
Science of Computer Programming 66 (2007) 25–43
www.elsevier.com/locate/scico

Definition and use of Computation Independent Models in an
MDA-based groupware development process

José Luis Garridoa,∗, Manuel Nogueraa, Miguel Gonzálezb, Marı́a V. Hurtadoa,
Marı́a L. Rodrı́gueza

a University of Granada, Department of Software Engineering, E.T.S.I.I., c/Saucedo Aranda s/n, 18071 Granada, Spain
b Autonomous University of Madrid, Information Technologies, E.P.S., c/Tomás y Valiente 11, 28049 Madrid, Spain

Received 15 March 2006; received in revised form 31 August 2006; accepted 13 October 2006
Available online 22 December 2006

Abstract

Groupware systems allow users to be part of a shared environment in order to carry out groupwork. Members of a group
belong to organizations in which each one fulfils general and specific enterprise objectives. This paper presents a proposal,
from the perspective of the CSCW (Computer-Supported Cooperative Work) systems, for modelling enterprise organization and
developing groupware applications. This research work focuses on two specific models for the proposal: a conceptual domain model
formalized through a domain ontology, and a system model built using a UML-based notation. The second stems from the first and
each provides a Computation Independent View (CIV) with different objectives. Respectively, they allow a common vocabulary
for knowledge sharing to be established, and organization functional requirements to be specified, particularly those concerning
communication, coordination and collaboration. Furthermore, these models are part of a concrete MDA-based development process
of groupware applications that is also introduced.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: CSCW; Groupware development process; MDA; Ontology; OWL; UML; Enterprise modeling; Software models

1. Introduction

Computer-Supported Cooperative Work (CSCW) [23] studies and analyzes coordination mechanisms for effective
human communication and collaboration and also the technological systems supporting them. CSCW systems play an
important role in enabling business application integration across organizations, since most enterprises are involved
in cooperation processes and are also technology dependent. Nowadays, in order to stay competitive, enterprises must
be capable of quickly adapting their business processes to the new dynamic environments [3]. In addition, as a result
of technological evolution, enterprises must continuously rethink their business designs, and change their models
taking into account new challenges (technology, interoperation, cooperation, etc.) [11]. Social, organizational and
technological aspects influence functional requirements of a software system to be developed.

∗ Corresponding author.
E-mail addresses: jgarrido@ugr.es (J.L. Garrido), mnoguera@ugr.es (M. Noguera), miguel.gonzalez@uam.es (M. González),

mhurtado@ugr.es (M.V. Hurtado), mlra@ugr.es (M.L. Rodrı́guez).

0167-6423/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.10.008

http://www.elsevier.com/locate/scico
mailto:jgarrido@ugr.es
mailto:mnoguera@ugr.es
mailto:miguel.gonzalez@uam.es
mailto:mhurtado@ugr.es
mailto:mlra@ugr.es
http://dx.doi.org/10.1016/j.scico.2006.10.008


26 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Groupware has been defined [15] as “a computer-based system that supports groups of people engaged in a
common task (or goal) and that provides an interface to a shared environment”. Groupwork is performed by users
using distributed and powered groupware systems. These systems may be implemented by means of many current
technologies (Internet, wireless networks, mobile code, ubiquitous computing, etc.) that promote their use in different
contexts. The main functional requirements in the development of groupware applications are related to the following
key areas [15]:

• Communication. This activity emphasizes the exchange of information.
• Collaboration. This is an inherent activity in the group context.
• Coordination. This is related to the integration and harmonious adjustment of the individual work effort towards

the accomplishment of a greater goal.

On the other hand, the inherent complexity of CSCW systems requires a great deal of effort in specifications and
development [20]. The development of groupware systems is more difficult than that of a single-user application.
Consequently, methodologies and implementation techniques aimed at enhancing group interaction activities should
therefore be applied. Model-Driven Development (MDD) [1] has been advocated by academia and industry for many
years. Most of the popular and widely-used software engineering methodologies use models as the primary tool for
developing software; hence this can claim to follow an MDD approach. MDD can be defined as “an approach to
software development where extensive models are created before source code is written” [7]. By considering models
as first-class entities, MDD aims at reducing the complexity of software production. A primary example of MDD is
the Model-Driven Architecture (MDA) initiative of the Object Management Group (OMG) [36].

This paper presents a proposal for modelling enterprises and developing groupware applications from the
perspective of the CSCW systems under a concrete MDA-based development process. We argue that special emphasis
should be placed on the first stages of this process especially in order to (1) provide conceptual and system models,
i.e. Computation Independent Models (CIMs) [36], and (2) define connections between these CIMs and software
models. This entails sharing information about how an enterprise is organized (static description of its structure) and
relevant aspects of its behaviour (dynamics, member responsibility changes, etc.). Two concrete kinds of CIMs are
provided: ontology-based CIMs consisting of a conceptual domain model formalized through a domain ontology
and concretized for each particular system using an application ontology [25]; and a system model built by using a
UML-based CIM. The first allows a common vocabulary to be established (thereby enabling knowledge to be shared)
and the system description to be validated automatically. The second CIM allows specifying functional requirements
(especially those focusing on communication, coordination and collaboration) in a more flexible way through an
accepted standard (UML), in order to state clear connections between system models and software architectural
models [16]. The objective is to facilitate the subsequent software development.

The remainder of the paper is organized as follows. Section 2 presents a brief introduction to the MDA approach.
Section 3 describes the starting point for our proposal on the basis of a conceptual domain model and its formalization.
Section 4 describes a method for translating the previous conceptual model into a system model closer to the
development of groupware applications. It is illustrated by means of an enterprise case study. Section 5 introduces
the concrete MDA-based development process. Section 6 presents work in progress intended to carry out connections
with another MDA/UML-based development standard in order to obtain additional benefits of our proposal. The final
section summarizes the main contributions.

