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IntroductionThe theory of motives has always had two faces. One is the geometric facewhere a universal cohomology theory for varieties is cooked up from geo-metric objects like cycles. The other one is the linear algebra face whererestricting conditions are put on objects of linear algebra like vector spaceswith an operation of the Galois group. The ideal theorem would be anequivalence of these two approaches.For pure motives, Grothendieck proposed a geometric construction. Thelinear algebra side is covered by l-adic cohomology for all primes l togetherwith singular cohomology equipped with its Hodge structure. The relationbetween the two sides is made by the Tate or the Hodge conjecture whichtell us that geometry and linear algebra should be very close to each other.However, we neither know whether Grothendieck's construction has the re-quired properties nor what the image of the category of motives on the linearalgebra side is. I.e., we cannot tell whether a Galois module is motivic justfrom checking linear algebra conditions (there are conjectures though).For mixed motives, Voevodsky's work goes a long way in constructingthe geometric side of the story. The linear algebra side is given by Deligne'sabsolute Hodge motives, independently considered by Jannsen under thename of mixed realizations. By Beilinson's conjectures the interplay be-tween geometry and linear algebra should be measured by special values ofL-functions of motives. However, we are far from proving the ideal theorem.The main aim of the present article is to provide the expected functor be-tween the two sides. More precisely, we construct a realization functor fromVoevodsky's triangulated category of geometrical motives (which should bethought of as the derived category of mixed motives) to the \derived cate-gory" of mixed realizations which we constructed in [Hu1]. Indeed, most ofthe present article is a follow-up of loc. cit. where the realization functorwas constructed on the category of simplicial varieties. As a direct corollarywe also obtain realizations functors to continuous l-adic cohomology and toabsolute Hodge cohomology. Their existence is not a surprise (cf. [Vo2])but was not in the literature yet.We want to mention that Levine has a triangulated category of motives([Le3]). Over a �eld of characteristic zero it is equivalent to Voedvodsky's.He also constructs realization functors in his setting starting from a di�erent1



set of axioms.We can show (2.3.6) that the motivic objects in the category of mixedrealizations obtained from Voevodsky's category are contained in the cate-gory of motivic objects considered before. We do not get new motives onthe linear algebra side.We can also prove that the Chern classes from higher algebraic K-theoryto mixed realizations factor through Voevodsky's category. The key to thisfact is the computation of the motive of BGL in Voevodsky's category.Besides these formal insights, the mixed realization functor should bevery useful wherever an attempt is made to prove Beilinson's conjectures onL-values. They require the construction of elements in motivic cohomology.In the known cases, Adams eigenspaces of K-theory were used as the de�ni-tion of motivic cohomology. The formal properties of motivic cohomology inthe sense of Voevodsky are lot better , e.g. localization sequences involvingsingular varieties. Its main advantage is that it allows to do computationsin two variables. Motivic cohomology in the sense of K-theory always �xesthe second variable as a Tate motive. We hope that explicit applicationswill follow.AcknowledgmentsI would like to thank B. Kahn and M. Spiess who organized an enlighteningArbeitsgemeinschaft on Voevodsky's work in Oberwolfach. I pro�ted fromdiscussions with D. Blasius, G. Kings, K. K�unnemann, E. Landvogt, M.Strauch and J. Wildeshaus. I am particular thankful to B. Kahn and J.Wildeshaus for their comments on earlier version of this text.
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1 Voevodsky's triangulated category of motivesWe start with a quick review of Voevodsky's category. Then we give someextra notions and properties needed in the present text.1.1 ReviewWe repeat the de�nition of the triangulated category of motives as given byVoevodsky in [Vo1]. For more details and properties we refer to his paper.He has developed an integral theory. We mostly need the Q-rational version.Let k be a �xed ground �eld of characteristic zero. Let Var be thecategory of varieties over k, i.e. separated schemes of �nite type over k. LetSm be the full subcategory of smooth varieties. Let A = Q or Z be thecoe�cient ring.De�nition 1.1.1 ([Vo1] 2.1). Let X be a smooth variety and Y a generalvariety. A prime correspondence from X to Y is an integral closed sub-scheme W of X � Y which is �nite over X and surjective over a connectedcomponent of X. Let c(X;Y )A be the free A-module generated by primecorrespondences. Its elements are called �nite correspondences. Let SmCorbe the category with objects smooth varieties and morphisms given by �nitecorrespondences.We want to recall the composition of correspondences. Assume �1 �X � Y and �2 � Y �Z are prime correspondences. �1 �Z and X � �2 arecycles in X�Y �Z. All irreducible components Ci (with reduced structure)of their intersection are �nite over X. In particular they all have the rightdimension. We have (�1 � Z):(X � �2) =XniCiwhere the intersection multiplicity ni of Ci is the usual one in the Chowgroup, e.g.[Fu] 20.4. Let � : X � Y � Z ! X � Z be the natural projec-tion. It induces a map �� : c(X;Y � Z)! c(X;Z) which takes a primitivecorrespondence C to the closure of its image �(C) times the degree of thecovering C ! �(C). By de�nition�2 � �1 = ���(�1 � Z):(X � �2)� :There is a functor [�] : Sm! SmCor :4



It maps a morphism to its graph.Note that SmCor is additive. Hence we can consider complexes of objectsin SmCor as well as homotopies between maps of complexes.De�nition 1.1.2 ([Vo1] 2.1.1). The triangulated category of e�ective ge-ometrical motives DMeffgm (k;A) is the localization of the homotopy categoryKb(SmCor) with respect to the smallest thick subcategory containing the fol-lowing:1. For any smooth scheme X the complex[X � A 1 ]! [X] :2. For any smooth scheme X and any Zariski-covering X = U [ V thecomplex [U \ V ] j0U+j0V����! [U ]� [V ] jU�jV����! [X]where j0U , j0V , jU and jV are the obvious inclusions.The �bre product of varieties induces a tensor product structure of DMeffgm (k;A).Remark: If the distinction is not important or the setting clear, we willdrop k and A from the notation.For any smooth variety X, we have the complex [X] concentrated inzero. We also have the complex [X]� = [X] ! [Spec k] sitting in degrees 0and 1. In this normalization, there is an exact triangle[X]� ! [X]! [Spec k]! [X]�[1] :De�nition 1.1.3 ([Vo1] after 2.1.3). LetA(0) = [Spec k] 2 DMeffgm :It is the unit object for the tensor structure on DMeffgm . LetA(1) = [P1]�[�2] 2 DMeffgmbe the Tate motive. For k � 1 letA(k) = A(1)
k :If M is a motive, we put M(k) =M 
A(k).5



M 7!M(1) is a triangulated functor on DMeffgm .De�nition 1.1.4 ([Vo1] end of 2.1). The category of geometrical motivesDMgm(k;A) is obtained from DMeffgm (k;A) by formally inverting the Tatemotive. Explicitly, objects of DMgm are pairs (M;n) with M 2 DMeffgmand n 2 Z. Morphisms are given byHomDMgm((B;n); (C;m)) = limk�0HomDMeffgm (B(n+ k); C(n+ k)) :We write A(n) = (A(0); n) for n 2 Z. By construction A(n) = (A(n); 0) forn � 1.This de�nition is very much in the spirit of Grothendieck's de�nitionof pure motives. There is a second category which is a lot more useful incomputations.De�nition 1.1.5 ([Vo1] 3.1.1, 3.1.8, after 3.1.10). A presheaf with trans-fers on Sm is an additive contravariant functor from SmCor to the categoryof abelian groups. It is called a Nisnevich sheaf with transfers if the corre-sponding presheaf on Sm is a sheaf in the Nisnevich topology (see [Fr] Ch.2).The category is denoted ShNis(SmCor). A presheaf F on Sm is called ho-motopy invariant if the natural map F (X)! F (X� A 1) is an isomorphismfor all smooth varieties X.The category of motivic complexes DM�(k;A) is the full subcategoryof the derived category D�(ShNis(SmCor)) whose objects have homotopy in-variant cohomology sheaves.DM� has a natural t-structure. Its heart is the abelian category ofhomotopy invariant Nisnevich sheaves with transfers.Proposition 1.1.6 ([Vo1] 3.1.2, 3.1.11, 3.1.13). There is a functorL : SmCor! ShNis(SmCor)given by L(X)(U) = c(U;X)A. It also de�nes a functor on Var. The nat-ural inclusion of DM� in D�(ShNis(SmCor)) has a left adjoint. For anyNisnevich sheaf with transfers F , it is given by the complex C�(F )C�n(F )(X) = F (X ��n)where �� is the standard cosimplicial object. The composition C��L inducesa functor M : DMeffgm ! DM� :6



