
Artificial Intelligence 135 (2002) 125–143

On the relationship between model-based
debugging and program slicing

Franz Wotawa 1

Technische Universität Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010 Graz, Austria

Received 16 November 2000; received in revised form 2 April 2001

Abstract

Program slicing is a general, widely-used, and accepted technique applicable to different software
engineering tasks including debugging, whereas model-based diagnosis is an AI technique originally
developed for finding faults in physical systems. During the last years it has been shown that model-
based diagnosis can be used for software debugging. In this paper we discuss the relationship between
debugging using a dependency-based model and program slicing. As a result we obtain that slices of
a program in a fault situation are equivalent to conflicts in model-based debugging. 2001 Elsevier
Science B.V. All rights reserved.

Keywords:Program slicing; Model-based diagnosis; Debugging

1. Introduction

Program slicing [24,25] is a well-known technique for debugging. If we have a specific
program, a location within this program, and a set of variables, then a slice is itself a
program that is obtained from the original program by removing all statements that have
no influence on the given variables at the specified position. Since slices are usually smaller
than the original programs they focus the user’s attention on relevant parts of the program
during debugging. Beside slicing there are many other debugging techniques proposed
so far, e.g., algorithmic software debugging [9,20], probability-based methods [4,5], and
other dependency-based methods [18]. However, in this paper we focus only on the use of
model-based diagnosis for debugging as introduced and described in [6,11,22]. Moreover,
we consider only a dependency-based model similar to the one used by Friedrich et al. [11].

E-mail address:wotawa@dbai.tuwien.ac.at (F. Wotawa).
1 Current address: Technische Universität Wien, Institut für Informationssysteme, Database and Artificial

Intelligence Group, Favoritenstrasse 9-11, A-1040 Vienna, Austria.

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(01)0 01 61 -8

126 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

The objective of this paper is to show the relationship between model-based debugging
using a dependency model and program slicing. The equivalence of slices and conflict sets
used in model-based diagnosis for computing diagnoses is the main result of this paper.
This result has two implications. The first implication is that slices for more than one
variable may contain too many statements. Some of the statements can be responsible
for all discrepancies but others cannot. In this sense a slice for several variables is
too pessimistic. The second implication is due to the computation of diagnoses from a
dependency model. Using the result we do not need to compute an explicit logical model
from the program dependencies. Instead we use the slices for every discrepancy as a
conflict set. The obtained conflict sets are then used directly by a hitting set algorithm in
order to compute diagnoses as described by Reiter [19]. Since at least good approximations
of slices for single variables can be computed at compile time, diagnosis time is only
bound by the hitting set algorithm. This result directly helps to improve the debugging
performance whenever using a model-based diagnosis approach with a dependency model.
The fact that only approximations of minimal slices can be computed is not a problem.
As a consequence maybe too many diagnoses are computed which can be removed during
debugging by using more observations, e.g., the knowledge of variable values at specific
program locations. Moreover, it is well known that only approximations of dependencies
between variables exist [15].

In this paper we use a small sequential programming language L which helps to focus
on the important issues and avoids considering unnecessary detail. All programs used in
this paper are written in L. Fig. 1 depicts the syntax definition of L. The semantics of L is
assumed to be equal to the semantics of any sequential imperative language like Pascal or
C. Without restricting generality L contains three kinds of statements: the assignment state-
ment, the conditional statement, and the while statement. Procedure calls are not allowed.

In the first two sections of this paper we recall the basic definitions of program slicing
and model-based diagnosis, briefly show algorithms for computing slices and diagnoses.
The next section introduces an algorithm for computing models of programs, discusses
some examples, and states our main theorem. Afterwards we discuss the implications of
our main theorem and show how model-based debugging relates to some extensions of
slicing. Finally we conclude the paper.

program::= procedure Id{{statement} ∗ }
statement::= assignment| conditional| while

assignment::= Id =expr;
conditional::= if (expr){{statement}∗}[{{statement}∗}]
while ::= while(expr){{statement} ∗ }
expr::= Id | Const| (expr op expr)|(mop expr)

op ::= + | − | ∗|/ | < | > | <= |>= | == | and | or | . . .
mop::= + | − | not | . . .

Fig. 1. Syntax of the language L.

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 127

2. Program slicing

According to Weiser [25] a slice is defined for a program Π and a slicing criterion
(n,V), where n is a line within Π and V is a set of variables.

Definition 1 (Slice). A slice S of a program Π on a slicing criterion C = (n,V) is any
program with the following properties:

(1) S can be obtained from Π by deleting zero or more statements from Π .
(2) Whenever Π halts on an input I , then S also halts on input I . The resulting values

of variables v ∈ V at position n must be equivalent for both programs.

This definition is not complete because it does not guarantee that a slice always contains
the line with number n. To avoid this problem we assume that line n is always the last line
in Π and always element of the slice, and that the line contains no statements. A minimal
slice is a slice that cannot be further reduced by removing statements without violating the
definition. Weiser [25] showed that computing minimal slices at compile-time is equivalent
to the halting problem and therefore undecidable. However, he showed that it is possible to
find a good approximation to a minimal slice.

There are several algorithms for computing slices. Danicic et al. [7] present a parallel
algorithm, and Horwitz et al. [14] introduce an algorithm for computing interprocedural
slices from a system dependency graph which is an extension of a program dependency
graph. For the language L only program dependency graphs have to be used for computing
slices. To be self contained we briefly examine how slices are computed from dependency
graphs as given in [14].

