ELSEVIER

Arity and alternation in second-order logic

J.A. Makowsky ${ }^{\text {a, }, \text {, }}$, Y.B. Pnuelib ${ }^{\text {b, } 2}$
${ }^{\text {a }}$ Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel
${ }^{\mathrm{b}}$ Institut für Informatik, Freie Universität Berlin, Berlin, Germany

Received 1 November 1994; communicated by A. Nerode

Abstract

We investigate the expressive power of second-order logic over finite structures, when two limitations are imposed. Let $\operatorname{SAA}(k, n)(A A(k, n))$ be the set of second-order formulas such that the arity of the relation variables is bounded by k and the number of alternations of (both first-order and) second-order quantification is bounded by n. We show that this imposes a proper hierarchy on second-order logic, i.e. for every k, n there are problems not definable in $A A(k, n)$ but definable in $A A\left(k+c_{1}, n+d_{1}\right)$ for some c_{1}, d_{1}.

The method to show this is to introduce the set AUTOSAT(F) of formulas in F which satisfy themselves. We study the complexity of this set for various fragments of second-order logic. For first-order logic FOL with unbounded alternation of quantifiers AUTOSAT(FOL) is PSpacecomplete. For first-order logic $F O L_{n}$ with alternation of quantifiers bounded by n, $\operatorname{AUTOSAT}\left(F O L_{n}\right)$ is definable in $\operatorname{AA}(3, n+4)$. $\operatorname{AUTOSAT}(A A(k, n))$ is definable in $A A\left(k+c_{1}, n+d_{1}\right)$ for some c_{1}, d_{1}.

1. Introduction

In this paper we deal with second-order logic over finite structures. Let τ be a first-order vocabulary. We denote by $\operatorname{SOL}(\tau)(F O L(\tau))$ the set of second-order (first-order) formulas over τ. Clearly, $F O L(\tau) \subseteq S O L(\tau)$. For $\phi \in S O L(\tau)$ we denote by $\operatorname{Mod}(\phi)$ the class of finite τ-structures \mathscr{A} such that $\mathscr{A} \vDash \phi$. Let $F=F(\tau) \subseteq S O L(\tau)$. A class of finite (ordered) τ-structures K is F-definable if it is of the form $\operatorname{Mod}(\phi)$ for some $\phi \in F$. It is well known, [10], that K is SOL-definable iff K is in the polynomial hierarchy $P H$. We investigate the expressive power of second-order logic over finite structures, when two limitations are imposed: on the number of alternations of

[^0]quantifiers and on the arity of the second-order variables. A preliminary version of our results has appeared as [12].

Definition 1. A first- (second-) order formula ϕ is in prenex normal form if it is of the form

$$
Q_{1} V_{1} Q_{2} V_{2}, \ldots, Q_{m} V_{m} B
$$

where V_{i} is a first-order (either a first-order or a second-order) variable and Q_{i} is either \exists or \forall and B is quantifier free.
(ii) A second-order formula ϕ is in doubly prenex normal form if it is in prenex normal form of the form

$$
Q_{1} V_{1} Q_{2} V_{2}, \ldots, Q_{l} V_{l} q_{1} v_{1} q_{2} v_{2}, \ldots, q_{m} v_{m} B
$$

where V_{i} is a second-order variable, v_{i} is a first-order variable and Q_{i} and q_{i} are either \exists or \forall.

It is well known that every second- (first-) order formula is equivalent to a second-(first-) order formula in prenex normal form. If we disregard the arity of the secondorder variables it is also equivalent to a second-order formula in doubly prenex normal form. Also, every first-order formula is equivalent to an existential secondorder formula where the second-order quantification is followed by at most one alternation of first-order quantifiers. That arity plays an essential rôle here is shown by the following observation, due to R. Fagin: ${ }^{3}$

Proposition 2 (Fagin). Let τ be the vocabulary of graphs. We consider here undirected graphs only. There is a formula

$$
\phi=\forall \bar{x} \exists \bar{U} \theta
$$

such that \bar{U} is a vector of unary relation variables and θ is first-order, and such that ϕ is not equivalent to any formula

$$
\psi=\exists U_{1} \ldots \exists U_{n} \chi
$$

with U_{i} unary and χ first-order.
Proof. By a result of Kannelakis, cf. [1], there is a formula

$$
\phi_{1}(x, y)=\exists \bar{U} \theta(x, y)
$$

with \bar{U} a vector of unary relation variables, which says that there is a path from x to y. So $\phi=\forall x, y \phi_{1}(x, y)$ says that a graph is connected. But by the result of Ajtai and Fagin [1], connectivity is not expressible by an existential monadic second-order formula.

This leads us to the following definitions of hierarchies which incorporate both alternation of quantification and arity of the second-order variables.

