartesian closed) structure
of Kl(T ). In the third column the same appears spelled out in more primitive
terms, after simplifications. Note, e.g., that in the semantics of let, sr is not needed,
although the definition of 〈−,−〉T involves it; it gets cancelled out in the simplifi-
cation.

Constructs specific to particular notions of effect must be interpreted specifically.
E.g., for exceptions we can use the coproduct monad T and set

�(x) raise t�T =df raise� ◦ �(x)t�T

As Kl(T ) is only pre-(Cartesian closed), we have soundness of typing: x : C 	
t : A implies �(x) t�T : �C�T →T �A�T . But of course not all equations of lambda-
calculus are validated.

In particular, we have that 	 t : A implies �t�T : 1 →T �A�T . So a closed term t

of a type A denotes an element of T �A�T .

3 Comonads and context-dependent computation

We proceed to an analysis of context-dependent computation.

3.1 Comonads

Basics and first examples
We go straight to the definition and first properties of comonads. Comonads are

the dual of monads. A comonad is a functor D : C → C (the underlying functor)
together with natural transformations ε : D

.→ IdC (the counit), δ : D
.→ DD (the
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comultiplication) satisfying

DA
δA ��

δA

�� ���������

��������� DDA

DεA

��
DDA εDA

�� DA

DA
δA ��

δA

��

DDA

DδA

��
DDA δDA

�� DDDA

In other words, a comonad is a comonoid in ([C, C], IdC , ∗).
Dually to Kleisli categories, a comonad D on a category C induces a category

CoKl(D) called the coKleisli category of D. This is defined by:

• an object is an object of C,
• a map of from A to B is a map of C from DA to B,
• idD

A =df DA
εA−→ A,

• if k : A →D B, � : B →D C, then � ◦D k =df DA
k†−→ DB

�−→ C where
k† = DA

δA−→ DDA
Dk−→ DB.

From C there is an identity-on-objects inclusion functor J to CoKl(D), defined

on maps by: if f : A → B, then Jf =df DA
εA−→ A

f−→ B = DA
Df−→ DB

εB−→ B.
The functor J has a left adjoint U : CoKl(D) → C given by: UA =df DA and,

if k : A →D B, then Uk =df DA
k†−→ DB.

The intuitive basis for the use of coKleisli categories as categories of impure
computation should be the following. As before, we think of C as the category of
pure functions, but D describes a notion of context. DA is the type of values of a
given type A placed into a context. The category CoKl(D), whose maps are maps
DA → B of the base category, is the category of context-dependent functions.

The function εA : DA → A is then the identity on A made trivially context-
dependent, i.e., turned into a function discarding any given context. The function
Jf : DA → B is a general pure function f : A → B regarded as trivially context-
dependent in a similar fashion. The function δA : DA → DDA duplicates the
context of a value while k† : DA → DB is a context-dependent function k : DA → B

extended into one that outputs a value of in a context (so it can be postcomposed
with a context-dependent function).

Some computationally meaningful examples with C a Cartesian (closed) cate-
gory, e.g., Set, are the following.

The product comonad is defined by:

• DA =df A × E, where E is a fixed object of C,

• εA =df A × E
fst−→ A,

• δA =df A × E
〈id,snd〉−→ (A × E) × E.

This is the dual of the exceptions monad. But its use is the same as that of the
environment monad: for TA =df E ⇒ A we have CoKl(D) ∼= Kl(T ). Hence the
product comonad can be used for dependence on an environment. The important
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native operation of this comonad leading to impure computations is ask =df 1 ×
E

snd−→ E.
The exponent comonad is given by:

• DA =df S ⇒ A where (S, e,m) is a monoid in C,

• εA =df (S ⇒ A) ur−1−→ (S ⇒ A) × 1 id×e−→ (S ⇒ A) × S
ev−→ A,

• δA =df Λ(Λ(δ′A)) : S ⇒ A → S ⇒ (S ⇒ A) where

δ′A =df ((S ⇒ A) × S) × S
a−→ (S ⇒ A) × (S × S) id×m−→ (S ⇒ A) × S

ev−→ A.

