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Introduction

The theory of motives has always had two faces. One is the geometric face
where a universal cohomology theory for varieties is cooked up from geo-
metric objects like cycles. The other one is the linear algebra face where
restricting conditions are put on objects of linear algebra like vector spaces
with an operation of the Galois group. The ideal theorem would be an
equivalence of these two approaches.

For pure motives, Grothendieck proposed a geometric construction. The
linear algebra side is covered by [-adic cohomology for all primes [ together
with singular cohomology equipped with its Hodge structure. The relation
between the two sides is made by the Tate or the Hodge conjecture which
tell us that geometry and linear algebra should be very close to each other.
However, we neither know whether Grothendieck’s construction has the re-
quired properties nor what the image of the category of motives on the linear
algebra side is. l.e., we cannot tell whether a Galois module is motivic just
from checking linear algebra conditions (there are conjectures though).

For mixed motives, Voevodsky’s work goes a long way in constructing
the geometric side of the story. The linear algebra side is given by Deligne’s
absolute Hodge motives, independently considered by Jannsen under the
name of mixed realizations. By Beilinson’s conjectures the interplay be-
tween geometry and linear algebra should be measured by special values of
L-functions of motives. However, we are far from proving the ideal theorem.

The main aim of the present article is to provide the expected functor be-
tween the two sides. More precisely, we construct a realization functor from
Voevodsky’s triangulated category of geometrical motives (which should be
thought of as the derived category of mixed motives) to the “derived cate-
gory” of mixed realizations which we constructed in [Hul]. Indeed, most of
the present article is a follow-up of loc. cit. where the realization functor
was constructed on the category of simplicial varieties. As a direct corollary
we also obtain realizations functors to continuous /-adic cohomology and to
absolute Hodge cohomology. Their existence is not a surprise (cf. [Vo2])
but was not in the literature yet.

We want to mention that Levine has a triangulated category of motives
([Le3]). Over a field of characteristic zero it is equivalent to Voedvodsky’s.
He also constructs realization functors in his setting starting from a different



set of axioms.

We can show (2.3.6) that the motivic objects in the category of mixed
realizations obtained from Voevodsky’s category are contained in the cate-
gory of motivic objects considered before. We do not get new motives on
the linear algebra side.

We can also prove that the Chern classes from higher algebraic K-theory
to mixed realizations factor through Voevodsky’s category. The key to this
fact is the computation of the motive of B GL in Voevodsky’s category.

Besides these formal insights, the mixed realization functor should be
very useful wherever an attempt is made to prove Beilinson’s conjectures on
L-values. They require the construction of elements in motivic cohomology.
In the known cases, Adams eigenspaces of K-theory were used as the defini-
tion of motivic cohomology. The formal properties of motivic cohomology in
the sense of Voevodsky are lot better , e.g. localization sequences involving
singular varieties. Its main advantage is that it allows to do computations
in two variables. Motivic cohomology in the sense of K-theory always fixes
the second variable as a Tate motive. We hope that explicit applications
will follow.
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1 Voevodsky’s triangulated category of motives

We start with a quick review of Voevodsky’s category. Then we give some
extra notions and properties needed in the present text.

1.1 Review

We repeat the definition of the triangulated category of motives as given by
Voevodsky in [Vol]. For more details and properties we refer to his paper.
He has developed an integral theory. We mostly need the Q-rational version.

Let k£ be a fixed ground field of characteristic zero. Let Var be the
category of varieties over k, i.e. separated schemes of finite type over k. Let
Sm be the full subcategory of smooth varieties. Let A = Q or Z be the
coefficient ring.

Definition 1.1.1 ([Vol] 2.1). Let X be a smooth variety and Y a general
variety. A prime correspondence from X to Y is an integral closed sub-
scheme W of X XY which is finite over X and surjective over a connected
component of X. Let ¢(X,Y)a be the free A-module generated by prime
correspondences. Its elements are called finite correspondences. Let SmCor
be the category with objects smooth varieties and morphisms given by finite
correspondences.

We want to recall the composition of correspondences. Assume I'y C
X xY and I'y C Y x Z are prime correspondences. I'y x Z and X x I'y are
cyclesin X xY x Z. All irreducible components C; (with reduced structure)
of their intersection are finite over X. In particular they all have the right
dimension. We have

(C1 x Z).(X xTy) = nC;

where the intersection multiplicity n; of C; is the usual one in the Chow
group, e.g.[Fu] 20.4. Let 7 : X XY x Z — X x Z be the natural projec-
tion. It induces a map 7, : ¢(X,Y X Z) — ¢(X, Z) which takes a primitive
correspondence C' to the closure of its image 7(C') times the degree of the
covering C' — w(C). By definition

FQ o Fl = W*((Fl X Z)(X X Fg)) .
There is a functor

[]: Sm — SmCor .



It maps a morphism to its graph.
Note that SmCor is additive. Hence we can consider complexes of objects
in SmCor as well as homotopies between maps of complexes.

Definition 1.1.2 ([Vol] 2.1.1). The triangulated category of effective ge-

ometrical motives DMf}fnf(k, A) is the localization of the homotopy category
K®(SmCor) with respect to the smallest thick subcategory containing the fol-
lowing:

1. For any smooth scheme X the complex

(X x A'] = [X] .

2. For any smooth scheme X and any Zariski-covering X = U UV the
complex

- + -/ s
Unv] T e v] U (X]
where ji;, i, ju and jv are the obvious inclusions.

The fibre product of varieties induces a tensor product structure of DMZf,f(k, A).

Remark: If the distinction is not important or the setting clear, we will
drop k and A from the notation.

For any smooth variety X, we have the complex [X] concentrated in
zero. We also have the complex [X]~ = [X] — [Speck] sitting in degrees 0
and 1. In this normalization, there is an exact triangle

[X]™ — [X] — [Speck] — [X]™[1] .
Definition 1.1.3 ([Vol] after 2.1.3). Let
A(0) = [Speck] € DM .
It is the unit object for the tensor structure on DMZJ;,{. Let
A1) = [P~[-2] € DML

be the Tate motive. For k > 1 let

If M is a motive, we put M(k) = M ® A(k).



M +— M(1) is a triangulated functor on DMZJ;f.

Definition 1.1.4 ([Vol] end of 2.1). The category of geometrical motives
DMy (k, A) is obtained from DMZJ;f(k,A) by formally inverting the Tate
motive. Explicitly, objects of DMy, are pairs (M,n) with M € DM%{
and n € Z. Morphisms are given by

Homppm,,, ((B,n), (C,m)) = ]11>I>I(l) HomDMgﬁ(B(n +k),C(n+k)) .

We write A(n) = (A(0),n) for n € Z. By construction A(n) = (A(n),0) for
n > 1.

This definition is very much in the spirit of Grothendieck’s definition
of pure motives. There is a second category which is a lot more useful in
computations.

Definition 1.1.5 ([Vo1l] 3.1.1, 3.1.8, after 3.1.10). A presheaf with trans-
fers on Sm is an additive contravariant functor from SmCor to the category
of abelian groups. It is called a Nisnevich sheaf with transfers if the corre-
sponding presheaf on Sm is a sheaf in the Nisnevich topology (see [Fr] Ch.2).
The category is denoted Shyis(SmCor). A presheaf F' on Sm is called ho-
motopy invariant if the natural map F(X) — F(X x Al) is an isomorphism
for all smooth varieties X.

The category of motivic complexes DM _(k, A) is the full subcategory
of the derived category D~ (Shyis(SmCor)) whose objects have homotopy in-
variant cohomology sheaves.

DM_ has a natural ¢-structure. Its heart is the abelian category of
homotopy invariant Nisnevich sheaves with transfers.

Proposition 1.1.6 ([Vol] 3.1.2, 3.1.11, 3.1.13). There is a functor
L : SmCor — Shyis(SmCor)

given by L(X)(U) = ¢(U,X)a. It also defines a functor on Var. The nat-
ural inclusion of DM _ in D~ (Shyis(SmCor)) has a left adjoint. For any
Nisnevich sheaf with transfers F, it is given by the complex C,(F')

C_u(F)(X) = F(X x A")

where A* is the standard cosimplicial object. The composition C, oL induces
a functor

M: DM — DM_ .
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It is fully faithful and hence identifies DMZJ;f with a full subcategory of
DM_.

Remark: It is rather formal to show that we get a functor
DMT - DM_ .
However, it is very hard to show that A(1) is quasi-invertible in D./\/l;frf

([Vol] 4.2.4) and hence that DMZ’;,{ is a full subcategory of DMg,,. A(1)
is not invertible in DM _.

