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a b s t r a c t

Recently, we introduced a novel term, memory-adaptive, whose goal it is to capture what
it means for a distributed protocol to most efficiently make use of its shared memory. We
proved three results that relate to the memory-adaptive model in the uniform setting. We
considered a store/release protocol where processes are required to store a value in shared
MWMRmemory so that it cannot be overwritten until it has been released by the process.
We showed that there do not exist uniformly wait-free store/release protocols using only
the basic operations read and write that are memory-adaptive to point contention. We
further showed that there exists a uniformlywait-free store/release protocol using only the
basic operations read, write, and read-modify-write that is memory-adaptive to interval
contention and time-adaptive to total contention. This left a significant gap — it remained
open as to whether there exists a uniform, memory adaptive to interval contention
store/release protocol that only uses read/write (no read-modify-write) registers. In this
paper, we close this gap by showing that no such protocol can exist. We furthermore
illustrate the validity and practicality of the concept of memory adaptiveness by providing
a uniform, memory-adaptive to interval contention store/release protocol for Network
Attached Disks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Shared memory algorithms, such as collect or renaming provide essential building blocks for many applications. Most
often collect or renaming are designed based on an a priori knowledge of an upper bound n on the number of participating
processes or of an upper bound N on the ids of participating processes. Algorithms such as collect or renaming, however,
become inefficient if only few of the n processes are actually participating. This motivated researchers to look for adaptive
algorithms whose step complexity only depends on the number of participating processes. Besides a possibly inefficient
use of time, inefficient use of space is also a potential drawback of many distributed algorithms. In particular, many shared
memory algorithms require memory space whose size is a function of N (or n) even if only few of the processes are actually
participating. Hence, to truly improve the efficiency of distributed algorithms the step complexity should be made adaptive
to the number of participating processes, i.e. the contention, and the space requirements should (if possible) depend on the
number of participating processes or the contention. Following this approach, one obtains two possible kinds of adaptive
algorithms: algorithms where the step complexity adapts to the contention are traditionally called adaptive. We called
such algorithms time-adaptive to distinguish them from algorithms where the memory space consumption adapts to the
contention that we called memory-adaptive [31]. In memory-adaptive algorithms processes are only allowed to write to a
shared MWMR register whose index is a function of the contention (possibly point-, interval- or total contention) during
the processes previous shared memory access.
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Time-adaptive algorithms have aworst case step complexity that is bounded by a function of the number of concurrently
participating, or actually active processes [6]. Motivated by Lamport’s MX algorithm [40], many such time-adaptive
algorithms have since been designed [3,6,4,7–9,11,16,18–20,22–26,30,38,41]. The strongest forms of time-adaptiveness
in the read/write shared memory model have been defined and achieved in recently presented long-lived time-adaptive
collect [9] and renaming [3,23] algorithms. In these algorithms, called time-adaptive to point contention the number of steps
takenby aprocess executing anoperation is a function of themaximumnumber of processes thatwere active simultaneously
at some point in time during this operations execution interval. Algorithms time-adaptive to interval contention on the other
hand, have a slightly weaker level of adaptiveness. Here the number of steps taken during a given operation is a function of
the total number of different processes active during the operation’s execution interval. Finally, an algorithm is time-adaptive
to total contention if the number of steps taken by a process is a function of the total number of processes active since the
beginning of the execution.
With respect to memory consumption of time-adaptive renaming or collect algorithms Afek, Boxer and Touitou [5]

showed that the number of Multi-Writer Multi-Reader (MWMR) registers used must be a function of N . They specifically
show that for any constant d there is a large enough Nd such that every long-lived time-adaptive (to interval contention,
and hence, point contention as well) read/write implementation of collect (and renaming) with Nd processes must use at
least dMWMR registers. In their paper, they use a simple object called Weak-Test and Set [15] to derive their impossibility
results. More recently Attiya, Fich and Kaplan [21] significantly improved on [5]. They showed that if a collect algorithm is
time-adaptive to total contention, namely, its step complexity is f (k), where k is the number of processes that ever became
active during the current execution, then it usesΩ(f −1(N))MWMR registers, where N is the total number of processes in
the system.
In this paper, we will remove the assumption of a known upper bound on the number of participating processes and