A program dependency graph GΠ for a program Π is a directed graph. The vertices
of GΠ represent assignment statements and control predicates that occur in program
Π . In addition GΠ includes the distinguished entry vertex. The edges of the graph
represent either control or data dependencies. The following informal definition of control
dependencies is taken from Horwitz et al. [14]. A control dependency edge is labeled either
true or false, and the source of the edge is either a predicate vertex or the entry vertex.
A control dependency edge between two edgesv1 and v2 means that during execution,
whenever the predicate represented byv1 is evaluated and its value matches the label of
the edge tov2, then the program component represented byv2 will be executed(although
perhaps not immediately). [10] introduces a method for computing dependency graphs
from arbitrary programs. For the language L the control dependency edges correspond
exactly to the nested structure of a program, i.e., a vertex p controls a vertex x if p is a
predicate for an if or while statement S and x is in the body of the statement S.

In this paper we only use one kind of a data dependency edge, representing flow
dependencies. Other kinds of data dependencies are not relevant for slicing. The
dependency graph GΠ contains an edge from vertex v1 to vertex v2 iff the following rules
hold:

(1) v1 defines a variable x .
(2) v2 uses the variable x .
(3) Control can reach v2 after v1 via an execution path that contains no vertex that

defines x .

128 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

Figs. 2 and 3 depict two programs together with their program dependency graphs. The
first program Main1 sums up the numbers from zero to nine. The result is stored in the
variable sum. The second program Main2 computes the area and the circumference of a
circle. The area is stored in a and the circumference in s. We will use the programs as our
examples explaining the underlying theory and algorithms.

Program slices for a program Π on a slicing criterion (n, {x}) can be obtained from the
dependency graph GΠ . In the first step the vertex v representing the last program position
before n where variable x is defined must be localized. In the second step the algorithm
collects all vertices that can reach v via a control or flow dependency edge. The statements
represented by the collected vertices (including vertex v) are equal to the program slice for
Π . According to Horwitz et al. [14] the slice extraction from dependency graphs can be
extended to a set of variables. The slice for a set of variables V can be computed using the
equation: (n,V)= ⋃

x∈V (n, {x}).
We illustrate slicing using the Main1 program and its dependency graph from Fig. 2.

The slice on (7, {i}) corresponds to the set of vertices lying on a path from the entry vertex

1. procedure Main1 {
2. sum = 0;
3. i = 0;
4. while (i < 10) {
5. sum = sum + i;
6. i = i + 1;
7. } }

Fig. 2. The L program Main1 and its dependency graph.

1. procedure Main2 {
2. pi = 3.14;
3. s = 2 ∗ r ∗ pi;
4. a = r ∗ r ∗ pi;
5. }

Fig. 3. The L program Main2 and its dependency graph.

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 129

to vertex 6. This set comprises 4 vertices: 6, 4, 3, and the entry vertex. The program slice
corresponding to the vertices is given below:

1. procedure Main1 {
2. sum = 0;
3. i = 0;
4. while (i < 10){
5. sum = sum + i;
6. i = i + 1;
7. } }

Note that line 7 (although it is not part of the dependency graph) is an element of the
slice on (7, {i}) as assumed previously.

3. Model-based debugging

Model-based diagnosis [8,19] is a well known technique for locating malfunctioning
devices in (physical) systems. The basic idea of model-based diagnosis is to have a logical
description of a system, i.e., the model, and a set of observations of the system. The used
model must be composed of components, that might be responsible for a misbehavior.
A misbehavior is detected whenever the observed behavior contradicts the behavior that
was derived directly from the model. As an advantage diagnosis is performed without
explicit knowledge about how to locate faulty components. In addition, the model is
only required to represent the correct behavior of components and the correct behavior
of systems. In our context, i.e., finding bugs in programs at the level of statements, the
components represent the statements. In this paper we assign every statement a unique
number, i.e., the line number. This number is also used to identify a diagnosis component
throughout this paper.

To be self contained we briefly recapitulate the basic definitions of model-based
diagnosis given by [19]. In the following SD is a logical model describing the behavior
of a system, i.e., the system description, COMP a set of components, and OBSa set of
observations. We further assume SDand OBSto be first-order-logic theories. The system
description makes use of the predicate AB(C) (¬AB(C)) to specify the incorrectness
(correctness) of a component C. The term ¬AB(C) says that component C behaves
correctly. In the context of software debugging this means that the statement in line C

does not necessarily contain a bug. AB(C) says that line C behaves faulty.

Definition 2 (Diagnosis, Reiter[19]). Let (CD,COMP) be a system and OBSa set of
observations. A set ∆⊆ COMP is a diagnosis iff

CD∪ OBS∪ {¬AB(C) | C ∈ COMP\∆} ∪ {AB(C) | C ∈∆}
is satisfiable.

130 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

A diagnosis is said to be minimal if no proper subset is a diagnosis. From Definition 2
follows that every superset of a diagnosis is a diagnosis. For example, if the program
computes a wrong value for at least one variable and the assumption that statement 1
is incorrect leads to a consistent state, then the assumption that statements 1 and 2 are
incorrect must also lead to consistency. Hence, the diagnosis {1} is minimal whereas {1,2}
is not.

The dual concept of a diagnosis which is used for computing diagnoses is a conflict.

Definition 3 (Conflict, Reiter[19]). Let (SD,COMP) be a system and OBS a set of
observations. A set CO⊆ COMP is a conflict, iff

SD∪ OBS∪ {¬AB(C) | C ∈ CO}
is contradictory.

The computation of diagnoses from conflicts makes use of the concept of hitting sets.

Definition 4 (Hitting Set, Reiter[19]). Let C be a collection of sets. A hitting set for C
is a set H ⊆ ⋃

S∈C S such that H ∩ S �= ∅ for each S ∈ C. A hitting set is minimal if no
proper subset of it is a hitting set.

For example, all minimal hitting sets for {{1,2}, {1,4}} are {1} and {2,4}. {1,2,4} is
also a hitting set but is not minimal. In [19] Reiter introduces the hitting set algorithm for
computing diagnoses using a set of conflicts. This algorithm was improved by [12]. The
relationship between diagnoses and conflicts is stated by the following theorem:

Theorem 5 (Reiter [19]). The set∆ ⊆ COMP is a(minimal) diagnosis for(SD,COMP,
OBS) iff ∆ is a (minimal) hitting set for the collection of conflict sets.