We come to computational uses soon, but some interesting cases are, e.g.,
(S, e,m) =df (Nat, 0,+) and (S, e,m) =df (Nat, 0,max).

The costate comonad is given by:

• DA =df (S ⇒ A) × S where S is an object of C,
• εA =df (S ⇒ A) × S

ev−→ A,

• δA =df (S ⇒ A) × S
coev×id−→ (S ⇒ ((S ⇒ A) × S)) × S.

This comonad arises from the composition in the appropriate order of the adjoint
functors S ×− � S ⇒ −. Composition the other way around gives rise to the state
monad T defined by TA = S ⇒ (A × S). Again we defer the discussion of the
computational utility.

The cofree comonad on an endofunctor H on C is given by DA =df νX.A×HX

(i.e., the carrier of the final A × H(−)-coalgebra, which is the cofree H-coalgebra
on A). The functor DA =df μX.A × HX (i.e., the carrier of the initial A × H(−)-
algebra) is also a comonad, the cofree recursive comonad [33] (dual to the free
completely iterative monad [2]). The set DA is the set of nonwellfounded resp.
wellfounded A-labelled H-branching trees. Think, e.g., of the case HX =df 1+X×
X, leading to binary branching with a termination option. The counit εA : DA → A

extracts the root label of a given tree (so the root label is the focus value in a tree
and the rest of the tree is its “context”). The comultiplication δA : DA → DDA

replaces the label of every node with the subtree rooted by that node (thus equipping
every node label with a local copy of its context).

Comonads for dataflow computation
Next we look at dataflow computation (stream-based computation). We are

interested in notions of computation where impure functions from A to B are gen-
eral, causal or anticausal functions from StrA to StrB where StrA =df νX.A × X

is the set of streams with elements from A. The physical intuition here is that of
discrete-time signal transformers; streams represent histories of signals. Causality
(corresponding to what is physically feasible with signals) means that the present
value of the output signal can only depend on the present and past values of the
input signal. Anticausality means dependence on the present and future alone.

Streams are in natural bijection with functions from natural numbers: StrA ∼=
Nat ⇒ A. Hence, general stream functions StrA → StrB (as used in dataflow
languages like Lucid [3]) are in natural bijection with maps (Nat ⇒ A)×Nat → B,
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i.e., with coKleisli maps of the costate comonad DA =df (S ⇒ A) × S where
S =df Nat. Moreover, the identities and composition of general stream functions
and the coKleisli identities and composition agree. So this particular instantiation
of the costate comonad describes the notion of context used in general dataflow
computation. We call it the streams with a position comonad, since it pairs an
input stream of a stream function with a chosen position of interest in the output
stream. The important operations supported this comonad are fby and next. The
fby (’followed by’) operation corresponds to initialized unit delay of the input signal,
while next operation corresponds to unit anticipation. In both cases, the stream is
shifted but the designated position stays the same.

For clarity, here is the concrete description for the case C = Set:

DA =df (Nat ⇒ A) × Nat

εA : (Nat ⇒ A) × Nat → A

(f, n) �→ f n

δA : (Nat ⇒ A) × Nat → (Nat ⇒ ((Nat ⇒ A) × Nat)) × Nat

(f, n) �→ (λm.(f, m), n)

fbyA : A × ((Nat ⇒ A) × Nat) → A

(a00, (f, 0)) �→ a00

(a00, (f, n + 1)) �→ f n

nextA : (Nat ⇒ A) × Nat → A

(f, n) �→ f(n + 1)

Further, a position in a stream splits it into two parts, a list of elements before
the position (the past of the signal) and a stream of all remaining elements (the
present and future): (Nat ⇒ A) × Nat ∼= ListA × StrA. From here it is not a long
way to see that the causal stream functions (where the present value of the output
signal can depend on the present and past values of the input signal, but not on the
future; programs in the Lustre [13] and Lucid Synchrone [29] dataflow languages
denote causal stream functions) correspond precisely to the coKleisli maps of the
comonad DA =df ListA×A ∼= NEListA ∼= μX.A×(1+X) (this is the cofree recursive
monad on H defined by HX =df 1 + X, we call it the nonempty list comonad).
And the anticausal ones (where the present of the output signal may only depend
on the present and future values of the input signal) correspond to the coKleisli
maps of the comonad DA =df StrA = νX.A × X (the cofree comonad on IdC , also
equivalent to the exponent comonad DA =df S ⇒ A with (S, e,m) =df (Nat, 0,+),
we call it the stream comonad). Again, in each case the identities and composition
of stream functions agree with those of the coKleisli category. Of the operations
discussed above, the first comonad supports only unit delay fby, while the second
one only supports unit anticipation next.
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The concrete description of the nonempty list comonad is this:

DA =df NEList A

εA : NEList A → A

(a0, . . . , an−1, an) �→ an

δA : NEList A → NEList (NEList A)
(a0, . . . , an−1, an) �→ ((a0), . . . , (a0, . . . , an−1), (a0, . . . , an−1, an))

fbyA : A × NEList A → A

(a00, (a0)) �→ a00

(a00, (a0, . . . , an, an+1)) �→ an

The comonad for anticausal dataflow computation is concretely defined by:

DA =df StrA

εA : StrA → A

(an, an+1, . . .) �→ an

δA : StrA → Str(StrA)
(an, an+1, . . .) �→ ((an, an+1, . . .), (an+1, . . .), . . .)

nextA : StrA → A

(an, an+1, . . .) �→ an+1

Comonads for tree transformations
A similar example is given by relabelling tree transformations, often specified

with attribute grammars [21]. Let H : C → C. We are interested in relabelling tree
functions TreeA → TreeB where TreeA =df μX.A×HX is the type of wellfounded A-
labelled H-branching trees. (Relabellings are equally plausible for nonwellfounded
trees, but we concentrate on the wellfounded case.) At any node of interest in the
output tree the label is determined by the label at the same node in the input tree
plus maybe some more nodes. In the case of general relabellings, dependence on the
labels in all of the remaining tree is allowed. In bottom-up relabellings, only labels
at and below the position of interest may influence the result. The idea is again to
mark the node of interest.

The comonad for general relabellings (corresponding to general attribute gram-
mars with both synthesized and inherited attributes) is the trees with a position
comonad, the comonad structure on the zipper datatype of Huet [16]. This is defined
by DA =df Tree′A × A ∼= PathA × TreeA where PathA =df List(A × H ′(TreeA)) ∼=
μX.1 + A×H ′(TreeA)×X. Here F ′ denotes the derivative of a functor (container)
F ; intuitively it is the type of one-hole versions of the container F [23,1]. An ele-
ment of the type Tree′A×A consists of an A-labelled tree with the label of one node
omitted, just to mark this node, along with the omitted label attached separately.
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An element of the type PathA×TreeA is an A-labelled tree, split into the path from
a node of interest up to the root, together with all side subtrees, and the subtree
rooted by this node of interest.

As an example of how the path type is computed for a branching factor H, for
HX =df 1 + X × X we have H ′X = 2 × X, so PathA ∼= List(A × 2 × TreeA)). An
element in this type is a list of triples (the label of my parent, I am the left or right
child, the side subtree rooted by my sibling) for every node from the focus node up
until the root node (excluded) in a tree to relabel.

The comonad for bottom-up tree relabellings (corresponding to purely synthe-
sized attribute grammars) is the tree comonad, defined by DA =df TreeA (the cofree
recursive comonad on H). An element here represents a subtree of a global tree to
be relabelled rooted by a node of interest.

(Notice that bottom-up tree relabellings generalize anticausal stream functions.)
The important operations of the comonad are for navigation in the tree: up to

the parent of a given node (this is possible in the case of general tree relabellings)
and down to the children (possible in both cases).

From streams and trees to containers
It is worth noticing that the tree with a position comonad is in fact a coproduct

of costate comonads and the tree comonad is a coproduct of exponent comonads,
just as the stream with a position comonad is a costate comonad and the stream
comonad an exponent comonad.