2. Introduction to MDA

MDA [36] is an approach to the development, integration and interoperability of IT (Information Technology)
systems. It distinguishes between models designed independently of any technical considerations of the underlying
platform, i.e. PIM (Platform Independent Model), and models that include such considerations, i.e. PSM (Platform
Specific Model). In addition, at a higher level of abstraction, OMG defines Computation Independent Models
(CIMs) [36] which focus on the domain rather than on showing details of the system structure. They provide a
vocabulary familiar to the practitioners of the domain in question.

Although MDA supports the elaboration of sophisticated models describing (at various levels of abstraction) the
applications to be developed, it does not include, however, precise rules or guidelines explaining how software



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 27

engineers can use them [36]. Consequently, in order to address software development for these systems, concrete
contributions should be proposed.

To ensure a model-driven approach for software development, standards for representing a variety of specific
models are being used or have emerged. Examples of such standards are UML (Unified Modeling Language) [40],
MOF (Meta-Object Facility) [37], SPEM (Software Process Engineering Metamodel) [39], EDOC (Enterprise-
Distributed Object Computing) [35], etc. In addition, a large number of MDA-compliant tools have been developed
providing developers with the capacity to operate on models [7]. In this context, the proposal that we will present
in the following sections centres on the definition and use of concrete CIMs as part of an MDA-based development
process.

3. Conceptual framework

3.1. Foundations

One key issue in the business process modelling that may entail important time-savings is enterprise information
modelling. Although enterprise modelling embraces various aspects (marketing, costs, strategy, etc.) [24], the focus
is usually on describing how an organization is structured and operates. An enterprise model can be defined as
“a computational representation of the structure, activities, processes, information, people, behaviour, goals and
constraints of a business, government or other enterprises” [17]. Due to the nature of the cooperation processes, these
should be integrated into an enterprise activity model which, in turn, might be directly connected to an organization
model [20]. Nevertheless, a variety of terms are often used interchangeably to describe cooperative environment and
organization functions. People involved in developing complex systems (as CSCW systems are) do not often agree on
the terms used to talk about the entities that may appear in the organization. Furthermore, even when the same terms
are used, the meanings associated with them may differ, i.e. the semantics.

A conceptual framework is therefore needed to exchange business process specifications between business
people and software engineers using a common vocabulary. The resulting specification must be sufficiently clear,
unambiguous and readily translatable into other representations. A conceptual framework is also useful for developers
and stakeholders to discuss what entities may appear in this kind of systems. Methodologies aimed at enhancing
this representation should be applied. The AMENITIES methodology [20] (intended to analyze, design and develop
cooperative systems) is based on behaviour and task models. Most of the concepts present in an enterprise model are
included in the conceptual framework provided by this methodology.

The use of ontologies to formalize a conceptual framework (such as the one provided by AMENITIES) improves
both the system description and the enterprise modelling. It enables a common vocabulary, knowledge to be
shared [16] and the reasoning about the entities described [5]. We have distinguished between the domain and the
application level [25] in the ontology design.

In the following subsections, we present the AMENITIES conceptual framework. This is considered as a
conceptual domain model. Then, we formalize this model (using a domain ontology) and instantiate it for each
particular CSCW system (using application ontologies).

3.2. Definition of the conceptual framework

The conceptual framework proposed in AMENITIES can be represented using a UML class diagram (see
Fig. 1) [20]. It establishes the basis for a common understanding between the different participants involved in the
task of specifying how an enterprise is organized and operates. It is important to note that in addition to identifying
the entities of a cooperative system and their relations, the methodology provides the way of modeling the groupwork
itself. This conceptual framework is considered to be a pattern that includes the main common concepts present in
CSCW systems, as well as the relationships between these concepts.

According to this conceptual framework, an action is an atomic unit of work. Its event-driven execution may
require/modify/generate explicit information. A subactivity is a set of related subactivities and/or actions. A task is a
set of subactivities intended to achieve certain goals. A role is a designator for a set of related tasks to be carried out.
An actor is a user, program, or entity with certain acquired capabilities (skills, category and so forth) that can play a



28 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Fig. 1. AMENITIES conceptual framework for cooperative systems.

role in executing (using devices) or being responsible for actions. A group performs certain subactivities depending
on interaction protocols. A cooperative task is one that must be carried out by more than one actor, playing either the
same or different roles. A group is a set of actors playing roles and organized around one or more cooperative tasks.
A group may be comprised of related subgroups. A law is a limitation or constraint imposed by the system that allows
the set of possible behaviour to be adjusted dynamically. An organization consists of a set of related roles. Finally, a
cooperative system consists of organizations, groups, laws, events and devices.

3.3. Formalization of the conceptual domain model in a domain ontology

The representations provided by the UML class diagrams are semi-formal and some explanatory texts should be
attached. Furthermore, a representation such as a class diagram is not suitable for machine processing and validation,
not to mention textual descriptions. Neither do graphical representations nor natural language specifications (possibly
stored in different formats) facilitate interoperability.

In this respect, ontologies and languages developed for the semantic web (e.g. XML-schema [48], RDF [44]
and OWL [42]) are proving to be a good tool for formalizing the information description in a machine-processable
manner [31,42] and separating domain knowledge from operational concerns. As far as business process modelling is
concerned, the enterprise model can be formalized using some of the languages mentioned above.

Fig. 2 shows an excerpt from the domain ontology definition for the conceptual domain model in OWL [42,30]: a
cooperative system is formed by a set of artifacts, events, groups, laws, etc.; a role is a set with at least one task; also,
a role is part of an organization. Statements concerning this appear in bold-type.

The notion of class and relation is shared with that of UML. However, the treatment and modelling differ somewhat.
For example, in UML, associations cannot be defined as standalone entities, while in OWL they are defined as
instances of a particular class called “Property”. In recent years there has been a lot of work concerning the mappings
between elements in both paradigms [38]. Further details and foundations of how this can be accomplished can be



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 29

Fig. 2. Excerpt of domain ontology for AMENITIES conceptual framework in OWL.

Fig. 3. Graphical representation of domain ontology.

found in [13]. Additionally, this description of the system can be shown to stakeholders, graphically. Fig. 3 depicts
how OWL specification of Fig. 2 can be automatically translated into a graphical representation [28] similar to a class
diagram. The “hasPart” and “partOf” relations have been omitted for readability reasons.

