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Let a finite presentation be given for an associative, in general non-commulative algebra E, 
with identity, over a field. We study an algorithm for the construction, from this presentation, of 
linear, i.e, matrix, representations of this algebra. A set of vector constraints which is given as 
part of the initial data determines which particular representation of E is produced. 

This construction problem for the algebra is solved through a reduction of it to the much 
simpler problem of constructing a Gr6bner basis for a left module. The price paid for this 
simplification is that the latter is then infinitely presented. 

Convergence of the algorithm is proven for all cases where the representation to be found is 
finite dimensional; which is always the case, ['or example, when E is finite. Examples are 
provided, some of which illustrate the close relationship that exists between this method and the 
Todd-Coxetcr coset-enumeration method for group theory. 

I. Introduct ion 

In many practical applications, it is very useful to have available explicit matrix 
representations for the elements of (generally non-commutative) algebras. Our  own initial 
motivation for this study in fact stems from such an application, made while studying 
quantum mechanical wave equations which are covariant under the Poincar6 group (see 
Labont6, 1987a). It is the purpose of this article to analyse a general method for 
constructing representations of  algebras, when given finite presentations for them. 

The  field of constructive methods involving ideals of polynomials with commutat ive 
variables has been quite active in the past few years. This is due in great part  to the 
introduction of the concepts of Gr6bner  bases (see, for example, Buchberger, 1965; 1979; 
1985) and standard bases (Hironaka, 1964) and of the algorithms involving them. 

F o r  structures with non-commutat ive variables, which concern us more in this article, 
only constructive group theory has seen a comparable level of activity in the past. A good 
idea of the achievements in that field can be found in the survey by Neubtiser (1983). F o r  
rings and algebras, there are relatively few results, given the vastness of the subject, 
concerning constructive techniques. As in the Abelian case, the formalism of rewriting 
theory (see, for example, Huet, 1980) has been used with advantage in their description. 
Noteworthy realisations are Bergman's (1978) discussion of the possibility of establishing a 
unique canonical form for the elements of algebras, and suggestion of using a complet ion 
algorithm of Buchberger or Knuth-Bendix  (see Knuth & Bendix, 1970) type to deal with 
their presentations. 
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Galligo (1985) has studied Gr6bner bases for left ideals in Weyl algebras. Mora (1985) 
and Kandri-Rody & Weispfenning (1986) have studied Gr6bner bases for two-sided ideals 
of algebras and rings. Apel & Lassner (1986a; 1986b; 1987) have extended Buchberger's 
algorithm in order to produce programs to perform calculations in enveloping fields of Lie 
algebras. Le Chenadec (1986) has discussed the completion of finite presentations 
corresponding to semi-groups, monoids, modules, groups and rings (see mainly Chapter 4 
of his book). He has also produced a LISP system which performs such completions. 
Particularly worthy of attention also are Mora's studies (1988a; 1988b) of Gr6bner bases 
and algorithms for their computation, which are done in a very wide algebraic context. 

Most recent ventures into the domain of non-commutative algebras rest on 
generalisations of the Buchberger algorithm for the construction of Gr6bner bases or more 
generally, on Knuth-Bendix completion. There is another very important construction 
technique which has been used, for an already longer time in the context of group theory: 
this is the Todd-Coxeter coset enumeration method [see Todd & Coxeter (1936) or Leech 
(1970)]. 

The algorithm which we discuss in this paper also corresponds to a somewhat different 
point of view than that taken in the non-commutative algebra Gr6bner basis or 
completion techniques; it would be more closely related to Dehn's (1910) algorithm for the 
construction of the Cayley graph of a group (his "Gruppenbild") and coset enumeration. 
In fact, Labont6 (1988) describes the algorithm as the construction of a weighted digraph 
which corresponds to the representation of the algebra; such digraphs are straightforward 
generalisations of Cayley graphs. On the other hand, Remarks 4 and 5, at the end of our 
Section 2, bear on the relationship to coset enumeration while the first examples of Section 
4 serve to illustrate these remarks. 

