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Abstract

We consider the use of adaptive mesh strategies for solution of problems exhibiting boundary and interior
layer solutions. As the presence of these layer structures suggests, reliable and accurate solution of this class
of problems using 3nite di4erence, 3nite volume or 3nite element schemes requires grading the mesh into the
layers and due attention to the associated algorithms. When the nature and structure of the layer is known, mesh
grading can be achieved during the grid generation by specifying an appropriate grading function. However,
in many applications the location and nature of the layer behavior is not known in advance. Consequently,
adaptive mesh techniques that employ feedback from intermediate grid solutions are an appealing approach.
In this paper, we provide a brief overview of the main adaptive grid strategies in the context of problems
with layers. Associated error indicators that guide the re3nement feedback control/grid optimization process
are also covered and there is a brief commentary on the supporting data structure requirements. Some current
issues concerning the use of stabilization in conjunction with adaptive mesh re3nement (AMR), the question
of “pollution e4ects” in computation of local error indicators, the in<uence of nonlinearities and the design
of meshes for targeted optimization of speci3c quantities are considered. The application of AMR for layer
problems is illustrated by means of case studies from semiconductor device transport (drift di4usion), nonlinear
reaction–di4usion, layers due to surface capillary e4ects, and shockwaves in compressible gas dynamics.
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1. Introduction

Boundary and interior layer structures in the solution are a familiar “feature” of certain classes
of applications in engineering and science. Representative examples are the viscous boundary layer
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adjacent to a wall, edge e4ects near the boundary of a uniformly loaded shell structure, capillary
meniscus boundary layers in the contact region of a thin 3lm and a container, thermal boundary layers
in heated <uids, interior shock layers in compressible gas dynamics, interior impurity layers in dopant
di4usion for semiconductor implant processing, interior solution layers in the carrier concentration
and 3eld for semiconductor devices, reaction layers in heat and mass transfer, moving melt and
reaction layers, layers in coupled physics problems such as electro-rheological and suspension <ows,
and so on. These layer structures may be thought of as local or embedded and their presence
interpreted as a consequence of competing physical or chemical processes that dominate over di4erent
length scales on di4erent regions of the problem domain.

For example, in the case of <ow of a viscous <uid past a wall, the <uid adheres to the wall
so the local e4ects of the boundary condition and viscosity are signi3cant. For a uniform stream
with kinematics viscosity � and velocity magnitude U past a <at plate of length l, there will be a
thin viscous boundary layer adjacent to the plate if the Reynolds number Ul=� � 1 and an exterior
region where the <ow can be treated as essentially inviscid. Then viscous e4ects dominate at a
small length scale in a layer adjacent to the boundary. The vorticity generated by the boundary
condition varies rapidly as it is convected and di4used through the thin layer with the vorticity zero
or changing slowly in the region exterior to the layer. Similarly, in the case of heat and mass transfer
problems where convection and di4usion arise, these respective e4ects may compete to generate layer
structures where di4usion dominates, and an exterior or outer region where convection dominates. In
the electro-rheological case, the electric 3eld changes the e4ective viscosity so that viscous boundary
layers may be accentuated and in meniscus problems the interfacial e4ects associated with surface
tension and curvature at the boundary compete with gravity. The interior layers in the device electron
transport equation are a consequence of the electric 3eld and the dopant impurity layer structures.
Catalytic reactions in a domain can generate concentration layers at a boundary for large reaction
rates. For high-speed compressible <ows, shock layers form and thermal and concentration layers
for the dissociating gas may also arise.

These multiscale ideas enhance our understanding of the complex interacting e4ects. Moreover,
they can be exploited in developing simpler physical models that make the resulting problem more
amenable to mathematical solution. This may involve “inspectional scaling analysis” to determine
what e4ects dominate and which can be neglected from the physical model. Such reasoning was
applied in [55] in developing the boundary layer equations describing <ow adjacent to a wall.
More formally, one can introduce the important space and time scales in a scaling of the governing
equations to obtain nondimensional equations with parameters that can be used to characterize regions
of interest (high or low Mach number, Rayleigh number and so on). In turn, these parameters often
enter as the expansion parameters in regular or singular perturbation expansion schemes to yield
simpler mathematical models. In particular, the use of singular perturbation techniques involves
an expansion using a stretched variable in the inner layer region with another expansion at the
normal scale in the outer region. A matched asymptotic “3t” is employed at the “interface”. Each
expansion involves use of the natural spatial scale for the associated region (e.g., stretched scales in
the layers). Perturbation techniques and concepts from matched asymptotic analysis also contribute
to our understanding of these interactions and, when analytic solutions can be composed in this
way, they add signi3cantly to our knowledge of the layer structure and properties. They also help
explain why numerical approaches must be applied with due care, indicating why some methods
fail and others succeed. In the present context, they provide insight into the question of constructing
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successful adaptive mesh strategies. For example, we can 3rst solve the (simpli3ed) boundary layer
equations separately for the layer solution and then solve the (simpli3ed) inviscid equations in the
exterior region.

The above ideas can be viewed as an illustration of a domain decomposition strategy with di4erent
simpli3ed physics in respective subdomains, such as the inner di4usive layer and outer convective
regions, respectively. Such decompositions are frequently exploited in engineering analysis and de-
sign. The above examples can also be interpreted from the standpoint of multiple scales with di4erent
physics/chemistry active on the respective scales associated with these inner and outer subregions
and with the subregion solutions matched in some sense with respect to these spatial scales. This
idea underlies mathematical approaches using multiple scales and matched asymptotics in singular
perturbation theory [27].

Both the subdomain and multiscale concepts are of great importance in developing e4ective nu-
merical approaches to address these types of problems. Of central importance here is the idea of
di4erent physics dominating at di4erent scales on subregions with appropriate “matching” in an in-
terface zone. Therefore, these properties should be respected in the associated discretization strategies
and solution algorithms. The focus of the present study is the role of adaptive mesh approaches in
treating these layer problems. At the simplest level, we may elect to separate the space and time
domains into subdomains corresponding to the regions where the di4erent scales preside. We term
such an approach a domain decomposition and can build and analyze discrete models constructed
on the respective subdomains. For example, if the domain is simple then one can use a uniform 3ne
grid in the inner layer and a uniform coarse grid in the exterior region [31]. Alternatively, one can
use an optimization approach to design meshes that are graded appropriately into the layer regions
[48,54] and adaptively timestep to resolve similar transient scale and accuracy issues. Adaptation of
the spatial mesh will be the focus of the present study.

One of the great promises of local mesh re3nement is optimization and control of the grid to
tailor it to the problem being solved. The main approaches being developed along these lines in-
volve adaptive re3nement of cells in the grid using point insertion and subdivision or adaptive
mesh redistribution. Pearson [50] was the 3rst to explore local adaptive re3nement for problems of
boundary and interior layer type using a 3nite di4erence scheme and Carey [16] was apparently the
3rst to investigate adaptive 3nite element mesh re3nement approaches in 2D. In the earlier studies
by Pearson, several problems exhibiting a variety of di4erent layer behaviors were considered. The
adaptive scheme involved adding points with an error indicator based on changes in the solution
computed at the prior step. The 2D 3nite element work in [16] and related 1D work in [22] used
local residuals to guide re3nement.

Since adaptive mesh re3nement (AMR) and coarsening via de-re3nement (AMR/C) are logical
strategies that should sensibly be part of the engineering analysis algorithm, then this is the preferred
approach. It also provides a convenient data structure for accelerating the solver algorithm, “mining”
simulation results and for fast remote visualization. Hence, it is clear that AMR/C should be intrinsic
to the simulation goal and intimately tied to the analysis. Such strategies are also clearly needed
to treat problems where boundary and interior layers arise in the solution because the inherent
multiscale nature of these layer problems implies a similar scaling of the mesh structure. The location,
nature and extent of the layer may not be known a priori so an adaptive feedback control strategy
for the mesh and simulation will be essential to computing accurate and reliable results for such
problems.
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Our goal in this work is to describe the main concepts and issues related to AMR for such boundary
and interior layer problems. We begin with transport systems and an example illustrating conditions
on cell size/scale for stable, nonoscillating solutions. The use of local error estimates and error
indicators provides a basis for feedback control to identify layer regions where re3nement is needed.
Related issues such as pollution control in error indicator computation, targeted or goal-oriented
adaptive schemes, algorithms, and illustrative examples are considered. Mapping, mesh grading, grid
redistribution and moving grid concepts are introduced. The need to maintain cell quality and permit
enrichment leads to adaptive mesh re3nement as an e4ective general approach as illustrated in the
case studies.