It is fully faithful and hence identi�es DMeffgm with a full subcategory ofDM�.Remark: It is rather formal to show that we get a functorDMeffgm ! DM� :However, it is very hard to show that A(1) is quasi-invertible in DMeffgm([Vo1] 4.2.4) and hence that DMeffgm is a full subcategory of DMgm. A(1)is not invertible in DM�.Remark: Note that M : SmCor ! DM� is induced by a functor to thecategory of complexes C�0(SNis(SmCor)).De�nition 1.1.7. The pseudo abelian hull of the image of the compositefunctor M : SmCor! DMgm ! DM�is called the category of e�ective (generalized) Chow motives. The categoryof (generalized) Chow motives is obtained from it by formally inverting A(1).The reason for this terminology will become clear after 1.1.12 below.DM� is pseudo abelian because the derived category of an abelian categorywith enough injectives (as ShNis(SmCor)) is by [Le2] Thm A.5.3. Hencethe pseudo abelian hull of the de�nition is still a subcategory of DM�.In particular, A(1)[2] is a Chow motive because it is the cokernel of theprojector induced by P1 ! Spec k 0�! P1. By de�nitionM(P1) = A�A(1)[2] :The splitting is independent of the choice of k-rational point of P1 by ho-motopy invariance.Remark: There is some confusion with the older literature. In the categoryof Grothendieck motives we would decompose h(P1) = Q � Q(�1) and callh2(P1) = Q(�1) the Lefschetz motive. Its dual then is the Tate motive.Voevodsky's Tate motive really is the Lefschetz motive in old terminology.The di�erence in signs is only a matter of choice in the de�nition. It makessense because Voevodsky's functor M is covariant whereas Grothendieck'sfunctor is contravariant. 7



Lemma 1.1.8. The functor M : SmCor! DM� extends to complexes inC�(SmCor). Let f : X� ! Y� be a morphism of complexes such that allfn : Xn ! Yn induce isomorphisms M(fn). Then M(f) is an isomorphism.Proof. Recall that the functorM is induced by the functor C�L which takesvalues in the category of bounded above complexes of Nisnevich sheaveswith transfers. More precisely, they are bounded above by 0. It extends bytaking double complexes. There is no problem because in each componentonly �nitely many direct summands contribute. For the second assertion,the assumption implies that all Hp(C�L(fq)) are isomorphisms. A spectralsequence argument in the surrounding category of Nisnevich sheaves withtransfer shows that M(f) induces an isomorphism on all Hn(C�L(f)).De�nition 1.1.9. The full subcategory DMeffgm�(k;A) of DM�(k;A) gen-erated by the image of C�(SmCor) which is triangulated, pseudo abelian andclosed under tensor products is called the category of complexes of e�ectivegeneralized Chow motives.Note that DMeffgm is a full subcategory of DMeffgm� .The Tate motive is also used in order to de�ne motivic cohomology.De�nition 1.1.10 (Voevodsky). Let X be a variety. ThenHiM(X;A(j)) = HomDM�(k;A)(M(X); A(j)[i])is the motivic cohomology of X.Morphisms of motives in DM� are \known". At least we relate themto other theories.Proposition 1.1.11. Let X and Y be smooth and proper varieties pure ofdimension d and d0.HomDM�(M(Y );M(X)) = CHd(X � Y )
Awhere the right hand side denotes cycles of codimension d up to rationalequivalence.Proof. For a proper variety, M c(X) = M(X) (by de�nition see [Vo1] 4.1).By [Vo1] 4.2.3 (cf. [Fr] Prop. 4.9 where the sign is correct), 4.2.2 3 and4.2.5)HomDM�(Y;X) = A0;0(Y;X) = A�d;0(Y �X;Spec k)= HomDM�(M(Y �X); A(d)[2d]) = CHd(X � Y )A :8



Corollary 1.1.12 (Voevodsky). The full subcategory of DM� with ob-jects direct summands of motives M(X) with smooth and proper X is equiv-alent to the category of e�ective Chow motives.Proof. Clear by de�nition of the category of Chow motives, e.g. [Sch] 1.2.Corollary 1.1.13. Let k be a number �eld. Then HomDM�(k;Q)(Q ;Q (j)[i])vanishes in the cases1. i < 0,2. i > 1,3. i = 0, j 6= 0,4. i = 1, j � 0.If k = Q then HomDM�(Q ;Q (j)[1]) is zero or one-dimensional.Proof. By [Vo1] 2.2, morphisms of Tate motives are given by higher Chowgroups which are known to be isomorphic to the graded pieces of the -�ltration on higher K-groups. In the case of a number �eld the ranks areknown by Borel's result [Bo].Remark: This theorem will be needed in the computations in the sequel.Note, however, that we do not need to understand the precise isomorphisms.1.2 Mixed Tate motivesWe now study a particularly simple subcategory of DMgm where the mor-phisms are understood. The computations in chapter 3 are carried out inthis subcategory. The use of this category for question of this type was sug-gested to me by Kahn. The main computational tool, the weight �ltrationwas introduced by Levine in the setting of his triangulated category ([Le1]).Let k = Q and A = Q .De�nition 1.2.1 (Kahn, Levine). The triangulated category of mixedTate motives DMT is the full triangulated category of DMgm generatedby Q(i) for i 2 Z. By DMT �N ;DMT �N ;DMT [N;M ] we denote the fulltriangulated subcategories generated by Q(i) with i � N; i � N;N � i � Mrespectively.The category DMT is closed under tensor products.9



Lemma 1.2.2. 1. For all N 2 Z,M1 2 DMT �N andM2 2 DMT �N�1,we have HomDMT (M1;M2) = 0.2. The categories DMT [N;N ] are isomorphic to the category of �nite di-mensional graded Q-vector spaces.Proof. For Mn = Q(in)[jn], n = 1; 2, this is a consequence of 1.1.13. If theassertion is true for two vertices of an exact triangle (in the �rst or secondargument), then it is true for the third. This proves 1. For 2. we show byinduction thatM 2 DMT [0;0] is direct sum of Q(0)[j]'s. Consider a triangleM !MQ(0)ej [j] ��!MQ(0)fj [j] :Let �j = � jQ(0)ej [j]. Again by 1.1.13 it maps to Q(0)fj [j]. Such mor-phisms are given matrices with rational numbers as entries. Compositionof matrices is composition of morphisms. This means precisely that for�xed j the category of powers of Q(0)[j] is isomorphic to the category of�nite dimensional Q-vector spaces. We decompose Q(0)ej [j] = Kj [j]� Ij [j],Q(0)fj [j] = Ij [j] � Lj such that �j vanishes on Kj and is an isomorphismon Ij. Then M also stands in the exact triangleM !MKj [j] 0�!MLj[j]hence M �=LKj[j]�LLj[j�1]. As we have already seen, the morphismsof such direct sums are the same as the morphisms of graded Q-vector spaces.Remark: We will construct later (proposition 2.1.7) a faithful �bre functorfrom DMT [N;N ] to the category of graded Q-vector spaces given by singularcohomology.The �rst part of this lemma is enough to deduce in a formal way theexistence of an extra structure on DMT .Proposition 1.2.3 (Levine). For all M 2 DMT and integers N , thefunctor HomDMT (�;M) : DMT ��N ! abis representable by an object W�NM together with a morphismW�NM !M :10



W�N is an exact functor DMT ! DMT �N . Dually, the functorHomDMT (M;�) : DMT <N ! abis representable by M ! W<NM :This de�nes an exact functor to DMT <N . For each object M there is anexact triangle W�NM !M ! W<NM) :Let GrN M =W<N+1W�NM be the graded pieces.Proof. We put N = 0 in order to simplify notations. As always, it is enoughto construct some object W�0M ! M with the universal property. It isnecessarily unique up to unique isomorphism. We start with M = Q(i)[j].We put W�0M = (M if i � 0,0 else.It satis�es the universal property by the lemma.Now assume W�0 is constructed on M1 and M2. We want to de�ne iton M3 which sits in the triangleM1 !M2 !M3 !M1[1] :By the axioms of a triangulated category there is an object W0M3 sitting inthe triangle W�0M1 !W�0M2 !W�0M3 !W�0M1[1]and a morphismW�0M3 !M3 such that the obvious morphism of trianglesis de�ned. Now we have to check the universal property. Let K be an objectwith weights less or equal to 0. There are long exact sequencesHom(K;M1) ����! Hom(K;M2) ����! Hom(K;M3) ����! Hom(K[�1];M1) ����! Hom(K[�1];M2)x?? x?? x?? x?? x??Hom(K;W�0M1) ����! Hom(K;W�0M2) ����! Hom(K;W�0M3) ����! Hom(K[�1];W�0M1) ����! Hom(K[�2];W�0M2)The outer arrows are isomorphisms by assumption. By the �ve lemmathe middle arrow is also an isomorphism. The same proof works for thedual assertion. The universal property allows to construct W�N and W<Non morphisms. For M = Q(i)[j] the exact triangle clearly exists. By con-struction and lemma 1.2.4 below we get exact triangles as claimed.11