Remark: Note that M : SmCor — DM _ is induced by a functor to the
category of complexes C'<Y(Sy;s(SmCor)).

Definition 1.1.7. The pseudo abelian hull of the image of the composite
functor

M : SmCor — DMy, — DM_

is called the category of effective (generalized) Chow motives. The category
of (generalized) Chow motives is obtained from it by formally inverting A(1).

The reason for this terminology will become clear after 1.1.12 below.
DM _ is pseudo abelian because the derived category of an abelian category
with enough injectives (as Shyis(SmCor)) is by [Le2] Thm A.5.3. Hence
the pseudo abelian hull of the definition is still a subcategory of DM _.
In particular, A(1)[2] is a Chow motive because it is the cokernel of the

projector induced by P! — Speck 9, pr, By definition
MPY = Ao AQ1)[2] .

The splitting is independent of the choice of k-rational point of P' by ho-
motopy invariance.

Remark: There is some confusion with the older literature. In the category
of Grothendieck motives we would decompose h(P') = Q @ Q(—1) and call
h?(P') = Q(—1) the Lefschetz motive. Its dual then is the Tate motive.
Voevodsky’s Tate motive really is the Lefschetz motive in old terminology.
The difference in signs is only a matter of choice in the definition. It makes
sense because Voevodsky’s functor M is covariant whereas Grothendieck’s
functor is contravariant.



Lemma 1.1.8. The functor M : SmCor — DM _ extends to complezes in
C~(SmCor). Let f : X, — Y, be a morphism of complezes such that all
fn: Xn = Y, induce isomorphisms M (f,). Then M(f) is an isomorphism.

Proof. Recall that the functor M is induced by the functor C, L which takes
values in the category of bounded above complexes of Nisnevich sheaves
with transfers. More precisely, they are bounded above by 0. It extends by
taking double complexes. There is no problem because in each component
only finitely many direct summands contribute. For the second assertion,
the assumption implies that all H?(C,L(f,)) are isomorphisms. A spectral
sequence argument in the surrounding category of Nisnevich sheaves with
transfer shows that M(f) induces an isomorphism on all H"(C,.L(f)). O

. if
Definition 1.1.9. The full subcategory DMzm,(k,A) of DM _(k, A) gen-

erated by the image of C~ (SmCor) which is triangulated, pseudo abelian and
closed under tensor products is called the category of complexes of effective
generalized Chow motives.

Note that DMZJ;,[ is a full subcategory of DMZ{,{,.
The Tate motive is also used in order to define motivic cohomology.

Definition 1.1.10 (Voevodsky). Let X be a variety. Then
Hi\(X, A(5)) = Hompy (k) (M (X), A(5)[i])
is the motivic cohomology of X.

Morphisms of motives in DM _ are “known”. At least we relate them
to other theories.

Proposition 1.1.11. Let X and Y be smooth and proper varieties pure of
dimension d and d'.

Hompy (M(Y),M(X)) =CHYX xY)® A

where the right hand side denotes cycles of codimension d up to rational
equivalence.

Proof. For a proper variety, M¢(X) = M(X) (by definition see [Vol] 4.1).
By [Vol] 4.2.3 (cf. [Fr] Prop. 4.9 where the sign is correct), 4.2.2 3 and
4.2.5)

Hompap (Y, X) = Aoo(Y,X) = A_g0(Y x X,Speck)
= Hompp (M(Y x X), A(d)[2d]) = CHY(X x Y) 4 .

O



Corollary 1.1.12 (Voevodsky). The full subcategory of DM _ with ob-
jects direct summands of motives M (X) with smooth and proper X is equiv-
alent to the category of effective Chow motives.

Proof. Clear by definition of the category of Chow motives, e.g. [Sch] 1.2.
O

Corollary 1.1.13. Let k be a number field. Then Homp g (1. q)(Q, Q(4)[7])
vanishes in the cases

1. 1 <0,
2.1>1,
3. i=0,5+0,
Joi=1,5<0.
If k = Q then Hompag_ (Q, Q(5)[1]) is zero or one-dimensional.

Proof. By [Vol] 2.2, morphisms of Tate motives are given by higher Chow
groups which are known to be isomorphic to the graded pieces of the -
filtration on higher K-groups. In the case of a number field the ranks are
known by Borel’s result [Bo]. O

Remark: This theorem will be needed in the computations in the sequel.
Note, however, that we do not need to understand the precise isomorphisms.

1.2 Mixed Tate motives

We now study a particularly simple subcategory of DM, where the mor-
phisms are understood. The computations in chapter 3 are carried out in
this subcategory. The use of this category for question of this type was sug-
gested to me by Kahn. The main computational tool, the weight filtration
was introduced by Levine in the setting of his triangulated category ([Lel]).
Let k=Qand A = Q.

Definition 1.2.1 (Kahn, Levine). The triangulated category of mixed
Tate motives DMT is the full triangulated category of DM,y generated
by Q(i) fori € Z. By DMT>n, DMT <y, DMT [y n) we denote the full
triangulated subcategories generated by Qi) withi > N,i < NN <i< M
respectively.

The category DMT is closed under tensor products.



Lemma 1.2.2. 1. ForallN € Z, My € DMT >y and My € DMT <n_1,
we have Hom p a7 (M7, Ms) = 0.

2. The categories DMT |y ny are isomorphic to the category of finite di-
mensional graded Q-vector spaces.

Proof. For M,, = Q(in)[jn], n = 1,2, this is a consequence of 1.1.13. If the
assertion is true for two vertices of an exact triangle (in the first or second
argument), then it is true for the third. This proves 1. For 2. we show by
induction that M € DMT g g is direct sum of Q(0)[j]’s. Consider a triangle

M — P 0)[5] % P o)) .

Let ¢; = ¢ \Q(O)ej ;). Again by 1.1.13 it maps to Q(0)1i[4]. Such mor-
phisms are given matrices with rational numbers as entries. Composition
of matrices is composition of morphisms. This means precisely that for
fixed j the category of powers of Q(0)[j] is isomorphic to the category of
finite dimensional Q-vector spaces. We decompose Q(0)% [j] = K;[j] @ I;[j],
Q(0)%i [j] = I,[j] ® L; such that ¢; vanishes on K, and is an isomorphism
on I;. Then M also stands in the exact triangle

M - P Kl = P Lyl

hence M = @ K;[j]|® €D L;[j —1]. As we have already seen, the morphisms
of such direct sums are the same as the morphisms of graded Q-vector spaces.

O

Remark: We will construct later (proposition 2.1.7) a faithful fibre functor
from DMT |y n to the category of graded Q-vector spaces given by singular
cohomology.

The first part of this lemma is enough to deduce in a formal way the
existence of an extra structure on DMT.

Proposition 1.2.3 (Levine). For all M € DMT and integers N, the
functor

HomDMT(-,M) : DMTOZN — ab
is representable by an object W>n M together with a morphism

WZNM—)M.
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Wsn is an ezact functor DMT — DMT >n. Dually, the functor
Hompa7(ar,y : DMT <y — ab
18 representable by
M —= WonM .

This defines an ezact functor to DMT <. For each object M there is an
exact triangle

WZNM—)M—) W<NM) .
Let Gry M = Wy aWsnM be the graded pieces.

Proof. We put N = 0 in order to simplify notations. As always, it is enough
to construct some object W>oM — M with the universal property. It is
necessarily unique up to unique isomorphism. We start with M = Q(7)[j].

We put
M ifi >0,
WsoM =
- 0 else.

It satisfies the universal property by the lemma.
Now assume W is constructed on M; and My. We want to define it
on Ms; which sits in the triangle

M1 —)MQ—)MQ—)Ml[l] .

By the axioms of a triangulated category there is an object WyMj sitting in
the triangle

WEUMl — WZOMQ — WZUM3 — WEUMl[l]

and a morphism WsqM3 — M3 such that the obvious morphism of triangles
is defined. Now we have to check the universal property. Let K be an object
with weights less or equal to 0. There are long exact sequences

Hom(K,M;) ——— Hom(K,M;) — Hom(K,M;) —— Hom(K[-1],M:) —— Hom(K[-1], Ms)

I I I I I

HOIII(K, W20M1) —_— I‘IOIII(.I{7 WZOMQ) —_— I‘IOIII(.I{7 W20M3) —_— HOIII(K[*].],WZ()Ml) —_— HOIII(K[*2],W20M2)

The outer arrows are isomorphisms by assumption. By the five lemma
the middle arrow is also an isomorphism. The same proof works for the
dual assertion. The universal property allows to construct Wy and Wy
on morphisms. For M = Q(i)[j] the exact triangle clearly exists. By con-
struction and lemma 1.2.4 below we get exact triangles as claimed. U

11



Remark: Usually it is not a good idea to define a functor by choosing the
third vertex of a triangle. In our case it is well-defined because we also have
the universal property working for us.