[^1]We define now hierarchies $A A \Sigma(k, n), A A \Pi(k, n), A A(k, n)$, the strict $A A$-Hierarchy (alternation-arity hierarchy) and $S A A \Sigma(k, n), S A A \Pi(k, n), S A A(k, n)$, the second-order AA-Hierarchy (alternation-arity hierarchy) inductively as follows:

Definition 3 (AA-Hierarchy), (i) $A A \Sigma(0,0)=A A \Pi(0,0)=A A(0,0)$ consists of the quantifier-free first-order formulas.
(ii) $A A \Sigma(k, 0)=A A \Pi(k, 0)=A A(k, 0)$ consists of the quantifier-free second-order formulas, where each relation variable is of arity $m \leqslant k \in \mathbf{N}$.
(iii) $A A \Sigma(k, n+1)(A A \Pi(k, n+1))$ consists of the formulas of the form

$$
Q_{1} V_{1} Q_{2} V_{2}, \ldots, Q_{m} V_{m} \phi
$$

where V_{i} is either a first-order or a second-order variable (of arity $\leqslant k$) and each Q_{i} is $\exists(\forall)$ and $\phi \in A A \Pi(k, n)(\phi \in A A \Sigma(k, n))$.
(iv) $A A(k, n)=A A \Sigma(k, n) \cup A A \Pi(k, n)$.
(v) The FA-Hierarchies (first-order alternation hierarchy) FAE(n), FAП(n), FA(n) are defined by restricting formulas of the strict $A A$-hierarchy to first-order variables only.

Definition 4 (SAA-Hierarchy). (i) $\operatorname{SAA\Sigma }(k, 0)=S A A \Pi(k, 0)=S A A(k, 0)$ consists of the second-order formulas in prenex normal form with all the quantifiers first-order and where each relation variable is of arity $m \leqslant k \in \mathbf{N}$.
(ii) $\operatorname{SAA} \Sigma(k, n+1)(\operatorname{SAA} \Pi(k, n+1))$ consists of the formulas of the form

$$
Q_{1} V_{1} Q_{2} V_{2}, \ldots, Q_{m} V_{m} \phi
$$

where V_{i} is a second-order variable (of arity $\leqslant k$) and each Q_{i} is $\exists(\forall)$ and $\phi \in S A A \Pi(k, n)(\phi \in S A A \Sigma(k, n))$.
(iii) $S A A(k, n)=S A A \Sigma(k, n) \cup S A A \Pi(k, n)$.

Remark. In the $A A$-hierarchies we count first- and second-order quantifiers wherever they occur. In the $S A A$-hierarchies we require that the second-order quantifiers precede the first-order quantifiers and we then disregard first-order quantifiers.

From this we gather

Fact 5. (i) The usual operations on renaming variables and the prenex normal forms gives that both $F A(n), A A(k, n)$ and $S A A(k, n)$ are closed under boolean operations.
(ii) Using Skolem Normal Forms we get $F O L \subseteq \bigcup_{k} A A \Sigma(k, 3)$.
(iii) From the previous we also get $\bigcup_{k} S A A(k, n) \subseteq \bigcup_{k} A A(k, n+3)$.
(iv) $\bigcup_{n} S A A(k, n) \subseteq \bigcup_{n} A A(k, n)$.

Our main result shows that this imposes a proper hierarchy on second-order logic, i.e.

Theorem A. For every $k, n \in \mathbf{N}$ there are problems not definable in $A A(k, n)$ but definable in $A A\left(k+c_{1}, n+d_{1}\right)$ for some $c_{1}, d_{1} \in \mathbf{N}$.

The method to show this is to introduce the set $\operatorname{AUTOSAT}(F)$ of formulas in F which satisfy themselves. We study the complexity of $\operatorname{AUTOSAT}(F)$ for various fragments F of second-order logic. If we allow unbounded alternation of first-order quantifiers we have:

Theorem B. (i) AUTOSAT(FOL) is PSpace-complete.
(ii) For every $k, n \subset \mathbf{N} A U T O S A T(S A A(k, n))$ is PSpace-complete.

If we bound the number of alternations of all quantifiers we have:

Theorem C. (i) For every n, AUTOSAT(FA(n)) is complete for the class $\Sigma_{n}^{p} \cup \Pi_{n}^{p}$ of the polynomial hierarchy.
(ii) $A U T O S A T(F A(n))$ is definable in $A A(3, n+4)$.
(iii) $\operatorname{AUTOSAT}(A A(k, n))$ is definable in $A A(k+c(k), n+4)$ where $c(k)=1$ for $k>1$ and $c(k)=2$ for $k=1$.
(iv) $A U T O S A T(S O L)$ is in $\operatorname{TIME}\left(2^{n \varepsilon}\right)$ for every $\varepsilon \in \mathbf{R}^{+}$.

Theorem A now follows from Theorem C by observing that the complement of AUTOSAT (F) is not definable in F, hence, if F is closed under negation, neither is AUTOSAT(F).

Remark. We should note that recently Grohe [7] has shown that the bounded-arity hierarchies in fixed point logic are strict. In these hierarchies arbitrary quantifier depth and fixed point depth are allowed. It would be natural to conjecture that this is also the case for second-order logic, but our techniques do not give such a result.