Remark: Usually it is not a good idea to de�ne a functor by choosing thethird vertex of a triangle. In our case it is well-de�ned because we also havethe universal property working for us.The above amounts to the construction of the weight co�ltration onTate motives. Application of contravariant realization functors maps it tothe weight �ltration on the realization side. Objects of DMT [N;N ] are (tri-angulated) pure Tate motives of weight �2N depending on conventions.The category of pure Tate motives of �xed weight is the derived categoryof a semi-simple abelian category. Obviously there is a \weight spectralsequence" with initial terms the graded pieces and converging to M .Lemma 1.2.4. Let D be a triangulated category. Consider the diagram ofexact triangles in D A1 ���! A2 ���! A3??y ??yB1 ���! B2 ���! B3??y ??yC1 C2 :
Then there is an object C3 and morphisms such that the last line and roware also triangles.Proof. [BBD] 1.1.11.1.3 More Technical backgroundLet again k be a �eld of characteristic zero and A = Z or Q .De�nition 1.3.1. Let K be a complex in SmCor. The stupid �ltration�nK is de�ned by (�nK)i = (Ki for i � n,0 for i < n.�nK is a subcomplex of K. Its graded pieces are the Ki.Let L be an object in DM�. The canonical truncation ��nL is thetruncation functor on DM� with respect to the t-structure with heart thehomotopy invariant sheaves with transfers. It is a quotient complex of L.12



��n is a functor on DM� whereas �n does not pass to DMgm. Notethat ��nM(K) = ��nM(�n�1K) :Proposition 1.3.2. Let K ! K 0 be a morphism in C�(SmCor). Assumethat it induces isomorphisms �nK ! �nK 0in DMgm for all n. Then M(K)!M(K 0) is an isomorphism in DM�.Proof. We consider the corresponding objects in the derived category ofNisnevich sheaves with transfers. We have to check thatHi(M(K))! Hi(M(K 0))is an isomorphism for all i where Hi denotes the cohomological functor withrespect to the natural t-structure. Only �nitely many Kk contribute toHi(M(K)), namely those with k � i� 1. In other words,Hi(M(K)) = Hi(M(�i�1K)) :Hence the assumption on the stupid �ltration is enough to prove the quasi-isomorphism.Lemma 1.3.3. For K 2 C�(SmCor) we have in DM�M(K) = lim�!M(�nK) :Proof. Clearly, the equality holds in the abelian category C�(ShNis(SmCor)).We have to prove that it passes to D�(ShNis(SmCor)). Assume we are givena direct system of morphisms in the derived categoryfn :M(�nK)! L :They are represented by morphisms of complexesM(�nK) f 0n�! Ln gn �� Lwhere gn is a quasi-isomorphism. The Ln can be chosen such that the f 0n andthe gn give a direct system up to homotopy. Let L1 the direct limit of the13



Ln. As direct limits are exact in ShNis(SmCor) it is also quasi-isomorphicto L. Let f 00n :M(�nK)! Ln ! L1 :They form a direct system up to homotopy. Let si be the stupid �ltrationof complexes of Nisnevich sheaves, i.e.(siC)p = (Cp for p � i0 else.Note that siM(�nK) = siM(K) for i � n. Hence f 00n induces a direct systemof maps up to homotopy on siM(K). We can de�ne their limit f on M(K)by descending induction. Assume f is de�ned on snM(K). f and f 00n�1 di�erby a homotopy h� : M(K)� ! L��11 . We modify f by hn � d on M(K)nand extend it toM(K)n�1 using f 00n�1 jM(K)n�1 . This gives a new morphismof complexes sn�1M(K) ! L1 which is homotopic to f 00n�1. Clearly themorphism f is homotopic to f 00n on the subcomplex M(�nK) as well.This lemma allows to reduce all questions on DMeffgm� (see de�nition 1.1.9)to questions in DMgm.Proposition 1.3.4. Let M(K) and M(L) be in DMeffgm�. ThenHomDMeffgm� (M(K);M(L)) = lim �HomDMeffgm� (M(�nK);M(L)) :Moreover, for �xed K and n there is N 2 N such thatHomDMeffgm� (M(�nK);M(L)) = HomDMgm(M(�nK);M(�NL)) :Proof. The �rst equality is nothing but the lemma. In order to show theexistence of N we can assume that K is of the form M(X)[p] for some pand some smooth variety X. Then by [Fr] 3.3HomDMeffgm� (M(K);M(L)) = HpZar(X;M(L)) :X is �nite dimensional hence Zariski cohomology has �nite cohomologicaldimension. Hence for N small enoughHpZar(X;M(L)) = HpZar(X; ��NM(L)) = HpZar(X; ��NM(�N�1L)) :14



Lemma 1.3.5. Let X be a variety such that M(X) is a mixed Tate motive.Then �>0GrnM(X) = 0 for all n.Let X� be in Cb(SmCor) such that all Xi are mixed Tate motives. Then�>0W�nM(X�) = �>0W�n�0M(X�) :Proof. By assumption GrnM(X) = Lji Q(n)[ji ]. It follows from Hodgetheory, [De1] Thm 8.2.4, that 0 � ji � n. Now we use the fact that�>nQ(n) = 0. ([Ka] 2. property C or from ��1M(G nm) = 0). For thesecond assertion it su�ces to show that��0W�n(M(X�)) = 0for complexes concentrated in negative degrees. On the level of Grn thisfollows from the �rst part. By induction on the weight �ltration it followsfor all W�n.Proposition 1.3.6. Let X� and Y� be objects of C�(SmCor) such that allXi and Yi are mixed Tate motives. Letf : X� ! Y�be a morphism in DM�. For all integers N and Tate weights n (see 1.2.3)we assume that kernel and cokernel of the morphismGrn ��NX� ! Grn ��NY�is direct sum of Q(n)[j] with j � N . Then f is an isomorphism.Proof. Recall that ���N+1Q(n)[j] = 0 for j � N + n. By assumption themap Grn ��NX� ! Grn ��NY�fails to be an isomorphism by direct sums of Q(n)[j] with j � N . Henceapplication of ���N+1 yields that���N+1Grn ��N�nX� ! ���N+1Grn ��N�nY�(*)is an isomorphism for all n andN . We want to show from (�) that ���N+1(f)is an isomorphism for all N . Only �nitely many weights occur in ��NX�and ��NY�. Let n0 be the maximal one. The weight �ltration has at mostn0 non-trivial steps because all Xi and Yi are e�ective. By assumption (�),15



���N�n0+1Grn ��N�2n0(f) is an isomorphism for all weights up to n0. Byinduction on the exact triangles for the weight �ltration (see 1.2.3) and the�ve lemma in each step we deduce that���N+1W�n0��N�2n0(f)is an isomorphism. By lemma 1.3.5 this implies that���N+1W�n0��N (f) = ���N+1��N (f) = ���N+1(f)is an isomorphism as claimed.2 The realization functorWe construct triangulated realization functors from DMgm(k;A) to vari-ous triangulated categories. On the level of cohomology objects this corre-sponds e.g. to the l-adic or Hodge realization. In order to stress the logicwe �rst give an axiomatic construction. Then we recall the de�nition ofthe \derived" category of mixed realizations. In a last step we apply theconstruction to this case. The main result is 2.3.3 and its corollaries.2.1 Axiomatic constructionAgain k is a base �eld of characteristic zero. In this section we assumethroughout that A is an abelian category with enough injectives in whicharbitrary direct sums exist and are exact. We start with a contravariantfunctor ~R : Sm �! C�0(A) :The aim of this section is to deduce from it (under the assumption of certainaxioms) a triangulated functorR : DMgm �! D+(A):Such a functor is called a realization functor. All realization functors induceby functoriality regulator maps, i.e. transformations of functors from Var toab HiM(?;Z(n)) �! HiR(?; n) := HomD(A)(R(Z(n)); R(?)) :For technical reason we are also interested in extensions of R to DMeffgm� .16



