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Operations on Hypermaps, and Outer Automorphisms 

LYNNE D. JAMES 

We present a group f), isomorphic to PGL(2, Il), of operations on hypermaps, and a group D, 
isomorphic to GL(2, Il), of operations on oriented hypermaps without boundary. These are induced 
by the group of automorphisms of a certain group G whose transitive permutation representations 
correspond to hypermaps. 

I. INTRODUCTION 

Wilson [18] and Lins [12] have described six operations on maps on surfaces (including 
duality and the identity operation) which preserve certain important features such as the 
number of flags and the automorphism group of the map. These form a group isomorphic 
to S3' Jones and Thornton [II] showed that these operations arise naturally in algebraic 
map theory: maps may be regarded as transitive permutation representations of a certain 
group r, and the outer automorphism group 

Out(r) = Aut(r)jInn(r) ~ S3 

permutes these representations, inducing six operations on maps. Maps on n-manifolds 
may be regarded as transitive permutation representations of a certain group T". In [6] it 
was shown that, for n > 2, 

Out(I,;) = Aut(T,,)/Inn(I,;) ~ D4 

where D4 is the dihedral group of order eight. Vince [16] has shown that hypermaps may 
be regarded as transitive permutation representations of a certain group G. Machi [14] has 
described a group of six operations on oriented hypermaps without boundary; these extend 
to all hypermaps, and they correspond to permuting hypervertices, hyperedges and hyper­
faces. These operations are induced by six outer automorphisms of G. The object of this 
note is to show that 

f) ~ Out(G) = Aut(G)jlnn(G) ~ PGL(2, .£:) 

and 

f> ~ Out (G+) = Aut(G+ )jInn(G+) ~ GL(2, .£:) 

where f) is the group of operations on hypermaps induced by the action of Out(G) on 
transitive permutation representations of the group G, and f> is the group of operations on 
oriented hypermaps without boundary induced by the action of Out(G+) on transitive 
permutation representations of a certain subgroup G+ <J G. For a survey of all of these 
results, see [9]. 

2. PRELIMINARIES 

Throughout this paper we regard functions as acting on the right, except matrix 
multiplication which we regard as acting on the left. 

For the proof of Theorem 5.2 we mention here the group AGL(l, p),p prime. This is the 
group of all affine transformations 

f -. af + b 
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(a, b E GF(p), a '1= 0) 
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of the field of order p, GF(p). It has a regular normal subgroup T ~ (GF(p), +) consisting 
of the translations 

(b E GF(p» 

complemented by S, the stabiliser of 0, consisting of the scalar transformations 

(a E GF(p)\{O}), 

and isomorphic to the multiplicative group GF(p)\{O}. 
Each element of AGL(1, p) can be written uniquely in the form g = satb; we define 

J1.: AGL(1, p) --+ GF(p)\{O} to be the epimorphism g --+ a. It can be shown that every 
automorphism of AGL(1, p) is inner [8]. 

3. H YPERMAPS 

In this section we outline an algebraic theory of hypermaps drawn from the theory of 
maps presented in [l] and [l0] and the theory ofhypermaps presented in [2], [3], [5] and [16]. 

By a hypermap :If on a surface without boundary we mean a connected regular graph 
t:§ of degree 3 (possibly with multiple edges) imbedded (without crossings) in a connected 
surface // (possibly non-orientable, non-compact) without boundary such that each of the 
faces (the connected components of ///t:§) is homeomorphic to an open disc, together with 
a colouring of the faces by {O, 1, 2} such that every edge borders two different coloured 
faces. 

Thus, for example, we might take the coloured cube shown in Fig. 1. 

2 

o 2 o 

FIGURE I. 

Or we could form a hypermap from a map on a surface, each of whose faces are coloured 
2, by replacing its edges by digons coloured 1 and by then placing a small disc coloured ° 
around each vertex. For example, take the regular imbedding of K4 in a sphere, shown in 
Fig. 2. This gives rise to the hypermap shown in Fig. 3. In general, the faces coloured 0, 1, 2 
are called the hypervertices, hyperedges and hyper/aces respectively. Thus each hypermap 
has an underlying imbedded hypergraph. 

Our third example is obtained from the unique orientable regular imbedding of K7 shown 
in Fig. 4. If we colour its faces by {O, I} and place a small disc coloured 2 around each vertex 
then we obtain the hypermap on a torus shown in Fig. 5. The underlying hypergraph can 
be seen in the Fano plane, shown in Fig. 6, by regarding the points as hypervertices and 
the lines as hyperedges. This imbedding was described by Walsh in [17]. Singerman [15] 
described a second imbedding of the Fano plane; we show this in Fig. 7. This is on an 
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FIGURE 2. 