The observation is that trees (just as streams) are a special case of containers
[1], i.e., set functors FA =df

∐
s∈S(Ps ⇒ A) where S is a set (of shapes) and P an

assignment of sets (of positions) to shapes.
Shape-preserving functions FA → FB are thus families of maps (Ps ⇒ A →

Ps ⇒ B)s∈S , in other words, maps
∐

s∈S((Ps ⇒ A) × Ps) → B. The functor
DA =df

∐
s∈S((Ps ⇒ A) × Ps) ∼= F ′A × A carries the comonad for the general

relabellings.
To speak of abstract bottom-upness, we must confine ourselves to containers

with some structure, namely: (1) for any shape s ∈ S and position p ∈ Ps, a
shape s ↓ p ∈ S (for the shape of the subcontainer below position p in containers
of shape s), (2) for any shape s ∈ S, a position 0s ∈ Ps (the root position), (3) for
any shape s ∈ S and positions p ∈ Ps and p′ ∈ Ps↓p, a position p · p′ ∈ Ps (the
position p′ in the subcontainer as one in the global container), such that s ↓ 0s = s,
s ↓ (p · p′) = (s ↓ p) ↓ p′, p · 0s↓p = p, 0s · p = p, and (p · p′) · p′′ = p · (p′ · p′′) — a form
of dependent monoid on the family P .

The comonad for bottom-up relabellings is then DA =df
∐

s∈S(Ps ⇒ A) ∼= FA.

3.2 Symmetric (semi)monoidal comonads

If C is Cartesian, then the coKleisli category CoKl(D) of a comonad D on C is
straightforwardly Cartesian, as J : C → CoKl(D) is a right adjoint and preserves
limits.
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Explicitly, this structure is given by:

1D =df 1 A0 ×D A1 =df A0 × A1

fstD =df fst ◦ ε = ε ◦ Dfst

sndD =df snd ◦ ε = ε ◦ Dsnd

!D =df ! 〈k0, k1〉D =df 〈k0, k1〉

But finding a structure to mimic the exponents of C, if C is Cartesian closed,
is not so easy. Given that exponents should be internal homsets, it is natural to
choose

A ⇒D B =df DA ⇒ B

It is also unproblematic to match this up with the definition

evD
A,B =df D((DA ⇒ B) × A) s−→ D(DA ⇒ B) × DA

ε×id−→ (DA ⇒ B) × DA
ev−→ B

where sA,B =df 〈Dfst, Dsnd〉 : D(A × B) → DA × DB.
But given k : C ×D A →D B, i.e., D(C × A) → B, how should we define

ΛD(k) : DC → DA ⇒ B, i.e., C →D A ⇒D B? It only makes sense to set
ΛD(k) =df Λ(k′) where k′ = DC × DA

?−→ D(C × A) k−→ B.
Using a strength of D (if available), we could use one of the maps

DC × DA
ε×id−→ C × DA

sl−→ D(C × A)
DC × DA

id×ε−→ DC × A
sr−→ D(C × A)

but this gives a solution where the order of two arguments of a binary function is
important and the context of the value of one of the arguments is discarded.

The answer lies in symmetric monoidal and semimonoidal comonads. We review
the definitions.

A strong [lax] symmetric monoidal functor between symmetric monoidal cat-
egories (C, I,⊗) and (C′, I ′,⊗′) is a functor on F : C → C′ together with an iso-
morphism [map] e : I ′ → FI and a natural isomorphism [transformation] with
components mA,B : FA ⊗′ FB → F (A ⊗ B) satisfying

FA ⊗′ I ′ id⊗′e′��

ur′FA

��

FA ⊗′ FI
mA,I �� F (A ⊗ I)

FurA
��

FA FA

FA ⊗′ FB
mA,B ��

c′FA,FB

��

F (A ⊗ B)

F cA,B

��
FB ⊗′ FA mB,A

�� F (B ⊗ A)

(FA ⊗′ FB) ⊗′ FC
mA,B⊗id ��

a′FA,FB,FC

��

F (A ⊗ B) ⊗′ FC
mA⊗B,C �� F ((A ⊗ B) ⊗ C)