Example: In the case k = C , let Q be the category of Q-vector spaces and~Rsing the singular cochain complex, i.e., for a smooth variety X, let~Rsing(X) = Q [Cont(��;X(C ))]_where X(C ) is considered as a complex manifold, �n is the standard topo-logical n-simplex, Cont denotes continuous maps of topological spaces and�_ is the Q-dual. By de�nitionHi( ~Rsing(X)) = Hising(X(C );Q ) :Clearly, ~Rsing(X) is a functor to C�0(Q ).De�nition 2.1.1. A functor~R : Sm �! C�0(A)or ~R : Var �! C�0(A)has descent for open covers respectively for proper covers, if application of~R to the covering map for the nerve of a Cech-covering respectively for aproper hypercovering yields a quasi-isomorphism . It satis�es the homotopyproperty if for all varieties X the morphism~R(X)! ~R(X � A 1)is a quasi-isomorphism.The �rst realization result is rather obvious:Proposition 2.1.2. � Assume we have a functor~R : SmCor! C�0(A)which has descent for open covers and satis�es the homotopy property.Then it extends to an exact functorR : DMeffgm� ! D+(A) :� Assume in addition that A is a tensor category and ~R is compatiblewith tensor products. Then R is a triangulated tensor functor.17



� Finally, if the functor � 
 R(Q(1)) on D+(A) is an equivalence ofcategories, then R extends to a functorR : DMgm ! D+(A) :Proof. Applying ~R to objects of Cb(SmCor) we get double complexes. Wetake the associate simple complex in C+(A). This involves a universal choiceof signs which we �x once an for all. ~R is a functorKb(SmCor)! K+(A)! D+(A) :(See [Hu1] 2.2.3 for details on signs.) All other statements are immediate.We obtain R : DMgm ! D+(A) :Finally we extend it to DMeffgm� . On objects the same de�nition as onbounded complexes works. On morphisms we use the description of lemma1.3.4 to reduce to the bounded case.Remark: It is tempting to weaken the assumption of the proposition tofunctors with values D(A) or even triangulated categories in general. How-ever, the above proof does not work in that generality. In fact, all construc-tions of Chern classes or cycles classes on higher Chow groups - a questionvery similar to the above - assume the existence of functorial complexesrather than objects in a derived category.Example: (Etale cohomology) Fix a prime l and an integer n. We choosean injective resolution I of Z=ln on the �etale site on the category of smoothschemes over our base �eld k. Let M(X)et
Z=ln be the etale shea��cationof the complex of Nisnevich sheaves modulo ln. We put~R�(X;Z=ln) = Hom�Shet(M(X)et 
 Z=ln;I) :Clearly this is a contravariant functorSmCor! C(ab) :By [Vo1] Prop. 3.2.3 the cohomology of this complex computes the etaleversion of motivic cohomology or equivalently �etale cohomology of X. Let~R(X;Z=ln) be the shea��cation of R�(Xk0 ;Z=ln for �nite �eld extensionsof k in the �etale topology. Clearly ~R(X;Z=ln) computes Rp�(Z=ln)X if18



p : X ! Spec k is the structural morphism. From this we get the exactrealization functor R : DMgm ! Db((Spec k)et;Z=ln)to the derived category of ln-torsion Galois modules. Formulated like this,many properties of �etale cohomology, e.g. localization sequences for smoothpairs, are a consequence of the existence of the functor. By functoriality, weget regulator maps HiM(X;Z(j))! Hiet(X;�
jln ) :Example: (Continuous �etale cohomology) Let R(X;Zl) be the projectivesystem of complexes R(X;Z=ln) for varying n. It allows to de�ne an exactrealization functor R : DMgm ! Db((Spec k)et;Zl)into Ekedahl's triangulated category of Zl-sheaves ([Ek]). By functoriality,we get regulator mapsHiM(X;Z(j))! Hicont(X;Zl(j))into Jannsen's continuous �etale cohomology.The rest of this section will be concerned with giving criteria for theexistence of functors on SmCor.Proposition 2.1.3. Let ~R : Var ! C�0(A) be a contravariant functorwhich is also covariant for all �nite and surjective maps between irreduciblevarieties.� We assume that for a �nite surjective map f : X 0 ! X the composition~R(X) f��! ~R(X 0)) f��! ~R(X)equals multiplication with the degree of f .� We also assume that f� is compatible with direct products in the fol-lowing sense: for f as before and all Y the diagram commutes:~R(Y �X 0)  ��� ~R(X 0)(idY �f)�??y ??yf�~R(Y �X)  ��� ~R(X)19



� Let g : Y ! X be an arbitrary map and f a closed immersion. Weput Y 0 = `Ci the disjoint union of the irreducible components ofX 0 �X Y with reduced structure. For all i let ni be the rami�cationindex of X 0 ! X at Ci (see [Fu] Ex. 4.3.7). We assume that~R(Y 0) g0� ��� ~R(X 0)P nifCi�??y ??yf�~R(Y ) g� ��� ~R(X)also commutes.Then ~R extends to a functors on SmCor.Remark: If ~R has descent for open covers and satis�es the homotopy prop-erty, then it extends at least to DMeffgm . Hence we have potentially twode�nitions on singular varieties - the original one and the one from DMgm.We do not know if they agree in general.Proof. Let X and Y be smooth connected varieties. Let � in X � Y be anirreducible subvariety which is �nite and surjective over X. Consider thediagram X  �! Y :It induces a map R(�) : ~R(Y )! ~R(�)! ~R(X)by composition of contravariant and covariant functoriality. If � is the graphof a morphism f , then ~R(f) = R(�).We claim that R is a functor. Let �1 � X�Y and �2 � Y �Z be primecorrespondences. Then(�1 � Z):(X � �2) =XniCiis a cycle in X�Y �Z. The Ci are the irreducible components of �1�Y �2.Let pr be the projection map to X � Z. The prime correspondence Ci is�nite and dominant over its image pr(Ci). Let di be the degree of thiscovering. The composition of correspondences is given by the cycle�2 � �1 =Xnidipr(Ci) :20



The morphismR(�2 � �1) : R(Z)! R(�2 � �1)! R(X)can equivalently be computed via R(�1:�2). Note that the multiplicitieswork out as they have to.The intersection multiplicity ni is equal to the rami�cation index ofX � �2 ! X � Y at Ci (see [Fu] 4.3.7) by loc. cit. 7.1.15 and because Z isat over k. By assumption~R(`Ci)  ��� ~R(X � �2)  ��� ~R(�2)~R(�)??y ??y ??y ~R00(�)~R(�1)  ��� ~R(X � Y )  ��� ~R(Y )commutes. This impliesR(�2 � �1) = ~R(�1) � ~R(�2) :By Deligne's method we can often extend a functor from Sm to Var.This will allows to weaken our assumptions further.Convention: Let V2 be a category and V1 a subcategory. Typically, V1will be Sm and V2 will be Var or SmCor. Given a functor ~R : V1 ! C(A)we say that it extends to V2 if there is a functor R : V2 ! C(A) and anatural transformation � : ~R ! R of functors on V1 such that all �(?) arequasi-isomorphisms.Proposition 2.1.4. Let ~R : Sm �! C�0(A) be a functor with descent forproper covers. Then it extends to a functor ~R0 : Var �! C�0(A). ~R0 hasdescent for proper covers on Var as well.Proof. Let X be a variety. By [De1] 6.2, there exists a proper hypercoveringof X such that all components are smooth. We put~R0(X) = lim�!Tot( ~R(X�))where X� runs through the inverse system of all proper hypercoverings of Xby smooth varieties. The construction works because direct limits exist inA. Descent for proper covers is a consequence of the same property for theoriginal functor. 21



Example: The functor ~Rsing has descent for proper covers (e.g.[Hu1] 6.2.2).By abuse of notation we call the extension also ~Rsing.Lemma 2.1.5. Let A be Q-linear. Let G be a �nite group operating on anobject K 2 A. Let KG be the subobject of G-invariant elements, i.e., theintersection of ker(g � id) for all g 2 G. Then the functor �G is exact andthere is a canonical section K ! KG of the inclusion.Proof. The section is given by� = 1#GXg2G g :This is where we need invertibility of #G. Using the section it is easy toshow that short exact sequences remain exact.Theorem 2.1.6. Let A be a Q-linear abelian category with enough injec-tives in which arbitrary direct sums exist. Let~R : Sm �! C�0(A)be a functor. We assume:� ~R has descent for open and proper covers and satis�es the homotopyproperty (cf. 2.1.1)Let ~R also denote the extension to Var (cf. 2.1.4).� For any surjective and �nite morphism f : X ! Y between normalvarieties the group G = AutY (X) operates on ~R(X) by contravariantfunctoriality. If the covering is generically Galois with Galois groupG, then we assume that~R(Y )! ~R(X) ��! ~R(X)Gis a quasi-isomorphism.Then ~R extends to a functor~R00 : SmCor! C�0(A)together with a natural transformation of functors on Sm� : ~R! ~R0022