3.4. Application ontology

The classes described in the domain ontology are instantiated through an application ontology. The application
ontology provides a CIM for each particular system. This ontology includes basic relationships (aggregation,
association and specialization) between instances of classes.

Fig. 4 shows an example (also generated from an OWL specification) of an application ontology corresponding to
three different companies which cooperate in order to agree whether to grant a mortgage which a client has applied
for. This case study will be described in depth in the following section showing how the application ontology provides



30 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Fig. 4. Example of application ontology obtained from a domain ontology.

the basis for a different system representation more suitable for use in a software development process. Fig. 4 is an
ontology-based model which makes explicit the instances that form part of the proposed cooperative system according
to the conceptual domain model of Figs. 1 and 3.

4. The UML-based cooperative model

4.1. Motivations and foundations

The ontologies introduced in the previous section serve as a formal substrate against which to validate the elements
to be added to the system description. The aim behind the development of groupware applications is to support
processes based on interactions between cooperating users.

From the point of view of the software development, as part of the requirement modelling, these interaction
processes might be described using, for example, workflows and/or role models, and allow stakeholders and developers
to discuss and negotiate requirements. In order to address these issues, a system model, called Cooperative Model
(COMO), is proposed. This system model describes the system regardless of its implementation and therefore it also
turns out to be another CIM called COMO-CIM.

Most of the interaction processes expressed in this system model are covered by the ontology-based CIMs of
Section 3, and the mutual correspondences are shown in the following subsections. However, more development-
oriented aspects such as subactivity/action ordering (to be defined in tasks) and event sequence are not addressed in
the ontology-based CIMs. That is why the COMO-CIM is useful for specifying a system from the point of view of
its structure and behavior. The proposed COMO-UML notation [18] is based on UML state and activity diagrams
(notations specially used for specifying software artifacts), and it is basically a graphical notation (operational) that
integrates small declarative sections. Classes and associations in COMO-UML preserve the same semantics as in
UML. The operational semantics for the COMO-UML notation using the CPN (Coloured Petri Nets) formalism
is described in [19]. This semantics enables the verification of certain system properties (deadlocks, liveness,
etc.).



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 31

Table 1
Correspondences between the ontology-based domain model elements and the COMO-UML elements

4.2. Method

In order to translate an application ontology into its corresponding COMO-CIM, which will be hierarchically
structured, we propose a simple method based on the concepts and relationships of the domain ontology. This method
consists of the four following steps: specification of the organization, role definition, task definition and specification
of interaction protocols. Only for the first step, the main correspondences between both types of CIMs are described
in detail.

4.2.1. Specification of the organization
This reflects the organization structure and constraints on the actors’ behaviour. A company’s internal structure is

based on organizational roles that must be identified. In addition, in relation to coordination requirements, relevant
relationships between roles are identified on the basis of constraints imposed by company rules and/or goals.
Laws represent these constraints that the organization imposes to control role changes. Laws may also interrogate
capabilities, which state skills/categories that actors have acquired. Both concepts are very helpful when defining
and analyzing possible organization strategies (e.g. behaviour patterns) and group dynamics (representing group
behaviour).

The previous domain ontology is reused in order to automatically generate this new representation. To achieve this,
translation schemes between these different models must be clearly established. Table 1 shows some correspondences
related to the specification of the organization between the elements in both types of model.

All the classes in the OWL ontology are mapped onto classes of the COMO-UML notation. The OWL Role
class is mapped onto the COMO-UML Role class. The same is for the class Law. Additional classes and relations
(properties in the OWL jargon) must be defined with respect to the 3-ary association connect (two roles, source and
destination, and the law which governs the transition between them). This is because OWL language does not provide
the necessary vocabulary so that n-ary relations may be defined [34]. In this case we have defined one fictitious class
(RoleConnection Relation) and two fictitious properties (role value and connection law) which link the subject of the
relation (the source role) with its objects (the target role and the law that rules the change).

4.2.2. Role definition
Each organization divides the workload among its members, whereas each role establishes a connection between

these and specific tasks (individual and/or cooperative). This step is intended to define each previous role by the set of



32 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Fig. 5. Organization diagrams.

tasks that can/must be performed. The tasks involved are specified by taking into account relevant requirements that
might affect the participants’ behaviour. For instance, relevant information would be the event that triggers a task or
interrupts it when it is being performed (denoting task priorities).

4.2.3. Task definition
Tasks define work that can be directly identified in relation to individual or group goals. In this step, each previously

specified task is broken down into related subactivities. They describe cognitive capabilities that participants need to
accomplish work. Each subactivity/action includes the specification of those responsible and optional roles needed to
accomplish it.

4.2.4. Specification of interaction protocols
In this last step, the interaction protocols in the above task definition are described. In each non-structured

collaborative activity, the type of protocol used to accomplish this objective between participants is explicitly specified.
The identification of such protocols is extremely helpful since they identify system requirements such as type of
communication required (synchronous and asynchronous) and type of communication channel (link, mailbox, etc.)
for supporting collaboration.

4.3. Case study

We illustrate the previous method for obtaining the COMO-CIM using the above mentioned case study (i.e. three
companies that cooperate in order to agree whether to grant a mortgage). This model stems from the application
ontology shown in Fig. 4 using the COMO-UML notation. Again, only for the specification of the organization, the
main correspondences between the main elements are described in detail.

4.3.1. Organizations
The case study comprises three organizations: branch, valuation office and notary’s office. The organization

diagrams obtained are shown in Fig. 5.



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 33

Table 2
Specification of the organization (application ontology level)

For instance, the branch organization has three specialities: (bankManager, headOfRisk and teller) and one group
with four members specified for each role as multiplicity value (one playing role bankManager, one playing the
headOfRisk role and two more playing the teller role). Initially, laws (identified as [<law>]) checking capabilities
(identified as <capability>?), e.g. [bankManager?] determine the role that is played by each member according
to his/her professional category, specialization, etc. Members may dynamically change roles that they play as a
result of various circumstances. One example of this requirement is that the organization imposes laws such as
[Absent(bankManager)], i.e. the actor playing the role headOfRisk can become the bankManager if the manager
is absent.

