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We study the process dependence of the Sivers function by considering the impact of color-gauge
invariant initial and final state interactions on transverse spin asymmetries in proton-proton scattering
reactions within the framework of the transverse momentum dependent (TMD), generalized parton
model. To this aim, we consider the azimuthal distribution of leading pions inside a fragmenting jet as
well as single inclusive jet asymmetry in polarized proton-proton collisions. In contrast to single inclusive
pion production, in both cases we can isolate the Sivers contribution and thereby study its process

dependence. The predictions for the Sivers asymmetry obtained with and without inclusion of color
gauge factors are comparable in size but with opposite signs. We conclude that both processes represent
unique opportunities to discriminate among the two approaches and test the universality properties of
the Sivers function in hadronic scattering reactions.

© 2011 Elsevier B.V. Open access under CC BY license.

Single transverse-spin asymmetries (SSAs) in high energy lep-
ton-hadron and hadronic scattering processes have garnered con-
siderable attention from both experimental and theoretical com-
munities [1]. Generally, they are defined as the ratio of the dif-
ference and the sum of the cross sections when the hadron’s
spin vector S, is flipped, Ay = (6(S1) — 0(=S1))/(0(S1) +
o(—S1)) = Ao /(2o ""P). The SSAs for single inclusive particle pro-
duction in proton-proton scattering are among the earliest pro-
cesses studied [2] and remain extremely challenging to explain in
the context of perturbative quantum chromodynamics (QCD) [3].
The trend of large SSAs in the pioneering fixed target experi-
ments has been observed over a wide range of energies and
more recently at significantly larger center-of-mass energies in
the proton-proton collision experiments at Relativistic Heavy lon
Collider (RHIC) [4,5]. Also, azimuthal and transverse-spin asym-
metries have been observed in Drell-Yan (DY) processes [6], in
semi-inclusive deep inelastic scattering (SIDIS) [7,8] and in hadron
pair production in eTe~ scattering [9].

From a theoretical perspective SSAs are characterized by the in-
terference between helicity flip and non-flip scattering amplitudes
with a relative color phase. Two approaches have been proposed

* Corresponding author.
E-mail address: Ipg10@psu.edu (L. Gamberg).

0370-2693 © 2011 Elsevier B.V. Open access under CC BY license.
doi:10.1016/j.physletb.2011.09.067

in the framework of perturbative QCD to account for these effects.
On the one hand is the collinear factorization formalism at next-
to-leading-power (twist-3) in the hard scale where SSAs are given
by a convolution of universal non-perturbative quark-gluon-quark
correlation functions and hard scattering amplitudes [10-12].

The other framework relies on factorization in terms of a hard
scattering cross section and transverse momentum dependent
(TMD) parton distribution and fragmentation functions (PDFs and
FFs). Prominent examples are the quark Sivers function [13], which
represents the azimuthal distribution of unpolarized quarks in
a transversely polarized nucleon and the Collins fragmentation
function [14], which describes the production of pseudo-scalar
mesons (or unpolarized hadrons) from transversely polarized frag-
menting quarks. In this approach color phases are given by initial
and/or final state interactions (ISIs/FSIs) between the active quark
and spectator remnants in the full scattering amplitude. The de-
tails of the ISIs and FSIs depend on the scattering process and
for PDFs such as the Sivers function, these color phases are incor-
porated into the Wilson lines of the gauge invariant definition of
TMD PDFs. It is a fundamental prediction of QCD factorization that
the form of the gauge link depends on the hard sub-process [15]
indicating that the Sivers function is non-universal [16]. The oft-
discussed case is the difference between the FSIs in SIDIS and the
ISIs in DY scattering which leads to the prediction of an opposite
relative color factor [16]. Further, applying similar reasoning to
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hadron production in proton-proton collisions, typically the Sivers
function has a more complicated color factor structure since both
ISIs and FSIs contribute [15-18].

While TMD factorization has not been established for hadron
production in hadronic reactions [19], an extensive program of
phenomenology has been carried out by including the correla-
tions of intrinsic parton motion and transverse spin in the context
of the so-called generalized parton model (GPM). Introduced [20]
as a generalization of the collinear perturbative QCD approach, it
has been used to describe the SSAs for inclusive particle produc-
tion [21]. Here factorization has been assumed as a reasonable
starting point for analyses. At the same time, the leading-twist
naive time-reversal odd (T-odd) TMD PDFs have conditionally been
assumed to be universal.

In this Letter we present an analysis of SSAs in proton-proton
scattering while taking into account the effects of ISIs and FSIs and
allowing for process dependence within the framework of GPM.
This will be referred to as the color gauge invariant (CGI) GPM.
Previous studies along these lines have been carried out in [15-
18].