Whereas model-based diagnosis research mainly focuses on modeling physical systems,
several authors [2,3,6,11,22] have proposed the use of model-based techniques in software
debugging. Console et al. [6] introduce a model for debugging Prolog-like languages.
The authors claim that their approach improves Shapiro’s algorithmic debugging [20]
by reducing the required user-interaction necessary for locating a bug. Bond et al. [2,3]
critically analyze the work done by Console et al. [6] and show that the exception form for
diagnoses is not canonical, leading to an incomplete diagnosis computation procedure. To
overcome this problem Bond et al. propose an improved algorithm for debugging which
also generalizes the declarative error diagnosis approach from Shapiro [20]. Friedrich
et al. [11] introduce a system for debugging hardware designs written in the hardware
description language VHDL. The authors use a dependency-based model for debugging.
Because of the simplicity of the model a prototype implementation is able to debug even
very large programs. Stumptner and Wotawa [22] discuss the use of model-based diagnosis
in debugging more theoretically. In this paper the authors present different models for a
small functional language and some of the models’ properties.

The basic idea behind using model-based diagnosis for debugging is to derive a model
directly from the program and the programming language semantics. This model has to

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 131

distinguish components, describe their behavior, and the structure of the program under
examination. Although the objective of this paper is not to introduce a value-based model
representing the whole semantics of L, we show how such a model for the following
program would look like and how it could be used for debugging.

1. procedure Demo {
2. S = A and B;
3. D = not S;
4. E = S or C;
5. }

For modeling program Demowe assume that every statement is mapped to a diagnosis
component of COMP= {2,3,4}. It easily can be seen that the following model SD really
models the behavior of Demogiven by the semantics of the language L. The model makes
use of predicates ini (C,V) and out(C,V) which are related to ports of components. The
predicate ini (C,V) says that variable V is accessed in statement C, or that V is the ith
input of C. The predicate out(C,V) states that variable V is changed in statement C, or
that V is the output of C.

¬AB(2)→ out(2, S)= in1(2,A) and in2(2,B)

¬AB(3)→ out(3,D)= not in(3, S)

¬AB(4)→ out(4,E)= in1(4, S) or in2(4,C)

The structural knowledge obtained from program Democomprises only two facts:

out(2, S) = in(3, S)∧ out(3, S)= in1(4, S)

Without observations (represented as test-cases in the software domain) it does not make
sense to search for a bug. Therefore, we assume A = true, B = true, C = false before
executing Demo, and D = falseand E = falseafterwards as our test-case. Obviously Demo
must be buggy. Executing Demousing the given input results in E = truecontradicting the
specified output value for variable E. The test-case can be represented as follows:

OBS=
{

in1(2,A)= true, in2(2,B)= true, in2(4,C)= false,
out(3,D)= false, out(4,E)= false

}

In order to locate the bug we first compute the conflict sets. For this example we
obtain 2 conflicts: {2,4}, {3,4}. Whereas the first conflict is obvious, the second is not
and we explain it in more detail. From Definition 3 follows that {3,4} is a conflict if
and only if ¬AB(3) ∧ ¬AB(4) contradicts SD∪ OBS. From ¬AB(3), out(3,D) = false,
and ¬AB(3) → out(3,D) = not in(3, S) follows in(3, S) = true and (using in(3, S) =
in1(4, S)) in1(4, S) = true. This fact together with ¬AB(4), ¬AB(4) → out(4,E) =
in1(4, S) or in2(4,C), and the observation in2(4,C) = falseleads to out(4,E)= true. The
latter contradicts the observation out(4,E) = falsebecause out(4,E) cannot be true and
false at the same time. Hence, {3,4} must be a conflict. Using Theorem 5, we can compute
diagnoses directly from the set of conflicts. The diagnoses are: {4} and {2,3}.

132 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

The single fault diagnosis {4} indicates that the bug is located in statement 4. A possible
correction is to replace the or operator with an and. The double fault diagnosis {2,3} says
that statements 2 and 3 should be modified in order to make Demobug-free. Since two
bugs are more difficult to correct than a single one, we prefer single bug candidates over
multiple ones. It should be noted that the above value-based model is only one model
in the theoretically infinite model space. The dependency-based model used by Friedrich
et al. [11] and described in the following section is a different model. Different models
can be compared with respect to their discrimination capabilities or time requirements for
computing conflicts. A more detailed discussion of this issue is not in the scope of this
paper and has been left for future research. Other future research topics include the use of
abstract models of programs for model-based debugging, the development of models that
are specialized on specific bugs, e.g., faults regarding array accesses or wrong references,
and the integration of probabilities into the model-based debugging approach. Moreover,
more effort should be made in making model-based debugging applicable for debugging
large programs.