2. Transport systems

To illustrate the issues for layer problems let us brie<y consider the well-known transport equation
9u
9t + � ·∇u−∇ · (�∇u) = f; x∈�; t ¿ 0 (1)

for a scalar 3eld u such as temperature or species concentration in heat and mass transfer, respec-
tively. Similar equations arise as systems for transport of vorticity in the stream-function vorticity
equations or mass, momentum and energy in the Navier–Stokes equations, and electron and hole
carrier concentrations in the semiconductor device transport equations.

For the stationary transport case, (1) simpli3es accordingly to

� ·∇u−∇ · (�∇u) = f; x∈� (2)

in domain �, where � is the convective coeMcient, � is the di4usion and f is the source term.
For example, � is the velocity in heat or mass transfer and Navier–Stokes problems and it is the
electric 3eld in the device transport equation; � is the thermal conductivity, di4usivity, kinematic
viscosity and mobility, respectively, in these applications; and f corresponds to the heat source,
mass source, body force and collision recombination terms, respectively. In practice, �; �, and f
may be functions of position, the 3eld variable u, its derivatives, and of other 3eld variables. In the
case studies presented later, we have examples where � = �(u); f = f(u) and � = �(|∇u|).

The “competition” between the respective convection, di4usion and reaction terms in (1) and (2) is
of particular interest since it may lead to layer structures in the solution. To explore the nature of this
interaction and the associated numerical approximation diMculties for layer problems, let us simplify
(1) further by 3rst considering the one-dimensional case with coeMcients 
; � positive constants

9u
9t + 


9u
9x − �

92u
9x2 = f; 0¡x¡ 1; t ¿ 0: (3)

The source term f can obviously have a spatial scale structure where f is large and strongly varying
in layer regions and more uniform elsewhere. This will usually induce a related multiscale behavior
in u since obviously the governing equation de3nes a balance relation between various derivatives
of u on the left and f on the right. Similarly, if f is zero, the equation implies a balance relation
between the time rate of change of u and the spatial derivatives which can be interpreted in this con-
text as an “equivalent” source term. Again, the local behavior of these spatial derivatives and their
competition will in<uence the evolution of u in time and the same will be true of the approximate
problem obtained after discretization.
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If � = 0 in (3), the equation is hyperbolic and implies that the material derivative of u is equal
to f. That is, u� = f and the evolution of u along the characteristic lines, � = x − 
t (of slope
1=
 in the x; t plane) is determined by the behavior of f on the characteristics. If 
 is also zero
the equation reduces further to an ordinary di4erential equation with respect to t at each point x
(vertical characteristics). It is clear from these cases that behavior in time such as rapid transient
layers, oscillations, decay and growth, depends on the form and sign of f.

If instead we let 
 → 0 with �¿ 0 3xed then the problem type is parabolic and the limiting
equation is pure di4usion, so sharp layers and fronts will be di4used. If both 
 and � are nonzero, then
these respective convective and di4usive behaviors may “compete” to generate layers for appropriate
ranges of these parameters and choice of boundary conditions.

Since our focus here is on spatial layer behavior, let us consider in more detail the steady state
problem for (3) with f = 0. Introducing the prime notation to denote di4erentiation, we have


u′ − �u′′ = 0; 0¡x¡ 1; (4)

which clearly states that the exact solution satis3es the balance 
u′ = �u′′ between convection and
di4usion for any x in (0; 1). This implies that as � → 0 for 3xed 
 either u is constant or u′′ is locally
large. For layer behavior here, we are clearly interested in the case 
 � � and a standard model
problem for testing numerical discretization schemes is (4) with u(0) = 0 as the “in<ow” condition
and u(1) = 1 as the “hard out<ow” condition. The analytic solution is monotone increasing, with
u ∼ 0 in most of the domain and rising to u = 1 through a boundary layer adjacent to x = 1.
Recalling (3) and our discussion of the degenerate case � = 0, convection attempts to propagate the
end condition u = 0 at x = 0 through the domain but fails to match the “redundant” condition at
x= 1. For � 	= 0 but 
 � �, convection will still dominate in the outer region (0; 1−�); 0¡� 
 1,
but the boundary condition at x = 1 is active and di4usion will be important in the layer (1 − �; 1).

If a standard central di4erence scheme or a Galerkin 3nite element scheme with linear elements
is applied to (4), we have at interior node i of a uniform mesh of cell size h, simply

−
(



2h

+
�
h2

)
ui−1 +

2�
h2 ui +

(


2h

− �
h2

)
ui+1 = 0: (5)

It is easy to verify that this di4erence scheme is not monotone and will support an oscillation across
the pair of cells adjacent to interior node i if the cell condition �h=�¡ 2 is not satis3ed. Note that

h=� corresponds to a cell form of the familiar Reynolds number for <ows or Peclet number for
mass transport applications. When this condition holds, system (5) becomes diagonally dominant
and this matrix property is relevant to both the behavior of the solution and to the performance of
solution algorithms. For f = f(x) nonzero, we have fi on the right in (5) and for f = g(x) + �u
with � constant we have gi on the right and the diagonal contribution, −�ui, on the left in (4).
Clearly, the nature of the reaction term in this latter case in<uences the monotone structure of the
algebraic operator and therefore the oscillatory behavior. Similar reasoning applies to the Jacobian
systems that arise in solving corresponding nonlinear problems.

Returning to the homogeneous case in (4) and (5), the cell condition implies mesh restriction
h¡ 2�=
 for a stable nonoscillatory approximation. That is, there is a mesh scale restriction that
depends on the ratio �=
 of the di4usion and convection coeMcients. If we scale (4) by 1=
 we
obtain −(�=
)u′′+u′=0 with �=
 
 1 clearly the small parameter of a singular perturbation problem.
Setting �=�=
, the cell condition is equivalent to requiring a uniform mesh with h¡ 2� to resolve the
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layer scale. For computations with h¿ 2� the numerical solution is oscillatory and the oscillations
become larger as h is increased. For h¡ 2� the approximation is monotone and converges with
second order rate as h → 0. Note that these results apply for uniform grids.

Computations with uniform 3ne grids that resolve the layer scale will give the desired result but
are not practical for complex nonlinear applications in higher dimensions. Clearly, the mesh scale
needed to resolve the inner layer is not needed to approximate the outer solution, so one obvious
strategy would be to use a uniform 3ne mesh in the layer and a uniform coarse mesh in the outer
region. However, this would create a more complicated mesh transition problem in higher dimensions
(especially when the geometry is not simple) as well as possible associated numerical problems such
as ill conditioning. The matched asymptotics approach suggests grading the mesh to match e4ects
across the transition to the layer. Hence, the idea of adaptively redistributing a mesh or adaptively
re3ning is natural for layer problems.

In the matched asymptotics approach for (4), a stretching transformation could be applied in
the layer region of the form � = (1 − x)=�� where � is related to the strength of the layer. As
1− x → � ∼ ��, � → 1. That is, the stretching transformation maps the layer to a stretched reference
region of the same order as the outer region, emphasizing that both scales are equally relevant. The
analytic solution to our example problem is u(x) = (ex=� − 1)=(e1=� − 1) and for � = 1; � = (1 − x)=�,
so we have u ∼ e−� in the stretched layer. This implies that the inner solution drops exponentially
from 1 at � = 0 (or x = 1) to 1=e at � = 1, that is, at the layer edge (x = 1 − �).

When we know the qualitative exponential behavior in the layer, we can use this behavior or a
reasonable approximation of it to construct a mesh grading function for the discretized problem in
the layer region. Hence, mapping and mesh grading functions provide one approach for resolving the
layer scale. More generally, the layer location and nature may not be adequately known in advance.
Therefore, a better strategy is to progressively re3ne a grid using a posteriori error indicators to
guide the adaptive process in the layer. We elaborate on these approaches later.

3. Stabilization e�ects

The above observations notwithstanding, this recommended AMR/C approach is not yet the usual
practice in numerical simulation. Instead of directly addressing the inadequate resolution of the layer
by redistribution or re3nement, work has focused instead on “stabilizing” the scheme to remove
oscillations on coarse grids. This has been partly motivated by the hyperbolic nature of the degenerate
problem (� → 0) for which central di4erencing is unstable and single-cell upstream or upwind
di4erence approximation of the convective term will yield a stable method. For � 	= 0; 
 � � this
upwind scheme remains stable and the di4erence system is diagonally dominant. However, a simple
truncation error analysis reveals that the resulting discrete model is only 3rst-order accurate asympto-
tically. Furthermore, the leading truncation error term is dissipative. That is, this stabilization is
achieved at the cost of a suboptimal rate of convergence and addition of signi3cant arti3cial dissi-
pation which degrades the approximation of the layer.