such the �(�) are quasi-isomorphisms. ~R00 induces a functorR : DMeffgm� ! D+(A) :Finally assume that A is a tensor category and ~R is compatible with tensorproducts. Then R is a triangulated tensor functor. Assume� The functor � 
R(Q(1)) on D+(A) is an equivalence of categories.Then R passes to a functorR : DMgm ! D+(A) :This can be seen as a prototype theorem. The same methods alsoworks in other settings. An important such case is the realization func-tor RMR : Sm! CMR, see theorem 2.3.1.Remark: Levine also proves a realization theorem in the setting of his tri-angulated category ([Le3] Part I Ch. V). It has a di�erent avour from theabove. His axioms seem to amount to a contravariant functor which is co-variant for proper maps between smooth schemes plus the existence of cycleclasses.Before actually proving the theorem, we want to consider our example:Proposition 2.1.7. ~Rsing satis�es all conditions of the theorem. It extendsto a functor Rsing : DMgm ! D+(Q ) :Proof. We have to check several properties of singular cohomology of com-plex analytic spaces. Proper descent was mentioned above. Descent foropen covers is nothing but the Mayer-Vietoris sequence. The only non-trivial statement is the isomorphismHising(Y;Q) ! Hising(X;Q)Gfor �nite covering maps f : X ! Y (between normal spaces) which aregenerically Galois with Galois group G. Note that G operates on X byfunctoriality of the normalization of X in K(Y ). By the Leray spectralsequence it is enough to show the isomorphism for the direct image of the23



constant sheaf Q (there are no higher direct images for a �nite morphism).Its stalks are given by [GraRem] Ch. 2 x3.3(f�Q)y = Yx2f�1(x)Q :The covering group AutY (X) permutes these factors. On the generic �breit operates transitively by assumption. G operates transitively on all �bres,e.g. [Ma] Theorem 9.3. Hence (f�Q)Gy is at most one-dimensional. As theimage of Q in f�f�Q is invariant under G it is at least one-dimensional.Corollary 2.1.8. Let k = Q . Then Rsing identi�es the category DMT [N;N ]of Tate motives with �xed weight with the category of �nite dimensionalgraded Q-vector spaces.Proof. Clear because Rsing(Q(N)) = Q and morphisms are the same.In the rest of this section, we are going to prove our theorem in severalsteps. The main step is the following remark:Lemma 2.1.9. Let X be a normal variety and ~R a functor on Var as inthe theorem. Let ~R0(X) = lim�! ~R(X 0)Aut(X0=X) where the X 0 run throughthe category of normal X-schemes which are �nite surjective over X withgenerically Galois covering map. Then ~R0 is a contravariant functor onnormal varieties and also covariant for �nite surjective maps between them.The morphism ~R(X)! ~R0(X) is a quasi-isomorphism.Proof. As transition maps in the system we use only �nite surjective X-morphisms which are generically Galois. The system is well-de�ned. Byassumption ~R(X) ! ~R(X 0)Aut(X0=X) is a quasi-isomorphism. By exactnessof direct limits in A this remains true in the direct limit. We �rst check con-travariant functoriality. Let X ! Y be an arbitrary morphism of normalvarieties and Y 0 a covering of Y in our direct category. Then the normal-ization X 0 of Y 0 �Y X is also �nite and surjective over X. All irreduciblecomponents are generically Galois by the lemma below. We thus get a mor-phism of direct systems. For covariant functoriality, consider �nite surjectivemorphism � : X ! Y and a covering X 0 of X in the direct system. Thereis another such covering of X 0 which is also generically Galois over Y . Let�� be the projection ~R(X 0)! ~R(X 0)Aut(X0=Y ) :24



It induces a map of direct systems and hence�� : ~R0(X)! ~R0(Y ) :Note that in this normalization the composition~R0(Y ) ���! ~R0(X) ���! ~R0(Y )is the identity.Lemma 2.1.10. Let Y; Y 0 be normal irreducible varieties in characteristiczero and let � : Y 0 ! Y be �nite surjective and generically Galois withcovering group G. Let f : �! Ybe a morphism. Then G operates transitively on the �bres of��Y Y 0 ! � :Let C be the reduction of an irreducible component of ��Y Y 0. Then C ! �is surjective and generically Galois. The Galois group is the quotient of thestabilizer of C in G by the �xgroup of C.Proof. First we assume that � = SpecL is a (not necessarily closed) pointof Y . We can assume that Y = SpecA; Y 0 = SpecB are a�ne. Nowthe assertion is easy to check directly using the fact that BG = A and thateverything is Q-linear. More generally let � = SpecL where L is a �eld. Thereduction of ��Y Y 0 = ��f(�) ��1(f(�)) is given by ��f(�) ��1(f(�))red.Hence the assertion follows from the special case.Clearly the map ��Y Y 0 ! � is surjective. G stabilizes the subvariety ofcomponents which dominate �. Moreover the operation of G is transitive onall �bres, hence the closure of the �bre over the generic point is everything.Proof. (of Theorem) We only have to extend ~R00 of the lemma to the categoryof smooth correspondences. The method is the same as in the proof of 2.1.3.LetX and Y be smooth connected varieties. Let � inX�Y be an irreduciblesubvariety which is �nite and surjective over X. Let ~� be its normalization.Consider the diagram X  ~�! Y :25



It induces a map ~R00(Y )! ~R00(~�)! ~R00(X)by composition of contravariant and covariant functoriality. Let the mor-phism R(�) be this composition times the degree of � over Y . If � is thegraph of a morphism f , then ~R00(f) = R(�) in D+(A).We claim that R is a functor. Let �1 � X�Y and �2 � Y �Z be primecorrespondences. Then(�1 � Z):(X � �2) =XniCiis a cycle in X�Y �Z. The Ci are the irreducible components of �1�Y �2.Let pr be the projection map to X � Z. The prime correspondence Ci is�nite and dominant over its image pr(Ci). Let di be the degree of thiscovering. The composition of correspondences is given by the cycle�2 � �1 =Xnidipr(Ci) :Let �̂1:�2 =Pni ~Ci be the normalization of �1:�2. The morphismR(�2 � �1) : R(Z)! R(�̂2 � �1)! R(X)can equivalently be computed via R(�̂1:�2). Note that the multiplicitieswork out as they have to.The intersection multiplicities ni are equal to the rami�cation index ofX � �2 ! X � Y at Ci (see [Fu] 4.3.7) by loc. cit. 7.1.15 and because Z isat over k. Let �02 be normal variety, �nite and surjective over �2 which isGalois over Y . We put �1:(X � �02) =Xn0ijC 0ijwhere the Cij are the irreducible components of �1 �Y �02 covering Ci andthe n0ij are the rami�cation indices of X ��02 ! X � Y . By the last lemmathe covering of �1 is generically Galois, hence all degrees d(C 0ij=�1) = d0agree. As Y is smooth all rami�cation indices are equal toe0 = d(�02=Y )d0 �#fC 0ijgby the degree formula loc. cit. 4.3.7. By the same degree formula, we canreplace R(�̂1:�2) by R( ^�1:X � �02) in the computation of our morphism.26



Finally we have to show that the diagram~R00(` ~C 0ij)  ��� ~R00(~�02)e0d0 ~R00(�)??y ??yd(�02=Y ) ~R00(�)~R00(~�1)  ��� ~R00(Y )commutes. For this we have to go back to the de�nition of ~R00. We use theoriginal contravariant functoriality and then project to the invariants underG. We have already seen that the multiplicities �t. The rest of the theoremfollows from 2.1.2.2.2 Review of mixed realizationsWe review the basic notions of [Hu1], i.e., de�ne the category of mixedrealizations and the surrounding triangulated category. Everything in thissection is pure linear algebra. Let k be a �eld of characteristic zero whichcan be embedded into C . Let S be the set of embeddings.We �rst recall the de�nition of MR. It is a slight modi�cation ofJannsen's in [Ja]. It is equivalent to the notion of absolute Hodge motivewhich was independently given by Deligne [De2].De�nition 2.2.1 ([Hu1] 11.1.1). An object A in the category of mixedrealizations MR is given by the following data:� a bi�ltered k-vector space ADR;� for each prime l a �ltered Q l -vector space Al with a continuous oper-ation of Gk;� for each prime l and each � 2 S a �ltered Q l -vector space A�;l;� for each � 2 S a �ltered Q-vector space A�;� for each � 2 S a �ltered C -vector space A�;C ;� for each � 2 S a �ltered isomorphismIDR;� : ADR 
� C �! A�;C ;� for each � 2 S a �ltered isomorphismI�;C : A� 
Q C �! A�;C ;27