Even though the Buchberger algorithm or completion technique and the Todd-Coxeter 
coset enumeration method are so commonly used, there does not seem to have been 
studies in which their efficiencies have been systematically compared. Such a comparison 
of the algorithm, which we discuss in this paper, with the former techniques is of course 
also imperative; this will constitute the subject of a forthcoming study. 

For the moment, we can only recall that the opinion has been expressed [see, for 
example, at the end of Chapter 6 of Le Chenadec (1986)] that coset enumeration would be 
more efficient in certain questions pertaining to the representations of groups. As for the 
algorithm discussed hereafter, it is clear that there are problems, involving the construction 
of particular representations of algebras, for which it will be more efficient than the 
Gr6bner basis or completion approach. This is a direct consequence of the way such 
construction problems are posed. Indeed, consider such extreme cases as the following one. 
For the group G, specified by n generators At, i = 1 to n, and some relations between them; 
construct the particular representation for which the vector space is generated by a vector 
V such that A~V = V for each i = 1 to n. With our algorithm, which then reduces to coset 
enumeration (since the vector V is in fact a representative of the subgroup G of G), the 
construction is trivial, and yields immediately A~ = I for i = 1 to n. On the other hand, it is 
clear that the construction of this representation of G would be longer by any method 
requiring that the presentation of the group be completed first, Example 6 of our Section 4 
also correspond to extreme cases which show that the Gr6bner basis or completion 
techniques for the algebra itself are not so well adapted to deal with the construction of 
particular representations. In these cases, the regular representation is infinite dimensional, 
and a finite particular representation is to be constructed. The presentations of the 
algebras involved are trivially completed (in one case there are no equations0 but, still, it is 
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hard to see how the above-mentioned methods would be of any help in producing the 
representation sought. 

Leaving aside extreme cases, there certainly remain some problems with which the 
different algorithms could be meaningfully compared. Two important ones among these 
are the construction of finite dimensional regular representations of algebras, and the 
construction of Gr6bner bases for commutative polynomial ideals. We are presently 
preparing a commutative version of our algorithm to conduct tests on the latter problem. 

As a final remark, we point out the main feature of the algorithm discussed hereafter, 
which is that the need to deal with Gr6bner bases for non-commutative algebras is 
bypassed, through a reduction of the problem to one dealing only with Gr6bner bases for 
left modules. The theory for these is essentially identical to that of Gr6bner bases for left 
ideals, and, as remarked by Mora (1985) at the end of his article, it is very simple compared 
to the theory of two sided ideals of algebras. As we will see, however, there is a price to be 
paid for this simplification in that the module presentations which have to be dealt with 
are infinite. 

Despite this infinity, convergence of the algorithm can be proven, in the sense that 
whenever the given problem has a solution in the form of a finite representation for the 
algebra E, it will be finitely constructed. In particular, termination of the computation is 
always guaranteed when E is finite dimensional. The proof we give is similar in principle to 
that of M6tivier (1983) [see also Proposition 3.8 in Chapter 3 of Le Chenadec's book 
(1986)] for the termination of the completion algorithm for presentations of finite groups. 

2. Statement of the Problem 

2.1. NOTATION 

K is a field, 
A = {X1, X z , . . . ,  X,,} is a finite alphabet, 
A + is the free semi-group on A with the associative binary operation of concatenation of 

words, denoted by "conc", 
e is the empty word, 
(A> is the free monoid over A, with unit e, 
Iwl is the length of the word w; lel = 0, 
P = K<A> is the free K-algebra on A, i.e. the algebra of polynomials with non- 

commutative variables in A and coefficients in K, 

GV = {V~, V2 . . . . .  V,.} is a finite alphabet, 
PV~ is the free cyclic left P-module generated by V~; it is a linear vector space over K, 
p m =  PGV = the internal direct sum of all P V~ : V~ e GV, 
B(q~) = {WVI:W ~ A +, Vie  GV} is the set of monomials which forms a basis in pm 

considered as a linear vector space over K, 

LEQS is a finite subset of P, given as initial data, 
I is the two-sided ideal of P generated by LEQS, 
I m = IGV is the cyclic left I--module generated by GV, 
E is the quotient algebra P/I, 
LVEQS is a finite subset of pro, given as initial data, 
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V - P LVEQS is the vector space over K defined as the left P ~ m o d u l e  generated by 
LVEQS. 