4. The dependency model

After dealing with the basic definitions of model-based diagnosis and how to use them
for debugging we introduce a dependency-based model for the language L. This model
is based on a model specified in [11] for the hardware description language VHDL. The
idea behind the model is to reflect dependencies between variables that are introduced by
statements. For example, consider the statement s ≡ ‘X = notY ’. In this statement variable
Y influences variable X because the value of X is determined by the value of Y. We say that
X depends on Y and write (X, {Y }). Note that there are possibly more than one variable
influencing a variable X. If MX is a set of variables X depends on, we write (X,MX). From
dependencies for statements we directly derive a logical model. The corresponding logical
rule for statement s is ¬AB(s)∧ ok(Y) → ok(X). This rule expresses that if the statement
s is bug-free (not abnormal, ¬AB(s)) and the variable Y has an expected value (ok(Y)),
then the value of the variable X must be correct. An algorithm for compiling a program Π

to a logical model has to reflect the sequential order of statements. For example, only the
last statement in the program Demo2given below determines the value of variable X:

1. procedure Demo2 {
2. X = 3;
3. X = 4;
4. }

In order to distinguish between variable definitions occurring at different points in the
program, we index every variable with the line number. For simplicity reasons we further
assume that each statement can be identified by the number of the line where it occurs.
The dependency-based model for Demo2 is {¬AB(2) → ok(X2),¬AB(3) → ok(X3)}.
Assuming that the resulting value of variable X after executing the program Demo2is
incorrect, we compute the fault locations. The observations OBSare formally represented

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 133

by the set {ok(X0),¬ok(X3)}. Using OBSand the model we obtain one conflict {3} and
finally one diagnosis {3}, indicating that the statement in line 3 is a bug candidate. Note
that the set OBSincludes the fact ok(X0) which means that the variable X has the correct
value before executing Demo2. This is a well founded assumption because otherwise a
bug, which causes the wrong value for X, must be located elsewhere in the program.

Until now we have introduced a model for assignment statements. In the rest of this
section we describe a model for conditionals and while statements. Every conditional and
while statement has an expression causing the program execution to branch. In order to
represent this behavior, we use a variable C with the line number of the statement as
index. This variable represents a control dependency edge in the program dependency
graph and can be seen as the result of the expression. For every statement in the sub-
block of a conditional or while statement s, the variable C is an input variable. For the
while statement s the variable C is an output. The inputs of s are the variables used in the
expression.

Although we have declared all inputs and outputs of statements, the logical rules
comprising the model need not be derived in a straight forward way. For example consider
the program Main1depicted in Fig. 2 and the following logical representation:

¬AB(2)→ ok(sum2)

¬AB(3)→ ok(i3)

¬AB(4)∧ ok(i3)∧ ok(i6)→ ok(C4)

¬AB(5)∧ ok(i3)∧ ok(i6)ok(sum2)∧ ok(sum5)∧ ok(C4)→ ok(sum5)

¬AB(6)∧ ok(i3)∧ ok(i6)∧ ok(C4)→ ok(i6)

This model may lead to problems regarding debugging. If we know that the variable
i is incorrect after executing Main1, represented by the observation ¬ok(i6), then we
cannot derive ok(C4), ok(sum5), ok(i6) anymore. Hence, only the empty diagnosis can
be computed, which is obviously not the expected result. The source of the problem is
that the while statement causes the dependency graph to contain cycles. Moreover, not the
single cycles are important. Instead strongly connected components (SCCs) are of interest.
A SCCis a subgraph where there exists a path between two arbitrary vertices. There are
algorithms for efficiently computing SCCs (see [1]). In Fig. 2 one SCCis spanned by the
vertices {4,6}. The super-graph spanned by all SCCs for the example program Main1 is
depicted in Fig. 4.

Every SCCindicates that all statements contained in it have an influence on each other.
It is not possible to make one of these statements responsible for an incorrect value
without further knowledge. Therefore, we view all statements {s1, . . . , sn} of the SCCas
bug candidates that can be logically represented by the rule ¬AB(s1) ∧ · · · ∧ ¬AB(sn) →
¬ab(CC), where CC represents the SCC. The behavior of a SCC representing a while
statement is defined relying on the principles explained above. We use the variables on
edges from vertices outside CC to vertices inside the CC as inputs, and those vertices

134 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

Fig. 4. The strongly connected component super-graph for Main1.

pointing from vertices inside CC to vertices from outside as outputs. E.g., the revised part
of the model for Main1 is fully specified by the following rules:

¬AB(4)∧ ¬AB(6)→ ¬ab(W)

¬ab(W)∧ ok(i3)→ ok(C4)

¬ab(W)∧ ok(i3)→ ok(i6)

¬AB(5)∧ ok(sum2)∧ ok(i3)∧ ok(i6)∧ ok(C4)→ ok(sum5)

The algorithm COMPUTE_MODELintroduced below summarizes the model building
process for programs. The algorithm takes the program Π as input. In the first step
COMPUTE_MODELcomputes the program dependency graph. We assume that all edges
from vertex v1 to v2 of the dependency graph are labeled with the variable defined in v1.
Afterwards, COMPUTE_MODELtakes the dependency graph and computes the strongly
connected super-graph. Finally, the algorithm derives the logical rules directly from the
super-graph.

4.1 Algorithm COMPUTE_MODEL(Π).
(1) Compute a program dependency graph G for program Π . The vertices of G are

named by the line number of the associated statement i . The arcs are named
by variables x with index i or C with index i for arcs representing control
dependencies.

(2) The resulting graph G may contain cycles. Therefore, compute the strongly
connected super-graph of G, named SG. Every vertex v of SG contains a set of
vertices that are reachable by each other, i.e., strongly connected. v has at least 1

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 135

vertex from G. The arcs of the super-graph are named like the associated arcs of the
original graph. The super-graph SG is processed as follows:
(a) For every vertex n ∈ SG having exactly one sub-vertex except the Entry vertex

add the following rule to the system description SD:

¬AB(n)∧
∧

x∈inputs(n)

ok(x)→ ok(y)

where inputs(n) is the set of all input arcs of n, and y is the output arc from n.
(b) For every vertex m ∈ SG with k > 1 sub-vertices (n1, . . . , nk) add:

¬ab(m)∧
∧

x∈inputs(m)

ok(x)→ ok(y)

to SD. inputs(m) is the set of all input arcs of m. y is an output arc from
m. In addition the correctness of vertex m is determined by the correctness
assumptions of n1, . . . , nk . Hence, the following rule must be also added to SD:

¬AB(n1)∧ · · · ∧ ¬AB(nk) → ab(m)

(3) Return the resulting model SD.