2. The Polynomial Hierarchy

We now discuss the relationship of $A A(k, n)$ and $S A A(k, n)$ with various complexity classes in the Polynomial Hierarchy. First we note [9]:

Fact 6 (Stockmeyer and Lynch). For every level Σ_{n}^{p} and Π_{n}^{p} of the Polynomial Hierarchy we have

$$
\Sigma_{n}^{p}=\bigcup_{k} S A A \Sigma(k, n), \quad \Pi_{n}^{p}=\bigcup_{k} S A A \Pi(k, n)
$$

and

$$
\Sigma_{n}^{p} \subseteq \bigcup_{k} S A A(k, n) \subseteq \Sigma_{n+1}^{p}
$$

Fact 7 (Stockmeyer and Lynch). For every level Σ_{n}^{p} and Π_{n}^{p} of the Polynomial Hierarchy we have

$$
\Sigma_{n}^{p} \subseteq \bigcup_{k} A A \Sigma(k, n+2), \quad \Pi_{n}^{P} \subseteq \bigcup_{k} A A \Pi(k, n+2)
$$

This follows from the fact that in the Stockmeyer and Lynch characterization of Σ_{n}^{p} there are n alternations of second-order quantifiers, followed by a first-order formula of the form $\forall \bar{x} \exists \bar{y} \theta$ with θ quantifier free.

Remark. Fact 7 could be used for an alternative way of slicing the polynomial hierarchy. We look only at formulas in doubly prenex normal form where the first-order part is of the form $\forall \bar{x} \exists \bar{y} \theta$ and then count only second order quantification and restrict the arities of the second-order variables. We leave it to the reader to restate our results. From this point of view,

Fact 8 (Lynch [10]). If K is in NP and recognizable in NTIME $\left(n^{d}\right)$, then K is definable in $S A A(d, 1)$ (existential) and even $A A(d, c)$ for some $c \in \mathbf{N}$.

Remark. The converse of Fact 8 is not true. The reason is that even in $A A(d, c)$ we count only blocks of existential (universal) quantifiers. If a converse were provable, our Theorem A would trivialize, by the hierarchy theorem of Seiferas, Fischer and Meyer (Theorem H3 in [9]).

The next facts show that the $S A A$-hierarchy starts as a proper hierarchy.
Fact 9 (de Rougement [5]). Connectivity of undirected graphs is in $\operatorname{SAA}(1,1)$ but not in $\operatorname{SAA}(1,1)$ [5].

Fact 10 (Turán [14], de Rougemont [5] and Makowsky [11]). Let HAM be the class of finite undirected Hamiltonian graphs.
(i) HAM is NP-complete and definable in $\operatorname{SAA}(2,1)($ existential) and even $A A(2, c)$ for some $c \in \mathbf{N}$.
(ii) But HAM is not definable in any $\operatorname{SAA}(1, n)$ (and hence in any $A A(1, n)$).

Remark. Turán proved this first for undirected graphs. De Rougemont only, independently but later, proved that $H A M$ is not definable in $\operatorname{SAA\Sigma }(1,1)$. Makowsky proved it also for undirected graphs with an additional order. His proof generalizes to other classes of graphs, such as ordered graphs with a clique of at least half their size.

The next observation shows that already in monadic second-order logic there are problems of arbitrarily high complexity within the polynomial hierarchy.

Proposition 11 (Folklore). For every level Σ_{n}^{p} of the Polynomial Hierarchy there is a problem K_{n} complete for Σ_{n}^{p} (via polynomial reductions) definable in $\operatorname{SAA}(1, n)$ and even $A A(1, n+c)$ for some $c \in \mathbf{N}$.

Proof (sketch). Easy, using suitable codings for $Q S A T_{n} \quad \square$

In other words:

Corollary 12. The polynomial hierarchy collapses to level k iff $S A A(1, n) \subseteq S A A(1, k)$ for every $n \in \mathbf{N}$.

3. Context-free languages

Here we state and prove some observations which we need later. They concern the complexity of recognizing well formed formulas of first- and second-order logic.

Fact 13 (Büchi [2] and Thomas [13]). Every regular language L is definable in $S A A \Sigma(1,1)$ and even $A A \Sigma(1,2)$.

Proposition 14. Every context-free language L is definable in $S A A(3,1)$ (existential) and even $A A(3,3)$.

Proof. We use the fact that every CF-language can be generated by a CF-grammar in Chomsky normal form [8] (for A, B, C variables and a a character of the alphabet, the rules are either of the form $A \rightarrow B C$ or $A \rightarrow a$). We build for every such grammar a formula which defines the generated language: with each rule i of form $A \rightarrow B C$ in the grammar, we associate a ternary relation symbol R_{i} so that $R_{i}\left(x_{1}, x_{2}, x_{3}\right)$ holds in a word \mathscr{A}, if the characters in places x_{1} to x_{3} evolved from a single symbol A via the application of rule i in such a way that the characters from x_{1} to $x_{2}-1$ continued to evolve from the B symbol and x_{2} to x_{3} continued from the C symbol.

A formula for a grammar with m such rules can be written in the form

$$
\exists R_{1}, R_{2}, \ldots, R_{m} \forall x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \exists x_{7}, x_{8}, x_{9} \Phi
$$

where Φ is quantifier free and says that the R 's indeed have the meaning we want them to have.