The above amounts to the construction of the weight cofiltration on
Tate motives. Application of contravariant realization functors maps it to
the weight filtration on the realization side. Objects of DMT |y n) are (tri-
angulated) pure Tate motives of weight +2N depending on conventions.
The category of pure Tate motives of fixed weight is the derived category
of a semi-simple abelian category. Obviously there is a “weight spectral
sequence” with initial terms the graded pieces and converging to M.

Lemma 1.2.4. Let D be a triangulated category. Consider the diagram of
exact triangles in D

Al%A24_>A3

S

B1 E— B2 e Bg.
Ch Co

Then there is an object Cs and morphisms such that the last line and row
are also triangles.

Proof. [BBD] 1.1.11. O

1.3 More Technical background

Let again k be a field of characteristic zero and A = Z or Q.

Definition 1.3.1. Let K be a complex in SmCor. The stupid filtration
onK is defined by

o I iz
0  fori<n.
onK is a subcomplex of K. Its graded pieces are the K'.

Let L be an object in DM _. The canonical truncation 7s,L is the
truncation functor on DM _ with respect to the t-structure with heart the
homotopy invariant sheaves with transfers. It is a quotient complez of L.

12



T>p 18 a functor on DM _ whereas o, does not pass to DMg,,. Note
that

TZnM(K) = TZnM(UnflK) .

Proposition 1.3.2. Let K — K' be a morphism in C~(SmCor). Assume
that it induces isomorphisms

onK = o, K'
in DMy, for all n. Then M(K) — M(K') is an isomorphism in DM_.

Proof. We consider the corresponding objects in the derived category of
Nisnevich sheaves with transfers. We have to check that

H'(M(K)) - H'(M(K"))

is an isomorphism for all i where H* denotes the cohomological functor with
respect to the natural t-structure. Only finitely many K* contribute to
H'(M(K)), namely those with & >4 — 1. In other words,

H'(M(K)) = H'(M(0;1K)) .

Hence the assumption on the stupid filtration is enough to prove the quasi-
isomorphism. ]

Lemma 1.3.3. For K € C~(SmCor) we have in DM _
M(K) = lig M(0,K) .

Proof. Clearly, the equality holds in the abelian category C'~ (Shyis(SmCor)).
We have to prove that it passes to D~ (Shyis(SmCor)). Assume we are given
a direct system of morphisms in the derived category

fn:M(op,K)— L .
They are represented by morphisms of complexes
M(onK) 22 1, & 1,

where g,, is a quasi-isomorphism. The L,, can be chosen such that the f; and
the g, give a direct system up to homotopy. Let Lo, the direct limit of the

13



L,. As direct limits are exact in Shyis(SmCor) it is also quasi-isomorphic
to L. Let
I M(0,K) = Ly — Lo -

n

They form a direct system up to homotopy. Let s; be the stupid filtration
of complexes of Nisnevich sheaves, i.e.

R

0 else.

Note that s;M (0, K) = s;M(K) for i > n. Hence f] induces a direct system
of maps up to homotopy on s; M (K). We can define their limit f on M (K)
by descending induction. Assume f is defined on s, M (K). f and f)_, differ
by a homotopy h* : M(K)* — L’;'. We modify f by h" od on M(K)"
and extend it to M (K)" " using f” , |am(kyn—1- This gives a new morphism
of complexes s, 1M (K) — Ly which is homotopic to f; ;. Clearly the
morphism f is homotopic to f}! on the subcomplex M (0, K) as well. ]

This lemma allows to reduce all questions on DMZJ;f, (see definition 1.1.9)
to questions in DM gp,. '

Proposition 1.3.4. Let M(K) and M (L) be in DMZJ;f,. Then

H (M(K), M(1) = lim Hom, sy (M (oK), M(L)) .

OmDMeff7
gm
Moreover, for fited K and n there is N € N such that

H (M(0,K), M(L)) = Homp,,, (M (oK), M(ox L)) .

OmDMeff7

gm
Proof. The first equality is nothing but the lemma. In order to show the
existence of N we can assume that K is of the form M (X)[p] for some p
and some smooth variety X. Then by [Fr] 3.3

H (M(K),M(L)) = H,

Zar (X, M(L)) .

OmDMeff7
gm

X is finite dimensional hence Zariski cohomology has finite cohomological
dimension. Hence for N small enough

Hgar(X,M(L)) = Hgar(X’ TZNM(L)) = Hgar(X’ TZNM(UNflL)) .

14



Lemma 1.3.5. Let X be a variety such that M (X) is a mized Tate motive.
Then 159 Grp, M(X) =0 for all n.
Let X, be in C*(SmCor) such that all X; are mized Tate motives. Then

T>0WZnM(X*) = T>[]W2n00M(X*) .

Proof. By assumption Gr, M(X) = €;, Q(n)[j;]. It follows from Hodge

theory, [Del] Thm 8.2.4, that 0 < j; < n. Now we use the fact that
7>,Q(n) = 0. ([Ka] 2. property C or from 751M(G},) = 0). For the
second assertion it suffices to show that

TEOWEH(M(X*)) =0

for complexes concentrated in negative degrees. On the level of Gr, this
follows from the first part. By induction on the weight filtration it follows
for all W.,,. O

Proposition 1.3.6. Let X, and Y, be objects of C~(SmCor) such that all
X, and Y; are mized Tate motives. Let

f: X, —>Y,

be a morphism in DM _. For all integers N and Tate weights n (see 1.2.3)
we assume that kernel and cokernel of the morphism

Grn U,NX* — Grn U,NY*
is direct sum of Q(n)[j] with j > N. Then f is an isomorphism.

Proof. Recall that 7>_ny1Q(n)[j] = 0 for j > N 4+ n. By assumption the
map

Gr,o_nX, — Gr,o_nYs

fails to be an isomorphism by direct sums of Q(n)[j] with 5 > N. Hence
application of 7> 41 yields that

() > N41Grpo N X = 7> N1 Grpo v oY

is an isomorphism for all n and N. We want to show from (x) that 7> _y1(f)
is an isomorphism for all N. Only finitely many weights occur in oy X,
and o_ Y. Let ng be the maximal one. The weight filtration has at most
ng non-trivial steps because all X; and Y; are effective. By assumption (),
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T>_N—no+1 Gryy 0_N_2n,(f) is an isomorphism for all weights up to ng. By
induction on the exact triangles for the weight filtration (see 1.2.3) and the
five lemma in each step we deduce that

T> _N41W>sng0—N—2no (f)

is an isomorphism. By lemma 1.3.5 this implies that

7> N+1Wsno0-N(f) = > n110-N(f) = 7> ny1(f)

is an isomorphism as claimed. O

2 The realization functor

We construct triangulated realization functors from DMy, (k, A) to vari-
ous triangulated categories. On the level of cohomology objects this corre-
sponds e.g. to the [-adic or Hodge realization. In order to stress the logic
we first give an axiomatic construction. Then we recall the definition of
the “derived” category of mixed realizations. In a last step we apply the
construction to this case. The main result is 2.3.3 and its corollaries.

2.1 Axiomatic construction

Again k is a base field of characteristic zero. In this section we assume
throughout that A is an abelian category with enough injectives in which
arbitrary direct sums exist and are exact. We start with a contravariant
functor

R:Sm — C2%(A) .

The aim of this section is to deduce from it (under the assumption of certain
axioms) a triangulated functor

R: DMy, — DT(A).

Such a functor is called a realization functor. All realization functors induce
by functoriality regulator maps, i.e. transformations of functors from Var to

ab
Hij\(T, Z(n)) — Hp(T,n) := Homp 4 (R(Z(n)), R(D)) .

eff
-

For technical reason we are also interested in extensions of R to DMq )
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Example: In the case k = C, let Q be the category of Q-vector spaces and

Ring the singular cochain complex, i.e., for a smooth variety X, let

Rying(X) = Q[Cont (A", X(C))]

where X (C) is considered as a complex manifold, A" is the standard topo-
logical n-simplex, Cont denotes continuous maps of topological spaces and
-V is the Q-dual. By definition

HZ(Rsmg(X)) = H| (X((C),Q) :

sing

Clearly, Rying(X) is a functor to C=%(Q).