consider uniform protocols [17,33,39], i.e., protocols that do not require a priori knowledge of or an upper bound on the
number of processes that may participate. At the same time, we will assume that the number of participating processes is
always finite.
Whilememory is certainly cheap and hence onemight argue that its cost does not represent a drawback of non-memory-

adaptive algorithms, it remains difficult to efficientlymanage a largememory in particular if no upper bound on the number
of processes is known in advance. In this case, processes must usually be able to write to memory locations of any index.
To investigate whether and when this must be the case we introduced the notion of memory-adaptiveness [31]: it requires
that each(!) write operation that a process makes must be close to the ‘‘front’’ of shared memory. The idea here is that if
protocols allow processes to write to registers whose index depends say on the processes id and no upper bound on the
number of participating processes is known in advance then memory must be unpredictably large. On the other hand, if we
can guarantee that the memory required by each protocol that runs on a shared memory system is a bounded function of
the contention, then a distributed operating system can allocate large memory blocks to each protocol on an ad hoc basis
and, on the rare occasions when it is necessary, increase or decrease the individual allocations as necessary.
Also, if processes are allowed to write to registers with arbitrary indices in time-adaptive protocols they eventually must

move the values they wrote close to the beginning of memory for the protocol to stay time-adaptive during solo executions.
Hence, ideally, processes will want to register in a fixed finite subset of the infinite set of MWMR registers that we called
‘‘close to the beginning of shared memory’’ [31].
Consider, for example, the renaming problem [3,4,6,7,10,22,23,38,42]. Here each process is required to choose a unique

name for itself. Processes are allowed to use any sharedMWMR register during the execution of the protocol, even a register
with an extremely large index, but the final result must lie within a bounded distance from the front of shared memory. In
the definition of memory-adaptiveness, to capture the notion of having to write close to the front of shared memory every
time, we require processes to write to a MWMR register whose index is a function of the contention during the previous
operation of the same process.
In [31] we investigated simple tasks, store and release, that require a given process to store a value in shared MWMR

memory that cannot be overwritten by any other process and then to erase the value when no longer needed, freeing the
memory for other processes to use.1We studied whether these simple commands can be implementedmemory-adaptively
under different assumptions about the contention of the protocol.
We showed that in a system with infinitely many MWMR registers and infinitely many SWMR registers: 1. There is

no uniform, long-lived memory-adaptive to point-contention implementation of store/release that uses only read/write
registers. 2. There does exist a uniform, long-lived implementation of store and release in the read–write model that
is memory-adaptive to total contention. 3. Allowing write-plus (read-modify-write) there exists a uniform, long-lived
implementation of store and release in the read–write model that is memory-adaptive to interval contention.
The question remained, however, whether in this setting there exists a uniform, long-lived, memory-adaptive to interval

contention store/release protocol that uses only read/write registers. This is of particular interest because one could argue
that with adaptiveness to interval contention ‘‘true adaptiveness’’ really starts, since adaptiveness to total contention allows

1 Another way to view a store and release protocol is as a simple renaming protocol where the index of the register in which a value is stored becomes
the new name and where release simply releases this name. To focus attention on the central components of such a protocol and to avoid confusion with
already existing renaming protocols we chose the store/release terminology.
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for the memory requirements to grow independent of the contention during operations. Moreover, even though we were
able to show that there exists a protocol memory-adaptive to interval contention using read-modify-write registers, we
were not able to justify the use of these stronger primitives. In this paper we will close this gap and hence significantly
strengthen our previous results.
To prove our impossibility result we will use a covering construction as in the memory-adaptiveness to point contention