2.2. A REPRESENTATION OF E 

In the following, the relations p ~ 0 : p s LVEQS will play the role of constraints, given 
from the start, to be satisfied in the vector space carrying the representation sought. They 
effectively serve to specify which particular representation will be constructed. This way of 
characterising the various representations of E was chosen initially because it 
corresponded to the physical applications we then had in mind (see Labont6, 1987a). It 
was later kept, as it seemed to be a useful and fairly versatile way of doing so. 

Let S be the vector space V w I m, u = {ul, u 2 . . . . .  ua} be a basis in the quotient vector 
space Vr,p = Pro/S, and ,,~ be the congruence modulo S over the elements of pm. Vrep then 
carries the linear representation of E described below. 

Given that V X~ E A and uj e u, 
a 

X~uj ,,~ Y'. CUkU k for some Cijk E K; 
k=l (2.1) 

with each Xi ~ A can be associated a linear function Xi: Vrov ~ V~op, defined by 

d 

k=l (2.2) 

With e can be associatedthe identity function ~ : ~(Ua) = (Ua). It then naturally follows that 
with T = X ~ X j . . .  X k ~ A + is associated ~': 

T(u,) = s 

and with P ~ K(A),  P: 

P(@ = Z c,  (u9, 
i 

when P = ~, ci Ti, with ci s K and T i e (A).  
i 

The elements of E --- P/I are equivalence classes denoted here 
I[M]I - { M + R : M  E P, R e I}. If M1 and M2 belong to the same class [I-M]l, then the 
operators )~r and _~r 2 are equal. Indeed, M 1 = M 2 + R for some R ~ I, so that V u~ ~ u: 

)~rl(u3 = -1~r + R(u3 "~ ~r2(u~)since R(u3 = Rut ~ I m ~ S. 

The class IEM]l is thus represented by a single linear operator )~j; M j  being any element of 
IIMII. 

2.3. TIlE PROBLEM SOLVED 

The algorithm studied hereafter solves the problem of constructing the representation of E 
described above. Actually, it produces a basis u for Vrep and the set of coefficients {cuk e K: 
Eq. (2.1) holds} which, we recall, served to define the linear operators representing the 
generators of E as in Eq. (2.2). 

We note that the dimension of Vrop is never known from the start: it is known only once 
the computation terminates. We shall assume hereafter that Vrop is finite dimensional. Of 
course, however, as for the general word problem, it is unknown how to characterise the 
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initial data: LEQS and LVEQS, for this to be the case. We shall furthermore consider that 
all calculations in K can be performed. 

2.4. REMARKS 

1. If LVEQS = ~b then S = I ~ and Vf~p = P~/Im; these are respectively called So and V0. 
The representation R, described in Section 2.2 is then equivalent to a direct sum of m times 
the left regular representation R as R = R ~ R ~ . . .  @ R. One such representation is 
carried by each vector subspace EV~ of u We recall that the construction of the regular 
representation of E is equivalent to that of its whole multiplication table. 

2. If LVEQS ~ ~b then S = So and Vr ,p~  V o. The representation constructed is thus a 
component of the regular representation R; which one it is depends on the actual choice of 
LVEQS, as remarked at the beginning of Section 2.2. 

3. If E if finite, then Vre p is finite. Indeed, since S ~ S o, Vfe p _c_ V o while the latter is 
finite. 

4. Here is how coset enumeration appears as a particular instance of Problem 2.3. Let 
E = K G  be the group algebra of a group G, and LEQS be the set of binomials w -  w': the 
relation w ~ w' is one in the group presentation. Let GV = {1/1} with 1/1 = H = a 
subgroup of G, and L V E Q S =  { ( g - 1 ) } V t : g e H } .  We note that the relations p,-,0: 
p e LVEQS effectively define the "generating vector" 1/1 = H since gH = H V g e H. 

The algorithm studied then produces a realisation of the representation 2.2 in which the 
elements of the basis of Vrop are the different left cosets g~H : i = 1 to d, of H in G. An 
arbitrary vector in Vr,p is a set 

d 
cigiH: c t ~ K, 

l=l  

and vector addition is defined by eigiH+ejgjH = (cig~+ejgj)H. The first example of 
Section 4 illustrates this construction of the cosets. 