Definition 2.1.1. A functor

R:Sm — C29(A)
or

R: Var — C2%(A)

has descent for open covers respectively for proper covers, if application of
R to the covering map for the nerve of a Cech-covering respectively for a
proper hypercovering yields a quasi-isomorphism . It satisfies the homotopy
property if for all varieties X the morphism

R(X) = R(X x Al)
18 a quasi-isomorphism.
The first realization result is rather obvious:

Proposition 2.1.2. o Assume we have a functor
R : SmCor — CZ°(A)

which has descent for open covers and satisfies the homotopy property.
Then it extends to an exact functor

R: DM — D (4) .

o Assume in addition that A is a tensor category and R is compatible
with tensor products. Then R is a triangulated tensor functor.
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o Finally, if the functor - ® R(Q(1)) on D' (A) is an equivalence of
categories, then R extends to a functor

R: DMy, — DT(A) .

Proof. Applying R to objects of C?(SmCor) we get double complexes. We
take the associate simple complex in C*(A). This involves a universal choice
of signs which we fix once an for all. R is a functor

K’(SmCor) — KT(A) — D' (A) .

(See [Hul] 2.2.3 for details on signs.) All other statements are immediate.
We obtain

R: DMy, — DT (A) .

Finally we extend it to DMZ{,{,. On objects the same definition as on
bounded complexes works. On morphisms we use the description of lemma
1.3.4 to reduce to the bounded case. ]

Remark: It is tempting to weaken the assumption of the proposition to
functors with values D(A) or even triangulated categories in general. How-
ever, the above proof does not work in that generality. In fact, all construc-
tions of Chern classes or cycles classes on higher Chow groups - a question
very similar to the above - assume the existence of functorial complexes
rather than objects in a derived category.

Example: (Etale cohomology) Fix a prime [ and an integer n. We choose
an injective resolution Z of Z/I™ on the étale site on the category of smooth
schemes over our base field k. Let M(X)e ® Z /1™ be the etale sheafification
of the complex of Nisnevich sheaves modulo [". We put

RI'(X,Z/1") = Homygy, ,(M(X)e ® Z/1",T) .
Clearly this is a contravariant functor
SmCor — C(ab) .

By [Vol] Prop. 3.2.3 the cohomology of this complex computes the etale
version of motivic cohomology or equivalently étale cohomology of X. Let
R(X,7/1") be the sheafification of RT(X},Z/I" for finite field extensions
of k in the étale topology. Clearly R(X,Z/I") computes Rp,(Z/I")x if
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p : X — Speck is the structural morphism. From this we get the exact
realization functor

R : DMy, — D"((Speck)er, Z/1™)

to the derived category of I"-torsion Galois modules. Formulated like this,
many properties of étale cohomology, e.g. localization sequences for smooth
pairs, are a consequence of the existence of the functor. By functoriality, we
get regulator maps

H(X. (7)) = Hey (X, wy) -

Example: (Continuous étale cohomology) Let R(X,Z,;) be the projective
system of complexes R(X,Z/I") for varying n. It allows to define an exact
realization functor

R: DMy, — D"((Speck)er, 7))

into Ekedahl’s triangulated category of Z;-sheaves ([Ek]). By functoriality,
we get regulator maps

Hj\/l(Xv Z(?)) - Héont(Xa Zl(7))

into Jannsen’s continuous étale cohomology.

The rest of this section will be concerned with giving criteria for the
existence of functors on SmCor.

Proposition 2.1.3. Let R : Var — C2°(A) be a contravariant functor
which is also covariant for all finite and surjective maps between irreducible
varieties.

e We assume that for a finite surjective map f : X' — X the composition

R(X) L rx')) L R(X)
equals multiplication with the degree of f.

e We also assume that f. is compatible with direct products in the fol-
lowing sense: for f as before and all Y the diagram commutes:

R(Y x X') «—— R(X")

(idy Xf)*ﬁ ﬁf*

R(Y x X) +——— R(X)
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o Let g: Y — X be an arbitrary map and f a closed immersion. We
put Y' = J[C; the disjoint union of the irreducible components of
X' xx Y with reduced structure. For all i let n; be the ramification
indez of X' — X at C; (see [Fu] Ex. 4.3.7). We assume that

also commutes.
Then R extends to a functors on SmCor.

Remark: If R has descent for open covers and satisfies the homotopy prop-
erty, then it extends at least to DMZ{,{. Hence we have potentially two
definitions on singular varieties - the original one and the one from DM,,,,.
We do not know if they agree in general.

Proof. Let X and Y be smooth connected varieties. Let I' in X x Y be an
irreducible subvariety which is finite and surjective over X. Consider the
diagram

X+I'—=>Y.

It induces a map

R(): R(YY) = R(T') — R(X)

by composition of contravariant and covariant functoriality. If I is the graph
of a morphism f, then R(f) = R(I).

We claim that R is a functor. Let I'1 C X XY and I's C Y X Z be prime
correspondences. Then

(C1 x Z).(X xTy) = n,C;

isa cycle in X xY x Z. The C; are the irreducible components of I'y xy I',.
Let pr be the projection map to X x Z. The prime correspondence Cj is
finite and dominant over its image pr(C;). Let d; be the degree of this
covering. The composition of correspondences is given by the cycle

FQ o Fl = andzpr(Cl) .
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The morphism
R(Ty0l): R(Z) - R(I'y0Ty) = R(X)

can equivalently be computed via R(I'1.I'y). Note that the multiplicities
work out as they have to.

The intersection multiplicity n; is equal to the ramification index of
X xT9 — X xY at C; (see [Fu] 4.3.7) by loc. cit. 7.1.15 and because Z is
flat over k. By assumption

R(I[Ci) +—— R(X xTy) +—— R(I))

fz(-)ﬁ E Eé”(-)

R(I') +—— R(XxY) «— R(Y)

commutes. This implies

R(FQ o Fl) == R(Fl) o R(Fg) .
U

By Deligne’s method we can often extend a functor from Sm to Var.
This will allows to weaken our assumptions further.

Convention: Let Vy be a category and V; a subcategory. Typically, V;
will be Sm and V, will be Var or SmCor. Given a functor R : V; — C(A)
we say that it extends to Vj if there is a functor R : Vo — C(A) and a
natural transformation 7 : R — R of functors on V; such that all 5(I) are
quasi-isomorphisms.

Proposition 2.1.4. Let R : Sm — C2%(A) ‘be a functor with descent for
proper covers. Then it extends to a functor R' : Var — CZ°(A). R' has
descent for proper covers on Var as well.

Proof. Let X be a variety. By [Del] 6.2, there exists a proper hypercovering
of X such that all components are smooth. We put

R'(X) = lim Tot(R(X.))

where X. runs through the inverse system of all proper hypercoverings of X
by smooth varieties. The construction works because direct limits exist in
A. Descent for proper covers is a consequence of the same property for the
original functor. O
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Example: The functor Rsing has descent for proper covers (e.g.[Hul] 6.2.2).
By abuse of notation we call the extension also Rging.

Lemma 2.1.5. Let A be Q-linear. Let G be a finite group operating on an
object K € A. Let K¢ be the subobject of G-invariant elements, i.e., the
intersection of ker(g — id) for all ¢ € G. Then the functor -© is exact and
there is a canonical section K — K of the inclusion.

Proof. The section is given by
1

=g S

geG

This is where we need invertibility of #G. Using the section it is easy to
show that short exact sequences remain exact. O

Theorem 2.1.6. Let A be a Q-linear abelian category with enough injec-
tives in which arbitrary direct sums exist. Let

R:Sm — C7(A)
be a functor. We assume:

e R has descent for open and proper covers and satisfies the homotopy
property (cf. 2.1.1)

Let R also denote the extension to Var (cf. 2.1.4).

e For any surjective and finite morphism f : X — Y between normal
varieties the group G = Auty (X) operates on R(X) by contravariant
functoriality. If the covering is generically Galois with Galois group
G, then we assume that

R(Y) = R(X) 3 R(X)Y

18 a quasi-isomorphism.