In fact, the above upwind stabilization scheme is equivalent to a second-order accurate approxima-
tion of a problem with di4usivity �+(h=2). Note that for h¿ 2� the added arti3cial di4usion exceeds
the true di4usion so the layer approximation is exceedingly poor. If h is re3ned, the layer is resolved
but the scheme is still of lower-order. Given that the interesting and important physical behavior is
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usually in the layer region, the preoccupation with low-order dissipative stabilizing schemes in most
of the past two decades for these types of layer problems is baNing. Of course, if one is interested
in accelerating an algorithm then this is a useful strategy on coarse and intermediate grids but this
has been rarely the motivation. Clearly, the use of higher-order stabilized schemes is desirable and
there has been some work on this subject. Nevertheless, much of the stabilization used in practical
applications has been of the lower-order dissipative form. Of course there is a natural 3t when these
stabilization schemes are applied in conjunction with AMR.

The “success” of stabilization schemes in 3nite di4erence analysis has motivated construction of
similar upwind weighted Petrov–Galerkin methods in 3nite element approximation of these problems.
For example, the Petrov–Galerkin form of (4) follows from a weighted residual manipulation and
integration by parts as: 3nd uh ∈Hh satisfying uh(0) = 0; uh(1) = 1 and such that∫ 1

0
(�u′hv

′
h + u′hvh) dx = 0 (6)

for all admissible test functions vh ∈Wh where Hh and Wh are the approximate solution (trial) and
weight (test) spaces, respectively. The previous backward di4erence model can be duplicated by
selecting uh to be the piecewise linear basis �i(x) and vh to be the sum of a piecewise linear basis
function and a pair of quadratic “bubbles”, b(x) and −b(x), on the elements upwind and downwind,
respectively, from node i.

Other stabilization schemes based on manipulating the time truncation error in the transient prob-
lem using Lax–Wendro4/Taylor–Galerkin ideas have been developed. Least-squares 3nite elements
are naturally dissipative and, motivated by this, least-squares residuals have been added to Galerkin
formulations to construct Galerkin least-squares (GLS) approaches. There has been an e4ort to
improve these approaches using certain so-called higher-order compact schemes [62]. Another ap-
proach is to introduce local approximations to the di4erential equation to develop improved di4erence
schemes in the layer. For example, the Scharfetter–Gummel di4erence scheme for the semiconductor
“drift-di4usion” transport equations uses a local exponential approximation to obtain a stabilized
di4erence scheme. Some of the recent 3nite element work on “bubble functions” or use of an ap-
proximate local Green’s function for stabilization is related to this idea. Finally, stabilized coarse
grid 3nite di4erence and 3nite element schemes can be constructed by static condensation of 3ne
grid nodes in the one-dimensional case (although this does not extend cleanly to higher dimensions)
or by related residual bubble schemes.

In concluding this discussion of stabilization, it is worth noting that one can scale (4) by the
integrating factor e−x=� and rewrite the resulting equation in conservative (self-adjoint) form as
−(�e−x=�u′)′ = 0. Finite di4erencing this equation or a standard Galerkin formulation with linear
elements yield similar three-point di4erence schemes that are nonoscillatory for all h and that exhibit
exceptional accuracy and superconvergence of the approximation at the nodes.

4. Error indicators

Feature indicators such as pressure gradients in compressible <ow have been widely used in
practice to locate shock layers and grade the mesh locally. However, a more formal error analysis
that leads to a posteriori error estimates and computable local error indicators is a preferable approach
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(e.g., see [2,5,7,18,65] and the references cited therein) Most such error indicator work has been
directed to grading the mesh so that the error is equidistributed over the domain and is uniformly
small. There are three main approaches: (1) truncation error or residual error indicators; (2) local
problem solution; and (3) recovery indicators. The 3rst and second classes are explicitly related
to the error in locally approximating the governing di4erential equation in question. In the third
class, local higher-order approximation of say, a gradient is used to determine an error indicator
[70]. This latter approach may be based on some form of superconvergence behavior, smoothing,
or extrapolation and need not be explicitly tied to the physical problem and governing equations
[13,67].

In problems with layers, the quantity of interest may be a gradient such as the <ux or stress at the
wall adjacent to a boundary layer or may be the amplitude of the solution in an interior layer. The
previous error equidistribution strategies may then be ineMcient since they are designed to produce
an error that is globally small. Instead, the adaptive re3nement scheme may be modi3ed to focus on
the layer quantity while ensuring the mesh elsewhere is adequate to prevent pollution of the solution
in the layer. We discuss this later and outline a new algorithm. First, however, let us illustrate the
main ideas using a residual indicator approach.

For a linear di4erential equation Lu = f and di4erence scheme with solution ui, the error, ei =
u(xi) − uh(xi), at grid point i satis3es Lhei = −�i where Lh is the discretized operator and �i is the
truncation error. Similarly, if uh is the 3nite element approximation and r = Luh −f is the residual,
the error e = u − uh satis3es Le = −r. The local error is thereby related to the truncation error
or residual. Hence, local patch post-processing schemes can be devised to compute truncation or
residual error indicators. Locally re3ning the mesh to systematically reduce and equidistribute the
residual indicator will control the error. To illustrate this point, consider the two-point problem in
0¡x¡ 1

− {[
−1 + 
(x − Qx)2]u′}′ = 2 − 2
(x − Qx)[tan−1 
(x − Qx) + tan−1 
 Qx]: (7)

The exact solution with u(0) = u(1) = 0 is

u(x) = (1 − x)[tan−1 
(x − Qx) + tan−1 
 Qx]; (8)

where Qx determines the location of an interior layer and 
 controls the layer strength. The solution
with Qx = 0:36 and 
 = 100 is shown in Fig. 1. After nine adaptive re3nement steps from an initial
uniform mesh of four quartic elements, we obtain a graded mesh of 25 elements with a graduated
transition from either side into the layer and 12 elements in (0:3125; 0:375) across the layer. The
element residuals are used as error indicators in this example. The L2 norm of the global residual
is reduced by more then 2 orders of magnitude by the re3nement and the L2 norm of the global
solution error is 3:0× 10−5 on the 3nal grid with an accurately resolved solution inside and outside
the layer [23].

Good local upper and lower bounds on the error in appropriate norms are needed to further
calibrate, for instance, the local error in the solution to the local residual for the di4erential equations.
Rather than simply post-process the approximate solution and rank element or patch residuals in the
mesh, one can construct local element, patch or subdomain boundary value problems Le=−r on !∗
where !∗ indicates the local subregion. Of course, pollution e4ects may corrupt the boundary data
for the local problem so appropriate measures need to be taken to circumvent such diMculties. For
example, oscillations due to the boundary layer for (3) persist across the domain and can induce
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Fig. 1. Solution to Eq. (7) on an adaptively re3ned mesh illustrating the interior layer structure.

unnecessary re3nement away from the layer. A subsequent “de-re3nement” step will rectify this
problem, but a preferable strategy may be to use the stabilization techniques to ensure a monotone
approximation on the coarser grids. The dissipation will be reduced as re3nement proceeds.

Indicators for boundary <ux quantities such as local Nusselt number are of considerable practical
interest in engineering analysis and design. Recovery indicators for boundary <ux can be computed
using the superconvergence properties of the Green–Gauss integral identities in association with the
Galerkin 3nite element approximation as follows: Consider the two-dimensional stationary convection
di4usion problem corresponding to (2) with source function f

−∇ · �∇u + � ·∇u = f in � (9)

and Dirichlet boundary condition u = g on 9�.
The corresponding variational (Galerkin) problem is Find u∈H 1(�) with u = g on 9� and such

that ∫
�

(�∇u ·∇v + � ·∇u v) dx =
∫
�
fv dx (10)

for all admissible v∈H 1
0 (�). The approximate problem follows on setting uh ∈Hh ⊂H 1(�);

vh ∈Hh
0 ⊂ H 1

0 (�) for u and v, respectively, so that∫
�

(�∇uh ·∇vh + 
 ·∇uh vh) dx =
∫
�

f vh dx: (11)

Introducing the second Green–Gauss formula for the di4usion operator we have the identity∫
�
∇ · (v�∇u) dx =

∫
�
�∇u ·∇v dx +

∫
�
∇ · (�∇u)v dx; (12)

so by Gauss’ theorem in (12) and using (9)∫
9�

�∇u · nv ds =
∫
�

�∇u ·∇v dx −
∫
�

fv dx +
∫
�
� ·∇u v dx: (13)
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Substituting uh for u and vh for v in the right of (13) we de3ne the approximate projection "∗
accordingly by the relation∫

9�h

"∗vh ds =
∫
�h

�∇uh ·∇vh dx −
∫
�h

f vh dx +
∫
�h

� ·∇uh vh dx: (14)

For vh = �k with node k on the boundary, then vh has support only on the strip Sh of elements
adjacent to 9�h and expanding "∗ in a suitable basis on 9�h, we have∫

9�h

"∗
h�k ds =

∫
Sh

�∇uh ·∇�k dx −
∫
Sh

f �k dx +
∫
Sh

� ·∇uh �k dx: (15)

In particular, if we expand "∗
h in the same basis as uh and use Gauss–Lobatto quadrature on the left,

we have an explicit formula for the nodal values for "k . The error indicator for the boundary <ux
follows as ẽ(x; y) = "∗

h(x; y) − "h(x; y) where "h(x; y) is �∇uh · n evaluated on 9�h.