5. Let each V~ ~ GV be a subset of the ring or algebra E. The representation constructed 
will then be very similar to that of the preceding case, in that the basis vectors will be sets 
xV~: x ~ E. Coset enumeration as described above is evidently just a particular instance of 
this more general vector-space construction. 

Let each V~ ~ GV be an element of E. The vector space Vre p carrying the representation 
is then the union of the principal left ideals of E generated by each V~. Examples of both 
these cases are provided in Section 4. 

3. A Method of Solution 

3.1. PRELIMINARIES 

An order relation on B(t~) is needed. Let < be an arbitrary alphabetical order on GV u A. 
We then extend the order relation < to total degree order on (A)  and on B(q~), defined by 

wl(wl  if Iwll < Iw21 

or if Iw~l = Iw21 and wl < w2 with respect to the lexicographical order. 
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We denote as T[B(q~)] the graph defined as the union of the m independent trees T[PV~], 
which are generated by the elements Vt ~ GV, and in which the closest descendants of a 
particular node W are the nodes {XiW : X, ~ A}. 

REMARK. A property of the total degree order which is crucial for the successful 
termination of the following algorithm (as will be seen in section 3.3) is tha t  if B~ is the 
subset of B(~) = {w : w _< ith element of B(~)}, then 

lira B~ = B(~). 
i~oo 

Pure lexicographical order, for example, does not have this property; since if V = Min(GV) 
and X = Min(A), then Bt = {V, XV, X2V . . . .  Xi-IV} and 

lim Bi 

exists but is not B(q~). Acceptable total-order relations for this algorithm must  have the 
property that, as i increases, the element of B~+I--B~ traces a path, with a countably 
infinite number of steps, through the graph T[B(~)] such that 

lira Bi = B(~b). 

Relations like p ,,~ 0 : p e pm can always be rewritten as 

W ~ f, (3.1) 

with W = lead (p) = the largest monomial of p, and f ~ pro. 
The polynomial W - - f  is then called the normalised form of p. The following concepts 

are trivial extensions to left modules of similar ones introduced by Buchberger (1965) [-for 
a good introduction, see Buchberger (1985); note in particular Definitions 6.1, 6.2, 6.3 and 
6.5-1, when dealing with commutative polynomials. 

Let F be a set of normalised polynomials. For  pl and Pz ~ pro, we shall say that 
Pa ~FPz,  (i.e. Pl reduces to P2 modulo F) if 3 a (W-- f )  e F, while p~ contains a monomial 
CW for some C ~ (A)  with non-zero coefficient, and P2 is obtained by substituting Cffor  
CW in Pl. Pl will be said in normal or reduced form modulo F if ~ ( W - f )  ~ F: Pl --+vP2. 
A Gr6bner basis in the left-module pm will be a subset of G of pm such that each p ~ Pm 
has a unique normal form modulo G. A subset H of pm will be said to be "reduced" if it is 
such that  every p ~ H is in normalised form, and reduced modulo H- {p } .  

GrSbner bases for left (or right) modules have a certain triviality, as the following 
theorem [which is a trivial variant of one, given in Section 4 or Mora (1985), for left and 
right ideals in non-commutative algebras] indicates. 

Tr-~OREM. Any reduced set F is also a reduced GriSbner basis. 

PROOF: Each p s p m  has a unique normal form modulo F iff any monomial X e B(~b) has 
this property. An ambiguity in the reduction of X to a normal form modulo F can only 
occur as 

x = c1 wl = c2 w2 (3.2) 

with C1 and Cz ~ (A) ,  while (W1-fl)  and (W2-f2)E F. However, (3.2) is obviously 
possible only if one of (W1, W2) is a suffix of the other, which cannot be since F is reduced. 
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Thus all normal forms are unique. 

3.2. THE ALGORITHM 

For the following algorithm, the important variables will be a finite reduced left module 
Gr6bner basis (3 c pro, and a possibly infinite subset B(G) of B(~). The latter will be the 
ordered list of monomials of B(O) which are irreducible modulo G, i.e. B(G) = B(~)-- 
{W and all its descendants: ( W - f )  ~ G}. With B(G) can always be associated a graph 
T[B(G)], which is the union of m distinct trees, each one being a connected subtree of one 
of the T[PVJs. 