Then R extends to a functor
R" : SmCor — CZ(A)
together with a natural transformation of functors on Sm

U:R—)R"
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such the n(-) are quasi-isomorphisms. R" induces a functor

. eff +
R:DM_, - — D (A) .
Finally assume that A is a tensor category and R is compatible with tensor
products. Then R is a triangulated tensor functor. Assume

e The functor - ® R(Q(1)) on DT(A) is an equivalence of categories.

Then R passes to a functor
R: DMy, — DT (A) .

This can be seen as a prototype theorem. The same methods also
works in other settings. An important such case is the realization func-
tor Rapr : Sm — Cag, see theorem 2.3.1.

Remark: Levine also proves a realization theorem in the setting of his tri-
angulated category ([Le3] Part I Ch. V). It has a different flavour from the
above. His axioms seem to amount to a contravariant functor which is co-
variant for proper maps between smooth schemes plus the existence of cycle
classes.

Before actually proving the theorem, we want to consider our example:

Proposition 2.1.7. Rsing satisfies all conditions of the theorem. It extends
to a functor

Rsing : D./\/lgm — D+(Q) .

Proof. We have to check several properties of singular cohomology of com-
plex analytic spaces. Proper descent was mentioned above. Descent for
open covers is nothing but the Mayer-Vietoris sequence. The only non-
trivial statement is the isomorphism

H;ing(yv @) - Héing(Xu Q)G

for finite covering maps f : X — Y (between normal spaces) which are
generically Galois with Galois group G. Note that G operates on X by
functoriality of the normalization of X in K(Y). By the Leray spectral
sequence it is enough to show the isomorphism for the direct image of the
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constant sheaf Q (there are no higher direct images for a finite morphism).
Its stalks are given by [GraRem] Ch. 2 §3.3

(L9, = I @
(z)

zef~ 1z

The covering group Auty (X ) permutes these factors. On the generic fibre
it operates transitively by assumption. G operates transitively on all fibres,
e.g. [Ma] Theorem 9.3. Hence (f*@)g is at most one-dimensional. As the
image of Q in f, f*Q is invariant under G it is at least one-dimensional. [J

Corollary 2.1.8. Letk = Q. Then Rging identifies the category DMT |y n
of Tate motives with fized weight with the category of finite dimensional
graded Q-vector spaces.

Proof. Clear because Rying(Q(N)) = Q and morphisms are the same. [

In the rest of this section, we are going to prove our theorem in several
steps. The main step is the following remark:

Lemma 2.1.9. Let X be a normal variety and R a functor on Var as in
the theorem. Let R'(X) = li_n>1R(X’)A“t(XI/X) where the X' run through
the category of normal X-schemes which are finite surjective over X with
generically Galois covering map. Then R' is a contravariant functor on
normal varieties and also covariant for finite surjective maps between them.
The morphism R(X) — R'(X) is a quasi-isomorphism.

Proof. As transition maps in the system we use only finite surjective X-
morphisms which are generically Galois. The system is well-defined. By
assumption R(X) — R(X")A"(X'/X) is a quasi-isomorphism. By exactness
of direct limits in A this remains true in the direct limit. We first check con-
travariant functoriality. Let X — Y be an arbitrary morphism of normal
varieties and Y’ a covering of Y in our direct category. Then the normal-
ization X' of Y’ xy X is also finite and surjective over X. All irreducible
components are generically Galois by the lemma below. We thus get a mor-
phism of direct systems. For covariant functoriality, consider finite surjective
morphism 7 : X — Y and a covering X’ of X in the direct system. There
is another such covering of X’ which is also generically Galois over Y. Let
7. be the projection

R(XI) N R(XI)Aut(X’/Y) .
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It induces a map of direct systems and hence

T R(X) = R(Y).

Note that in this normalization the composition

RY) ™S R(X) ™ R(Y)
is the identity.

Lemma 2.1.10. Let Y,Y' be normal irreducible varieties in characteristic
zero and let m : ' Y' — Y be finite surjective and generically Galois with
covering group G. Let

f:I'—=Y
be a morphism. Then G operates transitively on the fibres of
' xyY' —T.

Let C be the reduction of an irreducible component of I xy Y'. Then C — T°

1s surjective and generically Galois. The Galois group is the quotient of the
stabilizer of C in G by the fixgroup of C.

Proof. First we assume that I' = Spec L is a (not necessarily closed) point
of Y. We can assume that ¥ = SpecA,Y’ = SpecB are affine. Now
the assertion is easy to check directly using the fact that BY = A and that
everything is Q-linear. More generally let I' = Spec L where L is a field. The
reduction of I' xy Y' =T x ppy 7' (f(T)) is given by T' x ppy w ' (f(I))".
Hence the assertion follows from the special case.

Clearly the map I' Xy Y’ — T is surjective. G stabilizes the subvariety of
components which dominate I'. Moreover the operation of G is transitive on
all fibres, hence the closure of the fibre over the generic point is everything.

O

Proof. (of Theorem) We only have to extend R" of the lemma to the category
of smooth correspondences. The method is the same as in the proof of 2.1.3.
Let X and Y be smooth connected varieties. Let I in X XY be an irreducible
subvariety which is finite and surjective over X. Let I be its normalization.
Consider the diagram

X+I'—=>Y.
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It induces a map
R”(Y) — R”(f) — R”(X)

by composition of contravariant and covariant functoriality. Let the mor-
phism R(T") be this composition times the degree of " over Y. If T" is the
graph of a morphism f, then R”(f) = R(T') in D*(A).

We claim that R is a functor. Let 'y C X xY and I's C Y X Z be prime
correspondences. Then

(D1 X Z).(X xTy) = niC

is a cycle in X xY x Z. The C; are the irreducible components of 'y xy I's.
Let pr be the projection map to X x Z. The prime correspondence Cj is
finite and dominant over its image pr(C;). Let d; be the degree of this
covering. The composition of correspondences is given by the cycle

ool = Znidipr(Cl)

Let ﬁ\f/g => n;C; be the normalization of I'y.I'y. The morphism

R(FQ o Fl) : R(Z) — R(FQ o Fl) — R(X)
can equivalently be computed via R(E\F/Q) Note that the multiplicities
work out as they have to.
The intersection multiplicities n; are equal to the ramification index of
X xT'9 = X xY at C; (see [Fu] 4.3.7) by loc. cit. 7.1.15 and because Z is
flat over k. Let I, be normal variety, finite and surjective over I'y which is
Galois over Y. We put

T1.(X xTh) = ny;Cy;

where the Cj; are the irreducible components of I'; xy I'y covering C; and
the n;; are the ramification indices of X x I'y - X x Y. By the last lemma
the covering of I'; is generically Galois, hence all degrees d(Cj;/I'1) = d'
agree. As Y is smooth all ramification indices are equal to

L dry/Y)
- H#C)

by the degree formula loc. cit. 4.3.7. By the same degree formula, we can

replace R(I'1.I'g) by R(I'1.X x I'}) in the computation of our morphism.
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Finally we have to show that the diagram
R'(I1Cj;) «—— R'(I%)
e’d’R”(-)E Ed(ré/Y)R”(-)
R"(Ty) <+—— R"(Y)

commutes. For this we have to go back to the definition of R”. We use the
original contravariant functoriality and then project to the invariants under
G. We have already seen that the multiplicities fit. The rest of the theorem
follows from 2.1.2. O

2.2 Review of mixed realizations

We review the basic notions of [Hul], i.e., define the category of mixed
realizations and the surrounding triangulated category. Everything in this
section is pure linear algebra. Let k be a field of characteristic zero which
can be embedded into C. Let S be the set of embeddings.

We first recall the definition of MR. It is a slight modification of
Jannsen’s in [Ja]. It is equivalent to the notion of absolute Hodge motive
which was independently given by Deligne [De2].

Definition 2.2.1 ([Hul] 11.1.1). An object A in the category of mized
realizations MR is given by the following data:

e a bifiltered k-vector space Apgr;

e for each prime 1 a filtered Q-vector space A; with a continuous oper-
ation of Gi;

e for each prime | and each o € S a filtered (Q)-vector space Ay ;;
e for each o € S a filtered Q-vector space Ay;
e for each 0 € S a filtered C-vector space Ay c;

e for each o € S a filtered isomorphism

Inr,s : Apr ® C — Asc

e for each o € S a filtered isomorphism

Iyc: Ay @9 C — AU,(C ;
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e for each o € S and each prime l a filtered isomorphism

I As @ Q — Agy

e for each prime l and each o € S a filtered isomorphism

Le:A®yQ — Ay .