2 

FIGURE 3. 

FIGURE 4. 

orientable surface of genus 3. If we contract each hypervertex to a point then we obtain the unique orientable non-regular edge-symmetric imbedding of K7 [7]. 
For the most part we are content to define hypermaps as being on surfaces without boundary. However, we may more generally allow Y a boundary. In this case we allow the faces to be homeomorphic to a half-disc and allow t:§ to have free edges, that is, edges homeomorphic to [0, I] with only one of the ends belonging to the vertex set. (For a more precise definition of a map on a surface with boundary see [1].) We make the further conditions that no vertex of t:§ is to lie on the boundary of Y, and that every free edge of 

t:§ is to meet the boundary of Y. Figure 8 gives an example of a hypermap on a disc. We 
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FIGURE 5. 

FIGURE 6. 

refer to the vertices as hyperblades and to the edges that border a hypervertex and a 
hyperedge as hyperdarts. 

Our definition of a topological hypermap differs slightly from those of [2], [\6] and [17]. 
Cori [2] takes the surface to be oriented, compact and without boundary, and contracts each 
hyperdart to a point called a 'brin'. Walsh [17] also takes an oriented, compact, boundary­
less surface and considers the dual of the map coloured {O, \} formed by contracting each 
hyperface to a point. Vince [\6] takes the map coloured {\, 2} formed by contracting each 
hypervertex to a point. 

We define three permutations of the set of hyperblades, n, as follows: We colour each 
edge of f'§ by the complement of the colours of the faces which it borders and, for 
i = 0, \, 2, (!i transposes each pair of hyperblades that form the ends of an edge coloured 
i. Clearly these permutations satisfy the relations (!~ = \ and by the connectedness of f'§ they 
generate a transitive group of permutations of n, so we have a transitive permutation 
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FIGURE 7. 

FIGURE 8. 

representation n: G --+ SO of the group 

G = <ro, r l , r2 lro = rT = ~ = I). 

This permutation representation is isomorphic to the action of G (by right multiplication) 
on the cosets Hg of a subgroup H ~ G; this subgroup H, the hypermap subgroup associated 
with Yf, is the stabiliser in G of an element of n, and is uniquely determined up to 
conjugacy. In fact, the edge-coloured graph t§ is just the Schreier coset graph of H in G (with 
loops replaced by free edges) and so we have a bijection between hypermaps and transitive 
permutation representation of G (or more strictly between isomorphism classes in each 
category). 

Hypermap coverings Yfl --+ ~ correspond to inclusions HI ~ H 2 , and the automorphism 
group Aut(Yf) can be realised as the action of NG(H)jH on the right cosets of H, where 
NdH) is the normaliser of H in G, acting by left multiplication. 

It can also be shown that: Y' is without boundary if and only if H is torsion free; Y' is 
orientable and without boundary if and only if H lies in G + , the subgroup of index 2 in G 
that consists of words of even length, with free basis XI = rOr2 and X2 = r l r2; and Y' is 
compact if and only if H has finite index in G. 

In fact, if Y' is oriented and without boundary then the hyperblades of Yf are two­
colourable. The orientation of each hypervertex defined by starting at a particular hyperblade 
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and proceeding along an edge of t§ coloured 1 will be positive for the hyperblades of one 
colour and negative for those of the other. (Thus, choosing an orientation for!/' amounts 
to choosing a colouring of the vertices oft§.) Ifwe represent each hyperdart by the incident 
hyperblade of positive colour then we can define an action of x7 and x~ on the hyperdarts 
of the oriented hypermap. Under this action the cycles of x7 are the hyperdarts bounding 
the hyperedges taken in a negative direction, and the cycles of x~ are the hyperdarts 
bounding the hypervertices taken in a positive direction. This action of x7 and x~ on the 
hyperdarts corresponds to the permutations !X and (J of brins as defined in [2]. The brins 
taken in a positive direction around the hyperfaces correspond to the cycles of (J-)!x. 

Thus an oriented hypermap without boundary corresponds to a transitive permutation 
representation of the group 

If H is the stabiliser in G of a positive hyperblade then this transltive permutation 
representation is isomorphic to the action of G + (by right multiplication) on the right cosets 
of H in G +. The group of (orientation-preserving) automorphisms of the oriented hypermap 
£ can be realised as the action of NG+ (H)/H (by left multiplication) on the right cosets of 
Hin G+. 