Specifically Φ is $\phi_{\text {order }} \wedge \phi_{\text {proper }} \wedge \phi_{\text {correct }} \wedge \phi_{\text {start }}$ where the ϕ s are as follows: $\phi_{\text {order }}$ is a disjunction of formulas of the form

$$
R_{i}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\left(x_{1}<x_{2}\right) \wedge\left(x_{2} \leqslant x_{3}\right)\right)
$$

$\phi_{\text {proper }}$ says that the R 's induce a generation tree, and is a disjunction of formulas of the form

$$
\begin{aligned}
& \left(R_{i,}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{i_{2}}\left(x_{4}, x_{5}, x_{6}\right)\right) \rightarrow\left(\left(x_{3}<x_{4}\right) \vee\left(x_{6}<x_{1}\right) \vee\left(x_{1} \leqslant x_{4} \wedge x_{6}<x_{2}\right)\right. \\
& \left.\quad \vee\left(x_{2} \leqslant x_{4} \wedge x_{6} \leqslant x_{3}\right) \vee\left(x_{4} \leqslant x_{1} \wedge x_{3}<x_{5}\right) \vee\left(x_{5} \leqslant x_{1} \wedge x_{3} \leqslant x_{6}\right)\right),
\end{aligned}
$$

$\phi_{\text {correct }}$ says that the generation rules are indeed those of the specific grammar, and is a disjunction of formulas of the form

$$
\begin{aligned}
& R_{i}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{8}=x_{2}-1\right) \\
& \quad \wedge\left(\left(\left(x_{1}=x_{8}\right) \wedge\left(r_{i_{1}}\left(x_{1}\right) \vee r_{i_{2}}\left(x_{1}\right) \ldots\right)\right) \vee\left(R_{i_{1}}\left(x_{1}, x_{7}, x_{8}\right) \vee R_{i_{2}}\left(x_{1}, x_{7}, x_{8}\right) \vee \ldots\right)\right. \\
& \quad \wedge\left(\left(x_{2}=x_{3}\right) \wedge\left(\left(r_{i_{1}}\left(x_{2}\right) \vee r_{i_{2}}\left(x_{2}\right) \ldots\right)\right) \vee\left(R_{i_{1}}\left(x_{2}, x_{7}, x_{3}\right) \vee R_{i_{2}}\left(x_{2}, x_{7}, x_{3}\right) \vee \ldots\right)\right.
\end{aligned}
$$

where the r 's and R 's depend on the specific rules of the grammar.
$\phi_{\text {start }}$ says that the whole word was generated from the initial symbol, and is of the form

$$
x_{9}<x_{1} \vee x_{9}>x_{3} \vee R_{i_{1}}\left(x_{1}, x_{9}, x_{3}\right) \vee R_{i_{2}}\left(x_{1}, x_{9}, x_{3}\right) \vee \ldots
$$

where again the R 's depend on the rules of the grammar.

From these facts we conclude that

Proposition 15. The notion of well-formed formulas of FOL and SOL are not definable in $\operatorname{SAA} \Sigma(1,1)$ but definable in $\operatorname{SAA}(3,1)$.

For similar results, cf. [4, 6].

4. Self-satisfying sentences

Let F be a subset of $S O L$-formulas. In this section we discuss in detail the class of structures $A U T O S A T(F)$.

Let $\tau_{\text {SOL }}$ be a finite vocabulary rich enough to describe $\operatorname{SOL}(\tau)$-formulas for arbitrary τ. $\tau_{\text {SOL }}$ consists of one binary relation symbol denoted by $<$ and interpreted as a linear order and many unary relation symbols to distinguish parentheses, quantifiers, variables, relation constants from any τ, indices, etc. In short, for every finite τ and $\phi \in S O L(\tau), \phi$ can be viewed as a $\tau_{\text {soL }}$-structure. For a formula (sentence) $\phi \in \operatorname{SOL}\left(\tau_{S O L}\right)$ we denote by \mathscr{A}_{φ} the $\tau_{\text {SOL }}$-structure isomorphic to ϕ.

Definition 16. Let F be a subset of $\operatorname{SOL}\left(\tau_{\text {SOL }}\right)$ which is closed under boolean operations.
(i) We denote by $W F F(F)$ the set of finite $\tau_{S o L}$-structures \mathscr{A}_{φ} such that $\phi \in F$.
(ii) We denote by $A U T O S A T(F)$ the set of finite $\tau_{\text {SOL }}$-structures \mathscr{A}_{p} such that $\phi \in F$ and $\mathscr{A}_{\varphi} \models \phi$.
(iii) We set $\operatorname{Diag}(F)=W F F(F) \backslash A U T O S A T(F)$.

Using the Russel Paradox, we observe:

Fact 17. Let F be a subset of $\operatorname{SOL}\left(\tau_{\text {soL }}\right)$ which is closed under boolean operations and such that $W F F(F)$ is definable in F. Then Diag (F), and hence, AUTOSAT (F), are not definable in F.

Proposition 18. $W F F(S O L)$ is definable in $S A A(3,1)$ and even in $A A(3,3)$.

Proof. As the arity is bounded, we choose a vocabulary $\tau_{S O L}$ such that second-order variables of different arities have different symbols. Then, the sets $W F F(S A A(k, n))$ and $W F F(A A(k, n))$ are context free for fixed k. If we encode the arity of the relation symbols in unary, the set $W F F(S O L)$ becomes context free.
 polynomial hierarchy.
(ii) $\operatorname{AUTOSAT}(F O L), \operatorname{AUTOSAT}(S A A(k, n))$ are recognizable in PSpace.