We concentrate on reactions where one can explore the crucial
issue of process dependence and universality of the Sivers function.
Since several competing mechanisms can play a role in hadron col-
lisions, following [22] we consider the process p'p — jetmw + X,
where one observes a large pr jet and looks for the azimuthal dis-
tribution of leading pions within the jet: a process under active
investigation by the STAR Collaboration at RHIC [23]. By contrast,
an analysis where transverse partonic motion was considered only
in the fragmentation process, aimed at a study of the universality
of the Collins effect, was presented in [24]. It is also important to
note that the process we are studying is different from the case
where two almost back-to-back hadrons or jets are observed as
in [15,17]. A single jet is measured in our study. Thus, the analysis
of process dependence follows that carried out in [18].

Compared with inclusive pion production, we emphasize that
the Sivers and Collins contributions can be disentangled in p'p —
jetm + X. Accordingly, in the GPM (keeping only the leading con-
tributions after integration over the initial intrinsic transverse mo-
menta [22]) the numerator of the SSA for inclusive production of
leading pions inside a large pr jet can be written as
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where Ej and p; are the energy and momentum of the observed
jet, xqp and kg p =k, 4(cos g p, Singg p, 0) are the initial parton
light-cone momentum fractions and intrinsic transverse momenta
respectively, and z and k,, (ki = |ki-|) are the light-cone mo-
mentum fraction and transverse momentum of the pion inside the
jet with respect to the jet (parton c) direction of motion.

The third and fourth lines of Eq. (1) corresponds to the Sivers
effect, with the azimuthal modulation sin¢s,, where ¢s, is the
angle of the transverse spin vector, S 4, of hadron A (with mass M),

relative to the jet production plane and f (xq, k2 ‘) 1s the Sivers
function. Hé’ b cd (3,t, 1) is the unpolarized squared hard scattering
amplitude for the process ab — cd, with §, £, @i the usual partonic
Mandelstam variables and D§(z, kin) is the unintegrated fragmen-
tation function for parton c to fragment into a pion (with mass
My ). The last three lines of Eq. (1) corresponds to the Collins ef-
fect, with the azimuthal modulation sin(¢s, — ¢), where ¢/ is
the azimuthal angle of the pion three-momentum around the jet
thrust axis, as measured in the fragmenting parton helicity frame,
and H{“(z, I2 ) is the Collins function. It is convoluted with the
unintegrated transversity distribution, h{(xq, kzla). i.e. the distribu-
tion of transversely polarized quarks in a transversely polarized
hadron. dyy is the partonic spin transfer asymmetry for the pro-
cess a'b — c'd (defined as (o9'0—>c'd — ga'b—ctd) (ga'b—>cld
a”T’H‘ld)) and v its azimuthal phase (for details see [22]).

In close analogy with the case of SIDIS, one can define az-
imuthal moments and project out the various angular modulations
in terms of ¢s, and ¢£’ from Eq. (1):
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where dAo = [do (¢s,, pH) —do (¢s, + 7, )], as given in Eq. (1)
and do"" = [do (¢s,, i) +do (¢s, +7, $H)]/2 is the unpolarized
cross section. By choosing W(¢5A,¢7’;’) = sin¢5A one then singles
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out the Sivers contribution to Ay, that is Ay , which we focus
on in the following. Moreover, since our aim 1s to study the process
dependence of the quark Sivers function, we will consider pion-jet
production at large rapidities. Here, any potential sea-quark and
gluon Sivers effects are expected to be negligible, as follows from
the analyses of SSAs in SIDIS (see [25]) and in pp — m + X at
midrapidity [5,26,27] and from the study carried out in [28].

In the GPM, the Sivers function is assumed to be universal and
taken to be the same as that probed in SIDIS; that is in Eq. (1),

Fi (e 1) = Fif ™" (xa, B2 ) )

On the other hand, for the process p'p — jetw + X, both ISIs and
FSIs contribute and thus in principle the Sivers function for the
pion-jet production should be different from that probed in SIDIS.
Following [18], we carefully analyze these ISIs and FSIs for all the
partonic scattering processes relevant to the azimuthal distribution
of leading pions inside a fragmenting jet in proton-proton scatter-
ing. In this way the (quark) Sivers contribution from the CGI GPM
will be (here a=q)
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in which a process-dependent Sivers function denoted as f#’ ab—cd
is used rather than that from SIDIS as in the GPM approach [21,
22]. The crucial point is that the existence of the Sivers func-
tion in the polarized nucleon relies on the ISIs and FSIs between
the struck parton and the spectators from the polarized nucleon
through the gluon exchange. Thus by analyzing these interactions,
one can compute the color factors C; (Cr,) for initial (final) state
interactions that determine the process dependent Sivers function
to be used for the corresponding partonic scattering ab — cd. In
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Fig. 1. The Sivers asymmetry Ai;nd)s" for the p®p — jetw + X as a function of pjr. at fixed jet rapidity nj = 3.3, for RHIC energy, /s =500 GeV. The solid (SIDIS 1 [29]) and
dotted (SIDIS 2 [25]) curves are for the GPM calculation, and the dashed and dot-dashed ones for the CGI GPM calculation. The vertical dotted line corresponds to xg =0.3.