FaA,B,C

��
FA ⊗′ (FB ⊗′ FC)

id⊗mB,C

�� FA ⊗′ F (B ⊗ C) mA,B⊗C
�� F (A ⊗ (B ⊗ C))
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A symmetric monoidal natural transformation between two (strong or lax) sym-
metric monoidal functors (F, eF ,mF ), (G, eG,mG) is a natural transformation τ :
F

.→ G satisfying

I ′ eF �� FI

τI

��
I ′

eG
�� GI

FA ⊗′ FB
mF

A,B ��

τA⊗′τB

��

F (A ⊗ B)

τA⊗B

��
GA ⊗′ GB

mG
A,B

�� G(A ⊗ B)

A strong [lax] symmetric monoidal comonad on a symmetric monoidal category
(C, I,⊗) is a comonad (D, ε, δ) where the underlying functor D is a strong [lax]
symmetric monoidal functor (with preservation of I, ⊗ witnessed by e, m) and the
counit and comultiplication ε, δ are symmetric monoidal natural transformations.
The latter means that we have

I
e �� DI

εI

��
I I

DA ⊗ DB
mA,B ��

εA⊗εB

��

D(A ⊗ B)

εA⊗B

��
A ⊗ B A ⊗ B

I
e �� DI

δI

��
I e

�� DI De
�� DDI

DA ⊗ DB
mA,B ��

δA⊗δB

��

D(A ⊗ B)

δA⊗B

��
DDA ⊗ DDB mDA,DB

�� D(DA ⊗ DB)
DmA,B

�� DD(A ⊗ B)

(Note that Id is canonically symmetric monoidal and that F , G being symmetric
monoidal make GF canonically symmetric monoidal, so the definition is meaningful.
Note also that the conditions on e are identical to those of an Eilenberg-Moore
coalgebra structure on 1.)

Fairly often, as we will see shortly, the full structure of a symmetric monoidal
comonad is not achievable, but not necessary either. We speak of a symmetric
semimonoidal category, if the unit I is not present (or exists but is not important
for us), and of a symmetric semimonoidal functor/comonad, if the unit preservation
witness e is not present. We will later (in Sec. 3.4) show that that this imperfection
can be avoided by switching to “typed” comonads on presheaf categories.

Let us revisit our examples. The product comonad, given by DA =df A × E

with E an object, is lax symmetric monoidal (semimonoidal) as soon as E carries
some commutative monoid (semigroup) structure e : 1 → E, m : E × E → E.

Indeed, we can then choose e =df 1
〈id,e〉−→ 1 × E, mA,B =df (A × E) × (B × E) −→

(A × B) × (E × E)
〈id,m〉−→ (A × B) × E.

The exponent comonad, given by D =df S ⇒ A with S carrying a monoid
structure, is strong symmetric monoidal as witnessed by the isomorphism e =df

Λ(1×S
!−→ 1) : 1 ∼= S ⇒ 1 and natural isomorphism mA,B =df Λ(((S ⇒ A)× (S ⇒

B)) × S
〈ev◦(fst×id),ev◦(snd×id)〉−→ A × B) : (S ⇒ A) × (S ⇒ B) ∼= S ⇒ (A × B).
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The cofree comonad and cofree recursive comonad on any polynomial functor
HX ∼= 1 + H ′X are lax symmetric semimonoidal: we can choose m to “zip” two
trees together, truncating wherever the branchings at a pair of corresponding nodes
disagree. In the case of nonempty lists (H ′X =df X), this is exactly the customary
truncating zipping operation of nonempty lists. Alternatively, a single-node tree
can be returned for trees of different shapes, pairing just the values at the roots.

Given a symmetric (semi)monoidal comonad D on a Cartesian closed category C,
we can define: if k : C×DA →D B, then ΛD(k) =df Λ(k′) where k′ = DC×DA

mC,A−→
D(C × A) k−→ B.