Proof. For $A U T O S A T(F O L)$, let ϕ be some formula in $F O L$ and let ψ denote its quantifier-free part. Clearly $\mathscr{A}_{\varphi} \models \phi$ can be cstablished by checking the value of the meaning function for every possible substitution of those variables free in ψ. Since the number of free variables in ψ is bounded by n (the size of \mathscr{A}_{φ}, the space required for writing a substitution is $\mathrm{O}(n \log (n))$. Given a substitution the verification takes no more than an additional $\mathrm{O}(\log (n))$ space. Thus $A U T O S A T(F O L)$ can be recognized in space $\mathrm{O}(n \log (n))$.

For $\operatorname{AUTOSAT}(S A A(k, n))$, let ϕ be some formula in $\operatorname{SAA}(k, n)$ and ψ its unquantified part; $\mathscr{A}_{\varphi} \models \phi$ can be established by checking the value of the meaning function for every possible substitution of the (first + second-order) variables free in ψ. The size of a substitution in this case is bounded by $\mathrm{O}\left(n^{k}\right)$ (the worst case being when all the quantified variables are second-order of arity k). Again given a substitution the verification is $\mathrm{O}(\log (n))$ and hence $A U T O S A T(S A A(k, n))$ can be recognized in space $\mathrm{O}\left(n^{k}\right)$.

For $A U T O S A T(F A(n))$ we use the same technique except that instead of generating all substitutions we nondeterministically guess a correct one. This is done inductively on n : For $\phi \in F A(n)$, removing the outermost quantifer gives a formula $\psi \in F A(n-1)$. Given a substitution for the free variable, $\mathscr{A}_{\varphi} \models \psi$ can be verified in $\Sigma_{n-1}^{P} \cup \Pi_{n-1}^{P}$ (or

LogSpace for $n=1$). To verify $\phi \in F A(n)$, all that remains is to nondeterministically guess for the free variable a substitution which either satisfies or dissatisfies ψ (depending on whether the outermost quantifier is existential or universal). This can be done in $\Sigma_{n}^{P} \cup \Pi_{n}^{P}$.

Proposition 20. (i) $A U T O S A T(F A(n))$ is $\Sigma_{n}^{P} \cup \Pi_{n}^{P}$ hard.
(ii) $A U T O S A T(F O L)$ is PSpace hard.
(iii) $\operatorname{AUTOSAT}(S A A(k, n))$ is PSpace hard.

Proof (By a reduction from QSAT to AUTOSAT(FOL)). Given ϕ, a quantified boolean formula, we produce in polynomial time ψ, a formula in $F O L$, such that ϕ is true iff ψ satisfies itself. Let i be some number not used as the index of any variable in ϕ and let $r_{3}(x)$ be the relation symbol denoting that x is a character " \exists ". ψ is then written as $\exists x_{i} \phi_{x_{j}}^{r_{3}\left(x_{j}\right)}$ where $\phi_{x_{j}}^{r_{3}\left(x_{j}\right)}$ is the FOL formula we get by replacing every appearance of each boolean variable x_{j} by the corresponding subformula $r_{\ni}\left(x_{j}\right)$. Clearly ψ is constructable in linear time. Also clearly ϕ is true iff ψ is self satisfying. (Note that the first character in ψ is " \exists ", and the second is not, so we have both the "TRUE" and "FALSE" boolean assignments.)

Since QSAT is PSpace-complete this proves (ii). The same reduction, but with a bounded number of quantifier alternations, gives us (i) (as $Q S A T_{n}$ with n the number of quantifier alternations is complete for $\Sigma_{n}^{P} \cup \Pi_{n}^{P}$). Since for every k and n, every formula in FOL is also a formula of $S A A(k, n)$ we also get (iii).

These two propositions establish Theorem B and part (i) of Theorem C.

5. Proof of Theorem C (parts (ii) and (iii))

We use a vocabulary $\tau_{\text {sol }}$ such that first-order variables have different symbols from second-order variables and also second-order variables of different arities have different symbols (this can be done if the arity is bounded). In \mathscr{A}_{φ} a variable x_{i} is written as the appropriate variable symbol " x " followed by the index, written in binary and encapsulated in parenthesis (for example R_{5}^{7} - a 7 -ary second-order variable with index 5 - is written as $G(101)$ where G is the symbol for 7-ary second-order variables).

Definition 21. (i) $V A R_{i}(x)$ are predicates indicating that the character in position x of a word is a symbol of a variable of arity $i(i=0$ being a first-order variable).
(ii) $\operatorname{INDEX} X_{i}\left(x, y_{1}, y_{2}\right)$ are predicates indicating that the character in position x is a variable of arity i and the characters in positions y_{1} to y_{2} make up its index.
(iii) $\operatorname{SAME} E_{i}\left(x_{1}, x_{2}\right)$ are predicates indicating that the characters in positions x_{1} and x_{2} are variables of arity i and they have the same index (that is they refer to the same variable).

Lemma 22. $V A R_{i}, I N D E X_{i}$ and $S A M E_{i}$ can be written as formulas in $F A(0), F A(2)$ and $A A \Sigma(2,3)$ respectively.

Proof. $\operatorname{VAR} R_{i}(x)$ is simply $r_{\sigma_{i}}(x)$ where σ_{i} is the symbol used to indicate variables of arity i.