impossibility proof in [31]. Our proof, however, will have to bemore complex and requires greater care. In [31] wewere able
to select all potentially participating processes in advance and construct the run that produced the contradiction as a single
run. Using the pigeonhole principle we simply reduced the set of participating processes in pseudo solo runsmore andmore
until all MWMR registers at the beginning of shared memory (that are accessed in solo runs) were covered. All processes
that were covering one of the MWMR registers at the end of the construction had been participating from the beginning.
If we want to obtain a contradiction to memory-adaptiveness to interval contention, however, we cannot proceed in this
manner. Every time a new register is covered we must choose a new set of processes that have never acted before since
otherwise processes could receive information about the increasing interval contention allowing them to write to more
(‘‘new’’)MWMRregisters andmaking it impossible for us to get a contradiction. In otherwords,whenweextend the covering
from the first j to the first j+1MWMR registers that processes write to during their pseudo solo runs, we first eliminate the
traces of the process that now covers the j+ 1st register. This is done by releasing covering writes to overwrite this process.
In [31] we were simply able to cover each of the required MWMR registers with infinitely many processes and then release
covering writes as need be. Here we are not able to do this anymore. Instead – to ensure that our construction is memory-
adaptive to interval contention – we must rebuild our covering after each time the covering writes have been released.
Otherwise it might be possible for processes to detect that some of the processes involved in these covering writes were
concurrently activewith them and hence allow them towrite toMWMR registers outside the bounded (by a constant) range
of MWMR registers at the ‘‘beginning of shared memory’’. As we would cover more registers, processes would be able to
memory-adaptively write to more ‘‘new’’ MWMR registers outside the ‘‘beginning of shared memory’’ making it impossible
to get a contradiction.
As a result, our construction is similar to the construction in [5], however, we note that the result there does not directly

imply our result since it assumes a finite number of available MWMR registers while we allow for infinitely many available
MWMR registers. Therefore, we must always ensure that at all important steps of our construction processes are only able
to write to the bounded set of registers at the ‘‘beginning of shared memory’’. We will do this by making these processes
believe that they execute the protocol solo. Also in [5] algorithms are assumed to be time-adaptive allowing to bound the
execution length of each participating process since any time-adaptive protocol is by definition, wait-free. Here, we do not
assume that our protocols are time-adaptive. Instead, to bound the execution length (otherwise processes could simply
keep reading each others SWMR registers) we assume the protocol to be uniformly wait-free, that is that the length of all
executions is uniformly bounded.
The covering techniques used in our impossibility proofs first appeared in [28] to show some bounds on the number of

registers necessary for mutual exclusion. Similar covering arguments were used in many recent papers to prove space and
time lower bounds. For example, see the survey by Fich and Ruppert [32].

1.1. Network attached disks

In the second part of the paper, we will consider an important and natural application of memory-adaptive algorithms.
Recent advances in storage technology [36] have enabled systems such as Storage Area Networks [13,14,27,37,43,45], which
have network attached disks or NADs. A NAD is a simple device that just executes requests to read and write blocks of data.
It can be accessed by any process in the system, so that the NADs effectively become a shared storage medium that can be
used to solve distributed problems such as consensus, as in Disk Paxos [1,29,34]. Unlike message-passing systems, which
typically require a majority of processes to be correct to avoid partitioning, NADs allow protocols that can withstand the
crash of any number of processes. Therefore – as conventional shared-memorymodels – themodel allows uniformprotocols.
One difficulty of this model is that a NAD can fail by crashing and thereby become inaccessible.
In [12] Aguilera, Englert and Gafni studied the uniform implementability of fail-free shared registers in various settings

on Network Attached Disks (NAD’s).
They showed that one cannot uniformly implement a MWMR register on a NAD with a finite number of fail-prone

base registers, even if the implementation need not be wait-free. Therefore, one cannot use the standard technique of
implementing a MWMR register by first implementing SWMR registers: doing so would blow up the space complexity.
On the positive side, they showed that the four types of MWMR, MWSR, SWMR and SWMR registers have a uniform

implementation even in the infinite-arrival model [35], if the number of base registers is infinite. This implementation
spreads registers across 2t + 1 disks – each disk with infinitely many registers – such that all registers of up to t disks may
crash.
These results imply the need for infinitely many base registers. Since this is however an unrealistic assumption in real

NAD’s, memory-adaptive algorithms are of particular practical interest on such disks. If uniform protocols that require
infinitely many base registers and that run on NAD are memory-adaptive to interval contention they will remain practical
since they will allow us to efficiently bound the memory requirements based on this contention.
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Based on our impossibility result, we will show how store/release can be – uniformly andmemory-adaptively to interval
contention – implemented on Active Disks. This is possible, since read-modify-write objects are available on Active Disks
[2,44].