How good are the pre-exponents obtained as imitations of exponents?
If D is strong symmetric (semi)monoidal, then A ⇒D − is right adjoint to

−×D A:
C ×D A →D B

D(C × A) → B

DC × DA → B

DC → DA ⇒ B

C →D A ⇒D B

Hence ⇒D is a true exponent functor and CoKl(D) is Cartesian closed just as C.
If D is only lax symmetric (semi)monoidal however, then the binary operation

⇒D extends to a functor, but it has few properties of the exponent functor.
An intermediate case arises when (e and) m satisfy

DA

!DA

��

DA

D!A
��

DA

ΔDA

��

DA

DΔA

��
1 e

�� D1 DA × DA mA,A
�� D(A × A)

where ΔA =df 〈id, id〉 : A → A × A. These conditions are automatic, if D is
strong symmetric (semi)monoidal, but not in the lax case. When met, they yield
e ◦ !D1 = idD1 and mA,B ◦ sA,B = idD(A×B). As a consequence, ⇒D becomes a weak
exponent operation on objects, i.e., we get evD ◦D (Λ(k) ×D idD) = k.

We note that (!A, ΔA) (corresponding to the structural rules of weakening and
contraction) give a uniform comonoid structure on all objects A of C. Also, the map
and natural transformation (!D1, s) witness that D is an oplax symmetric monoidal
comonad that also respects the uniform comonoid structure (!, Δ).

3.3 Semantics of context-dependent languages

We are ready to define a general coKleisli semantics of context-dependent languages.
We interpret lambda-calculus into the coKleisli category CoKl(D) of a symmetric
(semi)monoidal comonad D on a given Cartesian closed category C of pure compu-
tations. We do this, as if CoKl(D) was Cartesian closed, even if it may be merely
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Cartesian “preclosed” in one of the senses discussed above. We get:

�K�D =df an object of CoKl(D) = that object of C
�1�D =df 1D = 1

�A × B�D =df �A�D ×D �B�D = �A�D × �B�D

�A ⇒ B�D =df �A�D ⇒D �B�D = D�A�D ⇒ �B�D

�C�D =df �C0�
D ×D . . . ×D �Cn−1�

D = �C0�
D × . . . × �Cn−1�

D

�(x)xi�
D =df πD

i = πi ◦ ε

�(x) let x ← t in u�D =df �(x, x) u�D ◦D 〈idD, �(x) t�D〉D = �(x, x)u�D ◦ 〈ε, �(x) t�D〉†

�(x) ()�D =df !D = !

�(x) fst t�D =df fstD ◦D �(x) t�D = fst ◦ �(x) t�D

�(x) snd t�D =df sndD ◦D �(x) t�D = snd ◦ �(x) t�D

�(x) (t0, t1)�D =df 〈�(x) t0�
D, �(x) t1�

D〉D = 〈�(x) t0�
D, �(x) t1�

D〉
�(x)λxt�D =df ΛD(�(x, x) t�D) = Λ(�(x, x) t�D ◦ m)

�(x) t u�D =df evD ◦D 〈�(x) t�D, �(x)u�D〉D = ev ◦ 〈�(x) t�D, (�(x) u�D)†〉

Any construct specific to a particular notion of context receives a specific inter-
pretation. E.g., for the ask construct of a language for computing with an environ-
ment we can use the product comonad and define:

�(x) ask�D =df ask ◦ D!

And for the constructs of a general/causal/anticausal dataflow language we can use
the appropriate comonad and define:

�(x) t0 fby t1�
D =df fby ◦ 〈�(x) t0�

D, (�(x) t1)�D)†〉
�(x)next t�D =df next ◦ (�(x) t�D)†

Again, we have soundness of typing, in the form x : C 	 t : A implies �(x)t�D :
�C�D →D �A�D, but not all equations of the lambda-calculus are validated.

For a closed term 	 t : A, soundness of typing says that �t�D : 1 →D �A�D, i.e.,
D1 → �A�D, so closed terms are evaluated relative to a contextuated value of the
unit type.

In case of general or causal stream functions, an element of D1 is a list over 1,
i.e., a natural number, for the time elapsed from the beginning of the history at a
moment of interest. Of course it identifies a stream position.
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If D is strong or lax symmetric monoidal (not just semimonoidal), we have a
canonical choice e : 1 → D1. This happens, for example, in the case of the stream
comonad for anticausal dataflow computation. This is adequate as all closed terms
in an anticausal language must denote constant streams, with the same value at
every position. Indeed, there is no way to identify a position with an anticausal
computation on no input.