5. Some practical issues

One-dimensional problems are special in the sense that element interfaces are knots whereas 2D
elements share edges and in 3D they share edges and faces. Both simplex and tensor-product elements
are commonly used in 2D and 3D. Let us 3rst consider the 2D case. Given a triangulation of the
domain, local re3nement can be carried out by adding node points in the interior of an element
and/or on edges and then subdividing the element. If points are added at the centroid of a triangle
and this new node is connected to the vertices, the subdivision is local but the longest edge is
not reduced and the interior subtriangles are slender. Delaunay edge swap operations will improve
the cell quality. If, instead, the nodes are inserted at the midedges of a triangle and then joined,
we obtain a quartet of congruent subtriangles, each similar to the parent triangle. Alternatively, the
midpoint of the longest edge can be joined to the opposite vertex and to the midpoints of the
other two edges [57]. A single diagonal swap separates these two con3gurations. In either case,
the global mesh is now “nonconforming” since the new midedge nodes are shared with the three
adjacent unre3ned triangles. One can bisect these adjacent triangles by connecting midedge nodes
to their opposite vertices or by similar propagating re3nement strategies [52]. The end result is a
conforming triangulation. Alternatively, one can simply re3ne designated elements to quartets of
subelements where speci3ed by an error indicator, and then enforce an interface constraint on any
remaining “hanging” midedge nodes when solving the subsequent approximation problem.

A major issue in treating layers using adaptive grids is the need for anisotropic grids in dimension
d¿ 1. For example, the grid for a boundary layer adjacent to a wall should be strongly graded in the
direction normal to the wall. However, such grading may not be needed in the transverse directions,
so the aspect ratio of the elements can be very large. If the usual cell subdivision strategies to
quartets and octets are applied, then the mesh is re3ned both in the normal and transverse directions
so the re3nement scheme is ineMcient and does not realize the full potential of adaptive gridding.
If the general location of the layer is known in advance, then a practical grading to ameliorate this
problem can be set up at the initial coarse mesh generation stage. Special-purpose mesh generators
such as those used for exterior <ow computations past airfoils include features for grading through
the boundary layer. For example, slender quadrilateral and hexahedral elements in 2D and 3D,
respectively, can be generated in the boundary layer region with the stretching aligned in the direction
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of the boundary and graded out to more uniform shape in the far 3eld. Simplex elements can be
used similarly.

Hybrid grids consisting of hexahedra, prisms and tetrahedra with transitional pyramids may be
useful, particularly when the geometry and solution are complicated. For example, one may elect
to use slender “<at” prisms with triangular faces of high aspect ratio in a grid region adjacent to a
wing and to use tetrahedra in the far 3eld. When standard adaptive re3nement is applied to these
“pregraded” meshes using local quadrisection or octasection of cells, the layer structure in the initial
mesh is essentially preserved. It is clear, however, that this approach has several de3ciencies: (1)
it assumes speci3c a priori knowledge of the existence and location of a layer; (2) it places an
additional burden on the mesh generator and mesh generation is a diMcult problem in its own right;
(3) it is less <exible and hence is more prone to lead to meshes containing cells that are ill-shaped
with possible ill-conditioning and poor approximation properties.

Nevertheless, for applications where this approach can be used it is almost always superior for
layer problems. General-purpose mesh generators, however, are usually designed to produce grids
that have good cell quality for any reasonable geometry. Simply generating a valid hexahedral mesh
to completion is a major challenge for complicated domains in industrial applications and tetrahedral
meshes for the same problem will be completed but, in all likelihood, will contain slender tetrahedral
“slivers” with large solid angles that are undesirable for simulations [29].

Delaunay swap algorithms can improve triangulations and mesh-smoothing algorithms are used
both for hexahedral and tetrahedral mesh improvement. Clearly, these smoothing strategies will
be detrimental in layer regions where suitable cells having high aspect ratio are really needed. A
better approach is to generate a coarse mesh using the more <exible mesh generator to provide
good cell quality and then adaptively re3ne in a way that will produce the desired eMcient grading
with high-aspect ratio cells in the layers. This implies that directional re3nement will be enabled
by permitting varied cell subdivision. That is, instead of re3ning a parent cell in 2D to a quartet
of subcells, bisection to a pair of cells will also be permitted or quadrisection could be replaced
completely by repeated bisection [59]. In turn, this implies that the error indicator should have
a directional capability. A simple example would be a feature indicator that tested the curvature
of the approximate solution along the directions of the principal axes of the element. This could
be applied independently or in conjunction with another error indicator. Similar approaches can
be applied to the element error obtained by solving a local boundary value problem or by the
approach described in the next section that uses iterative enhancement to produce a more robust
computable error estimate. If the error indicator is associated with an edge rather than an element,
then a form of directional re3nement may be naturally available since edges are directed. Subdivision
of the adjacent cells follows subsequently and may lead to bisection, quadrisection or some other
con3guration depending on the underlying edge subdivision. The idea of directional subdivision can
also be applied to p-type enrichment of the element in a similar manner. Beginning from a coarse
mesh of bilinear elements, the tensor-product basis can be directionally enriched to a tensor-product
of a quadratic basis function and a linear basis function based on the directional error indicator. This
process can be continued to higher degree p. Of course, conformity requirements still apply across
the edges between adjacent elements in standard formulations.

Discontinuous Galerkin schemes have become a popular research topic recently. Here the degrees
of freedom are local to the element, so the global approximation is piecewise discontinuous. Continu-
ity requirements are usually enforced weakly through element interface terms in an associated weak
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statement. On one hand, these schemes have an obvious drawback because the number of degrees of
freedom are signi3cantly increased and since the solver operations depend nonlinearly on the number
of degrees of freedom, the computational cost increases very signi3cantly indeed. On the other hand,
since the approximation bases are completely local to the element, element-based adaptive re3ne-
ment is slightly simpler in this setting. Furthermore, we can more conveniently handle mismatching
meshes so adaptive DG schemes may be bene3cial in transitioning from an inner layer subdomain
to an outer subdomain. Abrupt transitions are to be avoided so this is an arguable attribute.

Most adaptive re3nement schemes involve cell subdivision (h re3nement). However, local accuracy
can also be improved by increasing the degree p of the basis on an element (p re3nement). Such p
schemes work well when the local behavior is smooth [58]. If singularities are present then local h
re3nement toward the singularity can be combined with p re3nement elsewhere. These are referred
to as hp methods. The transition across the edge or face between elements of di4erent degree can
be handled in a manner analogous to the transition for the h re3nement scheme. Although layers are
abrupt and “visually” appear to have a singular nature, the matched asymptotics argument reveals
that it is really a question of spatial scales. Nevertheless, the gradients and curvatures in the layer
are large, and coarse meshes with standard p re3nement will tend to generate oscillations unless the
mesh size is suMciently small.

In some cases, the qualitative local behavior of a singularity (and neighboring layer) or a bound-
ary/interior layer may be known. This has been exploited in fracture mechanics by subtracting out
the singularity or by constructing special bases for “singular elements”. This approach could be gen-
eralized to include special bases for layer structures. One way to implement the idea is to use the
standard 3nite element basis on a patch as a “cuto4 function” to limit the extent of the layer function
as follows: Assume for simplicity of exposition that the problem is one-dimensional and we have
constructed a background coarse grid on which the location of the layer has been determined (using
an indicator) or is known a priori: Let s(x) describe the form of the layer solution and let grid point
i be positioned near the approximate location of the layer. The piecewise-linear basis function �i(x)
is zero on the boundary of the patch of elements adjacent to node i and therefore �i(x) is a suitable
cuto4 function. Accordingly, we de3ne si(x) = s(x)�i(x) on the patch, with amplitude at node i to
be determined. The approximation now has the standard piecewise polynomial behavior everywhere
except over the elements adjacent to node i. The extension to higher dimensions for layer structures
might involve a tensor-product of special function s(x) with the constants or other functions. This
idea may also be incorporated within the so-called meshless methods in a similar manner. While
such approaches may produce a more eMcient scheme for special purpose applications, it is debatable
whether the additional complexity is needed if a good adaptive scheme and code are available.