With each X~ ~ A, will be associated the linear function ~ : P= -) pro, defined such that 
v w ~ B(4,): 

J?,(w) = ~f  if (x,w-f)  ~ G, (3.3) 
conc(X~, W) if not. 

Upon defining ~ : ~(W) = W V W ~ B(q~), the definition of T for T ~ (A) ,  and o f /~  for 
P ~ K(A> then naturally follows, as previously for T and /5  [see after Eq. (2.2)]. 

Given initial variables: a finite reduced Gr6bner basis G = Go, B(Go), and a finite list L 
of polynomials which are redtmed modulo Go, the following procedure will produce the 
finite reduced Gr6bner basis G = Gr, obtained through the reduction of G o u L, and the 
corresponding B(G). Note that the left P-modules P(G o u L) and PGe are equal. 
INCORPORATE (L) 
while L # c~ do 

remove the first element p of L, and find its normalised form ( W - f )  
remove W and all its descendants from B 
substitute f for W in each element of L and G 
replace the modified elements of G by their normalised form. 
while 3 an element X i W - g  for some i, in G do 

remove it from G 
add [X~(f)-g]  at the end of L (3.4) 

When the initial G and L are finite, the termination of this computation follows 
straightforwardly from the well-foundedness of the order relation <. Note that if initially 
G = q~, B = B(r then the P-module reduced Gr6bner basis Gf, such that PGf = PL is 
computed. 

Given the initial variables Go, a finite reduced P-module Gr6bner basis, Bo = B(Go), and 
LEQS, a finite subset of P, the following algorithm will compute a reduced P-module 
Gr6bner basis G~ such that the P-modules generated by G~ and Go w [LEQS B(qS)] are 
equal. This set LEQS B(~b) is {pW : p e LEQS, W s B(~b)}; the P-module generated by this 
set is then simply I% since B(r is a basis in the vector space pro. Thus 

PG~ = PG0 u I ~. (3.5) 

SOLUTION 
Z *-- the first element of Bo 
B . -  Bo : G.-- Go : i ~  0 

Loop 
for each EQ ~ LEQS do 

/f Z is still in B then 
INCORPORATE ((EQ(Z))) 
i ~ i + l  :Bi~-B : Gt~- G 
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(1) if 3 Y ~ B : Y > Z then Z *-- the smallest such Y : go Loop 
else Bk *-- B u k > i : return "construction completed" (3.6) 

The construction problem explained in Section 2.2 is solved as follows. Given LVEQS, 
use Procedure (3.4) to obtain the reduced P-module Gr6bner basis G0:PG o = 
PLVEQS = V. Then, use this Go and B(G0) as initial data for Algorithm (3.6), so that the 
resulting reduced Gr6bner basis Qo is, according to Eq. (3.5), such that 

PG~ = V u I m = S. (3.7) 

The vector space Vr~p = Pm/S carries the representation of E sought. The set [ B j  = 
{ [ W ] : W  e B~ o ---B(GJ} constitutes a basis in V~p. [Indeed, this situation is quite 
analogous to that prevailing in the Problem 6.8, discussed by Buchberger (1985).] 

3.3. CONVERGENCE 

TheOREM. I f  the vector space V~ep is finite dimensional, the computation (3.6) will always 
terminate. 

PROOF. As is evident in the statement (1) of the algorithm, the computation goes on after 
i = a certain k, only if there is a Y remaining in B(= Bk), the value of which Z has not yet 
taken. Since the graph T(B) is always connected, as remarked at the beginning of the 
previous section, the number of elements in B is at least equal to the number of ancestors 
of Y. Clearly, then, non-termination can occur only when Boo is infinite. As noted after 
Eq. (3.7), the number of elements of B~ = dim(Vrop); thus, the hypothesis that Vro o is finite 
dimensional ensures termination. 