Additionally we require that the tuples (A, Apr, As,c, IDR,0s Io,c) give Hodge
structures ([Hul] 8.1.1) and that the A; are constructible Galois modules
equipped with the filtrations by weights ([Hul] 9.1.4).

Morphisms of mized realizations are morphisms of this data compatible
with the comparison isomorphisms.

MR is an abelian category because morphisms are automatically strictly
compatible with all filtrations. Kernels and cokernels are computed compo-
nentwise. Recall that a morphism between filtered objects is called strict if
coimage and image are isomorphic as filtered objects.

Now we need to recall the definition of the category Dayg, cf. [Hul]
11.1.3. It should be thought of as the derived category of MR.

Definition 2.2.2. Let C* be the category with objects given by a tuple of
complezes in the additive categories in the definition of MR plus filtered
quasi-isomorphisms between them. Let Crqr be the subcategory of complezes
with strict differentials whose cohomology objects are in MR. Let Dy be
the localization of the homotopy category of Cpr (see [Hul] 4.1.5) with
respect to the class of quasi-isomorphisms (see [Hul] 4.1.7).

Lemma 2.2.3. Morphisms of objects in Cpaqr induce strict morphisms on
cohomology. In particular, the category s abelian. Dy is a triangulated
category with t-structure whose heart is MR.

Proof. The first assertion holds because morphisms in MR are automati-
cally strict. The second is [Hul] 11.1.4. O

We need two lemmas which were implicit in [Hul] but not stated.

Lemma 2.2.4. Let K; for i € I be a direct system of complexes in Cypr.
Assume that all direct limits h_n>ﬂHk(Kz) exist in MR. Then lim K; exists
mn CMR-

Proof. Direct limits exist in C*. The direct limit functor is exact, hence
strictness of differentials is preserved and cohomology commutes with the
functor. The second condition on objects in Caqr holds by assumption. [

28



A direct system where all transition maps are quasi-isomorphisms is a special
case of a direct system to which the lemma applies.

Lemma 2.2.5. Let K* be a bounded below complex of objects in Crqr which
are concentrated in positive degrees. Then the total complexr Tot K* is in

Cuvir.

Proof. We can take the total complex in CT as usual. Strictness of differen-
tials of the total complex is [Hul] 3.1.8. Clearly the cohomology of the total
complex is obtained from the cohomology of the K’ via a spectral sequence.
The boundedness conditions ensure that only finitely many cohomology ob-
jects of the K’ contribute to one cohomology object of the total complex.
In particular all vector spaces involved in the definition are indeed finite di-
mensional. We have to check that the filtration on the Galois modules is the
filtration by weights, i.e. that Gr%/v is pure of weight i. We pass to graded
pieces in the spectral sequence. This is possible because the differentials
are strict. Note that puritity of weight ¢ is stable under subquotients and
extensions. For the Hodge condition we also pass to the weight graded piece.
We now have to check the condition of a pure Hodge structure. Again the
condition is stable under extensions. U

Proposition 2.2.6. The category Dar is pseudo-abelian.

Proof. This is not a special case of Levine’s result in [Le2] A.5. However,
his proof can be modified so that it works in our case. Let C' be an object
of Dy and p : C — C an idempotent, i.e. p?> = p. p is represented by a
morphism of complexes p(!) : C — C1) where C(V) is quasi-isomorphic to C
via ¢). Choose C'") such that the diagram

o " ow

C(l)ﬁ 5(1)E

o P A0

commutes. The equation p?> = p implies that there is a quasi-isomorphism
C — € such that (M) o p() and &) o p() become homotopic. In fact,
there is a whole chain or morphisms of complexes

P . o1y )

where all C(™) are quasi-isomorphic to C (fix the quasi-isomorphisms )

once and for all), p(") represents p and p*tY o p(W) and & o p(™) are
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homotopic. By 2.2.4 the limit over C(™ with transition maps the quasi-
isomorphisms ¢ exists in Cyyg. Now p is represented by the induced
morphism of complexes

ligp(") . @C(”) N @C(”)
Replace C by the limit. By this procedure we have succeeded in representing
p by an endomorphism of a complex such that the identity p? = p holds up
to homotopy of complexes. From now we can argue precisely as Levine in
loc. cit. Theorem A.5.3. There is one little change, however, because the

maps f(p) and f(id) (notation of loc.cit.) are not homotopy equivalences
but only quasi-isomorphisms. This suffices for the argument. ]

2.3 The mixed realization functor

We proceed by constructing a realization functor from Voevodsky’s geomet-
rical motives to mixed realizations.
One of the main results of [Hul] was the following:

Theorem 2.3.1 (loc. cit. 11.2). There is a contravariant functor
RMR :Sm = Cupr

whose cohomology objects compute the mized realizations of a smooth variety.
Composed with the natural projections to the category of Galois modules
or to the category of Hodge complexes it computes the l-adic realizations
respectively the Hodge realization of a variety.

R has descent for proper hypercovers, hence the functor extends as
in 2.1.4 (cf. loc. cit. 11.2.2) to all varieties.

Definition 2.3.2 (loc. cit. 11.3.1). Let

Hjyw (X,n) = Homp . (Q(—n), Ry (X)[i])
be the absolute mixed realization cohomology.

As shown in loc. cit. part III this is part of a Bloch-Ogus cohomology
theory. By functoriality, there is a map to absolute Hodge cohomology and
to continuous /-adic cohomology. Note, however, that giving an element in
absolute realization cohomology is stronger than giving elements in these
standard cohomologies. This is parallel to the fact that giving a mixed
realization is stronger than giving a mixed Hodge structure and various
Galois-modules - we also fix comparison isomorphisms.

We immediately get:
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Theorem 2.3.3. Let k be a field which is embeddable into C and A = Z,Q.
Rar extends to contravariant functors

RMR DMgm(k,A) — DMR s
Rar :DMIT (5, A) = Dz -

It maps the Tate motive A(n) to Q(—n) (cf. the remark after 1.1.7). In
particular, it induces a transformation of functors

Hj\,(X, A(n)) — Hig(X,n)
which is compatible with all structures (products, localization sequences etc.).

Proof. We repeat the proof of section 2.1. Cryr itself is not a category of
complexes over an abelian category and certainly arbitrary direct limits do
not exist. However, the constructions of theorem 2.1.6 go through by lemma
2.2.4 and 2.2.5. We only have to check that R satisfies the conditions
of theorem 2.1.6. All of them can be checked in the singular component.
Hence they hold by proposition 2.1.7. The realization of the Tate motive
can be computed in D g, e.g. as the decomposition of of P! in the category
of Chow motives ([Hul] 20.2.1). The transformation of functors is nothing
but functoriality. O

Remark: The same theorem (with the same proof) also holds for the more
refined functor R, ,r with values in the category D, r.r which takes into
account the polarizability of the graded pieces with respect to the weight
filtration (see [Hul] Ch. 21.)

By functoriality (or using the same arguments again), the theorem also
implies the existence of other realization functors.

Corollary 2.3.4. Let D; be the “derived category” of constructible Q) -sheaves
on Spec(k) in [Ek] (or in the number field case the refined version in [Hu2J).
Then there is a realization functor

DMgm(k,A) — Dy .
It induces a transformation of functors
Hj\((X, A(n)) — Higpy (X, Qi (n))

where H,,, is continuous étale cohomology respectively the horizontal ver-

sion of [HuZ2].
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Corollary 2.3.5. Let Dy be the category of Hodge complezes as in [Bel]
3.2 or [Hul] 8.1.5. Then there is a realization functor

DMy, (C,A) — Dy
It induces a transformation of functors
Hj\(X, A(n)) — Hj (X, Qi(n))
where H;{ is absolute Hodge cohomology as introduced by Beilinson in [Bel].

Beilinson’s category of Hodge complexes differs from Deligne’s by décalage
of the weight filtration. Note also that absolute Hodge cohomology agrees
with Deligne cohomology in the good range of indices, see [Bel] 5.7.

Other regulators which we get from this are to De Rham cohomology,
singular cohomology again, and geometric étale cohomology. This is cer-
tainly not a surprise. The existence of such functors is already stated in
[Vo2].

Recall ([Hul] 22.1.3) that an object of MR is called motivic if it is
subquotient of an object H'(Ryr (X)) where X, is a complex of varieties
with morphisms formal (Q-linear combinations of morphisms of varieties.

Theorem 2.3.6. Let X, be an object of DMZ{,{,. Then H' (Rpr(X.)) is
motivic.