In applications to equilibrium problems, the basic adaptive algorithms typically proceed as follows:

(i) an initial background grid is generated;
(ii) an approximate solution is computed;

(iii) local feature or error indicators are computed by post-processing the approximate solution on
the current grid;

(iv) the grid is locally enriched by cell subdivision or degree enrichment.

Steps (ii)–(iv) are repeated until a desired error tolerance or stopping criteria are met. Such strategies
are particularly useful for nonlinear problems since they o4er an excellent strategy for a nested mesh
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continuation process that is usually very eMcient since the solution on the previous mesh provides a
good starting iterate for the next mesh. For a simple demonstration of this behavior on a nonlinear
two-point boundary problem with an interior layer see [23].

The preceding algorithm is easily generalized to evolution problems by simply including local
coarsening or “de-re3nement” of the mesh in addition to local enrichment. For example, one can
simply remove nodes in a triangulation and use a local Delaunay reconnection scheme or restore
“parent” elements in a hierarchic quadtree or octree data structure to locally revert to a coarser grid.
The latter strategy assumes a prior re3nement but is well-suited to problems with propagating layers,
where the grid is locally re3ned as the layer advances and then locally coarsened as the layer leaves
cells. It is clear that in the re3nement/coarsening algorithm the boundary approximation and other
problem data are additional sources of “modeling error” that need to be quanti3ed and controlled.
This is not a new observation. Similar pollution problems arise when subdomain “windowing” or
“rezoning” strategies are used to economize computations (see [17,25]).

Three-dimensional coupled nonlinear problems with layers are computationally intensive necessi-
tating adaptive grids for eMciency of computation and economic memory usage. Parallel algorithms
can be developed within this AMR setting to use processors assigned to subdomains and communi-
cation between processors at the subdomain boundaries. Layer problems obviously pose some special
concerns for parallel computation: an initial grid may be partitioned to balance the computational and
communication loads according to some metric [37,40] but subsequent re3nement and coarsening to
resolve the layer will lead to a strong imbalance across processors. Codes like Zoltan [36] are being
developed to address dynamic partitioning needs but there are signi3cant problems yet to be resolved.
The problems are exacerbated when one considers coupled multiphysics applications on di4erent do-
mains that share an interior interface where re3nement is taking place, as is the case in <uid/solid
interaction problems. The question of appropriate metrics for determining a partition would appear
to be inextricably tied to the nature of the problem being analyzed, the solution algorithm and the
computer hardware. Approaches that are based exclusively on the grid geometry are of limited value.

Hence, in adaptive mesh treatment of problems with layer solution structure, the dynamic reparti-
tioning code should have appropriate “rules” to guide the frequency of repartitioning and weights to
guide the partitioning. This will require an additional layer of complexity for the partitioner to use
the metrics for the parallel architecture in question. For multiphysics applications, layers may arise
in each individual physics domain as well as at interfaces between domains. In this case, loosely
decoupled algorithms with di4erent adaptive grids graded into layers on the respective subdomains
may be advantageous because of computational eMciency and the fact that the error indicators and
re3nement criteria can be tailored to the local physics behavior.

6. Error indicators and pollution control

As mentioned previously, the adaptive re3nement process that grades the mesh into the layers
is based on either a feature indicator such as a temperature gradient or an error indicator like a
local truncation error estimate or local 3nite element residual. One can also solve a local boundary
value problem to estimate the error corresponding to a local residual. There are obvious problems
with using a feature indicator, so the main goal is to develop reliable and robust error indicators.
One of the subtle problems here is the error indicator pollution issue that has been raised in recent



68 G.F. Carey et al. / Journal of Computational and Applied Mathematics 166 (2004) 55–86

years: in essence, the accuracy and reliability of the local error indicator will depend on the solution
elsewhere to some extent and if singularities or layers nearby are not resolved adequately they will
pollute the quality of the error indicator. For example, if a local boundary value problem is solved
on an element or patch away from a boundary layer, oscillations due to the unresolved boundary
layer will extend through the domain and corrupt the boundary data for the local error indicator
calculations in the interior.

This may render an indicator calculation useless. Similar issues arise when one considers “targeted”
or “goal-oriented” adaptivity that seeks to re3ne the mesh to meet a local error criterion at a point
or in a speci3ed subregion but deliberately permits the error elsewhere to be large rather than seek
to equidistribute the error to be uniformly small. In this case, the pollution problem is particularly
dangerous. One approach to address this is to construct an approximate Green’s function or solve
an auxiliary dual problem and thereby estimate pollution error (see [9,38,39,47,56]). However, it
is clear that considerable additional work and coding may be required to accommodate these dual
approaches. Hence, an open issue is the development of simple, eMcient techniques that address
possible pollution e4ects and remain computationally practical.

For problems where pollution is not an issue, the basic strategy outlined previously is appropriate
and should be available as the main algorithm. However, when pollution is a concern then the fol-
lowing variation from the standard approach can be applied instead and 3ts more conveniently within
the standard strategy [19]. The key idea is to carry out iterative enhancement on an intermediate
global re3nement to control the global polluting error e4ect and then to use this to compute a better
error indicator for the local re3nement. The scheme can be augmented by a multigrid V-cycle if
desired. In this way, the global e4ect of polluting layers or singularities will not be “missed” by
the algorithm. To all intents and purposes the scheme proceeds essentially as in the standard AMR
algorithm. The main steps of an improved approach are as follows:

(i) Assume that an approximate solution u(0) has been computed for an elliptic boundary-value
problem on initial mesh M0 (M0 may be unstructured). Make a uniform re3nement to mesh
M1, interpolate or otherwise project the approximate solution u(0) to ũ (1) on M1.

(ii) Do a few smoothing iterations on M1. This is the basic step needed to compute the high-
frequency error contributions on the 3ner grid [69]. A more complete multigrid scheme would
include one or more subsequent V-cycles with restriction to the coarser grid and error pro-
longation back to the 3ne grid. Since the re3nement to M1 was uniform and the smoother is
global, pollution is also being accommodated.

(iii) Let û (1) be the approximate solution iterate so computed on M1. Then the error e = u− u(0) on
M0 is approximated by ê = û (1) − u(0). This is a more robust error indicator for the scheme.
Richardson extrapolation of u(0) and û (1) may yield an improved result on elements away from
singular points or layers. In some sense, the global smoother replaces the dual problem approach
mentioned previously and appears computationally preferable.

(iv) Based on the computed error indicator in the previous step, re3ne M0 locally by only subdi-
viding those cells that meet the error criterion. The retained nodes (new and old) “inherit” the
approximation from M1.

The end result is a new adaptively re3ned mesh and the approach continues recursively as above. The
approach also clearly applies to local polynomial enrichment schemes (p-type spectral re3nement)
and discontinuous Galerkin schemes.
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The basic idea, as with other nested iteration schemes and MG schemes, is that the “exact”
coarse grid solve is inexpensive and controls the low-frequency modes in the solution and error
[12,14,15,28,43,45]. Subsequent smoothing iterations on the 3ner grids progressively capture the
dominant high-frequency errors fast, while simultaneously providing increased accuracy on lower
mode content [63]. The embedding of nested grids ensures that nodal values in the coarser meshes
are repeatedly corrected at each smoothing iteration and the global smoothing step addresses the
pollution issue.

7. Mesh redistribution and moving boundary problems

We conclude this part of the study with some brief comments on mesh redistribution for layer
problems. Mesh redistribution is a standard strategy for improving the geometric quality of a grid
without modifying the topology of the mesh and therefore not requiring manipulation of the data
structure. This aspect was considered previously in the comments related to mesh smoothing. It
also can obviously be designed to grade the mesh into interior and boundary layers. However, the
geometric quality of the cells may then deteriorate as a result of this process to the point that accuracy
of the underlying approximation is compromised or the calculations fail. In this case, the geometric
properties of the mesh such as smoothness and orthogonality are often also considered together with
local error indicators in controlling the grid. That is, the optimization objective function would also
contain terms for grid quality and for error control. Another approach is to remove vertices or cells
to maintain the cell quality as the mesh deforms.