In what sense is this semantics correct? We could compare the generic coKleisli
semantics to some other generic semantics, e.g., an operational semantics, if we had
one available. Unfortunately this is not the case: generic operational semantics for
context-dependent languages is future work for us.

But we can compare the coKleisli semantics of specific languages to their stan-
dard denotational semantics. Here we can observe the following. Standard dataflow
languages (Lucid, Lustre/Lucid Synchrone) are first-order and here the coKleisli
and standard (stream-function) semantics agree fully. How to combine dataflow
constructs and higher-orderness has been unclear; various designs have been pro-
posed, e.g., Colaço et al.’s design with two flavors of function spaces [10]. The
coKleisli semantics offers a neat design motivated by mathematical considerations,
namely imitation of closed structure.

3.4 Precise comonads for dataflow computation and tree transformations

Several of notions of context that we looked at do not correspond to strong symmet-
ric monoidal comonads. Rather, they correspond to lax symmetric semimonoidal
comonads, for the reason that m should morally be partial and the total version fails
to be an isomorphism and rules out the existence of a cohering e. Here indexing in
the form of use of comonads on presheaf categories can help.

Consider the case of causal dataflow. Instead of the lax symmetric monoidal
comonad on Set we could work with a more refined strong symmetric monoidal
comonad on [N,Set], where N is the set of natural numbers (seen as a discrete
category).

We define:

(DA)n =df

n∏
j=0

Aj

(εA)n : (DA)n → An

(a0, . . . , an) �→ an

(δA)n : (DA)n → ∏n
j=0(DA)j

(a0, . . . , an) �→ ((a0), . . . , (a0, . . . , an))

The fby operation can be defined for those A which extend to a functor ω → Set
where ω is the poset of natural numbers: we need to be able to delay stream
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elements. Constant sets are typical examples.

(fbyA)n : A0 × (DA)n → An

(a00, (a0)) �→ a00

(a00, (a0, . . . , an, an+1)) �→ An→n+1 an

(By m → n we denote the map that is there, if m ≤ n.) All of the above are same
definitions as for the causal dataflow comonad defined before, except that we are
“typed” by the positions in the single shape that streams can have.

This comonad is unproblematically strong symmetric monoidal in the right way,
with e and m defined by

en : 1 → (D1)n

() �→ ((), . . . , ())︸ ︷︷ ︸
n+1 times

(mA,B)n : (DA)n × (DA)n → (DA)n

((a0, . . . , an), (a′0, . . . , a′n)) �→ ((a0, a
′
0), . . . , (an, a′n))

A closed term in a causal dataflow language now denotes a natural transforma-
tion D1 → A where 1 ∼= D1. The nth component is thus an element of An, i.e.,
the term denotes an element of An for any position n. Of course typical base types
would be constant: Kn =df K.

A similar treatment is possible for general dataflow computation and for bottom-
up and general tree relabelling. In the case of trees, the indexing is by a pair of a
shape and position.

4 Discussion

Brookes, Geva and Van Stone’s computational comonads
Brookes and Geva’s [8] original example of comonadic computation was inten-

sional semantics. In its simplest form it is this: As the base category we use the
category ωCpo of ω-cpos and ω-continuous functions. The ω-cpo DA is given by
ω-chains of elements of an ω-cpo A, partially ordered pointwise. The counit com-
putes the limit of an ω-chain. The multiplication sends an ω-chain to the ω-chain
of its prefixes (seen as ω-chains by repeating the last element).

Notably, this is very similar in spirit to the comonad D on Set given by nonempty
lists, for causal dataflow, except that nonempty lists are finite sequences and they
do not have to be chains wrt. some partial order.

The data and laws of computational comonads were slightly different from those
of symmetric (semi)monoidal comonads. Most notably, instead of e : 1 → D1,
they had a natural transformation η with components ηA : A → DA, required to
form a uniform Eilenberg-Moore coalgebra structure on all objects A. The natural
transformations m and s (“merge” and “split”) were governed by laws similar, but
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not fully identical or equivalent to those of a lax and oplax symmetric semimonoidal
comonad.