In relation to the correspondences between the conceptual domain elements and the COMO-UML elements
(see Table 1), the Table 2 shows how it is specified that an actor playing the role headOfRisk may start
playing the role bankManager when the actor playing this last role is absent. This consists of a 3-ary relation
comprising the source role, the target role and the law which rules the transition. It can be identified as the
element roleConnection Relation 1, an instance of the fictitious class RoleConnection Relation (see Section 4.2.1). It
implements the connection between the roles headOfRisk and bankManager through the fictitious relations role value,
with the value bankManager, and connection law, with the value bankManagerAbsent. This constraint has also been
highlighted in the graphical representation of the ontology-based application model (see Fig. 4).

4.3.2. Roles
Fig. 6 shows two obtained role definitions from the application ontology, i.e. the roles headOfRisk and valuer which

belong to different organizations, respectively, branch and valuationOffice. The common task they are all involved in
is the cooperative task mortgageGranting. This form of specification allows us to associate different context elements
(events, actions, number of members) for each role involved in the same task. In this example, all roles (including
this task) specify that no explicit event is required to be triggered, but at the same time, the organization requires
that first, the mortgage has been applied for (law [mortgageApplied]), so that the task can be started. In addition,



34 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Fig. 6. Role diagrams.

for the role headOfRisk, when task mortgageGranting is being performed, it could be interrupted if a new client
arrives at the office (individual task serveClient). The number of members required for the same cooperative task is
specified with the multiplicity value associated with each occurrence of that task for each role (one headOfRisk and one
valuer).

4.3.3. Tasks
As an example of mapping between models, Fig. 7 shows the task mortgageGranting. Since this is a cooperative

task requiring more than one participant to accomplish it, it specifies that a collaboration requirement be satisfied.
The COMO-UML notation enables us to specify temporal-ordered constraints of subactivities/actions by means of
sequential (arrows) and concurrent (thick bars) constructions. Bifurcations (labelled with a diamond) denote a decision
point. The current ontology-based models do not address the specification of this kind of information.

A subactivity is to be described in more detail. This notation assigns roles to subactivities/actions. Each
subactivity/action includes the specification of those responsible roles needed to accomplish it. Task definition may
also include relevant requirements about the task:

• information to be needed and used, even in a required status (e.g. valuationReport)
• coordination mechanisms
• organization politics (decision making, protocols, workload, etc.).

4.3.4. Interaction protocols
In order to carry out non-structured work, the interaction protocols between participants must be identified and

associated to the corresponding subactivities. The role specification for each subactivity/action may comprise one of
the following operators: optionally ([]), addition (+), inclusive-OR (|) and exclusive-OR (X ). For instance, in Fig. 7
a decision-making (subactivity decideConcession) is performed by both the bankManager and headOfRisk. For this,
they use a conversational protocol, face-to-face (synchronous communication) and a shared workspace where required
information is available.

5. A systematic development process

In order to reach the objective of stating clear connection between previous CIMs and software models, this section
proposes the MDA-based development process for groupware applications. It is made concrete defining specific MDA
artifacts to be applied.

5.1. General scheme

The development process is depicted in Fig. 8, which is described below according to its correspondence with
phases in a general software development process [10,47]. This process includes in its early phases the previously
introduced CIM models, and in subsequent phases, connections with architectural software models already applied to
real developments of groupware applications [21].



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 35

Fig. 7. Task diagram.

5.1.1. Requirements engineering
Requirements engineering is defined as “a systematic process of developing requirements through an iterative,

cooperative process of analyzing the problem, documenting the resulting observations in a variety of representation
formats, and checking the accuracy of the understanding gained” [43]. Certain stages of the process such as analysis,
viability and modelling, should provide a full description of requirements, including functional and non-functional
requirements to be satisfied. Requirements engineering also embraces the development of abstract system models
(like part of a detailed system specification) [33].

The starting point for this phase is the domain ontology described in Section 3. This model is assumed as the first
CIM in the process whose instances are defined as application ontologies. The development of the models to be built
in subsequent phases stems from the translation of each particular application ontology into an MOF-compliant model
(i.e. the UML-based cooperative model introduced in Section 4). This is accomplished by the definition of a UML
profile for standardizing the COMO-UML notation used. Although the resulting model continues to be another CIM
model, this translation enables us to connect easily system models with software development models [8], since these
last models might use the UML standard modelling language [16]. The output of this requirement phase will be a CIM,
above called COMO-CIM. Since this CIM is a system model centred on specifying functional requirements, it includes
parts to be identified directly with cooperative processes which must be supported by groupware applications/tools.



36 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Fig. 8. MDA scheme for developing groupware applications.

5.1.2. Architectural design
An architectural design is defined [45] as the design of “the overall structure of the software and the ways in

which that structure provides conceptual integrity for the system”. The design of this architecture “occupies a pivotal
position in software engineering” [12]. An architectural design [26] might specify the following basic elements:
subsystems, components, interactions, ports, etc. Subsequently, architectural design is the next phase to address in
the development process. In this way, the COMO-CIM must then be marked by taking into account an abstract PDM
(Platform Description Model) [6] in order to provide a logical view for the architectural design [21].

This marking phase allows us to link domain elements (roles, cooperative tasks, etc.) represented in the COMO-
CIM with architectural software elements. For example, let us consider information about the role (bankManager) that
an actor must play in order to carry out the specific subactivity of approving the granting of a mortgage (giveApproval).
This would result in a requirement to be satisfied by a groupware application if its software implementation is
required. The resulting PIM (Platform Independent Model) [2] is stereotyped as <<marked>> and named COMO-
PIM (COoperative MOdel-Platform Independent Model). This PIM represents architectural design aspects such as
what subsystem will be in charge of implementing previous functional requirement.