INDEX $X_{i}\left(x, y_{1}, y_{2}\right)$ simply says $V A R_{i}(x)$ and every symbol between y_{1} to y_{2} is a binary digit and the symbols $y_{1}-1$ and $y_{2}+1$ are "(" and ")" respectively. This can be done in FAП(2).
$\operatorname{SAME}\left(x_{1}, x_{2}\right)$ says that there are elements $y_{1}, y_{2}, y_{3}, y_{4}$ and a binary relation R such that $\operatorname{INDEX} X_{i}\left(x_{1}, y_{1}, y_{2}\right)$ and $\operatorname{INDEX}\left(x_{2}, y_{3}, y_{4}\right)$ and R can be viewed as an order preserving and symbol preserving one-to-one and onto function from the range $y_{1}-y_{2}$ to the range $y_{3}-y_{4}$. This can be done in $\operatorname{AA} \Sigma(2,3)$.

Next we want to speak of assignments for free variables in a formula. We view these as relations with an arity one higher than that of the variable to which it assigns a value. Thus an assigment for second-order variables of arity i will be a relation of arity $i+1$. We denote such a relation by Z_{i}. First order assignments are a special case as they, too, are relations of arity 2 with the additional restriction that each element corresponding to an $F O L$ variable is in relation with exactly one element. (For our purpose Z_{i} is meaningless for those elements of the formula which are not variable symbols of arity i.) For bounded k we denote by Z a vector $Z_{0}, Z_{1}, \ldots, Z_{k}$ with the Z s as above.

Definition 23. (i) $A S S_{i}(R)$ are predicates indicating that R, an $i+1$-ary relation, is an assignment for the free i-ary variables in a formula.
(ii) $A S S(R)$ is a predicate indicating that the relations R together comprise an assignment for all the free variables in a formula.

Lemma 24. $A S S_{i}(R)$ and $A S S(R)$ can be written as formulas in $A A \Pi(2,3)$.

Proof. For $A S S_{i}$ with $i \neq 0$ we write

$$
\forall x_{1}, x_{2}, y \neg \operatorname{SAME}\left(x_{1}, x_{2}\right) \vee\left(R\left(x_{1}, y\right) \Leftrightarrow\left(x_{2}, y\right)\right)
$$

For $A S S_{0}$ we "and" to the above

$$
\left(\forall x_{1} \exists x_{2} r_{x}\left(x_{1}\right) \rightarrow R\left(x_{2}, x_{2}\right)\right) \wedge\left(\forall x_{3}, x_{4}, x_{5}\left(R\left(x_{3}, x_{4}\right) \wedge R\left(x_{3}, x_{5}\right)\right) \rightarrow x_{4}=x_{5}\right)
$$

where " x " is the symbol for first-order variables. $A S S(R)$ is written as the disjunction of the $k+1$ formulas for $A S S_{i}$.

Definition 25. (i) $W F F\left(x_{1}, x_{2}\right)$ is a predicate indicating that the characters in positions $x_{1}-x_{2}$ form a well formed subformula.
(ii) $A T O M_{r_{i}}\left(x_{1}, x_{2}\right)$ are predicates indicating that the characters in positions $x_{1}-x_{2}$ form an atomic subformula of the form $r_{i}(x)$.
(iii) $A T O M_{R^{\prime}}\left(x_{1}, x_{2}\right)$ are predicates indicating that the characters in positions $x_{1}-x_{2}$ form an atomic subformula of the form $R^{i}\left(x_{1}, \ldots, x_{i}\right)$.
(iv) $\operatorname{POS}_{i}\left(x_{1}, x_{2}\right)$ are predicates indicating that the character x_{1} is a secondorder variable of arity at least i and x_{2} is the first-order variable in the i th position of $i t$.
(v) $\operatorname{NOT}\left(x_{1}, x_{2}\right)$ is a predicate indicating that the characters in positions $x_{1}-x_{2}$ form a subformula of the form $\neg(\psi)$.
(vi) $A N D\left(x_{1}, x_{2}, x_{3}\right)$ is a predicate indicating that the characters in positions $x_{1}-x_{3}$ form a subformula of the form $\left(\psi_{1}\right) \wedge\left(\psi_{2}\right)$ with x_{2} the position of the \wedge symbol.
(vii) $\operatorname{OR}\left(x_{1}, x_{2}, x_{3}\right)$ is a predicate indicating that the characters in positions $x_{1}-x_{3}$ form a subformula of the form $\left(\psi_{1}\right) \vee\left(\psi_{2}\right)$ with x_{2} the position of the \vee symbol.

Lemma 26. The above predicates can be written as formulas of $A A(3,1)$.

Proof. Follows as they are all context free.

Definition 27. (i) $\operatorname{ATOMSAT}\left(Z, x_{1}, x_{2}\right)$ is a predicate indicating that Z is an assignment and the characters in positions $x_{1}-x_{2}$ form an atomic subformula, which is satisfied by the Z assignment for a structure which is the whole formula.
(ii) $\operatorname{QFREESAT}\left(Z, x_{1}, x_{2}\right)$ is a predicate indicating that Z is an assignment and the characters in positions $x_{1}-x_{2}$ form a well formed quantifier-free subformula, which is satisfied by the Z assignment for a structure which is the whole formula.