A hypermap £ is reflexible if Aut(£) acts transitively on the set of hyperblades or, 
equivalently, H <J G. An orientable hypermap £ without boundary is regular if its group 
of orientation-preserving automorphisms acts transitively on the set of hyperdarts or, 
equivalently, H <J G+. Both imbeddings of the Fano plane shown in Figures 5 and 7 are 
regular [15]. For a detailed account of regular hypermaps, see [3]. 

For example, let £) be the hypermap shown in Fig. 5 and let £2 be the hypermap shown 
in Fig. 7. For i = 1, 2 let !Xi' (Ji be the corresponding permutations of brins (as defined in 
[2]) according to a clockwise orientation. Thus 

!X) (hue)(jif)(lkg)(bnm)(dpo)(arq)(sct); 

(J) (aih ) (ckj) (eml) (fon) (gqp) (rbs)(tdu); 

!X2 (euh)(fij)(gkl)(mnb)(opd)(qra)(tcs); 

(J2 (aih) (ckj)(eml) (fon)(gqp)(rbs)(tdu). 

4. OPERATIONS 

Any permutation, 0/, of {O, 1, 2} clearly induces an operation, iii, on hypermaps that 
permutes hypervertices, hyperedges and hyperfaces. These operations were first described 
by Machi [14] for oriented hypermaps. The corresponding group automorphism r i -+ ril/! of 
G, also denoted by 0/, induces the operation iii by its left action on the associated transitive 
permutation representations of G. We define an operation on hypermaps to be any trans­
formation that is induced by an automorphism of G in this way. This definition was first 
made by Jones and Thornton [11] for maps on surfaces (see also [6], in which higher 
dimensions are considered). 

Many topological and combinatorial properties are equivalent to algebraic properties 
that are preserved by Aut(G). In particular, the induced operations preserve coverings, 
automorphism groups, reflexibility, boundaries, and compactness of hypermaps. We shall 
see later that Aut(G) restricts to G+ and so the induced operations restrict to orientable 
hypermaps without boundary. In particular, they restrict to regular hypermaps. 
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If a hypermap .1{' has associated transitive permutation representation n and if ¢ E Aut( G) 
then we denote the hypermap with associated transitive permutation representation ¢ -\ n 
by .1{''''. If.1{' has hypermap subgroup H then.1{'''' has hypermap subgroup H"'. We make 
analogous definitions for operations on oriented hypermaps without boundary. We let f) 
denote the group of operations on hypermaps induced by the left action of Aut(G) on the 
transitive permutation representations of G and let ,f, denote the group of operations on 
oriented hypermaps without boundary induced by the left action of Aut(G+) on transitive 
permutation representations of G+. 

Each inner automorphism of G acts trivially on hypermaps, and so we have an induced 
action of the outer automorphisms group Out(G) = Aut(G)jInn(G). Similarly, we have an 
induced action ofOut(G+) = Aut(G+)jInn(G+) on oriented hypermaps without boundary, 
and the following diagrams commute: 

We shall see later that 

and that 

Aut(G) 

! 
Out(G) -+ f) 

f) ~ Out(G) ~ PGL(2, 2) 

,f, ~ Out(G+) ~ GL(2, 2) 

but first we introduce a new operation. 
Let r be the automorphism that conjugates '0 by '2. Then i E f) may be described as 

follows: 
(1) shrink each hyperface of .1{' to a point; 
(2) make a directed cut along each hyperdart; 
(3) rejoin corresponding sides in opposing directions; 
(4) place a small disc coloured 2 around each resultant vertex to obtain the hypermap .1{". 

This operation is illustrated in Fig. 9. 

~<:1 ( 2) / o ~ 
(3) (4) - - -

\ 7 
FIGURE 9. 

A corresponding operation was first described by Wilson [18] and Lins [12] in the context 
of maps on surfaces. Notice that i preserves the hypervertices and hyperedges of .1{', 
together with their incidence, so that .1{' and .1{" have the same underlying hypergraph. 

For example, let .1{' be the hypermap shown in Fig. 1. If we shrink each hyperface of .1{' 
then we obtain the map coloured {O, I} shown in Fig. 10. This is easily seen to be invariant 
under the cutting operation that follows and so .1{" = .1{'. 

The automorphism r restricts to an automorphism of G + and so induces an operation 
i E ,f,. This swaps oriented hypermaps .1{'\ and .1{'2 where 
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o 

o 

FIGURE 10. 

and 

whence i swaps the hypermaps shown in Figs 5 and 7. 

5. GROUP AUTOMORPHISMS 

In this section we construct an epimorphism from Aut(G) onto PGL(2, Z) with kernel 
Inn(G). We then show that this is also the kernel of the action of Aut(G) on hypermaps. 