5.1.3. Detailed design and implementation
The following step corresponds with a detailed design phase since architectural PIMs even exclude platform-

specific details. Therefore, another marking step (according to specific PDM) is required in order to obtain a PSM. For
example, an implementation of a groupware application using a Jini platform [21] must add the marks corresponding



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 37

Table 3
AMENITIES Profile: Stereotypes

Amenities diagram type Stereotype UML metaclass (base) Parent

Organizations

OrganizationSpec StateMachine N/A
Role State N/A
ComputerRole State Role
Law Constraint N/A
BA Transition Transition N/A
Task State N/A
Coop-Task State Task
AME Action Activity N/A

Task, sub-activities and interactions

ResponsableSpec Class N/A
UnitOfWork ExecutableNode N/A
AME SubActivity ExecutableNode UnitOfWork
AME Action ExecutableNode UnitOfWork
LocalCondition Class N/A
Team Class N/A
RoleBinding Class N/A
Communication Req Class N/A
Interaction ProtocolSpec Class N/A

to the Jini [46] architectural paradigm, such as “services”, “leasing”, “principals”, or “events”. Finally, this PSM
shall be used to generate groupware applications. This result is called by some authors [4,8] as Platform Specific
Implementation (PSI).

The system could be implemented in any other specific platform because MDA process would allow generating
different PSMs depending on each final implementation platform. In addition, as MDA promotes, it is possible to
restart this process at any phase using the corresponding generated model.

5.2. MDA artefacts

For standardization of the COMO-CIM we have chosen profiling as an alternative in order to extend UML
metamodels. This is because it is a simple, direct and effective mechanism for capturing domain specific characteristics
in the form of models [2,8]. The profile is based on UML 2.0 Superstructure [40] and it has been divided into three
groups of use on the basis of the main diagrams provided by the COMO-UML notation:

– Organizations (specification of organizations, bidirectional and additive transitions, etc.)
– Roles (cooperative tasks, events, etc.)
– Tasks, subactivities and interactions (subactivity, units of work, communication requirements, etc.).

Tables 3 and 4 are respectively, a summary of the main stereotypes and tagged values defining this profile.
Fig. 9 shows the relationships between the profile and the UML metamodel packages [40]:

• The Kernel, “represents the core modelling concepts of the UML, including classes, associations and packages”.
InformationObject, Capacity and Law stereotypes are based on this package.

• The PrimitiveTypes “have been defined for use in the specification of the UML metamodel. These include primitive
types such as Integer, Boolean and String”. We have used these for tagged values (e.g. the IsInterruptByAny and
IsAdditive booleans).

• The BasicActivities, “supports modelling of traditional sequential flow charts. It includes control sequencing”.
Additionally, IntermediateActivities provides concurrent control and data flow (e.g. JoinNode, ForkNode) and
StructuredActivities, i.e. the traditional structured programming constructs (e.g. ConditionalNode, LoopNode).

• Communications, BasicBehaviours and BehaviourStateMachines introduce the different mechanisms to specify
behaviours such as automata and Petri-net. For example, the BehaviourStateMachines package provides key
elements like StateMachine, State and Transition which are the basis for OrganizationSpec, Role and BA Transition
stereotypes.



38 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Table 4
AMENITIES Profile: Tagged values

Amenities diagram type Tag Stereotype Type Multiplicity

Organizations
Multiplicity Role Multiplicity 1
IsBidirectional BA Transition Boolean 1
IsAdditive BA Transition Boolean 1

Roles

Multiplicity Coop-Task Multiplicity element 1
IsInterrupt ByAny Interruptible-Task Bolean 1
Interruptby set Interruptible-Task Task 0..n
Actions InformationObject AME Action 0..n
Information AME Action InformationObject 1..n

Task, sub-activities and interactions

Makes ResponsableSpec UnitOfWork 1..n
Comment UnitOfWork Comment 1
Responsables UnitOfWork ResponsableSpec 0..n
CommRequires Team CommunicationReq 1..n

Fig. 9. Relation between Amenities Profile and UML 2.0 packages.

As defined by MDA, the transformation between models (i.e. from CIM to PIM, and from PIM to PSM) needs
the source model to be marked according to the mapping defined for the target model [36]. Then, once this
profile has been defined, we establish their correspondence with a software architectural model that is technology
independent and specially devised for developing groupware applications. This architectural design proposal promotes
the division/partitioning of the whole system into components (called subsystems) to facilitate its development,
evolution and maintenance [21] (see Fig. 10). The Identification (users’ access control), Metainformation (metadata
management) and Awareness (contextual information) subsystems are always present for every groupware application.
The application subsystem is obviously specific and is to be developed for each particular groupware application.

Table 5 shows basic mappings from some elements of Amenities Profile (for CIMs) and this target architecture
(for PIMs). Concretely, Role and AME subactivity stereotypes, respectively representing organizational and activity
concerns, are considered to be translated into crucial architectural elements like components and subsystems.

With this mapping, a software architect can take the appropriate design decisions in order to accommodate the
domain requirements and architectural restrictions [14]. We make it by means of properties such as Arch name,
to name the target element to generate, and Subsystem type to indicate where to locate the element within a final
system subdivision. In addition, several transformations could be automatic. This is the case for the Role to Class
mapping which forces the obtained class to be encapsulated within the MetaInformation subsystem. In this way, this
subsystem would be in charge of storing certain information specified for the system (possible roles to be played, laws
constraining role changes, etc.) and supports all the functionality for managing metadata (new roles acquired, laws
applied by the organization, etc.).



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 39

Fig. 10. Architecture for groupware application: component view.

Table 5
Example of mapping from CIM to PIM

Stereotype/Metamodel
element

Added at Target architectural element Map comment See associated properties

Role CIM <<Class>> The <<subsystem>>

component containing
this element will be
“MetaInformation”

Arch name

AMEsubactivity CIM N/A The <<subsystem>>

component containing
this element will be in
the set: (Identification,

Awareness,
Application)

Subsystem Type, Arch name

Arch name
(property)

CIM to PIM
mapping

If subsystem type not
in (“Identification”,

“Awareness”,
“MetaInformation”)

gives the value of
attribute “name”, else

nothing.

It defines the name of
the target architectural

element.