� for each � 2 S and each prime l a �ltered isomorphismI�;l : A� 
Q Q l �! A�;l ;� for each prime l and each � 2 S a �ltered isomorphismIl;� : Al 
Q Q l �! A�;l :Additionally we require that the tuples (A� ; ADR; A�;C ; IDR;�; I�;C ) give Hodgestructures ([Hu1] 8.1.1) and that the Al are constructible Galois modulesequipped with the �ltrations by weights ([Hu1] 9.1.4).Morphisms of mixed realizations are morphisms of this data compatiblewith the comparison isomorphisms.MR is an abelian category because morphisms are automatically strictlycompatible with all �ltrations. Kernels and cokernels are computed compo-nentwise. Recall that a morphism between �ltered objects is called strict ifcoimage and image are isomorphic as �ltered objects.Now we need to recall the de�nition of the category DMR, cf. [Hu1]11.1.3. It should be thought of as the derived category ofMR.De�nition 2.2.2. Let C+ be the category with objects given by a tuple ofcomplexes in the additive categories in the de�nition of MR plus �lteredquasi-isomorphisms between them. Let CMR be the subcategory of complexeswith strict di�erentials whose cohomology objects are inMR. Let DMR bethe localization of the homotopy category of CMR (see [Hu1] 4.1.5) withrespect to the class of quasi-isomorphisms (see [Hu1] 4.1.7).Lemma 2.2.3. Morphisms of objects in CMR induce strict morphisms oncohomology. In particular, the category is abelian. DMR is a triangulatedcategory with t-structure whose heart isMR.Proof. The �rst assertion holds because morphisms in MR are automati-cally strict. The second is [Hu1] 11.1.4.We need two lemmas which were implicit in [Hu1] but not stated.Lemma 2.2.4. Let Ki for i 2 I be a direct system of complexes in CMR.Assume that all direct limits lim�!Hk(Ki) exist in MR. Then lim�!Ki existsin CMR.Proof. Direct limits exist in C+. The direct limit functor is exact, hencestrictness of di�erentials is preserved and cohomology commutes with thefunctor. The second condition on objects in CMR holds by assumption.28



A direct system where all transition maps are quasi-isomorphisms is a specialcase of a direct system to which the lemma applies.Lemma 2.2.5. Let K� be a bounded below complex of objects in CMR whichare concentrated in positive degrees. Then the total complex TotK� is inCMR.Proof. We can take the total complex in C+ as usual. Strictness of di�eren-tials of the total complex is [Hu1] 3.1.8. Clearly the cohomology of the totalcomplex is obtained from the cohomology of the Ki via a spectral sequence.The boundedness conditions ensure that only �nitely many cohomology ob-jects of the Ki contribute to one cohomology object of the total complex.In particular all vector spaces involved in the de�nition are indeed �nite di-mensional. We have to check that the �ltration on the Galois modules is the�ltration by weights, i.e. that GriW is pure of weight i. We pass to gradedpieces in the spectral sequence. This is possible because the di�erentialsare strict. Note that puritity of weight i is stable under subquotients andextensions. For the Hodge condition we also pass to the weight graded piece.We now have to check the condition of a pure Hodge structure. Again thecondition is stable under extensions.Proposition 2.2.6. The category DMR is pseudo-abelian.Proof. This is not a special case of Levine's result in [Le2] A.5. However,his proof can be modi�ed so that it works in our case. Let C be an objectof DMR and p : C ! C an idempotent, i.e. p2 = p. p is represented by amorphism of complexes p(1) : C ! C(1) where C(1) is quasi-isomorphic to Cvia c(1). Choose ~C(1) such that the diagramC p(1)���! C(1)c(1)??y ~c(1)??yC(1) ~p(1)���! ~C(1)commutes. The equation p2 = p implies that there is a quasi-isomorphism~C(1) ! C(2) such that ~p(1) � p(1) and ~c(1) � p(1) become homotopic. In fact,there is a whole chain or morphisms of complexesp(n) : C(n�1) ! C(n)where all C(n) are quasi-isomorphic to C (�x the quasi-isomorphisms c(n)once and for all), p(n) represents p and p(n+1) � p(n) and ~c(n) � p(n) are29



homotopic. By 2.2.4 the limit over C(n) with transition maps the quasi-isomorphisms c(n) exists in CMR. Now p is represented by the inducedmorphism of complexeslim�! p(n) : lim�!C(n) ! lim�!C(n)Replace C by the limit. By this procedure we have succeeded in representingp by an endomorphism of a complex such that the identity p2 = p holds upto homotopy of complexes. From now we can argue precisely as Levine inloc. cit. Theorem A.5.3. There is one little change, however, because themaps f(p) and f(id) (notation of loc.cit.) are not homotopy equivalencesbut only quasi-isomorphisms. This su�ces for the argument.2.3 The mixed realization functorWe proceed by constructing a realization functor from Voevodsky's geomet-rical motives to mixed realizations.One of the main results of [Hu1] was the following:Theorem 2.3.1 (loc. cit. 11.2). There is a contravariant functor~RMR : Sm! CMRwhose cohomology objects compute the mixed realizations of a smooth variety.Composed with the natural projections to the category of Galois modulesor to the category of Hodge complexes it computes the l-adic realizationsrespectively the Hodge realization of a variety.~RMR has descent for proper hypercovers, hence the functor extends asin 2.1.4 (cf. loc. cit. 11.2.2) to all varieties.De�nition 2.3.2 (loc. cit. 11.3.1). LetHiMR(X;n) = HomDMR(Q(�n); RMR(X)[i])be the absolute mixed realization cohomology.As shown in loc. cit. part III this is part of a Bloch-Ogus cohomologytheory. By functoriality, there is a map to absolute Hodge cohomology andto continuous l-adic cohomology. Note, however, that giving an element inabsolute realization cohomology is stronger than giving elements in thesestandard cohomologies. This is parallel to the fact that giving a mixedrealization is stronger than giving a mixed Hodge structure and variousGalois-modules - we also �x comparison isomorphisms.We immediately get: 30



Theorem 2.3.3. Let k be a �eld which is embeddable into C and A = Z;Q.~RMR extends to contravariant functorsRMR :DMgm(k;A)! DMR ;RMR :DMeffgm�(k;A)! DMR :It maps the Tate motive A(n) to Q(�n) (cf. the remark after 1.1.7). Inparticular, it induces a transformation of functorsHiM(X;A(n)) �! HiMR(X;n)which is compatible with all structures (products, localization sequences etc.).Proof. We repeat the proof of section 2.1. CMR itself is not a category ofcomplexes over an abelian category and certainly arbitrary direct limits donot exist. However, the constructions of theorem 2.1.6 go through by lemma2.2.4 and 2.2.5. We only have to check that ~RMR satis�es the conditionsof theorem 2.1.6. All of them can be checked in the singular component.Hence they hold by proposition 2.1.7. The realization of the Tate motivecan be computed in DMR, e.g. as the decomposition of of P1 in the categoryof Chow motives ([Hu1] 20.2.1). The transformation of functors is nothingbut functoriality.Remark: The same theorem (with the same proof) also holds for the morere�ned functor RMRP with values in the category DMRP which takes intoaccount the polarizability of the graded pieces with respect to the weight�ltration (see [Hu1] Ch. 21.)By functoriality (or using the same arguments again), the theorem alsoimplies the existence of other realization functors.Corollary 2.3.4. Let Dl be the \derived category" of constructible Q l -sheaveson Spec(k) in [Ek] (or in the number �eld case the re�ned version in [Hu2]).Then there is a realization functorDMgm(k;A) �! Dl :It induces a transformation of functorsHiM(X;A(n)) �! Hicont(X;Q l (n))where Hicont is continuous �etale cohomology respectively the horizontal ver-sion of [Hu2]. 31



Corollary 2.3.5. Let DH be the category of Hodge complexes as in [Be1]3.2 or [Hu1] 8.1.5. Then there is a realization functorDMgm(C ; A) �! DHIt induces a transformation of functorsHiM(X;A(n)) �! HiH(X;Q l (n))where HiH is absolute Hodge cohomology as introduced by Beilinson in [Be1].Beilinson's category of Hodge complexes di�ers from Deligne's by d�ecalageof the weight �ltration. Note also that absolute Hodge cohomology agreeswith Deligne cohomology in the good range of indices, see [Be1] 5.7.Other regulators which we get from this are to De Rham cohomology,singular cohomology again, and geometric �etale cohomology. This is cer-tainly not a surprise. The existence of such functors is already stated in[Vo2].Recall ([Hu1] 22.1.3) that an object of MR is called motivic if it issubquotient of an object Hi(RMR(X�)) where X� is a complex of varietieswith morphisms formal Q-linear combinations of morphisms of varieties.Theorem 2.3.6. Let X� be an object of DMeffgm� . Then Hi(RMR(X�)) ismotivic.Proof. As Hi(RMR(X�)) only depends on ��i�1X� we can as well assumeX� 2 DMeffgm . First consider the special case of a complex of length one, i.e.X� = [X0 f�! X1]. The morphism f in SmCor is �nite linear combinationf = P�ifi with �i 2 Q and fi a primitive �nite correspondence. Recallthat it is �nite over a connected component of X0. Let Yi = supp(fi) and ~Yia normal �nite cover of it. It is �nite surjective over a connected componentof X0. We assume that this cover is generically Galois. Let X 00 be the unionof those connected components of X0 which are not covered by any Yi. Let~X0 = X 00 qa ~Yi :Let f 0i be the projection map ~Yi ! X1 and ~f =P�if 0i . Now we put~X� = [ ~X0 ~f�! X1] :32