Other more direct strategies are also possible. The grid can be redistributed by introducing a grad-
ing function �(x) that depends on the solution. For example, a mesh could be graded to interpolate a
monotone function with a layer such that the change in u is equidistributed on [a; b] by introducing

�(x) =
∫ x

a
|u′| dx

/∫ b

a
|u′| dx (16)

and solving {�i=i=N} to compute {xi}. In a similar way, we can seek �(x) such that the error in some
norm is minimized. The example u(x)=−(x+,)R +,R(1−x)+(1+,)Rx with ,=10−2 and R=− 1

4
has a boundary layer near x = 0. The L2 error obtained on (uniform versus redistributed) meshes
of 4, 8, 16 and 32 linear elements are (2:82×10−1; 4:74×10−2); (1:48×10−1; 1:18×10−2); (6:59×
10−2; 2:94 × 10−3) and (2:64 × 10−2; 7:34 × 10−4). More importantly, the layer approximation is
superior in the redistributed mesh: The graded mesh on 32 elements has approximately half the
elements in the interval (0; 0:1) and a rapid decrease in number of cells away from the layer. The
same strategy can be extended to the solution of two-point boundary-value problems by simply using
the current approximate solution uh in the expression for the grading function. See [18,21] for more
detailed discussion and associated algorithms.

The above ideas can be extended to problems that involve moving layers. Usually, the solution
of the 3eld problem and the mesh adjustment are decoupled at each timestep. A typical algorithm
proceeds as follows: An initial mesh is 3rst generated and adaptively re3ned or redistributed to best
approximate the geometry and initial data. Next, the evolution problem is integrated through one
or more timesteps using adaptive timestepping for error control. Periodically, during the integration
process the mesh is moved (redistributed) based on the dynamics, a feature indicator or an error



70 G.F. Carey et al. / Journal of Computational and Applied Mathematics 166 (2004) 55–86

indicator. Finally, the solution is interpolated or projected to the new grid before integration pro-
ceeds. In the case of moving layer problems with sharp fronts, due caution should be exercised
since the interpolation process may lead to dissipation errors that accumulate to degrade accuracy.
Note that this standard approach also applies to moving boundary problems and to problems with
moving interfaces such as the phase change boundary in Stefan problems, or a moving free surface
between two <uids [10]. Moreover, there is again very little di4erence between this “moving mesh
adjustment scheme” and one that is based exclusively on AMR/C. In the latter case, the algorithm
proceeds in essentially the same way but the mesh adjustment is made by re3ning cells invaded
by the advancing layer, while simultaneously coarsening cells being vacated by the layer. Level
set methods [60] are also useful for treating free surface problems such as the moving <uid–gas
interface.

A more unusual approach for propagating layers is to introduce a map to a moving frame and solve
for both the map and the solution that minimize a speci3ed objective function such as the L2 residual
of the transformed equation. In this approach, the mesh and solution are solved simultaneously at each
timestep. Since grid point coordinates are unknowns and their location is advanced at each integration
step, elements will usual deform and, in particular, grid points can “overtake” one another leading
to tangled grids. Hence, interior barrier penalties are needed to maintain a valid (nontangled) grid,
e.g., see [34,46]. In addition to the grid tangling problem, there are several other detractions to this
approach. For instance, the formulation implies that a linear problem is transformed into a nonlinear
problem and the number of solution variables is increased proportionally with the dimension so
computational eMciency is a concern. More generally, the complexity of the approach and other
complications such as treatment of complex geometry have discouraged practical use of these ideas
but decoupled formulations can be devised that circumvent some of these diMculties.

Cell quality merits a few additional comments particularly in view of the situation with moving
grids mentioned above. It is well known that triangles with large obtuse angles have poor approxi-
mation properties and that slender elements and rapid transitions in the mesh may also be associated
with numerical conditioning problems in simulations. Hence, we expect there may be numerical
diMculties arising here in treating boundary and interior layers.

Let us consider a patch of elements surrounding a single interior vertex node. Assume, for the
moment, that we 3x the boundary points of the patch and then seek to optimize the position of the
interior vertex such that the objective function is to be minimized by moving the interior point alone.
Setting the derivative of the objective function to zero yields a (usually nonlinear) algebraic equation
that can be solved numerically using, for example, Newton’s method with the constraint that the
point remain inside the patch. Next, let us view this strategy as one step in a nonlinear Gauss–
Seidel point relaxation scheme over the entire set of patches in the mesh. For each vertex node,
there is an associated patch and these patches provide an overlapping patch coverage of the mesh. In
precisely the same manner as the Gauss–Seidel point relaxation scheme for linear system solution,
we can sweep over the vertices of the mesh and apply the previous local patch scheme successively
to each vertex. (If an interior vertex is on a physical boundary then the vertex motion must be
appropriately constrained to move on the boundary.) This de3nes an outer point relaxation iterative
sweep with a constrained inner Newton scalar iteration for each patch. The outer sweeps continue
until a convergence criterion or stopping tolerance is met. Successive over- and under-relaxation
can also be applied [61,68]. Clearly, there are alternative descent schemes and solvers that can be
applied to search for the minimizer. However, the above scheme is intuitively appealing and can be
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Fig. 2. Unstructured ALE for the Taylor Anvil problem. Grid at early (a) and late (b) stages in the computation, colored
by plastic strain.

further specialized for problems exhibiting layer solutions that are directionally aligned (e.g., with a
boundary).

Lagrangian formulations and related Lagrangian–Eulerian numerical approaches are utilized in
certain classes of moving boundary problems such as impact problems involving large deformation
and plastic <ow. The elements deform and element shape quality will deteriorate locally to degrade
accuracy. If explicit integration is used, the timestep will go to zero as any element in the mesh
degenerates. Local grid re3nement with coarsening is helpful in this case, but other strategies such
as local smoothing of the grid or remeshing are also needed. The Taylor “anvil” benchmark problem
for an elastic solid cylinder impacting a rigid boundary is a standard test problem in this application
class. During impact, shockwaves traverse the cylinder and the cylinder and mesh deform signi3cantly
in the vicinity of the contact region as plastic <ow and large local deformation occur. The e4ects on
the mesh are indicated in Fig. 2 at two times during the process [48,49]. Even with the use of local
re3nement and element removal to improve degrading element shape quality, the mesh progressively
deteriorates. Consequently, the timestep in this explicit calculation becomes prohibitively small and
periodic mesh smoothing or remeshing is needed.

8. Case studies

In the following sections, we present AMR results for several applications involving solutions
with layer structure.
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8.1. Reaction–di3usion layers

The 3rst example is for a boundary layer problem arising in a stationary reaction–di4usion problem

−Vu + �2 c(u) = f; x∈�;

9u
9n = gN ; s∈/N ;

u = uD; s∈/D; (17)

where the parameter �2, the Thiele modulus, is the ratio of the di4usion time scale to the reaction
time scale. The general behavior for this type of problem is for a boundary layer to form along /D

when �2 � 1, becoming more severe as �2 → +∞. In the limit of �2 → 0, we obtain the di4usion
solution, in which the boundary data on /D has di4used to a steady-state solution.

In general, the reaction function c(u) can be highly nonlinear. Because boundary layers are com-
mon to most forms of the reaction function, we will consider simply the linear case c(u)=u. Results
for adaptive re3nement for the nonlinear case can be found in [4,11,30,35,53].

A standard result for the linear case is that the error in the energy norm, de3ned by ‖v‖E :=
(
∫
� |∇v|2 +�2|v|2 dx)1=2, is equal to the norm of the residual of the di4erential equation, measured in

the dual norm. Error indicators based on estimating the error in the energy norm, particularly in the
singularly perturbed case of �2 � 1, have been discussed in [1,66]. However, for nonlinear reaction
functions c, this energy norm is not very useful, and we will be interested instead in the error in
the equivalent H 1(�)-seminorm, de3ned by |v|V := (

∫
� |∇v|2 dx)1=2, which is a natural norm on the

space V := {v | v∈H 1(�); v|/D = 0}.
The 3nite element solution uh for problem (17) is computed using bilinear shape functions on

quadrilateral elements in the standard way. The residual functional R(uh) is de3ned by

〈R(uh); v〉 :=
∫
�
{f v−∇uh ·∇v− �2uhv} dx +

∫
9�

gNv ds; v∈V: (18)

The global residual can be expressed as a sum of local residuals on each element K by the relation

〈R(uh); v〉 :=
∑
K

{∫
K

rKv dx +
∫
9K

RK v ds
}

; v∈V; (19)

where rK := f + Vuh − �2uh is the element residual and RK is the edge jump residual de3ned on
any edge � ⊂ 9K with normal nK by

RK |� :=




0; �∈ 9K ∩ /D;

gN −∇uh · nK ; �∈ 9K ∩ /N ;
1
2{∇uh|L −∇uh|K} · nK ; �∈ 9K ∩ 9L 	= ∅:

(20)

We consider two simple error indicators, one based on computing the weighted norm of the <ux
jump residual, and another based on locally projecting the residual onto element quadratic bubble
functions. The 3rst is related to postprocessing the solution using superconvergence, while the second
is based on local estimation of the residual, with coupling of global error through the Neumann
boundary data.
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The explicit <ux element error indicator [41] is de3ned by

3FLUX
K :=

(
hK

24

∫
9K

|RK |2 ds
)1=2

; (21)

where hK is the element diameter.
The element residual error indicator in [8] is based on solution of a local element problem in the

space of quadratic bubble functions, denoted by B2(K). The forcing data is the element residual and
<ux jump residual. Thus, we solve for  RES

K ∈B2(K) such that∫
K
∇ RES

K ·∇v dx =
∫
K

rK v dx +
∫
9K

RK v ds; v∈B2(K): (22)

The local element error indicator is then

3RES
K :=

(∫
K
|∇  RES

K |2 dx
)1=2

: (23)

In either case, we can de3ne 3 := (
∑

K 32
K)1=2 to be the global error indicator.