The COMPUTE_MODELalgorithm returns a logical sentence representing data and
control dependencies. The logical model SD can be computed at compile-time and can
be used at runtime. We illustrate the COMPUTE_MODELalgorithm and how to compute
all diagnoses using the program Main1 (see Fig. 2). The algorithm returns as result the
following model:

¬AB(2)→ ok(sum2)

¬AB(3)→ ok(i3)

¬AB(5)∧ ok(sum2)∧ ok(i3)∧ ok(i6)∧ ok(C4)→ ok(sum5)

¬ab(W)∧ ok(i3)→ ok(C4)

¬ab(W)∧ ok(i3)→ ok(i6)

¬AB(4)∧ ¬AB(6)→ ¬ab(W)

We now can compare the outcome of the model-based approach for Main1 us-
ing a dependency model with the outcome obtained when using program slicing on
the criterion (7, {i}). Then the slicing criterion is represented by the observations
{ok(i0),ok(sum0),¬ok(i6)}. The reader can easily prove that {3,4,6} is the only minimal
conflict set. Using a model-based diagnosis engine we finally obtain three single diagnoses:
{3}, {4}, and {6}. This result corresponds directly to the program slice (7, {i}) for the same
program.

136 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

Now consider the Main2program given in Fig. 3. Again we compute the model SD:

¬AB(2)→ ok(pi2)

¬AB(3)∧ ok(pi2) → ok(s3)

¬AB(4)∧ ok(pi2) → ok(a4)

Using the observations {¬ok(s3),¬ok(a4)} we obtain two conflict sets: {2,3} and {2,4}
and finally one single fault diagnosis {2} and one double fault diagnosis {3,4}. We compare
this result with the slice for (5, {s, a}) which can be computed from the single slices:
(5, {s})∪ (5, {a}) (see [25]). This slice comprises all statements of Main2. Hence, it allows
not for discriminating between statements responsible for a faulty behavior. In this respect
the model-based approach provides more information. However, when looking at the single
slices for Demo2and the conflict sets, we see that they are equal. The following theorem
states that this equivalence holds generally.

Theorem 6. LetΠ be a program of sizen, SD a logical model ofΠ (SD= COMPUTE_
MODEL(Π)), and V a set of variables having a wrong value at positionn after
executingΠ . From V the set of observations is defined as OBS= {¬ok(vn) | v ∈ V } ∪
{ok(v0) | v ∈ variables(Π)}. Any slice (n, {x}) with x ∈ V is a minimal conflict for
(SD, {1, . . . , n},OBS), i.e., SD∪ {¬AB(s) | s ∈ (n, {x})} ∪ OBS is contradictory.

Proof. (⇒) Given a slice (n, {x})= {s1, . . . , sk} we have to show that (n, {x}) is a conflict,
i.e., SD∪ {¬AB(s) | s ∈ (n, {x})} ∪ OBS|= ⊥. Assume the contrary. In this case we know
that the fact ok(xmax) cannot be derived, where max is the greatest index for variable
x . The slice (n, {x}) is given by all vertices lying on paths from the ENTRY vertex to
the vertex defining variable x immediately before or at position n. Because of algorithm
COMPUTE_MODELwe know that rules correspond to arcs in the SCCsuper-graph of
the dependency graph and vertices of SCCsuper-graph correspond to a non-empty set of
statements. Because all statements are assumed to behave correctly and the precondition
that all input variables are correct, we can conclude that all rules corresponding to the
sub-graph of the dependency graph spanned by the slice must allow for deriving their
consequent. Hence, ok(xmax) must be derivable, contradicting our initial assumption.

The conflict must be minimal. Assume that (n, {x}) is not minimal. So, there must be
at least one element s of the conflict that can be removed without making SD∪ {¬AB(s) |
s ∈ (n, {x})} ∪ OBSsatisfiable. This can only be the case if the corresponding vertex ns is
not on a path from ENTRY to the last vertex defining x . In this case s is not element of
(n, {x}), again contradicting the assumption.

(⇐) Given a minimal conflict CO= {s1, . . . , sk}. We show that CO is a slice for (n, {x}).
Because of the rules in SDdetermined by COMPUTE_MODELwe know that all vertices
of the program dependency graph corresponding to si ∈ CO must be connected. Moreover,
they must lie on a path from ENTRY to the vertex defining xmax. Hence, they must
be elements of the slice (n, {x}). If CO is not minimal, then the conflict might contain
elements that are not in the slice. ✷

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 137

Using Theorem 6 we criticize the usual understanding of what a slice is and how to
combine slices as defined by Weiser [24,25]. In literature a slice is seen as part of a program
influencing the value of variables at a given position. If there is a slice (n, {x}) for exactly
one variable with an unexpected value, we would think of this slice as set of possible bug
locations, i.e., diagnoses. Formally, this interpretation of a slice {n1, . . . , nk} can be stated
as:

AB(n1)∨ · · · ∨ AB(nk)

This logical sentence means that at least one statement must be buggy, i.e., must have
an abnormal behavior (AB). This interpretation is correct and corresponds to the result of
Theorem 6. The logical sentence above can be re-written as:

¬(¬AB(n1)∧ · · · ∧ ¬AB(nk)
)

where ¬AB(n1) ∧ · · · ∧ ¬AB(nk) is a conflict. Whereas slices for single variables have a
correct interpretation with respect to the diagnosis definition, this is not the case for slices
of the form (n, {x1, . . . , xk}) where k > 1 which is equivalent to

⋃k
i=1(n, {xi}) (see [25]).

Although the resulting slice is a conflict, it is not a minimal conflict. Hence, considering
an element of the slice as a single fault diagnosis candidate is not correct anymore.