Py, Sa

Fig. 2. Sample Feynman diagrams for the initial (a) and final (b) state interactions for pion-jet production, illustrated here for the partonic channel qg — qg with the final q

identified with the observed jet.

the CGI GPM, the process dependence of the Sivers function can be
shifted to the squared hard partonic scattering amplitude, that is
la,ab—cd ;U _ ¢1a,SIDIS ;41
flT Habacd =T Ha?)%cd’ (4)
where all the process dependence is absorbed into the new hard
function Hg}f_) ¢ Which is the same as in the single inclusive par-
ticle production [18]. This approach suggests a close connection
with the twist-3 collinear formalism [11,12] (see [18] for details).
Now we study the consequence of these ISIs and FSIs by com-
paring the predictions of the Sivers asymmetry for pion-jet pro-

duction between GPM and CGI GPM. In Fig. 1 we plot Aznd)s" (pj)
for w%%-jet production, as a function of the jet transverse mo-
mentum pjr at forward rapidity, n; = 3.3, for RHIC energy, S =
500 GeV, integrated over k,,; and z (z > 0.3) [22]. The estimates
using the two available parameterizations of the Sivers function in
the GPM formalism are shown as the solid (SIDIS 1 [29]) and dot-
ted (SIDIS 2 [25]) lines, while the corresponding ones using CGI
GPM formalism in Eq. (3) are shown as dashed and dot-dashed
lines. One immediately sees that the results of the two approaches,
while comparable in size, exhibit different signs. The opposite sign
is the manifestation of ISIs and FSIs, see Fig. 2 for illustration. Par-
ticularly for the dominant channel at forward rapidity, qg — qg
with the final quark identified with the observed jet, these ISIs/FSIs

lead to HIC, .~ —%i—j for CGI GPM, while HY ¢, ~ £ for
GPM [18].

The predictions labeled SIDIS 1 and SIDIS 2 are similar in the
intermediate p;r < 5.5 GeV region (corresponding to Feynman x,
xr < 0.3), where the Sivers function parameterizations are con-
strained by present SIDIS data (that is at Bjorken x, xg < 0.3). This
region is then optimal to test directly the process dependence of

the Sivers function. This is the main goal of our analysis. More-

. . sing .
over, the observation of a sizable Ay A at large pjr (i.e. large xf)

could be extremely useful to constrain the Sivers function in the
large x region [22], as well as to test its process dependence. In
this respect large xg-data from SIDIS [30], e.g., at Jefferson Lab in
the 12 GeV program, could be very important.

Note that for /s = 200 GeV the behavior of our estimates
would be similar to that shown in Fig. 1, gaining almost a factor
of 2 in size. However the range of pjr covered would be nar-
rower (pjr < 6.5 GeV) and with xf < 0.3 now corresponding to
pjr < 2.2 GeV.

As a natural extension of this work we can consider single
inclusive jet asymmetry in proton-proton scattering by replac-
ing the fragmentation function D{(z, kzlﬂ) in Egs. (1) and (3), by
8(z — 1)82(k ). In this case the SSAs are described solely by
the Sivers function. An analogous study of the Sivers contribu-
tion yields a similar process dependence and the results we obtain
for Af\;ws" (not shown) look almost indistinguishable from the
case of neutral pion-jet production (central panel of Fig. 1).

In summary, we have studied the azimuthal distribution of
leading pions inside a jet as well as single inclusive jet produc-
tion in proton-proton scattering, under present active investiga-
tion at RHIC. By adopting the TMD GPM, we have considered ISIs
and FSIs leading to process dependence of the Sivers function. We

have presented estimates of the Sivers asymmetry Ai;mps" for RHIC
kinematics within the GPM framework with and without inclusion
of color gauge factors. We find that the resulting Sivers asymme-
tries are comparable in size but appear with opposite signs. We
conclude that the experimental observation of a sizable Ai;ws" in
p'p — jetw + X or p’p — jet + X can test the role color gauge
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invariance plays in the universality properties of the Sivers func-
tion. At the same time it could give a clean indication on the size
of the Sivers function in the large x region (not covered by present
SIDIS data). This will definitely provide new insights into our un-
derstanding of single spin asymmetries in QCD.
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