We now present results for a boundary layer computation with domain and boundary given by

� := {(x; y)∈R2 |y¿ 0; x2 + y2 ¡ 1};
/N := {(x; y)∈R2 |y = 0; −16 x6 1};
/D := 9�=/N : (24)

The Dirichlet boundary data is de3ned in polar coordinates by the simple linear function uD(s) :=
uD(6) := 0:5+6=7, for 06 66 7 and we take gN =0 and f=0. We choose the Theile modulus to be
�2 = 100, which is suMcient to produce a boundary layer along the boundary /D. All computations
are assisted by adaptive algorithms from the deal.II library [6]. We use a stopping criterion of 1000
degrees of freedom.

We see in Fig. 3 that both error indicators lead to a very similar mesh that is graded into the
boundary layer. The mesh re3nement and solution history for the averaged <ux error indicator is
presented in Fig. 4. The similarity between the error indicators can be attributed to the fact that for
smooth solutions, the largest contribution to the error, asymptotically, is the edge residuals, which

Fig. 3. Final adapted meshes for (17) using (a) averaged <ux error indicator 3FLUX
K and (b) element residual error indicator

3RES
K with �2 = 100.
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Fig. 4. Sequence of adaptive solutions to (17) with �2 =100 obtained using averaged <ux residual error indicator. Contours
range from zero to one.

is a special case for using odd polynomial degree elements. Since both error indicators include the
<ux jump residuals, they lead to the same asymptotic behavior. The element residual error indicator
3RES
K is more desirable if one wants an upper bound on the error.
In fact, for a simple problem on the unit square (0; 1)2 with /D := {(x; y) | x = 1; 06y6 1}

and uD := 1, we can compare the values of the two error indicators on the layer of cells in the
boundary layer (which are the cells with the largest error indicator values) under uniform re3nement.
From Fig. 5, we see that asymptotically, the same values are obtained, while on the coarser mesh,
the additional element residual term results in a larger value of the error indicator for the element
residual error indicator.

8.2. Capillary surface layers

The behavior of the free surface of a <uid, or capillary surface, is governed by a combination of
surface tension, gravity, adhesion to boundaries, and the geometry of these boundaries. Minimizing
the sum of the associated energies for a static <uid (subject to a volume constraint) results in the
Laplace–Young equation for the height u of an equilibrium capillary surface [32] and the contact
angle natural boundary condition. In nondimensional form, the Laplace–Young equation can be
written as

∇ · [k(|∇u|)∇u] = u; (25)
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Fig. 5. Values of error indicators on elements within the boundary layer with �2 = 100.

where k(|∇u|) = (1 + |∇u|2)−1=2. In contrast with reaction–di4usion equations (mentioned in the
previous case study) where the nonlinearity is in the forcing term, the nonlinearity now occurs in
the di4usion term.

The “constant contact angle” boundary condition is

k(|∇u|)∇u · n̂ = cos 6; (26)

where 6 is the contact angle between the surface and the boundary and is determined by the properties
of the boundary and <uids involved.

For most liquids, surface tension e4ects cause either a raised or depressed layer adjacent to the
boundary of a container. Typically, such surface tension e4ects are limited to regions within a
small distance of the boundary, and these short length scale e4ects are often neglected for problems
where larger-scale behavior is of interest. In other cases, it may be suMcient to consider a 3rst-order
linearization of the nonlinear problem [33]. However, in certain cases, the small-scale boundary layer
e4ects are important. For example, when dipping electronic components into <uids, such as a solder,
these e4ects may cause the contact line between the component and the <uid to be nonuniform in
height, weakening the structure.

Also, the <uid behavior near a corner is known to depend strongly on the angle 
 of the corner,
and the contact angle, 6. Depending upon the values of 
 and 6, the solution can be locally planar
[42] or the solution may not extend continuously to the vertex [44]. If the form of the corner
singularity is known, special basis functions can be used locally. However, for reentrant corners this
information is not available. Therefore adaptive re3nement is a logical choice in such situations.

Calculations here are performed using a continuous Galerkin formulation of the weak equation

∫
�

{
∇u ·∇�√
1 + (∇u)2

+ u�

}
dx =

∫
9�

cos 6� ds: (27)
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These equations are discretized using bilinear or biquadratic elements and a combination of successive
approximation and Newton iteration for nonlinear convergence.

The deal.II library [6] is used for the calculations. The library automatically handles details such
as hanging node constraints and ensures that adjacent elements di4er by at most one re3nement
level. To estimate the error in each element the error indicator in (21) is used. The elements were
then ranked and a 3xed fraction (typically 20%) of the total number cells are re3ned at each stage.
Similarly, the elements with lowest error are coarsened (typically around 5%). For eMciency, the
solution on the coarse mesh is used as 3rst iterate on the re3ned grid in the nonlinear iteration
scheme. Due to the small problem size, it was possible to perform all calculations on either a single
processor or a dual SMP machine. Consequently, there was no need for domain partitioning.

First, we consider the case of a component of square cross-section that is partially immersed in
a <uid. Applying symmetry, the calculations were performed on the L-shaped domain shown in the
bottom of Fig. 6: The edges of the inner square have the contact boundary condition (26) and the
other boundaries have ∇u · n = 0. The example shown in Fig. 6 is for a 2 × 2 square in a larger
10×10 domain with cos 6=0:5. The initial grid consisted of 24 elements and was not graded in any
way. The solution shows the characteristic depression of the <uid along the edges into the corner
and signi3cant mesh re3nement near the corner singularity.

In a second study, the e4ect that a small sinusoidal deviation from a straight wall has on solution
behavior is examined. Nonadaptive techniques have been used to suggest that such con3gurations
produce almost 1D behavior with modi3ed contact angle conditions [3]. In the example shown in
Fig. 7, the disturbance has amplitude 0.2 and period 27, the domain size is 8×8, and wall boundary
condition is the contact condition with cos 6 = 0:5. The results show that as expected the solution is
similar to the one-dimensional case. It is evident that near the walls anisotropic re3nement would
be advantageous as boundary layers are evident. This was not possible using the deal.II library, but
the isotropic re3nement allowed a good representation of the behavior near the contact boundary
and corner.

8.3. The compressible Navier–Stokes equations

In this section, we consider the use of AMR for high-speed compressible <ows governed by the
Navier–Stokes equations. Eqs. (28)–(30) describe the conservation of mass, momentum, and energy
in a compressible gas [64]:

98
9t + ∇ · (8u) = 0; (28)

8
[
9u
9t + (u ·∇)u

]
= −∇P +

1
Re

[
Vu +

1
3
∇(∇ · u)

]
; (29)

8
[
9T
9t + (u ·∇)T

]
= −(∇ · u)P +

1
Re

[ �
Pr

VT + ;(∇u)
]
: (30)

Here u is the <uid velocity, 8 is the density, T is the temperature, P is the pressure, and � is the
ratio of speci3c heats (� = 1:4 for air at standard conditions). The equation set is closed with an
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Fig. 6. Solutions for AMR/C solution of Laplace–Young equation near a reentrant corner.

equation of state, which for air at moderate temperatures is the familiar ideal gas equation: P=8RT .
The viscous dissipation function ; in (30) provides frictional heating in the presence of strong shear
layers.

The equations have been nondimensionalized with respect to the freestream conditions and a
characteristic length scale, and several parameters arise in the process. The Reynolds number (Re =
8UL=,) represents the ratio of convective to di4usive forces and the Prandtl number (Pr = ,Cp=k)
is the ratio of viscous to thermal di4usion appear. The Mach number (M = |u|=c) is de3ned as the
ratio of <uid speed to the speed of sound and arises in the nondimensionalization of the boundary
conditions. When M ¡ 1 everywhere the <ow is subsonic and Eqs. (28)–(30) are parabolic. For
supersonic <ow (M ¿ 1), the equations are a mixed hyperbolic and parabolic set [51,64].