Note that this problem about minimality of slices does only apply in the context of this
paper, i.e., locating bugs in programs. Program slicing is also applied to lots of other tasks,
e.g., reuse and comprehension. In those areas it is important that the slice preserves the
effect of the program upon the slicing criteria. Tip [23] gives a good survey of program
slicing techniques and their practical use.

5. Discussion

In the previous section we have shown the relationship between static program slicing
and model-based debugging using a dependency model. In this section we discuss the
implications of Theorem 6, have a look at extensions of static slicing and generalize the
results obtained so far.

5.1. Implications

The implications of Theorem 6 for slicing can be best explained using a modified version
of program Main2 (see Fig. 3) which is named Main2b. We assume that line 1 of Main2b
is equal to ‘1.pi = 0.14;’. Executing Main2bleads to the computation of wrong values for
variables s and a. If we use program slicing for debugging, we have to compute the slice
on the slicing criterion (5, {s, a}). This slice comprises all statements of Main2band does
not allow to focus search for the bug location, anymore. This problem disappears if we
take the slices for the single variables as conflicts and use Reiter’s hitting set algorithm for
computing all diagnoses.

The slice on (5, {s}) is {2,3} and on (5, {a}) is {2,4}. If we now use the hitting set
algorithm on the set {{2,3}, {2,4}}, we obtain the two diagnoses {2} and {3,4}. These
diagnoses say either that statement 2 is buggy, or that statement 3 in combination with

138 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

statement 4 is buggy. If we assume that diagnoses with a smaller cardinality should be
preferred, then we focus on statement 2 unless no further knowledge about variable values
at positions in the source code is available. Beside obtaining an order of precedence for
diagnoses, we obtain knowledge about the nature of the bug, i.e., whether it is a single
bug or a bug comprising several statements. This knowledge helps to determine all bugs in
a program. For example, if we fix the misbehavior of Main2 in statement 3 by replacing
pi with 3.14, then we know that we have to fix statement 4 (again by replacing pi with
3.14).

The implications of Theorem 6 for program slicing can be summarized as follows:
• The theorem allows to introduce an order of precedence for diagnoses and thus

improve focusing on relevant parts of a program.
• The resulting diagnoses allow to gain knowledge about bug correction. Possible faulty

statements that must be corrected together can be identified.
Theorem 6 also allows to draw the conclusion that slices instead of the dependency

model can be used for model-based diagnosis. But what are the advantages? One advantage
is that it is not necessary to compute a logical model from the dependency graph. Another
advantage is the reduction of the overall diagnosis time. If slices of single variables are
used as conflicts, the diagnosis time depends only on the hitting set algorithm. If we use
the logical model of a program, the conflicts are generated when they are required by the
hitting set algorithm (see [19]). Each computation of a conflict requires at least a call to
a theorem prover which checks the consistency of the current assumptions with respect to
the given observations and the logical model. Hence, diagnosis time depends on the hitting
set algorithm and the number of theorem prover calls.

Let us consider example program Main2 and its variant Main2b. The logical model
only comprises 3 rules: ¬AB(2) → ok(pi2), ¬AB(3)∧ ok(pi2) → ok(s3), and ¬AB(4)∧
ok(pi2) → ok(a4). Given the observations {¬ok(s3),¬ok(a4)} we obtain the hitting set
graph given in Fig. 5. The diagnosis process starts at vertex n0. A call to the theorem
prover (indicated with TP in the figure) loaded with the observations and the model returns
a minimal conflict {2,3}. The hitting set algorithm creates two arcs and two vertices n1,
n2. For vertex n1 the theorem prover is called again assuming that statements 3 and 4 are
correct and that statement 2 is buggy. The theorem prover call returns that this assumption

Fig. 5. HS-DAG for program Main2b.

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 139

is correct and that we have found a diagnosis. A vertex storing a minimal diagnosis is
marked with a

√
. The algorithm takes the next vertex and continues computation until

no further new vertices can be generated. Vertices that store a not minimal diagnosis are
labeled with a ×. Although the example program is very small, 4 theorem prover calls
are necessary for computing all diagnoses. This computational overhead at runtime can be
avoided, if using slices.

5.2. Extensions

Regarding slicing we consider two different directions of research. One line is due
to computing static slices for different kind of programs and different fault situations.
In [14] an algorithm for computing slices for programs with procedure and function
calls was introduced. This paper makes static slicing applicable to almost all procedural
programming languages. Another improvement for computing slices is given in [21] where
the problem of implicit program states is solved. On the other hand [13] shows how
program slicing used for debugging can be extended to handle runtime faults like out-
of-bound or division-by-zero exceptions. The second research line shifts static slicing to
dynamic slicing [16,17]. Whereas static slices can be (approximated) computed at compile-
time, dynamic slices are computed for specific test-cases. This results in a more concise
slice because branches not executed can be ignored.

We now discuss how some of the extensions can be expressed in a logical model and
argue why these extensions do not contradict Theorem 6. In [13] the authors extend slices
to handle abnormal situations detected during program execution. Consider the following
program:

1. procedure Example1 {
2. x = 1/z;
3. y = 2;
4. }

A slice for (4, {y}) is a program only comprising statement 3. Now assume that z = 0
which causes a division-by-zero exception and prevents the execution of statement 3. This
behavior is different from the behavior given by the slice. Because with the slice we
can compute a value for y whereas this is not the case for the original program. Hence,
our initial argument that a slice preserves the same behavior on the given variables is
not longer valid! To avoid this problem [13] introduces the concept of error variables
associated with statements, that may cause exceptions to be raised. Such variables Err
are introduced for different exceptions, e.g., division-by-zero or out-of-bound. To catch all
involved statements the special variables Err are assumed to be used and changed by the
statements. Example: Assume that Errdivision is an error variable for statements including
division operators. The slice for Example1on (4, {Errdivision}) comprises statement 1.