Subsystem type
(property)

CIM to PIM
mapping

If subsystem type in
(“Identification”,

“Awareness”,
“MetaInformation”)

gives the value of
attribute “name”.

It defines the name of
the target architectural

element.

5.3. Applying MDA to the case study

An example of use of this profile for the roles and transitions in the organization valuationOffice is shown in Fig. 11.
It should be noted that the characteristics which are not present in UML, such as additive transitions, are obtained by
means of tagged values such as IsBidirectional and IsAdditive. It is worth mentioning how the lack of current industry
profiles covering all of these topics due to their more general aim (e.g. the EDOC Profile) made it necessary to adopt
an ad hoc proposal for CSCW systems.

Then, considering this valuationOffice organization from the COMO-CIM and using the mapping (see Table 5) to
the software architecture, the Director and Valuer roles would be transformed into two classes (entities belonging to
metaInformation subsystem) with the same names by setting its Arch name property.

We also show how we have addressed the specification of mortgageGranting cooperative task (see Fig. 7).
Elements like decideConcession, giveApproval and prepareDocuments subactivities, which can’t be translated
automatically to an architecture, must be marked (see Fig. 12) with Subsystem type property in order to decide



40 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

Fig. 11. valuationOffice organization instance: stereotypes values within COMO-CIM.

Fig. 12. Stereotyped subactivity instances after an architectural marking step.

whether they belong to a general purpose subsystem like Identification and Awareness or to a concrete Application
subsystem. In this case, the two first subactivities could have been marked with Subsystem type=“Application” and
Arch name=“DecisionSupport” meaning its functionality would be included in the same Application subsystem.
This facilitates the coordination in order to reach the needed decisions by means of a shared workplace, for instance.
The architect can decide that the third subactivity prepareDocument would be supported by means of a single-user
publication tool. Thus, the marking would differ in Arch name property, for example with “IndividualEditor” as value.

Once every relevant element has been marked (if not automatic mapping associated) to pass into the next phase,
those marks would be processed in order to compose the corresponding target model (Architectural-PIM).

The next step, “detailed design and implementation”, continues in the same way to complete the development
process. We have achieved successful experiences by using the data-driven programming model provided by the
JavaSpaces technology (based on Jini [46] and which implements the Linda coordination model [9]): a collaborative
appointment book application for groupwork has been implemented [21]. There exist several similar experiences,
which resolve these steps with other technological platforms (e.g. by using CORBA [32]).

6. Future work

Future work is targeted in four directions to complete the current proposal on the basis of its main weak points. The
first target is improving CIMs in order to achieve an automatic translation between ontology-based and UML-based
CIMs. For example, to enable the specification of temporal-ordered constraints of subactivities/actions in ontology-
based CIMs. Currently this is only supported in UML-based CIMs. Some properties and expressive power of the
UML-based cooperative model, such as those concerning task and event sequence, are not present in our domain and
application ontologies and must be described in a more specific task ontology. Moreover, another approach would be
to address the development phase connecting the ontologies with the software architecture directly.

Second, we consider EDOC in architectural and detailed design phases. This OMG proposal “simplifies the
development of enterprise distributed component-based systems by means of a modelling framework conforming



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 41

Table 6
Architecture for groupware and EDOC

Our architectural proposal for groupware EDOC Aspects

Yes Yes PIM oriented
No Yes (e.g. FCM, J2EE, CORBA) (PSM) technology mappings
Yes Yes Component-based
Yes Yes RM-ODP computational viewpoint
No Yes (ECA entities profile) RM-ODP information viewpoint
Yes (identification, awareness and metainformation subsystems) No CSCW oriented
No Yes (OMG’s) Standard

to MDA” [35]. The EDOC Profile provides a set of profile elements whose core is a technology independent
profile, the Enterprise Collaboration Architecture (ECA) [41]. Seven significant aspects lead us to consider EDOC
as one interesting alternative. Table 6 shows a comparative between the architectural proposal for groupware (used
in Section 5.2) and EDOC. Note that the standardization is a strong point in EDOC since it uses the conceptual
framework provided by the Reference Model of Open Distributed Processing (RM-ODP) [27]. However, EDOC aims
for universality so that it lacks specific groupware-oriented artefacts, unlike our proposal.

Third, the aim is clearly to identify the requirements of the system so that it can follow the life of each requirement,
in both a forwards and backwards direction in order to maintain an adequate requirements traceability.

Finally, we plan to incorporate quality evaluation in our proposal. To achieve this goal, it is necessary to identify
the key issues in both development and evaluation processes in order to provide criteria that allow selection techniques
to be applied.

7. Conclusions

In this paper, we have addressed the issue of connecting enterprise models to software models. A conceptual
domain model has been formalized using ontology-based models. This conceptual domain model provides a common
vocabulary of concepts and relations to be used in the specification of some aspects present in enterprise models. In
addition, using ontologies enables changes in the description of a class to be documented (i.e. if it is incompatible
with a previous version) and to state the mappings between the classes described in different models (i.e. if they are
equivalent, disjoint, etc.). While the first is useful for questions of maintenance and evolution, the second is useful
for questions of reuse and interoperability. At the same time, the underlying application ontology helps validate the
system.

In order to translate the ontology-based models into system models which enable functional requirements of the
software to be developed, a correspondence between the elements in the different types of models has been defined.
The system model represents the system on the basis of its structure and behaviour. The expressive power of the
used notation (COMO-UML), promoting participatory design, makes it easy for stakeholders to be involved in the
requirement negotiation process. Several approaches and standards, such as BPMN (Business Process Modeling
Notation), UML and so forth, have been proposed for business process modelling from the business analyst’s point
of view [22]. In particular, BPMN defines a BPD (Business Process Diagram) slanted to workflow descriptions for
modelling private and collaborative (B2B) business processes [29]. In comparison with the COMO-UML and these
other notations, the former additionally includes other modelling aspects [18]:

• Dynamic changes related to some classes in the problem domain, for example, the role played by an actor
may change throughout a real situation and can be specified using the COMO-UML organization diagrams (see
Section 4.3.1).