By construction of the realization functor for correspondences the diagram~RMR( ~X0) ~RMR(f) ����� ~RMR(X1)x?? x??=~RMR(X0) ~RMR( ~f) ����� ~RMR(X1)commutes and the left vertical map has a compatible splitting. HenceRMR(X�) is a direct summand ofRMR( ~X�). Clearly cohomology of RMR(X�)is a direct summand of the cohomology of RMR( ~X�).Now we have to extend this to longer complexes. We do this inductively.Assume X� is a complex in degrees �n to k with Xi a general variety fori < 0 and Xi a smooth variety for i � 0. We assume that the boundariesin negative degrees are linear combinations of morphisms of varieties andthe boundaries in positive degrees are �nite correspondences. It can beconsidered as an object in DM� because the functor M on SmCor is alsode�ned on Var. Apply the previous construction to X0 ! X1. This yieldsa �nite covering ~X0 of X0. We have to construct ~Xk for k < 0. Letffi : Xp ! X0gbe the set of morphisms which occur as compositions of the morphisms ofvarieties making up the complex X�. Let~Xp =a f�i ~X0where f�i ~X0 = (Xp �X0;fi ~X0)red :By lemma 2.1.10 its components are surjective over Xp. The covering groupoperates transitively on all �bres.We have to de�ne boundary morphisms in ~Xp such that~X� ! X�is a morphism of complexes for � � 0. For simplicity, assume that Xp is con-nected, let g : Xp ! Xp+1 one of the morphisms occurring in the boundary.For each of the morphisms fi : Xp+1 ! X0, we lift g to g(fi) : (gfi)� ~X0 !f�i ~X0. The coe�cient of g(fi) is taken as the coe�cient of g. It is easy to seethat this yields indeed a complex. The crucial diagram in degrees 0 and 1 is33



treated as in the in the �rst case. At least after application of RMR(X�) itcommutes and has a splitting. RMR(X�) is a direct summand of RMR( ~X�)because the morphism between them is surjective and �nite. The splittingis constructed by projecting to the invariants under the covering group. Thecomponents of ~X� are not normal so this is not an application of our axiomsfor the existence of a realization functor. But still the same proof works asin the normal case.Remark: It is easy to see that the category of motivic objects in MRremains unchanged when we restrict to Z-linear combination of morphismsrather than Q-linear ones. Replacing a singular variety by a smooth properhypercovering, it is easy to see that we can assume X� to be a complex ofsmooth varieties in the de�nition of motivic objects. However, it is not clearat all whether it might su�ce to assume that X is a smooth variety ratherthan a complex.3 The motive of BGLThe main result of this chapter is corollary 3.2.5 where we completely deter-mine the motive of the classifying space of GL. We work over the base Q .By base change the results follows over any base �eld of characteristic zero.As before let DM� be Voevodsky's category of motivic complexes with ra-tional coe�cients. In the next chapter the result will be used in order togive a very easy construction of Chern classes in motivic cohomology andcheck their relation with Chern classes in mixed realization cohomology.3.1 Set-upLet G be a connected algebraic group (we only need G = GLn and G = G nm .)We de�ne the simplicial varietyEG = G   G�G    G�G�G     where the face morphisms are induced by the various projections and thedegeneracy maps by the section e. Note that EG is contractible. EG is ahomogeneous space under G with the diagonal action. PutBG = EG=G :34



We identify BiG = Gi. This corresponds to the classical construction ofthe classifying space as quotient of the universal cover. EG and BG areobviously functorial.We need to understand the motive of G m . Let e : Z(0)! Gm the unitsection. The multiplication map is denoted �.Lemma 3.1.1. The section e induces a decomposition of G m intoM(G m) �= Z(0)�M(G m)�in DMgm(Q ;Z). M(G m)� is isomorphic to Z(1)[1] via residue at 0. Forthe multiplication map we haveGrw(�) = 8><>:id w = 0;� w = 1;0 w 6= 0; 1:Proof. Recall that by de�nitionM(A 1 ) = Z(0) :Now consider the localization triangle for the smooth pair (G m ; A 1):M(G m ) ���! M(A 1) ���! M(0)(1)[2] ;i.e.Z(0)�M(G m)� ���! Z(0) ���! Z(1)[2] :The last map is an element of H�2(Z(1)(Q)) = 0. Hence M(G m )� is iso-morphic to Z(1)[1]. The decomposition of the multiplication map uses thecommutative diagram for the properties of a left and right unit.In particular G m is a mixed Tate motive. The same is true for all GLn.This can be seen by using the strati�cation given by the Bruhat decompo-sition. All strata are of the form split torus times some a�ne space. Fromnow on we work in the category of mixed Tate motives DMT introducedin 1.2.1.
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3.2 Motives of some classifying spacesProposition 3.2.1. There is a unique morphismbi : Q(i)[2i] !M(BG m)induced by Q(i)[2i] �= (M(G m )�)
i [i]!M(BiGm )[i]Moreover, � =M bi :MQ(i)[2i] !M(BG m )is an isomorphism.Proof. Consider the exact triangleM(��i+1BGm)!M(BG m)!M(! Bi+1G m ! BiG m ! 0)Clearly we have a map bi to the space on the right. M(��i+1BGm ) is anobject of DMT [0;i�1]. Hence the composition of bi with the connectingmorphism vanishes by lemma 1.2.2. Then bi lifts to a map to M(BG m ).Using the same argument again, we see that the lift is unique. Now we areprecisely in the situation of proposition 1.3.6. It is enough to pass to theweight graded pieces of the subcomplexes M(��NBG m). The decomposi-tion of Grw(�) is known. It determines all di�erentials. To compute itscohomology is a completely combinatorial question. Instead of consideringthe combinatorics, we can also quote the result of the computation in theHodge realization, e.g. [Hu1] 17.4.1 for n = 1. Either way we see thatGrw(�) is injective and that the cokernel is a subobject of M(BNGm )[N ].By 1.3.6 � is an isomorphism.De�nition 3.2.2. Letm1; : : : ;mk be simple Tate motives of the form Q(i)[2i].By the polynomial ring in m1; : : : ;mk we mean the motiveQ [m1 ; : : : ;mk] := Me1;:::;ek�0m
e11 
 : : :
m
ekk :It is not correct to view Q [m1 ; : : : ;mk] as a ring. There is no multipli-cation but rather a comultiplication induced by the diagonal. If we applythe singular cohomology functor to it, we get a true polynomial ring in kgenerators.Remark: M(BG m) is the polynomial ring in the generator b = Im bi. Thenotation is consistent: the image of the map bi is the subobject bi.36