The concept of error variables has two advantages: First, slices can retain the idea
of behavioral equivalence with respect to the slicing criterion when error variables are
included in this criterion, and finally, it is possible to compute slices in case of exceptions.

140 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

Incorporating the same concept into our logical model can be done in a straight forward
way. For the statements n1, . . . , nk where a variable Err has been used add the rule

¬AB(n1)∧ · · · ∧ ¬AB(nk)→ ok(Err)

to the model SD. As a result a slice (n, {Err}) must be equivalent to the conflict obtained
when assuming ¬ok(Err) ∈ OBS. Hence, Theorem 6 is also valid, if error variables are
used, and we obtain the following corollary.

Corollary 7. Let Π be a program of sizen, SD a logical model ofΠ (SD =
COMPUTE_MODEL(Π)), E a set of error variables, andn a positionn in the code.
FromE the set of observations is defined as OBS= {¬ok(vn) | v ∈ E}. Any slice(n, {x})
wherex ∈ E is a minimal conflict for(SD, {1, . . . , n},OBS), i.e., SD∪ {¬AB(s) | s ∈
(n, {x})} ∪ OBS is contradictory.

Proof. Any slice for (n, {x}) comprises statements n1, . . . , nk for which an error variable
E has been introduced. Hence, ¬AB(n1) ∧ · · · ∧ ¬AB(nk) → ok(x) must be in SD. From
¬ok(x) ∈ OBSfollows that OBS∪ SD∪ {¬AB(n1), . . . ,¬AB(nk)} must be contradictory.
Hence, {n1, . . . , nk} must be a conflict. By reverting the arguments we get a proof for the
other direction. ✷

Finally, we discuss the relationships between dynamic slicing [16,17] and model-based
diagnosis using a dependency model. A dynamic slice is computed from an execution
trace [17] that consists of nodes associated with statements which are executed for some
input during program execution. Since they use knowledge about program execution
dynamic slices are often smaller than static slices. For example, if an else-branch of a
conditional statement is not executed for a given input, the statements of the else-branch
are not part of a dynamic slice but they can be part of a static slice.

The dynamic slicing criterion and a dynamic slice are defined in [16] using the executed
program path which is named a program trajectory.

Definition 8 (Dynamic Slicing Criterion). Let T be the trajectory of program Π on input
x . A dynamic slicing criterion of programΠ executed on input x is a triple C = (x, Iq,V),
where I is an instruction at position q on T and V is a subset of variables in P .

The dynamic slicing criterion differs from the static slicing criterion in the additional
input parameter x . In addition, the interpretation of the position of interest changes. In the
static case a slicing criterion uses the instruction I in Π , whereas in the dynamic case I

is an instruction at the execution position q in a trajectory T . We now informally define
a dynamic slice for a slicing criterion C as any executable program Π ′ that is obtained
from Π by deleting zero or more statements from it, while preserving relevant parts of the
trajectory T (with respect to V) and computing the same values for V at position q .

Although there are some differences between the definitions of dynamic and static
slices they have a great deal in common, e.g., both definitions cause a slice to preserve
the program’s behavior with respect to the original program and the variables of interest.
Hence, it is possible to obtain a dynamic slice from a static slice for a given set of variables

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 141

V and comparable positions by deleting all statements of the static slice that are not element
of the execution trace, i.e., the trajectory of Π on input x . Although this procedure leads to
a valid dynamic slice there are currently more precise dynamic slicing algorithms in use.

We now argue that Theorem 6 for a modified logical model and a dynamic slice is still
valid. First of all, we define the new model. Let (SD,COMP) be the dependency model
for a program Π , let x be an input and T the trajectory of Π on input x . The dependency
model (SDD,COMPD) for the dynamic slice Π ′

D obtained by deleting all statements not
in T from the static slice Π ′ is defined as follows:

SDD = SD∪ {→ ¬AB(n) | n ∈ COMP∧ n /∈ T }
COMPD = {n | n ∈ COMP∧ n ∈ T }

This new model comprises components that are still candidates for being buggy.
Statements n that are not in the trajectory T cannot be buggy which is represented by
the fact ‘→ ¬AB(n)’. Hence, (SDD,COMPD) directly corresponds to the dynamic slice
obtained from the static slice. It is obvious that Theorem 6 is still valid for (SDD,COMPD)
and Π ′

D .

Corollary 9. Let Π be a program of sizen, SD a logical model ofΠ (SD =
COMPUTE_MODEL(Π)), and V a set of variables having a wrong value at position
n after executingΠ . From V the set of observations is defined as OBS= {¬ok(vn) |
v ∈ V } ∪ {ok(v0) | v ∈ variables(Π)}. Any dynamic slice(n, {x}) where x ∈ V , is a
minimal conflict for(SDD,COMPD,OBS), i.e., SDD ∪ {¬AB(s) | s ∈ (n, {x})} ∪ OBS is
contradictory.

Proof. Both the dynamic slice and the model are obtain by removing (the same)
statements. Removing of statements in the logical model is done by removing them from
COMP and adding the fact → ¬AB(n) to the system description. Hence, this corollary
follows directly from Theorem 6. ✷

6. Conclusion

This paper provides several contributions to model-based reasoning and software
debugging. The first contribution is due to showing how model-based diagnosis can be
used for debugging by describing a model with similar capabilities as program slicing. This
is the first step in a more ambitious project aimed at clarifying the equivalence of different
debugging approaches and models which can be used by a model-based diagnosis engine.
We expect that the results would be of interest for both the software debugging and the
model-based reasoning community.

Showing the equivalence of slices and conflict sets, which represents the main
contribution of this paper, improves debugging using a model-based system. Instead of
computing the logical model and afterwards computing conflict sets, only the slices for
incorrect variables have to be considered. Since all slices for single variables can be
computed at compile time (in the static case) the computation of the conflict sets at

142 F. Wotawa / Artificial Intelligence 135 (2002) 125–143

diagnosis time is no longer necessary. Hence, diagnosis time is equivalent to the time
necessary for building a hitting set using a directed acyclic graph (see [12,19]).