• Advanced specification (using operators such as optionally, exclusive-or and so forth) of different role
responsibilities or functional capabilities in performing subactivities/actions. This is an extension to BPD and
UML swimlanes (see Section 4.3.4).

• The possibility of specifying that tasks may be interrupted and which the interruptible tasks are. It influences how
an actor is involved in concurrent work.



42 J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43

• Use of interaction protocol for specifying main interaction characteristics between actors that collaborate by
performing non-structured work. These characteristics help to determine requirements for particular tools to be
used in supporting collaboration processes (see Section 4.3.4).

Finally, likewise BPML (Business Process Modeling Language) by BPMN and other competing standards such as
BPEL4WS (Business Process Execution Language for Web Services), in our case a concrete MDA-based development
process has been introduced intended to support the generation of required groupware applications in a software
development process. As far as this process is concerned, a conceptual framework is the starting point for creating two
types of CIMs with different objectives. The formalization of the conceptual model itself is the first CIM. The final
objective of this process is to state clear connections between the different parts of these CIMs models and software
models which would fulfil specified requirements. For that purpose, several MDA artifacts have been created (a UML
profile) and used (a groupware architecture, specific development platforms such as JavaSpaces, etc.). The profile
has been defined for a UML-based notation called COMO-UML and used to create an MDA-compliant CIM model.
In other words, the UML language is extended to a CSCW domain specific modelling language; in [16] a method is
described in order to restrict the syntax of UML for domain modeling. We argue that this proposal also helps to reduce
the gap between requirement modelling and the subsequent software implementation because the same language is
used to model the CSCW system as well as the software in it. Benefits have also become apparent from the experience
acquired in the development of real groupware applications. However, the process has not been applied strictly due to
the lack of CASE tools (still not developed).

Acknowledgement

This research is partially supported by the R+D project TIN2004-08000-C03-02 of the Spanish MCYT.

References

[1] J. Aagedal, I. Solheim, New roles in model-driven development, in: 2nd European Workshop on MDA, Technical Report No. 17-04, September
2004.

[2] M.S. Abdullah, A. Evans, I. Benest, C. Kimble, Developing a UML profile for modelling knowledge-based systems, in: Proceedings of
Model-Driven Architecture: Foundations and Applications, MDAFA 2004, 2004, pp. 202–216.

[3] L.F. Andrade, J.L. Fiadeiro, Agility through coordination, Information Systems 27 (2002) 411–424.
[4] J.P.A. Almeida, L. Ferreira Pires, M. van Sinderen, D. Quartel, A Systematic approach to platform-independent design based on the service

concept, In: Proceedings Seventh IEEE International Conference on Enterprise Distributed Object Computing, EDOC 2003, Brisbane,
Australia, September 2003, pp. 112–123.

[5] F. Baader, D. Calvanese, D. McGuineness, D. Nardi, P. Patel-Schneider, The Description Logic Handbook, Cambridge University Press, 2003.
[6] A. Belangour, J. Bézivin, M. Fredj, Towards Platform Independence: a MDA Organization, INRIA ATLAS de l’Université de Nantes, France,

LGI-ENSIAS Rabat, Maroc, 2002.
[7] R. Bendraou, P. Desfray, M.P. Gervais, MDA components: A flexible way for implementing the MDA approach, in: ECMDA-FA 2005,

in: LNCS, vol. 3748, 2005, pp. 59–73.
[8] T. Bloomfield, MDA, Meta-modelling and model transformation: Introducing new technology into the defence industry, in: ECMDA-FA

2005, pp. 9–18.
[9] N. Carriero, D. Gelernter, Linda in context, Communications of the ACM 32 (4) (1989) 444–458.

[10] J. Castro, M. Kolp, J. Mylopoulos, Towards requirements-driven information systems engineering: The TROPOS project, Information Systems
27 (2002) 365–389.

[11] H.-M. Chen, R. Kazman, A. Garg, BITAM: An engineering-principled method for managing misalignments between business and IT
architectures, Science of Computer Programming 57 (2005) 5–26.

[12] L. Chung, D. Gross, E. Yu, Architectural design to meet stakeholder requirements, in: P. Donohue (Ed.), Software Architecture, Kluwer
Academic, San Antonio, TX, 1999, pp. 545–564.

[13] D. Djuric, MDA-based ontology infrastructure, Computer Science and Information Systems (ComSIS) 1 (1) (2004) 91–116.
[14] M. Eichberg, MDA and programming languages, in: J. Bettin, G. van Emde Boas, C. Cleaveland, K. Czarnecki (Eds.), Workshop Generative

Techniques in the Context of Model-driven Architecture, OOPSLA 2002, November, 2002.
[15] C.A. Ellis, S.J. Gibbs, G.L. Rein, Groupware: Some issues and experiences, Communications of the ACM 34 (1) (1991) 38–58.
[16] J. Evermann, Y. Wand, Toward formalizing domain modeling semantics in language syntax, IEEE Transactions on Software Engineering 31

(1) (2005).
[17] M.S. Fox, M. Gruninger, On ontologies and enterprise modelling, in: Proceedings of the International Conference on Enterprise Integration

Modelling Technology 97, Springer Verlag, 1997.
[18] J.L. Garrido, Especificación de la notación COMO-UML, Tech. Rep. No. LSI-2003-2, Granada, Spain, University of Granada, Departamento

de Lenguajes y Sistemas Informáticos, 2003.



J.L. Garrido et al. / Science of Computer Programming 66 (2007) 25–43 43

[19] J.L. Garrido, M. Gea, A Coloured Petri Net formalisation for a UML-based notation applied to cooperative system modeling, in: P. Forbrig,
et al. (Eds.), Interactive Systems — Design, Specification and Verification, in: LNCS, vol. 2545, Springer, 2002, pp. 16–28.

[20] J.L. Garrido, M. Gea, M.L. Rodrı́guez, Requirements engineering in cooperative systems, in: Requirements Engineering for Sociotechnical
Systems, Idea Group, Inc., USA, 2005 (Chapter XIV).