3.4. A SIMPLER RE&LISATION 

We will prefer hereafter to use the following realisation of the representation of E 
described in Section 2.2, obtained through the isomorphic mapping 4: 

[W] ~ [B] -~ W ~ B, 
~ ~)~. 

The set B~o then becomes the basis for the representation vector space which, from now 
on, Vrop will denote. The defining properties of the linear operators {)~} representing the 
generators {X~} can be straightforwardly read off the elements of the reduced Gr6bner 
basis G~o [according to the definition of Eq. (3.3)]. The elements I[M][ of E are represented 
by the linear operators ~; p being any element of the class IEM]I. 

4. Examples 

In most of the following examples, the calculations can be done by hand. 
1. This example shows how coset enumeration can be obtained when the algorithm is 

used with a group presentation. Let 

A={C,D} and LEQS={(C 4-I),(D 2-1),[(CD) 2-I]}; 
these define the dihedral group D,. Let us choose to construct the representation from 
GV = (H} with H the subgroup {1, C a, D, C2D} of D 4. According to Remark 4 at the end 
of Section 2, LVEQS would then be taken equal to { C C H - H ,  D H - H } .  
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Upon using Algorithm (3.6) with this data, one obtains as the loop is gone through: 

with Z = H: two identities and the addition of CDCH-H to the Gr6bner basis G; 
with Z = CH: two identities and the new element DDCH-CH for G; 
with Z = DCH: one identity and the new element DC--C for G; 

the computation then terminates with B = {H, CH} as basis. The linear operators 
representing the generators C and D are such that 

d(H) = CH, ~(H) = H, 
d(CH) = H,  ~ ( C n )  = CH. 

The basis B corresponds to the list of left cosets of H in D 4. 
2. This is an example with a ring, for which the solution appears remarkably similar to 

that corresponding to coset enumeration for groups. Let us consider the Kemmer (1939) 
ring, defined by the presentation A = {Go, G1} and 

C~O,G.+ G~G,O, ~ g,,O~+ Ov, O,. (4.~) 

in which each index has for possible values (0, 1), and gu, is the metric tensor: goo = 1, 
g l l  = - l ,  g o l = g l o = 0 .  

Since (Go) 3 ,-~ Go, H = {Go, Go 2} is a subring. 
If one takes GV = {H} with LVEQS = {GoH--H} (since GoH = H) the vectors of V,ep 
will be sets, as in example 1. The loop of (3.5) will produce, apart from identities the 
following new elements for the Gr6bner basis: with Z --- H: G2oG~ H, G o G 1 H, G13H + G1H, 
GoQ2H+G:2H+H with Z = G:H and G12H: none. The computation then terminates 
with the basis B being {H, G1H, GI2H}, and the linear operators representing Go and GI 
are: 

Go(H) = H, (~:(H) = G:H,  
Go(G:H) = 0, G:(G1H ) = G1G:H , 

Go(G:G:H) =-G:G:H-H, G:(G:G,H) = --G:H. 

3. When GV is a subset of E, the vector space Vr~v is the union of the left ideals 
generated by each V~ �9 GV. For example, consider again the Kemmer ring, but this time, 
take GV = {V} with V = G~ + 1, an element of the ring. Since G: V ~ 0, we take LVEQS 
to be {G: V}. The loop of Algorithm (3.6) yields all non-trivial Gr6bner basis elements with 
the first vector Z = V; only identities are obtained afterwards. After having dealt with V, 
Go V, G~Vand GIGoV, the computation terminates; these form a basis, and the linear 
operators Go and G: are: 

~o(v)  = Oo v, ~ ~ , ( v )  = 0, 
G0(GoV)=G O G oy, Gt(G o V ) = G : G  oV, 

~o(Go Go v) = 6o v,  (::(Go Go v) = 0, 
do(G~ Go v) = 0, d~(G~ Go v) = - Go V. 

4(a). Let GV = A, i.e. V: = Go and V 2 = G1, and LVEQS correspond to the equations 
(4.1), interpreted as relations of the type MV~+NV 2 ~ 0 with M and N e K(A) .  The 
nine-dimensional left regular representation of the Kemmer ring without unit element is 
then produced by Algorithm (3.6). 