The equivalence of slices and conflicts leads to the conclusion that slices for variable sets
with more than one element are not minimal conflicts and every element of the slice is not
a single fault diagnosis, i.e., a single bug candidate. A slice for (n, {x1, x,2 , . . . , xk}) given
by

⋃k
i=1(n, {xi}) is too coarse in the sense that there might be elements not explaining

all incorrect variables. Therefore, these elements cannot be single fault diagnoses. Since
discriminating between different candidates is required in order to keep the search space
for debugging as small as possible, smaller bug candidates should be preferred. Because
slicing does not allow for this discrimination model-based diagnosis should be used. For
example consider the following small program:

1. procedure Demo3 {
2. S = not CLK;
3. O1 = I1 and CLK;
4. O2 = I2 and CLK;
5. }

We assume that the values of variables O1 and O2 are wrong after executing Demo3.
If we use program slicing on the criterion (5, {O1,O2}) for debugging we obtain all
statements as possible diagnoses. But if we use the model-based diagnosis as described
herein, we obtain a single fault diagnosis {2} and a double fault diagnosis {3,4}. Hence,
we can discriminate between the two different diagnoses.

Acknowledgements

I thank Dominik Wieland and Markus Stumptner for their comments on earlier drafts
of this paper, and the referees for their extremely helpful comments and suggestions. The
work described in this paper was partially supported by the Austrian Science Fund (FWF)
under grants P12344-INF and N Z29-INF.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, 1974.

[2] G.W. Bond, B. Pagurek, A critical analysis of “Model-Based Diagnosis Meets Error Diagnosis in Logic
Programs”, Technical Report SCE-94-15, Carleton University, Dept. of Systems and Computer Engineering,
Ottawa, ON, 1994.

[3] G.W. Bond, Logic programs for consistency-based diagnosis, Ph.D. Thesis, Carleton University, Faculty of
Engineering, Ottawa, ON, 1994.

[4] L. Burnell, E. Horvitz, A synthesis of logical and probabilistic reasoning for program understanding and
debugging, in: Proc. Internat. Conference on Uncertainty in Artificial Intelligence, Washington, DC, 1993,
pp. 285–291.

[5] L. Burnell, E. Horvitz, Structure and chance: Melding logic and probability for software debugging, Comm.
ACM 38 (3) (1995) 31–41.

F. Wotawa / Artificial Intelligence 135 (2002) 125–143 143

[6] L. Console, G. Friedrich, D. Theseider Dupré, Model-based diagnosis meets error diagnosis in logic
programs, in: Proc. IJCAI-93, Chambéry, France, 1993, pp. 1494–1499.

[7] S. Danicic, M. Harman, Y. Sivagurunathan, A parallel algorithm for static program slicing, Inform. Process.
Lett. 56 (1995) 307–313.

[8] J. de Kleer, B.C. Williams, Diagnosing multiple faults, Artificial Intelligence 32 (1) (1987) 97–130.
[9] G. Ferrand, Error diagnosis in logic programming, an adaption of E.Y. Shapiro’s method, J. Logic

Programming 1987 (1987) 177–198.
[10] J. Ferrante, K.J. Ottenstein, J.D. Warren, The program dependence graph and its use in optimization, ACM

Trans. Programm. Languages Syst. 9 (3) (1987) 319–349.
[11] G. Friedrich, M. Stumptner, F. Wotawa, Model-based diagnosis of hardware designs, Artificial Intelli-

gence 111 (2) (1999) 3–39.
[12] R. Greiner, B.A. Smith, R.W. Wilkerson, A correction to the algorithm in Reiter’s theory of diagnosis,

Artificial Intelligence 41 (1) (1989) 79–88.
[13] M. Harman, D. Simpson, S. Danicic, Slicing programs in the presence of error, Formal Aspects of

Computing 8 (1996) 490–497.
[14] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using dependency graphs, in: Proc. SIGPLAN’88

Conference on Programming Language Design and Implementation, Atlanta, GA, 1988, pp. 35–46.
[15] D. Jackson, Aspect: Detecting bugs with abstract dependences, ACM Trans. Software Engrg. Methodol-

ogy 4 (2) (1995) 109–145.
[16] B. Korel, J. Laski, Dynamic program slicing, Inform. Process. Lett. 29 (1988) 155–163.
[17] B. Korel, J. Rilling, Applications of dynamic slicing in program debbuging, in: Proc. Third International

Workshop on Automatic Debugging (AADEBUG-97), Linköping, Sweden, 1997, pp. 43–58.
[18] R.I. Kuper, Dependency-directed localization of software bugs, Technical Report AI-TR 1053, MIT AI Lab,

Cambridge, MA, 1989.
[19] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1) (1987) 57–95.
[20] E. Shapiro, Algorithmic Program Debugging, MIT Press, Cambridge, MA, 1983.
[21] Y. Sivagurunathan, M. Harman, S. Danicic, Slicing, I/O and the implicit state, in: Proc. Third International

Workshop on Automatic Debugging (AADEBUG-97), Linköping, Sweden, 1997, pp. 59–68.
[22] M. Stumptner, F. Wotawa, Debugging functional programs, in: Proc. IJCAI-99, Stockholm, Sweden, 1999,

pp. 1074–1079.
[23] F. Tip, A survey of program slicing techniques, J. Programm. Languages 3 (3) (1995) 121–189.
[24] M. Weiser, Programmers use slices when debugging, Comm. ACM 25 (7) (1982) 446–452.
[25] M. Weiser, Program slicing, IEEE Trans. Software Engrg. 10 (4) (1984) 352–357.