[21] J.L. Garrido, P. Padereswki, M.L. Rodrı́guez, M.J. Hornos, M. Noguera, A software architecture intended to design high quality groupware
applications, in: Proc. of the 4th International Workshop on System/Software Architectures, IWSSA’05, Las Vegas, USA, June 2005.

[22] P. Green, M. Rosemann, M. Indulska, C. Manning, Candidate interoperability standards: An ontological overlap analysis, Data Knowledge
Engineering (2006), doi:10.1016/j.datak.2006.08.004.

[23] S. Greenberg, Computer-Supported Cooperative Work and Groupware, Academic Press Ltd., London, UK, 1991.
[24] M. Gruninger, K. Atefi, M.S. Fox, Ontologies to support process integration in enterprise engineering, Computational and Mathematical

Organization Theory 6 (4) (2000) 381–394.
[25] N. Guarino, Formal ontology and information systems, in: N. Guarino (Ed.), Proceedings of FOIS’98, Trento, Italy, June, 1998, IOS Press,

Amsterdam, 1998, pp. 3–15.
[26] C. Hofmeister, R.L. Nord, D. Soni, Describing software architecture with UML, in: Proceedings of the First IFIP Working Conference on

Software Architecture, WICSA1, San Antonio, TX, February 1999.
[27] ISO/IEC 10746-1, 2, 3, 4 | ITU-T Recommendation X.901, X.902, X.903, X.904, “Open Distributed Processing - Reference Model”, OMG,

1995–1998.
[28] Jambalaya 2.2.0 build 15 2005/07/07 15:04, The Jambalaya Project, More info at http://www.thechiselgroup.org/jambalaya.
[29] J.Y. Jung, H. Kim, S.H. Kang, Standards-based approaches to B2B workflow integration, Computers & Industrial Engineering 51 (2) (2006)

321–334.
[30] H. Knublauch, R.W. Fergerson, N.F. Noy, M. Musen, The Protégé OWL Plugin: An open development environment for semantic web

applications, in: LNCS, vol. 3298, 2004, pp. 229–243.
[31] I. Lera, C. Juiz, R. Puigjaner, Performance-related ontologies and semantic web applications for on-line performance assessment of intelligent

systems, Science of Computer Programming 61 (2006) 27–37.
[32] R. Maciel, et al., An MDA domain specific architecture to provide interoperability among collaborative environments, in: 19◦ Brazilian

Symposium on Software Engineering, 2005.
[33] L.A. Macaulay, Requirements Engineering, Springer, 1996.
[34] N. Noy, A. Rector, Defining n-ary relations on the semantic web, Editor’s draft 7 September 2005.

http://smi-web.stanford.edu/people/noy/nAryRelations/n-aryRelations-2nd-WD.html.
[35] Object Management Group (OMG): UML Profile for Enterprise Distributed Object Computing (EDOC), OMG Document ptc/02-02-05, 2002.
[36] Object Mangagement Group: Model Driven Architecture (MDA) Guide, v1.0.1, OMG, omg/03-06-01.
[37] Object Management Group: Meta Object Facility (MOF) specification. OMG Document formal/2002-04-03.
[38] Object Management Group: Ontology Definition Metamodel (ODM). Sixth revised submission to OMG/ RFP ad/2003-03-40, document/05-

08-01.
[39] Object Management Group: Software Process engineering metamodel v1.1 (SPEM), formal/05-01-06, January 2005.
[40] Object Management Group: Unified Modelling Language (UML) 2.0 Superstructure Specification, August 2003. Ptc/03-08-02, pp. 455–510.
[41] Object Management Group (OMG): UML Profile for ECA v1.0. formal/04-02-05, February 2004.
[42] M.K. Smith, C. Welty, and D.L. McGuinness, (Eds.), OWL Web Ontology Language Guide, W3C Recommendation, 10 February 2004,

http://www.w3.org/TR/2004/REC-owl-guide-20040210/. Latest version available at http://www.w3.org/TR/owl-guide/.
[43] K. Pohl, The three dimensions of requirements engineering, in: Proc. 5th Int. Conf. of Advanced Information Systems Engineering 1993,

Paris, Springer, Berlin, 1993, pp. 275–292.
[44] G. Klyne, J. Carroll (Eds.), Resource Description Framework (RDF): Concepts and abstract syntax, W3C Recommendation, 10 February

2004, http://www.w3.org/TR/rdf-concepts/.
[45] M. Shaw, D. Garlan, Formulations and formalisms in software architecture, in: J. van Leeuwen (Ed.), Computer Science Today: Recent Trends

and Developments, in: Lecture Notes in Computer Science, vol. 1000, Springer-Verlag, Berlin, 1995.
[46] Sun Microsystems: Jini Network Technology. http://www.sun.com/software/jini/index.html.
[47] C.R. Turner, A. Fuggetta, L. Lavazza, A.L. Wolf, A conceptual basis for feature engineering, The Journal of Systems and Software 49 (1999).
[48] D.C. Fallside, (Ed.), XML Schema Part 0: Primer, W3C, 2 May 2001. See http://www.w3.org/TR/2004/REC-xmlschema-0-

20041028/primer.html.

http://dx.doi.org/doi:10.1016/j.datak.2006.08.004
http://www.thechiselgroup.org/jambalaya
http://smi-web.stanford.edu/people/noy/nAryRelations/n-aryRelations-2nd-WD.html
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/rdf-concepts/
http://www.sun.com/software/jini/index.html
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/primer.html
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/primer.html

	Definition and use of Computation Independent Models in an MDA-based groupware development process
	Introduction
	Introduction to MDA
	Conceptual framework
	Foundations
	Definition of the conceptual framework
	Formalization of the conceptual domain model in a domain ontology
	Application ontology

	The UML-based cooperative model
	Motivations and foundations
	Method
	Specification of the organization
	Role definition
	Task definition
	Specification of interaction protocols

	Case study
	Organizations
	Roles
	Tasks
	Interaction protocols


	A systematic development process
	General scheme
	Requirements engineering
	Architectural design
	Detailed design and implementation

	MDA artefacts
	Applying MDA to the case study

	Future work
	Conclusions
	Acknowledgement
	References