Lemma 28. $A T O M S A T$ and $Q F R E E S A T$ can be written as formulas of $A A(3,3)$ and $A A \Sigma(3,4)$.

Proof. For $A T O M S A T$ we write that $A T O M\left(x_{1}, x_{2}\right)$ and $A S S(Z)$ and that the assignment indeed satisfies the atomic formula. For example for an atomic formula $r_{0}(x)$ saying that x is the digit 0 we have

$$
A T O M_{r_{0}}\left(x_{1}, x_{2}\right) \wedge A S S(Z) \wedge \exists y Z_{0}\left(x_{1}+2, y\right) \wedge r_{0}(y)
$$

For an atomic formula $R^{2}\left(y_{1}, y_{2}\right)$ we have

$$
\begin{aligned}
& A T O M_{R^{2}}\left(x_{1}, x_{2}\right) \wedge A S S(Z) \wedge \exists p_{1}, p_{2}, z_{1}, z_{2}\left(P O S_{1}\left(x_{1}, p_{1}\right)\right. \\
& \left.\quad \wedge P O S_{2}\left(x_{1}, p_{2}\right) \wedge Z_{0}\left(p_{1}, z_{1}\right) \wedge Z_{0}\left(p_{2}, z_{2}\right) \wedge Z_{3}\left(x_{1}, z_{1}, z_{2}\right)\right)
\end{aligned}
$$

For $Q F R E E S A T$ we add a binary relation which gives the meaning function of well formed subformulas:

$$
\begin{aligned}
& \exists R \forall y_{1}, y_{2}\left[R (x _ { 1 } , x _ { 2 }) \wedge \left(R (y _ { 1 } , y _ { 2 }) \rightarrow \left(A T O M S A T\left(Z, y_{1}, y_{2}\right)\right.\right.\right. \\
& \quad \vee\left(N O T\left(y_{1}, y_{2}\right) \wedge \neg R\left(y_{1}+1, y_{2}\right)\right) \\
& \quad \vee\left(\exists y O R\left(y_{1}, y, y_{2}\right) \wedge\left(R\left(y_{1}+1, y-1\right) \vee R\left(y+1, y_{2}-1\right)\right)\right) \\
& \left.\quad \vee\left(\exists y A N D\left(y_{1}, y, y_{2}\right) \wedge\left(R\left(y_{1}+1, y-1\right) \wedge R\left(y+1, y_{2}-1\right)\right)\right)\right] .
\end{aligned}
$$

Definition 29. (i) $\exists \operatorname{BLOCK}\left(x_{1}, x_{2}, x_{3}\right)\left(\forall \operatorname{BLOCK}\left(x_{1}, x_{2}, x_{3}\right)\right)$ is a predicate indicating that the characters in positions $x_{1}-x_{2}$ form an existential (universal) quantification of some variables and the characters in positions $x_{2}+1-x_{3}$ form a well formed subformula.
(ii) $\operatorname{MODIF}\left(Z^{1}, Z^{2}, x_{1}, x_{2}\right)$ is a predicate indicating that both Z^{1} and Z^{2} are assignments and that Z^{1} is a modification of Z^{2} for those variables which appear in the range $x_{1}-x_{2}$ of the formula.

Lemma 30. $\exists B L O C K, \forall B L O C K$ and MODIF can be written in $A A(3,3), A A(3,3)$ and $A A(2,4)$ respectively.

Proof. $\exists B L O C K$ and $\forall B L O C K$ are context free. $\operatorname{MODIF}\left(Z^{1}, Z^{2}, x_{1}, x_{2}\right)$ is a disjunction of formulas saying that if y_{1} is an i-ary variable and is not the same as any i-ary variable which appears in the range $x_{1}-x_{2}$ then its assignment in Z_{i}^{1} is identical to its assignment in Z_{i}^{2}

Definition 31. (i) $\exists \operatorname{BLOCKSA} T_{n}\left(Z, x_{1}, x_{2}\right)$ is a predicate indicating that Z is a substitution and $x_{1}-x_{2}$ form a formula with no more than n alternations of quantifiers, starting with \exists which is satisfied by Z.
(ii) $\forall B L O C K S A T_{n}\left(Z, x_{1}, x_{2}\right)$ is a predicate indicating that Z is a substitution and $x_{1}-x_{2}$ form a formula with no more than n alternations of quantifiers, starting with \forall which is satisfied by Z.

Lemma 32. $\exists B L O C K S A T_{n}\left(Z, x_{1}, x_{2}\right)$ and $\forall B L O C K S A T_{n}\left(Z, x_{1}, x_{2}\right)$ can be written in $A A(c, n+4)$ where $c=\max (3, k+1)$.