Coproducts and recursion
As left adjoints preserve colimits, the Kleisli category of any monad on a co-

Cartesian category C inherits the coproducts of C. The coKleisli category of a
comonad on a coCartesian category is generally not coCartesian (dually to the case
of Kleisli categories and Cartesian structure).

Approximating general recursion (a uniform parameterized fixpoint operation,
equivalently a uniform trace operation [14]) of a Cartesian base category in a Kleisli
category is a subtle issue that has received considerable attention [12,26,6]. This
is an interesting (and non-dual!) problem also in the case of coKleisli categories.
Some initial work has been done by N. Frisby in the FP community.

The coKleisli category of the cofree recursive comonad on a functor H, defined by
DA =df μX.A×HX, always has a partial uniform parameterized fixpoint operation,
alternatively a partial uniform trace operation, implementing guarded recursion.
This can also be reformulated in terms of recursive coalgebras, dualizing Milius’s
completely iterative algebras [24]. We recall that cofree recursive comonads describe
the context-dependence manifested in bottom-up tree relabellings.

Combining effects and context-dependence
It is feasible that a notion of computation combines both effectfulness and

context-dependence. Such combinations can correspond to distributive laws of a
comonad over a monad in which case the category of impure functions is the bi-
Kleisli category of the distributive law. This design appeared already in the work of
Brookes and Van Stone [9]. We have applied it to clocked causal dataflow computa-
tion, combining causal dataflow and exceptions [34]. Power and Watanabe [32] have
given a definitive account of the mathematics of distributive laws between monads
and comonads.

Lawvere theories and arrows/Freyd categories
Lawvere theories [27] and arrows/Freyd categories [17,30] 4 are finer and coarser

approaches to effectful computation. Lawvere theories make the effectful opera-
tions of a notion of effect explicit. Arrows/Freyd categories, generalizing strong
monads/their Kleisli categories, were proposed as an axiomatization of notions of
impure computation reaching beyond Moggi-style effects.

Similar treatments of context-dependent computation should also be possible;
this is an avenue for investigation.

In the direction of Lawvere theories, we would like to proceed from Power and
Shkaravska’s [31] analysis of the array comonad (here called the costate comonad)
as one generated by a Lawvere cotheory.

4 Jacobs et al. [15,19] have developed a thorough account of the interrelationship of arrows and Freyd
categories.
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Concerning the other direction, we note that arrows/Freyd categories as such
are not a very interesting analysis of context-dependent computation, since any
comonad/coKleisli category gives trivially an arrow/Freyd category. While Freyd
categories are there to axiomatize the aspects of the Cartesian structure of the
base category that must survive in the category of impure computations, for a
coKleisli category we know that it is properly Cartesian. The interesting issue is
to give a useful axiomatization of the additionally desirable symmetric “preclosed”
structure. Freyd categories were not devised for this. Rather, we are after a suitable
weakening of the notions of a symmetric closed category à la Eilenberg and Kelly
(closed structure without monoidal structure) and of the adjunction in symmetric
monoidal closed structure [11]. We have begun studying this matter with J. Adàmek
and J. Velebil.

5 Conclusions

We have demonstrated that a number of notions of context-dependent computation
admit an analysis using symmetric (semi)monoidal comonads, leading to a system-
atic semantics of corresponding languages, analogous in spirit to Moggi’s account of
effects in terms of strong monads. Our analysis is not distant from that of Brookes
et al., but we have added important new types of examples (notions of dataflow com-
putation, tree labelling) and streamlined the specific data and laws for obtaining
an approximation of Cartesian closed structure guided by category-theoretic crite-
ria of canonicity. The resulting picture is quite elegant, especially with the view
that the important examples where the basic comonad is only lax symmetric semi-
monoidal can be reworked into examples of strong symmetric monoidal comonads
using appropriate indexing.

Recursion (both general recursion and guarded recursion) and finer and coarser
alternatives to comonads analogous to Lawvere theories and arrows are important
special topics that we plan to address elsewhere. Likewise we defer to future research
the study of computational uses of comonad resolutions other than the coKleisli
resolution and generic operational semantics of context-dependent languages.
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