1.2. Related work

Uniform protocols have been studied (e.g., [17,39]), particularly in the context of ring protocols. Adaptive protocols, i.e.
protocols whose step complexity is a function of the size of the participating set, have been studied in [6–8,20,30,41]. Long-
lived adaptive protocols that assume some huge upper bound N on the number of processes, but require the complexity of
the algorithm to be a function of the concurrency have been studied in [3,4,9–11,22–24,38,42].

1.3. Contributions

We summarize the contributions of our paper.

(1) Interval contention: (Theorem 1)We show that in a systemwith infinitelymanyMWMR registers, infinitelymany SWMR
registers and infinitely many processes there does not exist a uniformly wait-free, memory-adaptive (to INTERVAL
contention) implementation of store/release. In other words, we show that under these conditions processes cannot
memory-adaptively store a value in shared memory. This closes a gap that remained open in [31] and implies the
impossibility of uniform memory adaptive to point contention algorithms [31] with all its consequences. Moreover,
it justifies the use of read-modify write registers and similar stronger primitives to uniformly implement memory-
adaptive to interval contention store/release [31].

(2) We present a uniform implementation of memory-adaptive to interval contention store/release on Active Disks. While
it was shown [12] that one cannot uniformly implement a MWMR register on a NAD with a finite number of fail-prone
base registers, these results provide a realistic and practical building block for algorithms on NADwhere an upper bound
on the interval contention can be enforced.

Paper Organization: We will first in Section 2 present our model, followed by our impossibility proof in Section 3. We
conclude with a transfer of our algorithm to NAD’s (Section 4) and some final remarks (Section 5).

2. Model and preliminaries

For our impossibility result, we use the standard shared-memory model of distributed computation. There are infinitely
many processes eachmodeled by infinite-state machines that are capable of unbounded computation. Processes participate
in a distributed deterministic asynchronous protocol and are indexed by the positive natural numbers so that each process
‘‘knows’’ its own ‘‘name’’. There are two areas of memory: the single-writer multi-reader (SWMR) space and the multi-
writer multi-reader (MWMR) space. The SWMR space can be thought of as a large array of numbered registers indexed by
the positive natural numbers. Each register is associated with a distinct process so that only this process is allowed to write
to this register while all other processes are able to read it. Each SWMR register can store an unbounded number of bits. The
MWMR registers have all the same properties as the SWMR registers with the exception that any process may both read and
write to any register. Intuitively, we think of the SWMR registers as private memory controlled by the individual processes,
and the MWMR registers as the memory domain of a separate entity with its own operating system accessible by all the
processes.
Processes access the memory space using basic atomic operations. The atomic operations we will allow in this paper are

read, write, and read-modify-write.

• READ: To execute a read command, a process specifies a register to be read and upon completion of the read, the process
has gained a snapshot of the contents of the specified register.
• WRITE: A process specifies which register to write to (in either private or shared memory) and the data to be written.
Upon completion of the write command, all previous data is overwritten with the new data specified by the process.
(Note that we do not allow a process to overwrite ‘‘part’’ of a register.)
• READ-MODIFY-WRITE (RMW): The RMW command allows the unbreakable execution of the following code (where X is
a shared variable and f is a mapping):

function RMW(X,f)
begin

temp←X;
X←f(X);
return(temp);

end
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Fig. 1.Weak test & set object.

A protocol is an algorithm that accomplishes a task using basic operations. An adaptive protocol is one in which the
resources consumed by the protocol are functions of the number of processes that actually participate in the protocol (a.k.a.
active processes) rather than the total number of processes. In an adaptive protocols, the size of the resources (time or space)
consumed is a function of the contention. The contention can be measured in three different ways, effecting the strength
of adaptiveness of a protocol: Total contention refers to the total number of processes that become active during the entire
execution of the protocol. Interval contention during a given processes protocol is defined to be the total number of processes
that become active during the execution interval of a processes protocol. Finally, point contention during a given processes
protocol refers to the maximum number of processes that are simultaneously active at any point during the execution
interval of this processes protocol.
Since protocols, when executing, consume time and space there are at least two natural ways to measure the complexity

of an adaptive protocol. A protocol is time-adaptive to a particular type of contention if the maximum number of basic
operations executed during the protocol by any given process is a bounded function of the contention type. This type of
definition has been studied extensively [3,6,4,7–9,11,16,18–20,22–26,30,38,41].
To analyze the memory consumption of a protocol we are mainly interested in the write processes make to shared