Proof (by induction on n). For $n=0$ BLOCKSAT is just $Q F R E E S A T . \exists B L O C K S A T_{n}$ can be written as

$$
\begin{aligned}
& \exists Z_{1}, x\left(\exists B L O C K\left(x_{1}, x, x_{2}\right)\right. \\
& \left.\quad \wedge\left(M O D I F\left(Z_{1}, Z, x_{1}, x\right) \wedge \forall B L O C K S A T_{n-1}\left(Z_{1}, x+1, x_{2}\right)\right)\right) .
\end{aligned}
$$

$\forall B L O C K S A T_{n}$ can be written as

```
\(\forall Z_{1} \exists x\left(\forall B L O C K\left(x_{1}, x, x_{2}\right)\right.\)
    \(\left.\wedge\left(\operatorname{MODIF}\left(Z_{1}, Z, x_{1}, x\right) \wedge \exists B L O C K S A T_{n-1}\left(Z_{1}, x+1, x_{2}\right)\right)\right)\).
```

To conclude the proof of Theorem C we have to show that
(ii) $A U T O S A T(F A(n))$ is definable in $A A(3, n+4)$ and
(iii) $\operatorname{AUTOSAT}(A A(k, n))$ is definable in $A A(k+1, n+4)$.

The required formulas are simply conjunctions of the $2 n B L O C K_{n}$ formulas above.

6. Conclusions

We have studied the effect of bounding both arity and quantifier alternations in second-order formulas on their expressive power on finite structures. We have shown that the resulting hierarchies are proper.

The method to show this consisted of considering formulas which, viewed as finite structures, satisfy themselves. As the well-known diagonalization argument applies, this gives rise to the class $A U T O S A T(F)$ for sets of formulas F, which is not definable in F, provided F is closed under boolean operations.

We have given tight upper bounds for the complexity of $\operatorname{AUTOSAT}(F)$ for various F. In particular, for $F=F O L$, the set of first-order formulas, this problem is PSpacecomplete.

We would like to conclude with an open problem:

Problem 33. (i) Find a natural problem which is definable in $\operatorname{SAA}(3,1)$ but not in $\operatorname{SAAE}(2,1)$.
(ii) Find a natural problem which is definable in $A A \Sigma(n+d, 1)$ but not in $\operatorname{SAA} \Sigma(n, 1)$ for $2 \leqslant n$ and d as small as possible, $1 \leqslant d$.
(iii) More generally, find a natural problem which is definable in $\operatorname{SAA\Sigma }(n+d, k)$ but not in $\operatorname{SAA} \Sigma(n, k)$ for fixed k.

A correction

The first author would like to add: In [3], Theorem 4.7 is incorrect, as its proof contradicts Proposition 3.5 and Theorem 2. The theorem can be corrected, if we limit the number of alternations of first-order quantifiers and $T C^{k}$ operators or restrict the formulas to formulas in Immerman Normal Form.

Acknowledgements

We are indebted to R. Fagin, who provided us with Proposition 2, and to the participants of the 1994 Oberwolfach Meeting on Finite Model Theory for various useful comments. We are also indebted to B. Courcelle for his comments concerning Proposition 15, and to A. Litman for valuable discussions.

A preliminary version of this paper has appeared as [12].

References

[1] M. Ajtai and R. Fagin, Reachability is harder for directed than for undirected finite graphs, J. Symbolic Logic 551 (1990) 113-150.
[2] J.R. Büchi, Weak sccond-order arithmetic and finite automata. Z. Math. Logik Grundlag. Math. 6 (1960) 66-92.
[3] A. Calò and J.A. Makowsky, The Ehrenfeucht-Fraïssé games for transitive closure, in: A. Nerode and M. Taitsin, eds., Logical Foundation of Computer Science - Tver'92, Lecture Notes in Computer Science, Vol. 620 (Springer, Berlin, 1992) 57-68.
[4] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs, Inform. and Comput. 85 (1990) 12-75.
[5] M. de Rougemont, Second-order and inductive definability on finite structures, Z. Math. Logik Grundlag. Math. 33 (1987) 47-63.
[6] J. Engelfriet, A regular characterization of graph languages definable in monadic second-order logic, Theoret. Comput. Sci. 88 (1991) 139-1 50.
[7] M. Grohe, Bounded-arity hierarchies in fixed point logics, Preprint, 1993.
[8] J.E. Hoperoft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley Series in Computer Science (Addison-Wesley, Reading, MA, 1980).
[9] D.S. Johnson, A catalog of complexity classes, in: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. 1, Ch. 2 (Elsevier, Amsterdam, 1990).
[10] J.F. Lynch, Complexity classes and theorics of finite models, Math. Systems Theory 15 (1982) 127144.
[11] J.A. Makowsky and Y.B. Pnueli. Computable quantifiers and logics over finite structures, in: M. Krynicki, M. Mostowsky and L. Sczerba, eds., Logics, Models, and Computation, Vol. 1 (Kluwer Academic Publishers, Dordrecht, 1995) 313-357.
[12] J.A. Makowsky and Y.B. Pnueli, Arity vs. alternation in second-order definability, in: LFCS'94, Lecture Notes in Computer Science, Vol. 813 (Springer, Berlin 1994) 240-252.
[13] W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25 (1982) 360-376.
[14] G. Turán, On the definability of properties of finite graphs, Discrete Math. 49 (1984) 291-302.

[^0]: * Corresponding author. E-mail: janos@cs.technion.ac.il.
 ${ }^{1}$ Partially supported by a Grant of the French-Israeli Binational Foundation and by the Fund for Promotion of Research of the Technion - Israeli Institute of Technology.
 ${ }^{2}$ Since Fall 1993 Minerva Fellow.

[^1]: ${ }^{3}$ We are indebted to \mathbf{R}. Fagin, who allowed us to include this result.