If ¢ E Aut(G) then each rt is conjugate to some rj by the torsion theorem for free 
products [13, IV. 1.6] whence ¢ restricts to an automorphism of the subgroup G+. We shall 
exploit the proof[13, 1.4.5] that Out( G +) ~ G L(2, Z). 

For i, j = 1, 2 let ei : Z x Z --+ Z be the epimorphism which takes the ith co-ordinate 
and let e: G+ --+ Z X Z be the abelian ising epimorphism defined by xJ'; = bu. We have an 
induced homomorphism Q: Aut(G+) --+ GL(2, Z)definedby¢ --+ (¢u)-I, where ¢u = x;ue; 
(inversion is necessary since we regard automorphisms as acting on the right but matrices 
as acting on the left). From Q we obtain the obvious homomorphism e: Aut(G) --+ 

PGL(2, Z). 
Let AI, A2 and A3 be the matrices 

and 

respectively. Then AI, A2 and A3 generate PGL(2, Z) with defining relations 

Ai = A~ = A~ = (A IA2)3 = (AIA3)2 = 1 

where Ai denotes the image of Ai in PGL(2, Z)[4, 7.2]. For {i, j, k} = {O, 1, 2} let t/Ji be the 
automorphism of G that transposes rj and rk , let 'u be that which conjugates ri by rj and 
let a l = t/J2, a2 = '12t/JI'12 and a3 = '02' It is easily verified that: af = Ai for i = 1,2,3, 
whence e is an epimorphism; that aL aL aL (ala2)3, (a la3)2 E Inn(G), whence Ker(e) s; 
Inn(G); and that ro, rl , r2 E Ker(e), whence Inn(G) s; Ker(e). Thus we have: 

THEOREM 5.1. Out(G) ~ PGL(2, Z) and Aut(G) is generated by the automorphisms that 
permute ro, r l and r2 and the automorphism that conjugates ro by r2. 

Suppose that ¢ E Aut(G) acts trivially on compact, regular hypermaps. We shall show 
that ¢ E Inn(G). It will follow that f> ~ Out(G). Let p be any odd prime and let r by any 
primitive root of p. For i,j = 1,2 let Hi be the kernel of the epimorphism 0i: G+ --+ 

AGL(l, p) defined by x~; = Sr and xJ; = t l , i i= j. Then for g E G we have gO;" = rgq
,;. 

Whence Ker(OiJl) consists of those g E G for which Ife; == 0 mod(p - 1). 
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Since Hi is a normal subgroup of G + of finite index, it is associated with a compact, 
regular hypermap which, by hypothesis, must be invariant under $, whence H/' = H~i for 
some {)i E {O, I}. Let ;Pi: AGL(l, p) -+ AGL(l, p) be defined by ()i;Pi = rN)-1 ()i' Clearly, 
;Pi E Aut(A GL (1 , p)). We recall that every automorphism of AGL(l, p) is inner and that Ji­
only depends upon the conjugancy classes of AGL(I, p). Thus ;PiJi- = Ji-. 

Consider the case i = 1. If ()I = 0 then xt- 1B1il = xfd'lil = Xflil and Xr- 1B1il = X~I4>lil = 
X~lil; whence xr-

I 
xII, xr-

I 
XiI E Ker«()IJi-), and so 

mod(p - 1) 

and 

mod(p - 1). 

Similarly, if {)I 1 then 

(xr-1xd'l == 0, mod(p - 1) 

and 

mod(p - 1). 

Takingp sufficiently large determines a value {)I for which xr-1e'l = (- 1/1 and Xr-1e'l = O. 
Similar arguments in the case i = 2 yield a value ()2 for which Xr-

1e
'2 = 0 and Xr- 1e

'2 = 
(-1)'\ Thus we have 

q/! = ± ( - l)b
l 0) = A~bl Hz) = r~~1 +b2 )1i 

o (_I)b2 

Whence ¢ E Inn(G)<ro2)' But then, by symmetry, ¢ E ni"j Inn(G) <rij) 
required. Thus: 

THEOREM 5.2. f) ~ Out(G) ~ PGL(2, Z). 

REMARK. The above argument is easily adapted to show that 

f) ~ Out(G+) ~ GL(2, Z) 

Inn(G), as 

Now the restriction Aut(G) -+ Aut(G+) is onto, whence Theorem 5.1 provides generators 
for f). For example, it is easily verified that '*'1 (Fig. 5) lies in an orbit of size 8 consisting 
of itself and its mirror image together with the six colourings of '*'2 (Fig. 7) by 0, 1 and 2. 
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