memory (MWMR registers). We hence introduced [31] a measure of complexity that we calledmemory-adaptive to capture
this consumption. We say that a basic operation is memory-adaptive to a type of contention if and only if, the following
is true. Whenever a process executes a basic operation, if the next basic operation changes the state of a shared memory
register, the index of the register atwhich this change occurs is a bounded function of the contention (point, interval or total)
at the time of the previous basic operation. (In the asynchronous model, without loss of generality, we may assume that the
first basic operation in any protocol is a read, which does not change the state of any register.) In other words, a process can
read wherever it wants, but it can only write to places that are as close to the ‘‘front’’ of shared memory as possible.
Most time-adaptive algorithms that were presented [3,6,4,7–9,11,16,18–20,22–26,30,38,41] are not memory-adaptive

in this sense. They might however force that the final result of a computation lies within a bounded distance of the ‘‘front’’
of shared memory. For example, in the renaming protocol, each active process is required to choose a unique name for
itself that is as small as possible by storing its index in a shared memory register. Its new ‘‘name’’ becomes the index of this
shared register. Processes are allowed to use any shared register during the execution of the protocol, even a register with
an extremely large index, but the final result must lie within a bounded distance from the ‘‘front of shared memory’’ in the
sense that the new name must be a function of the contention during the execution of the protocol.
The three protocols that we will focus on in this paper are store, release andWeak Test and Set.

• STORE: A data value is specified in advance by the process. The goal is for the process to store the data value in some
sharedMWMR register in such away that upon completion the process knows that the valuewill not bemoved or erased
by any other process until the register is explicitly released. Essentially, this amounts to storing a value in shared (MWMR)
memory and locking the location. In this case we say that a process captures the register. Ideally, the index of the shared
MWMR register in question will be as close to the ‘‘front’’ as possible.
• RELEASE: This assumes that the process has already executed a previous store protocol. Upon completion, the shared
register occupied by the process is released.
• WEAK TEST AND SET: The weak-test-and-set (WT&S) object (Fig. 1) provides two operations, weak-test-and-set (V) and
reset(V). The operationweak-test-and-set (V) returns either 0 or 1. The reset(V) operation sets the value of the object to 0.
A process to which 0 is returned owns the WT&S object. Only a process that owns the WT&S object can access the reset
operation. The object only returns 0 to a process if its current value is 0 and if there is no concurrent (with this invocation
ofweak-test-and-set (V)) access to the object by another process. In all other cases, the object returns 1. TheWT&S object
can be used to implement a weakmutual exclusion property. While at most, one process can own the object at any point
in time, there is no guarantee that if several processes access the object concurrently that at least one of these processes
will eventually own the object. Hence if a WT&S object is used to implement mutual exclusion, deadlock freedom is not
guaranteed.
A WT&S object satisfies the following two properties:
. Exclusion: At most one process owns the WT&S object at any system state of the WT&S execution.
. Solo Execution: If only one process takes steps and this process accesses the WT&S object and no other process
currently owns the object then this process must eventually own the object.

Note that STORE and RELEASE are fundamental building blocks useful for many distributed protocols (e.g. collect, mutual
exclusion, consensus, approximate agreement, and so on). WEAK TEST AND SET on the other hand is useful in the proof of
lower bounds.
We call a protocol uniformly wait-free if there exists a uniform bound applicable to all processes on the number of basic

operations that the protocol requires before termination. All protocols considered in this paper will be uniformly wait-free.
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Wemake the following definitions:

• A system state consists of the state of all processes and the value of all registers in the system. A system has one or more
initial system states in which the system starts its execution.
• We say that a system state s is an idle-state, if no process accesses or owns the WT&S object at s.
• A run α is a finite or infinite sequence of events, starting from an initial system state. If the sequence is finite, we say that
the run is finite.
• A run segment xα of a run α is a finite, continuous subsequence of events of α.
• A solo run segment of p is a run segment starting at an idle-state, in which only p takes steps.
• A run segment is called a p-segment if it starts in a state s in which p neither accesses nor owns the WT&S object, and in
which only p takes steps. Note that a p-segment is not necessarily a p-solo-segment.
• We say that a state s is transparent with respect to process p, if p neither accesses nor owns the WT&S object in s, and
there is a p-segment starting in s, that p cannot distinguish from some solo run segment of p starting at an idle-state
and ending with p owning the WT&S object. State s is transparent with respect to a set of processes Q , if s is transparent
∀p ∈ Q .
• A pseudo-solo run segment of p denoted solop, is a p-segment starting at state s s.t., s is transparent with respect to p, and
ending with p owning the WT&S object. Note that by the definition of transparent, p cannot distinguish a pseudo-solo
run segment from some sole run segment starting at an idle-state and ending with p owning the WT&S object.
• A register r is covered by process p at the end of run α, if a write operation by p to r is enabled at the end of α.
• Given a run segment x and a state s, s · x denotes the concatenation of x after some run α ending at s, assuming that α
exists.