Proof. As H'(Ryr (X)) only depends on o_;_1 X, we can as well assume
X, € DMZ{,{. First consider the special case of a complex of length one, i.e.
X, = [Xo EN X1]. The morphism f in SmCor is finite linear combination
f =>aifi with a; € Q and f; a primitive finite correspondence. Recall
that it is finite over a connected component of X. Let Y; = supp(f;) and Y;
a normal finite cover of it. It is finite surjective over a connected component
of Xj. We assume that this cover is generically Galois. Let X, be the union
of those connected components of Xy which are not covered by any Y;. Let

Xo=Xou[[v:.

Let f! be the projection map Y; — X and f = 3 o, f!. Now we put

32



By construction of the realization functor for correspondences the diagram

5 - 5
Rvr(Xo) Loarld) Rur(X1)

S

Rur(X0) S22 Byr(x))
commutes and the left vertical map has a compatible splitting. Hence
Rz (X,) is a direct summand of Ry (X, ). Clearly cohomology of Rar (X.)
is a direct summand of the cohomology of Rz (X.,).

Now we have to extend this to longer complexes. We do this inductively.
Assume X, is a complex in degrees —n to k with X; a general variety for
1 < 0 and X; a smooth variety for 7 > 0. We assume that the boundaries
in negative degrees are linear combinations of morphisms of varieties and
the boundaries in positive degrees are finite correspondences. It can be
considered as an object in DM _ because the functor M on SmCor is also
defined on Var. Apply the previous construction to Xg — X;. This yields
a finite covering XU of Xy. We have to construct Xk for £ < 0. Let

{fi: X, = Xo}

be the set of morphisms which occur as compositions of the morphisms of
varieties making up the complex X,. Let

Xp = H fz*XO
where
F1 X0 = (Xp Xx0.5 X0)" .

By lemma 2.1.10 its components are surjective over X,,. The covering group
operates transitively on all fibres.
We have to define boundary morphisms in X, such that

X, — X,

is a morphism of complexes for * < 0. For simplicity, assume that X, is con-
nected, let g : X;, — X, 1 one of the morphisms occurring in the boundary.
For each of the morphisms f; : X, 1 — Xo, we lift g to g(f;) : (gfi)* Xy —
fi*X'o. The coefficient of g(f;) is taken as the coefficient of g. It is easy to see
that this yields indeed a complex. The crucial diagram in degrees 0 and 1 is
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treated as in the in the first case. At least after application of Rayr(Xy) it
commutes and has a splitting. Ry (X,) is a direct summand of Ryr (X.)
because the morphism between them is surjective and finite. The splitting
is constructed by projecting to the invariants under the covering group. The
components of X, are not normal so this is not an application of our axioms
for the existence of a realization functor. But still the same proof works as

in the normal case. O

Remark: It is easy to see that the category of motivic objects in MR
remains unchanged when we restrict to Z-linear combination of morphisms
rather than Q-linear ones. Replacing a singular variety by a smooth proper
hypercovering, it is easy to see that we can assume X, to be a complex of
smooth varieties in the definition of motivic objects. However, it is not clear
at all whether it might suffice to assume that X is a smooth variety rather
than a complex.

3 The motive of BGL

The main result of this chapter is corollary 3.2.5 where we completely deter-
mine the motive of the classifying space of GL. We work over the base Q.
By base change the results follows over any base field of characteristic zero.
As before let DM _ be Voevodsky’s category of motivic complexes with ra-
tional coefficients. In the next chapter the result will be used in order to
give a very easy construction of Chern classes in motivic cohomology and
check their relation with Chern classes in mixed realization cohomology.

3.1 Set-up

Let G be a connected algebraic group (we only need G = GL,, and G = G, .)
We define the simplicial variety

(_
EG:G‘; GxG « GxGxG
(_

TTTT

where the face morphisms are induced by the various projections and the
degeneracy maps by the section e. Note that EG is contractible. EG is a
homogeneous space under G with the diagonal action. Put

BG = EG/G .
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We identify B;G = G'. This corresponds to the classical construction of
the classifying space as quotient of the universal cover. EG and BG are
obviously functorial.

We need to understand the motive of G,,. Let e : Z(0) — G, the unit
section. The multiplication map is denoted pu.

Lemma 3.1.1. The section e induces a decomposition of G, into
M(Gp) = 7(0) & M(Gin )™

in DMgm(Q,Z). M(Gy,)™ is isomorphic to Z(1)[1] via residue at 0. For
the multiplication map we have

id w=0,
Gry(p) =< A w=1,
0 w#0,1.
Proof. Recall that by definition
M(AY) = 7(0) .

Now consider the localization triangle for the smooth pair (G,,, A!):
M(Gp) —— M(A") —— M(0)(1)[2]
ie.
7(0)® M (G,,)~” —— Z(0) —— 7Z(1)[2].
The last map is an element of H 2(Z(1)(Q)) = 0. Hence M(G,,)~ is iso-

morphic to Z(1)[1]. The decomposition of the multiplication map uses the
commutative diagram for the properties of a left and right unit. O

In particular G, is a mixed Tate motive. The same is true for all GL,,.
This can be seen by using the stratification given by the Bruhat decompo-
sition. All strata are of the form split torus times some affine space. From
now on we work in the category of mixed Tate motives DMT introduced
in 1.2.1.
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3.2 Motives of some classifying spaces

Proposition 3.2.1. There is a unique morphism
b Q(i)[2i] — M(BG,,)
induced by
Qi)[24] = (M(G)™)®" [i] = M(B;G)[i]

Moreover,

8=V : P Q6)2i] - M(BGy)
18 an isomorphism.

Proof. Consider the exact triangle
M(U,i+1BGm) — M(BGm) — M(—) Bi+1Gm — Ble — 0)

Clearly we have a map b° to the space on the right. M (o ;1 1BG,,) is an
object of DMTy,;_q). Hence the composition of b* with the connecting
morphism vanishes by lemma 1.2.2. Then &' lifts to a map to M(BG,).
Using the same argument again, we see that the lift is unique. Now we are
precisely in the situation of proposition 1.3.6. It is enough to pass to the
weight graded pieces of the subcomplexes M (o_yBG;,). The decomposi-
tion of Gry(p) is known. It determines all differentials. To compute its
cohomology is a completely combinatorial question. Instead of considering
the combinatorics, we can also quote the result of the computation in the
Hodge realization, e.g. [Hul] 17.4.1 for n = 1. Either way we see that
Gry () is injective and that the cokernel is a subobject of M (ByGy,)[N].
By 1.3.6 8 is an isomorphism. O

Definition 3.2.2. Letmq,...,my be simple Tate motives of the form Q(i)[2i].
By the polynomial ring in my, ..., myg we mean the motive

Qma,...,mg] == @ m?el®...®m,§e’“ i

€1;--,€, >0

It is not correct to view Q[my,...,mg] as a ring. There is no multipli-
cation but rather a comultiplication induced by the diagonal. If we apply
the singular cohomology functor to it, we get a true polynomial ring in k
generators.

Remark: M (BG,,) is the polynomial ring in the generator b = Imb’. The
notation is consistent: the image of the map b’ is the subobject b’
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Corollary 3.2.3. Let T = GJ, be a split torus. Then M (BT) is isomorphic
to the polynomial ring in by, ...,b, where b; corresponds to the generator of
the motive of the i-th factor Gy, in T

Proof. We have already on the simplicial level BT = (BG,,)". Hence
M (BT) is isomorphic to the n-fold tensor power of M (BGy,). O

Let ¢; : Q(7)[2i]] — B(T) be the i-th symmetric polynomial in the gener-
ating maps by of M (BT).

Theorem 3.2.4. The object M(B GL,,) in DMZ{I{, (Q,Q) is given by the
commutative polynomial ring generated by ¢; = Q(4)[21] for i < n.

Proof. We have defined a map
v:Qery...,¢n) = BT — BGL, .

We claim that it is an isomorphism in DM _. By proposition 1.3.6 it is
enough to consider the weight graded pieces of the finite subcomplexes.
Moreover, the singular realization is faithful on Tate motives of fixed weight.
We know that the singular realization of 7y is an isomorphism (e.g. [Du] The-
orem 6.13 and Proposition 8.3). On finite subcomplexes R4(0-nB GLy),
the map Rsmg(fy) is not an isomorphism but the defect is direct sum of Tate
motives of the form Q(¢)[j] with j > N (because the spectral sequence is
concentrated in the first quadrant). Hence the assumptions of 1.3.6 hold
and -y is an isomorphism. O

Remark: We only need existence of 8 in 3.2.1 for this proof and reproof
that it is an isomorphism.