4(b). The Kemmer ring, defined with Lorentz metric for one time and three space 
dimensions, has a left regular representation which has 126 dimensions. This is 
straightforwardly constructed from GV = { 1}, 1 being the ring identity, and LVEQS = qS. 
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This case cannot easily be dealt with by hand since there are then forty equations in the 
presentation (5.1). 

5. Abelian rings can obviously be dealt with by adding to their presentation the non- 
trivial relations expressing the commutativity of the generators. Let us consider the 
following example given by Winkler et al. (1985) to illustrate an application of 
Buchberger's algorithm: 

4 x 2 + x y 2 - z + � 8 8  = O, 2 x + y 2 z + � 8 9  = O, 
- x 2 z + � 8 9  ~ = O. 

To these relations, we add 

x y - y x  = O, x z - z x  = O, y z -  zy = O. 

Upon taking GV = {1}, LVEQS = ~b, the 14-dimensional regular representation is 
produced. The matrix representing z has been given explicitly in Labont6 (1987b). The 14 
possible sets of values for (x, y , z )  are the simultaneous eigenvalues, i .e. those 
corresponding to common eigenvectors, for the three commuting matrices ~, ~ and ~. The 
possible values of z are thus the roots r of the equation det ( i -  rJF) = 0, i.e. of 

(r7 �89 q . .~ r5  .q 13_4--75_3 1 7 1 ~ 2 . 1 3 3 ~  15"~2 ~- r  "1-T-6 r - - T r  - r ' T  I - % - )  = O. 

This is the same result as obtained through the use of Buchberger's algorithm. 
6. The following two examples are somewhat trivial but illustrate the fact that the 

construction can terminate even though E is an infinite algebra, provided the "vector 
constraints" expressed in LVEQS are "strong enough". 

(a). Consider A = {X1, X2}, LEQS = q5 so that E = K(A~, but take GV = {V} with 
LVEQS = {(X 1 V-V) ,  (X: X2 V + X2 V), (X 2 X 2 V + V)}. The representation constructed is 
then two-dimensional, with basis {V, X 2 V  } and the linear operators representing the 
generators are: 

~?~(v) = v, S'~(v) = x~ v, 
~71(x2 v )  = - x 2  v ,  x 2 ( x 2  v )  = - v .  

(b). The algebra E presented by A = {X1, X2} and LEQS = { ( X 1 X 2 + X 2 ) }  is also 
infinite. However, with the constraints corresponding to LVEQS = { ( X 1 V - V ) ,  
(X2X2 V +  V)}, a finite dimensional representation, exactly the same representation as in 
(a) above, is actually obtained. 

7. In Labont6 (1987) this algorithm has been used for the construction of relativistic 
quantum mechanical wave equations, i.e. partial differential equations which are covariant 
under representations of the Poincar6 group, which are intended to describe elementary 
particles. In the example treated in this article, A has 13 elements, LEQS has 11, GV has 3 
and LVEQS 5. As mentioned in the introduction, the construction of such equations is the 
application for which we met the need for the algorithm described in the present work. 

5. Concluding Remarks 

This algorithm is easily implemented: a LISP version of it already exists [it is described in 
Labont6 (1987, in prep. 1) and (1987, in prep. 2)]. 

We have no estimate on the intrinsic complexity of the problem solved or of the 
algorithm. There is no doubt, however, that it is a "hard" problem, since the commutative 
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version of it is already considered to be such [see, for example, the remark after Method 
6.7 in Buchberger (1985)]. 

This method can be used as well for algebras without an identity. It should only be 
noted that, in such cases, the left regular representation would be constructed from 
GV = A [see example 4(a), in Section 4]. 

Further studies should determine whether it is possible to eliminate some of the many 
calculations leading to identities in the construction process, as was done for the 
Buchberger and Knuth-Bendix algorithms (see Buchberger, 1979; Winkler & Buchberger, 
1983). It should also be examined how to incorporate, in this algorithm, certain 
requirements, for example symmetry or hermiticity of matrices, which are not readily 
expressed in terms of algebraic equations. (The property of inversibility has already been 
dealt with in the version of the algorithm specialised for groups.) Work is now in progress 
on a complementary algorithm for the decomposition of the representations of algebras 
into their irreducible components. 
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