In the supersonic case, disturbances in the <ow3eld are unable to propagate upstream due to
the 3nite propagation speed of pressure waves. In such cases, strong interior shock layers develop
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Fig. 7. AMR/C solution of Laplace–Young equation with a sinusoidal boundary.

across which <ow properties are nearly discontinuous. In most problems of practical interest, the
locations of such shock layers are not known a priori and indeed may change with time. Addi-
tionally, <ow upstream and downstream of shocks is often relatively uniform. For these problems,
very 3ne grids are required in the vicinity of the shock for proper resolution, and should tran-
sition rapidly to a coarse grid away from the layer. This enhances computational eMciency by
not over-resolving uninteresting regions of the <ow3eld. For such applications AMR is very well
suited.

Supersonic <ow in a converging channel using AMR is shown in Fig. 8. For this (and subsequent
test cases) the coupled system of equations is solved implicitly at each timestep. A GLS stabilization
scheme is used, and any “hanging nodes” introduced by mesh re3nement are constrained algebraically
in the resulting linear system [18]. In this case, a pair of oblique shocks is set up from the leading
edge of the channel constriction. Upstream of these shocks the <ow is uniform, so a coarse mesh
is adequate. The shocks intersect and re<ect back toward the boundary of the channel, where they
interact with the viscous boundary layer. A 3ne mesh is needed in the shock–shock and shock–
boundary layer interaction regions.

Shockwave–boundary layer interaction is another important physical feature of supersonic <ow that
requires proper mesh resolution. In general, proper resolution of viscous boundary layers (required
for accurate skin friction and heat transfer coeMcient prediction) requires 3ne grids normal to solid
boundaries. Additionally, the structure of boundary layer solutions can be strongly in<uenced by
shockwaves in supersonic <ow. In Fig. 8, the re<ected shockwaves intersect the viscous boundary
layer, causing a rapid increase in pressure. The boundary layer responds to this adverse pressure
gradient by separating and creating the recirculation region located toward the rear of the pro3le
in the bottom right portion of the 3gure. When the <ow reattaches, there is often an increase
in heat transfer to the surface, which must be accounted for in the design of supersonic vehicle
components. Clearly, in this case, the details of the shockwave–boundary layer interaction is not
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Fig. 8. Pressure contours in a converging channel for a freestream Mach number M∞ = 2:5.

known in advance, and the mesh must evolve with the solution to provide adequate resolution in
regions of interest.

Fig. 9 shows the AMR supersonic <ow solution in a two-dimensional aircraft inlet at Mach number
M∞ = 2. Again, there are large regions of the domain upstream of the inlet that are uniform and
require only a coarse mesh resolution. In this case study, the computations begin on a relatively
3ne initial mesh which is subsequently locally re3ned based on the <ux-jump error indicator in Eq.
(??), which is applied to all the variables in the coupled system. The re3nement procedure does not
support coarsening elements below the resolution of the initial mesh, a limitation in this case that
results in an over-resolved mesh upstream of the inlet. The <ow3eld in this example is dominated
by a number of intersecting shockwaves and a strong secondary shock that forms as compression
waves coalesce from a separated, recirculating region.

On the top boundary, an out<ow boundary condition is used to allow <uid to leave the domain.
The boundary condition appears to behave well except in the immediate vicinity of the shock. In
the shock region, there is excessive numerical dissipation from the shock-capturing algorithm, which
causes an arti3cial re<ection from the “out<ow” boundary.

An interesting characteristic of shockwaves is that they form strong gradients normal to the wave,
but properties parallel to the wave are relatively una4ected. This has the implication that cells in the
shock layer subregion should be directionally re3ned so that degrees of freedom are introduced only
when they will help resolve the <ow3eld. In the example presented here cells are uniformly re3ned,
which may introduce unnecessary degrees of freedom parallel to the shock. This problem is more
pronounced in three dimensions where high resolution is only required normal to the shock surface.
As discussed previously, directional (or anisotropic) mesh re3nement requires more complicated
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Fig. 9. Compressible <ow in an inlet con3guration. Freestream Mach number M∞ = 2. Mach number contours with
streamlines (a), pressure contours with the computational mesh (b).
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Fig. 10. Geometry (a) and resulting potential 3eld with the adapted mesh (b) for ER <uids application.

software design and puts an additional burden on error indicators, requiring not only that they 3nd
cells where the error is large but also how to optimally re3ne them.

8.4. Coupled problems

Here we describe two examples involving solution of a coupled system of partial di4erential
equations. Similar examples for coupled <ow and heat or species transfer are common. A single
grid is adaptively re3ned in each of the cases discussed. It is clear that, in general, one can have
multiple layers in several 3eld variables when such coupled problems are considered and in this case
it may be eMcient to have di4erent adaptive grids (and error indicators) for the respective variables
when an iteratively decoupled algorithm is used. However, this also implies that the projection of
results between grids will be more complicated [20] as will any parallel algorithms on partitioned
evolving AMR grids.

8.4.1. Electro-rheological :ow
This example illustrates the use of AMR for resolving a shear-thinning layer and a nonoscillatory

interior velocity pro3le for a generalized Newtonian <ow model where the e4ective viscosity depends
locally on the gradient of a potential 3eld. The elementary example in Fig. 10 corresponds to <ow
of a suspension between two parallel walls with an applied electric 3eld across a pair of plates in the
mid-plane region. Particle orientation in the suspension responds to the applied 3eld and the e4ect
on the <ow can be modeled by introducing a viscosity that depends on the local electric 3eld. As a
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Fig. 11. Velocity pro3les at a range of horizontal locations for an ER <uid [68].

result, the <ow is “plug-like” in the interior center zone away from the plates and is shear-thinning
near the plates, as evident in Fig. 11 which shows computed horizontal velocity pro3les at several
locations along the length of the plate. The section velocity changes from a quadratic pro3le upstream
of the interaction zone to a blu4 pro3le in the mid-region and back to a quadratic pro3le as the
<uid leaves the interaction zone.

The AMR process not only resolves the shear thinning boundary layers rapidly and eMciently but,
as seen in the 3gure, also re3nes cells in the interior regime where the <uid enters or leaves the
interaction region between the plates. The interior AMR progressively removes oscillations in the
velocity pro3le that are evident for coarser grids during the re3nement/solution process.

The governing equations for this problem consist of the electrostatic potential equation and the
Navier–Stokes equations with a 3eld-dependent viscosity model. For a 3xed grid calculation, the
potential problem need be solved once only since coupling is one-way. However, in our case
the grid is being adaptively re3ned based on a local residual indicator for the <ow problem so
the potential problem is also solved on the updated grids. However, this potential solve is very
inexpensive.

8.4.2. Drift-di3usion semiconductor device problem
The next example also involves coupled solution with an electrostatic potential equation. The re-

maining PDE system consists of the drift-di4usion equations for transport of electrons and holes.
The behavior of the solution is characterized by extreme interior layers as illustrated by the elec-
trostatic potential solution in Fig. 12. Here the adapted grid is graphed on the solution surface for
illustrative purposes. If the grid is not adequately re3ned, then oscillations occur due to the drift
e4ect and evidence of slight oscillation can be still detected on careful examination of the 3gure.
In this example we have employed an arti3cial di4usion approach to stabilize the strong e4ect of
the drift term and this leads to some “smearing” in the layers. As re3nement proceeds the arti3cial
dissipation reduces accordingly. In this mathematical model, the coupling is two-way with the carrier
concentrations entering on the right of the electrostatic potential equation and the electric 3eld en-
tering as the convection coeMcient in the drift term of the carrier transport equations. Further details
of this application are provided in [24,26].
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Fig. 12. Electrostatic potential surface plot using adaptive re3nement and <ux upwinding.

9. Concluding remarks

The widely di4erent length scales arising in applications that exhibit boundary and interior layers
make these problems more diMcult and expensive to compute using standard numerical methods.
Adaptive grid redistribution and re3nement schemes provide an approach for addressing this diMculty.
Not only is it possible to identify and resolve the location of layers automatically during computation
via appropriate error indicators but the resulting discretized systems are often more robust and
reliable accurate eMcient simulation is enhanced. The ability of such methods to address di4erent
classes of layer problems (boundary layers, oscillatory interior layers, etc.) and especially the use
of anisotropic and hybrid grids warrants further study. The e4ectiveness of error indicators, their
sensitivity to the layer behavior and the treatment of pollution from the layers are also topics of
current interest as are directional error indicators for large problems. Element quality remains a
persistent concern especially when redistribution and moving grid techniques are applied. There is
a signi3cant overhead in implementing adaptive schemes. This occurs because of the complexity
of the data structures and the consequent software requirements. The problem is exacerbated when
one considers implementations in parallel computing environments where dynamic load balancing
of the adapting grid must be considered. In all, this subject provides a rich area for continued
research on boundary and interior layers that will be of great importance to the engineering science
community.
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