Corollary 3.2.5.
M (B GL) = Qlc1, ¢, ... ] -
Corollary 3.2.6. Application of Ryr yields
Rumr(BGL) = Qler, ¢, .. - |

with ¢; = Q(—i)[—2i]. The splitting is the same as the one constructed in
[Hul] 17.4.1.
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Proof. Recall that Ry (Q(7)[2i]) = Q(—i)[—27]. Hence the equality follows
from the previous corollary. The construction of the splitting of B GL is very
much the same as the construction used in [Hul] 17.3-17.4. It is enough to
show that the splitting of Rygr(BGyy,) constructed in [Hul] 17.3.2 is the
same as ours. Note that we only have to check that the splittings agree in
the [-adic realization because the splitting of the Hodge realization is unique
anyway. The one in loc. cit. is induced by the Chern class of the standard
line bundle on P”, ours by the cycle class of a point. That they agree is
classic. U

4 Chern classes

The aim of this chapter is to show that the higher Chern classes from higher
algebraic K-theory to absolute cohomology of mixed realizations (see [Hul])
factor over Voevodsky’s motivic cohomology.

4.1 K-theory and group cohomology of GL(X)

We start with a review of the results in [Hul] 18.1-18.2 in a more conceptual
terminology. In this section all schemes are noetherian and regular, e.g.
smooth varieties over k. We denote K(X) a simplicial set whose homotopy
groups are the K-groups of X.

Definition 4.1.1 ([Hul] 18.1.1). Let U, be a simplicial affine scheme.
Assume that U, has finite combinatorial dimension, i.e., is degenerate above
some simplicial degree. Then we define

K(U.) = holimK(U;) .
If U, is the nerve of an open cover of X, then
K(X) — K(U.,)

is a weak equivalence by the Mayer-Vietoris property of K-theory of regular
schemes. In the affine case K(U) can be realized as Ko(X) X Zo(B GL(U)).
More generally:

Proposition 4.1.2 (Thomason, [Hul] 18.1.5).

K(X) 2 lim Tot Z X Zoo(B GL(U,))
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where the direct limit runs through all open covers of X. In particular
K;(X) = limm; Tot Zoo (B GL(U.)) fori > 1.

Proof. The weak equivalence follows from the formula in loc. cit. because
direct limits commute with homotopy groups. The explicit calculation fol-
lows from it by the spectral sequence for the total space of a simplicial space.
It converges because all U, have finite combinatorial dimension. O

The simplicial set lim Tot Zoo(B GL(Ux)) inherits an H-group structure
from the H-group structure on Z.(B GL(U;)).

Definition 4.1.3. Let X be a regular noetherian scheme. We put
Hyy(GL(X), Q) == H”(|ling Tot Zoo( B GL(U.)), Q)

where the right hand side means singular cohomology of the geometric real-
ization. It is called Mayer Vietoris localized group cohomology of GL(X)).

A simpler construction of the same cohomology group will be given be-
low. Note also that in the case of X = Spec A this is not group cohomology
of GL(A) but rather a version such that a long exact Mayer-Vietoris se-
quence for open covers is forced. From the definition, however, the relation
to K-theory is clear:

Proposition 4.1.4. There is a natural map
Ky(X)o — Hyy(GL(X), Q) .
Its image is the subgroup of primitive elements in @ Hy (GL(X), Q).

Proof. The map is nothing but the Hurewicz map from homotopy groups of
a space to its cohomology. In the case of an H-space the image in rational
cohomology is given by the primitive part, cf. [Lo] A.11. O

Now we turn to the promised simpler description of our group cohomol-
ogy. For a set B, we denote by Q[B] the Q vector space with basis B. Let
U = Spec A be an affine scheme. As in the proof of [Hul] 18.2.4, the maps

7B GL(U) = ZZ-B GL(U) < ZBGL(U)
induce isomorphisms on singular cohomology. Hence

H(|Zoo(B GL(U))|, Q) = H*(|BGL(U))|,Q) = H"(GL(U), Q)
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is group cohomology in the usual sense. It is computed by the standard Bar
complex (and this is in fact how the last equality is proved):

HP(GL(U),Q) = H™P(Q[B. GL(U)]) -

(We stick to our convention: all complexes are cohomological ones. A sim-
plicial group is turned into a complex by putting it into negative degrees.)

Proposition 4.1.5. Let X as in definition 4.1.3. There is a natural iso-
morphism

HYy (GL(X), Q) = limg H7(Tot Q[B_. GL(U,))
where the direct system runs through all open covers of X.

Proof. Clear from the above. Note that cohomology commutes with direct
limits. ]

Rather then constructing Chern classes on higher K-groups, we will con-
struct them on group cohomology of GL(X).

Remark: If X itself is affine, then the natural map
ZiooB GL(X) — Tot ZoB GL(U,)

induces an isomorphism on all higher homotopy groups but not on 7. The
space on the left is connected, the one on the right is not in general. They are
certainly not weakly equivalent. Hence there is no reason for it to induce an
isomorphism on singular cohomology. This justifies the above remark that
Mayer-Vietoris group cohomology is not the same thing as group cohomol-

ogy.

4.2 Chern classes into motivic cohomology

The construction of Chern classes into motivic cohomology proceeds along
the same lines as for absolute realization cohomology in [Hul] 18.2.5. The
key observation is that

B, GL(U) = Homgm (U, B, GL).

Theorem 4.2.1. Let X be a smooth variety over k, some fized ground field
of characteristic zero. There is a natural transformation

Hyy(GL(X), Q) = Homp g (x,0) (M(X)[p], M(B GL)) .
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Proof. We use the description of proposition 4.1.5. Let QSm be the cat-
egory of smooth varieties with morphisms formal Q-linear combinations of
morphisms of varieties. An element of

ling H 7 (Tot Q[B_, GL(U,)
is represented by a morphism of complexes in (QSm
U.lp| = BGL .

Note that the functor M from proposition 1.1.6 has values in the category
of complexes of Nisnevich sheaves with transfers, not only in the derived
category. By functoriality, it induces a map

M(U,)[p] - M (B GL)

in DM_. The natural map M(U,) — M(X) is a quasi-isomorphism.
Hence we have constructed an element in Hompuyg (M (X)[p], M (B GL))
as claimed. Note that it is well-defined: two representatives differ by a
homotopy of morphisms of complexes. O

Corollary 4.2.2. There is a natural map
Ky(X) = Hyy(GL(X), Q)
— Hompae (M(X)[p], M(B GL)) — @ HY 7 (X,Q()) -
For (4,p) # (0,0) let
27— .
cj + Kp(X) = Hyj P(X,Q(j)) -
co on Ko(X) is given by the above composition plus the natural map

Ko(X) "% 7. — HY,(X,Q(0))

mapping 1 to the structural morphism. c; is called j-th motivic Chern class.
Proof. Recall that by corollary 3.2.5
M(BGL) = Q[Cl,CQ,...]

with ¢; = Q(5)[25]. The map in the corollary is nothing but the composition
of the transformation in the theorem with the natural projection. O
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Note that our transformation of functors maps primitive elements to primi-
tive elements. Hence we do not loose anything by projecting to the primitive
part of M (B GL) in the corollary.

Corollary 4.2.3. The Chern class
2j— .
¢j + Kp(X) = Higz" (X, Q(5))
constructed in [Hul] 18.2.6 factors through the motivic Chern class.

Proof. The construction of Chern classes in loc. cit. is precisely the one
above with Rk replacing the functor M. The compatibility is a direct
consequence of functoriality of our construction. O

Remark: For simplicity we have restricted to the case of a smooth variety
in the above. Everything works directly for bounded complexes of smooth
varieties, e.g. smooth simplicial varieties with finite combinatorial dimen-
sion. As in [Hul] 18.1.3 bounded above complex of smooth varieties can be
treated as the direct limit of its truncations. Singular varieties or complexes
of such can be replaced by a smooth proper hypercovering.

Erratum: We have to correct an inaccuracy in [Hul] 18.1.5: The variety
has to be assumed smooth. The mistake is that Mayer-Vietoris holds for
K-theory of general varieties only if we allow negative K-groups. The group
m_1A(U.) (notation of loc. cit.) might not be zero. As as consequence
the arguments in loc. cit. work directly only for smooth simplicial varieties.
However, they extend to the general case again by replacing singular varieties
by smooth proper hypercoverings.
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