Corollary 3.2.3. Let T = G nm be a split torus. Then M(BT ) is isomorphicto the polynomial ring in b1; : : : ; bn where bi corresponds to the generator ofthe motive of the i-th factor G m in TProof. We have already on the simplicial level BT �= (BGm )n. HenceM(BT ) is isomorphic to the n-fold tensor power of M(BGm ).Let ci : Q(i)[2i] ! B(T ) be the i-th symmetric polynomial in the gener-ating maps bk of M(BT ).Theorem 3.2.4. The object M(BGLn) in DMeffgm�(Q ;Q ) is given by thecommutative polynomial ring generated by ci = Q(i)[2i] for i � n.Proof. We have de�ned a map : Q [c1 ; : : : ; cn]! BT ! BGLn :We claim that it is an isomorphism in DM�. By proposition 1.3.6 it isenough to consider the weight graded pieces of the �nite subcomplexes.Moreover, the singular realization is faithful on Tate motives of �xed weight.We know that the singular realization of  is an isomorphism (e.g. [Du] The-orem 6.13 and Proposition 8.3). On �nite subcomplexes Rsing(��NBGLN ),the map Rsing() is not an isomorphism but the defect is direct sum of Tatemotives of the form Q(i)[j] with j � N (because the spectral sequence isconcentrated in the �rst quadrant). Hence the assumptions of 1.3.6 holdand  is an isomorphism.Remark: We only need existence of � in 3.2.1 for this proof and reproofthat it is an isomorphism.Corollary 3.2.5. M(BGL) = Q [c1 ; c2; : : : ] :Corollary 3.2.6. Application of RMR yieldsRMR(BGL) = Q [c1 ; c2; : : : ]with ci = Q(�i)[�2i]. The splitting is the same as the one constructed in[Hu1] 17.4.1.
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Proof. Recall that RMR(Q(i)[2i]) = Q(�i)[�2i]. Hence the equality followsfrom the previous corollary. The construction of the splitting of BGL is verymuch the same as the construction used in [Hu1] 17.3-17.4. It is enough toshow that the splitting of RMR(BGm ) constructed in [Hu1] 17.3.2 is thesame as ours. Note that we only have to check that the splittings agree inthe l-adic realization because the splitting of the Hodge realization is uniqueanyway. The one in loc. cit. is induced by the Chern class of the standardline bundle on Pn, ours by the cycle class of a point. That they agree isclassic.4 Chern classesThe aim of this chapter is to show that the higher Chern classes from higheralgebraic K-theory to absolute cohomology of mixed realizations (see [Hu1])factor over Voevodsky's motivic cohomology.4.1 K-theory and group cohomology of GL(X)We start with a review of the results in [Hu1] 18.1-18.2 in a more conceptualterminology. In this section all schemes are noetherian and regular, e.g.smooth varieties over k. We denote K(X) a simplicial set whose homotopygroups are the K-groups of X.De�nition 4.1.1 ([Hu1] 18.1.1). Let U� be a simplicial a�ne scheme.Assume that U� has �nite combinatorial dimension, i.e., is degenerate abovesome simplicial degree. Then we de�neK(U�) = holimK(Ui) :If U� is the nerve of an open cover of X, thenK(X)! K(U�)is a weak equivalence by the Mayer-Vietoris property of K-theory of regularschemes. In the a�ne case K(U) can be realized as K0(X)�Z1(BGL(U)).More generally:Proposition 4.1.2 (Thomason, [Hu1] 18.1.5).K(X) �= lim�!TotZ� Z1(BGL(U�))38



where the direct limit runs through all open covers of X. In particularK0(X) = Z� lim�!�0TotZ1(BGL(U�))Ki(X) = lim�!�iTotZ1(BGL(U�)) for i � 1.Proof. The weak equivalence follows from the formula in loc. cit. becausedirect limits commute with homotopy groups. The explicit calculation fol-lows from it by the spectral sequence for the total space of a simplicial space.It converges because all U� have �nite combinatorial dimension.The simplicial set lim�!TotZ1(BGL(U�)) inherits an H-group structurefrom the H-group structure on Z1(BGL(Ui)).De�nition 4.1.3. Let X be a regular noetherian scheme. We putHpMV(GL(X);Q) := Hp(j lim�!TotZ1(BGL(U�))j;Q )where the right hand side means singular cohomology of the geometric real-ization. It is called Mayer Vietoris localized group cohomology of GL(X)).A simpler construction of the same cohomology group will be given be-low. Note also that in the case of X = SpecA this is not group cohomologyof GL(A) but rather a version such that a long exact Mayer-Vietoris se-quence for open covers is forced. From the de�nition, however, the relationto K-theory is clear:Proposition 4.1.4. There is a natural mapKp(X)Q ! HpMV(GL(X);Q ) :Its image is the subgroup of primitive elements in LH�MV(GL(X);Q).Proof. The map is nothing but the Hurewicz map from homotopy groups ofa space to its cohomology. In the case of an H-space the image in rationalcohomology is given by the primitive part, cf. [Lo] A.11.Now we turn to the promised simpler description of our group cohomol-ogy. For a set B, we denote by Q [B] the Q vector space with basis B. LetU = SpecA be an a�ne scheme. As in the proof of [Hu1] 18.2.4, the mapsZ1BGL(U)! ZZ1BGL(U) ZBGL(U)induce isomorphisms on singular cohomology. HenceHp(jZ1(BGL(U))j;Q ) = Hp(jBGL(U))j;Q ) = Hp(GL(U);Q)39



is group cohomology in the usual sense. It is computed by the standard Barcomplex (and this is in fact how the last equality is proved):Hp(GL(U);Q) = H�p(Q [B�� GL(U)]) :(We stick to our convention: all complexes are cohomological ones. A sim-plicial group is turned into a complex by putting it into negative degrees.)Proposition 4.1.5. Let X as in de�nition 4.1.3. There is a natural iso-morphism HpMV(GL(X);Q ) = lim�!H�p(TotQ [B�� GL(U�)])where the direct system runs through all open covers of X.Proof. Clear from the above. Note that cohomology commutes with directlimits.Rather then constructing Chern classes on higherK-groups, we will con-struct them on group cohomology of GL(X).Remark: If X itself is a�ne, then the natural mapZ1BGL(X)! TotZ1BGL(U�)induces an isomorphism on all higher homotopy groups but not on �0. Thespace on the left is connected, the one on the right is not in general. They arecertainly not weakly equivalent. Hence there is no reason for it to induce anisomorphism on singular cohomology. This justi�es the above remark thatMayer-Vietoris group cohomology is not the same thing as group cohomol-ogy.4.2 Chern classes into motivic cohomologyThe construction of Chern classes into motivic cohomology proceeds alongthe same lines as for absolute realization cohomology in [Hu1] 18.2.5. Thekey observation is thatBnGL(U) = HomSm(U;BnGL):Theorem 4.2.1. Let X be a smooth variety over k, some �xed ground �eldof characteristic zero. There is a natural transformationHpMV(GL(X);Q) ! HomDM�(k;Q)(M(X)[p];M(B GL)) :40



Proof. We use the description of proposition 4.1.5. Let Q Sm be the cat-egory of smooth varieties with morphisms formal Q-linear combinations ofmorphisms of varieties. An element oflim�!H�p(Tot Q [B�� GL(U�)]is represented by a morphism of complexes in Q SmU�[p]! BGL :Note that the functor M from proposition 1.1.6 has values in the categoryof complexes of Nisnevich sheaves with transfers, not only in the derivedcategory. By functoriality, it induces a mapM(U�)[p]!M(BGL)in DM�. The natural map M(U�) ! M(X) is a quasi-isomorphism.Hence we have constructed an element in HomDM�(M(X)[p];M(B GL))as claimed. Note that it is well-de�ned: two representatives di�er by ahomotopy of morphisms of complexes.Corollary 4.2.2. There is a natural mapKp(X)! HpMV(GL(X);Q )! HomDM�(M(X)[p];M(B GL))!MH2j�pM (X;Q(j)) :For (j; p) 6= (0; 0) let cj : Kp(X)! H2j�pM (X;Q(j)) :c0 on K0(X) is given by the above composition plus the natural mapK0(X) deg��! Z! H0M(X;Q(0))mapping 1 to the structural morphism. cj is called j-th motivic Chern class.Proof. Recall that by corollary 3.2.5M(BGL) = Q [c1 ; c2; : : : ]with cj = Q(j)[2j]. The map in the corollary is nothing but the compositionof the transformation in the theorem with the natural projection.41



Note that our transformation of functors maps primitive elements to primi-tive elements. Hence we do not loose anything by projecting to the primitivepart of M(BGL) in the corollary.Corollary 4.2.3. The Chern classcj : Kp(X)! H2j�pMR (X;Q(j))constructed in [Hu1] 18.2.6 factors through the motivic Chern class.Proof. The construction of Chern classes in loc. cit. is precisely the oneabove with ~RMR replacing the functor M . The compatibility is a directconsequence of functoriality of our construction.Remark: For simplicity we have restricted to the case of a smooth varietyin the above. Everything works directly for bounded complexes of smoothvarieties, e.g. smooth simplicial varieties with �nite combinatorial dimen-sion. As in [Hu1] 18.1.3 bounded above complex of smooth varieties can betreated as the direct limit of its truncations. Singular varieties or complexesof such can be replaced by a smooth proper hypercovering.Erratum: We have to correct an inaccuracy in [Hu1] 18.1.5: The varietyhas to be assumed smooth. The mistake is that Mayer-Vietoris holds forK-theory of general varieties only if we allow negative K-groups. The group��1A(U:) (notation of loc. cit.) might not be zero. As as consequencethe arguments in loc. cit. work directly only for smooth simplicial varieties.However, they extend to the general case again by replacing singular varietiesby smooth proper hypercoverings.
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