3. Interval contention

In [31]we showed that there is no uniform, long-lived andmemory-adaptive to point contention store and release protocol.
We will now strengthen this result by showing that there is no uniform and memory-adaptive to interval contention weak
test and set protocol. We begin, by showing that we can implement WT&S from memory-adaptive store and release. The
reduction uses the fact that store/release is uniformly wait-free and that store/release, if successful guarantees exclusive
possession of a MWMR register. Store/Release does not guarantee, however, that at the same time other processes may
not exclusively ‘‘own’’ other registers ‘‘nearby’’. Hence to implement WT&S from store and release it will be necessary for a
process that ‘‘wins’’ a register to first examine these other registers before returning either the 0 or 1 bit value.
Reduction from memory-adaptive and uniformly wait-free store and release to memory-adaptive and uniformly wait-

free WT&S:
In the uniform memory-adaptive store and release protocol, processes repeatedly store and release values in shared

memory. The index of the MWMR registers to which they write must be in the range {1, . . . , f (k)} where k is the number
of processes that are active concurrently with the process that is trying to store or release a value. So, when a process runs
solo (i.e. it is a candidate to win the WT&S object) the index of the MWMR registers it writes to must be bounded by some
constant f (1). In an implementation of WT&S from memory-adaptive store and release we use one copy of the memory
adaptive store and release object and an array of f (1) boolean MWMR registers.
To perform the WT&S operation a process first attempts to memory adaptively store a value in shared memory. If at

any point in time during the execution of the algorithm it writes to a MWMR register with an index greater than f (1) it
returns 1 and – if it already stored a value – releases the value it stored. It failed to win the WT&S object. Otherwise, once a
process captures a MWMR register to store a value it writes ‘‘active’’ into the captured MWMR register and reads all other
MWMR registers with indices up to f (1). If it sees any other process as active in any of these registers it returns 1 and writes
asleep into the booleanMWMR register it previously captured. It failed towin theWT&S object. In all other cases the process
returns 0. It owns the WT&S object. To release the WT&S object a process writes asleep in the boolean MWMR register it
previously captured and so resets the value it stored in shared memory. This clearly implements the desired object with the
required exclusion and solo execution properties.
We furthermore assume that each process has only one single-writer, single-reader (SWMR) register: all SWMR registers

of a process can always be replaced by a single SWMR register.
A condition or property holds in a run if it holds at the end of that run (unless we state otherwise).
It hence suffices to show that there is no uniform memory-adaptive to interval contention (uniformly wait-free) Weak

Test And Set implementation using only read/write registers.

3.1. The theorem

Clearly, if an implementation of a weak test and set object is memory-adaptive then there exists a constant i such that,
no solo run segment writes to a MWMR register with an index greater than i. We say that the algorithm is ‘‘i-solo-memory-
adaptive’’.
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Theorem 1. For any constant i there is no long-lived, uniformly wait-free, i-solo-memory-adaptive to interval contention
implementation of Weak-Test & Set in a systemwith infinitely many processes and infinitely many MWMR and SWMR read/write
registers.

Note that in contrast to [5], we do not require our algorithms to be time-adaptive. Hence the result in [5] does not
immediately imply our result. Moreover, the number of availableMWMR registers is now unbounded, that is when covering
writes are released processes that detect contention can possibly write to more than the first k MWMR registers. After
addressing such issues our proof proceeds in a similar manner as [5].
Summaryof Proof: Theproof is bywayof contradiction. First, assume that there is amemory-adaptive to interval contention
WT&S implementation with infinitely many MWMR registers for a system with infinitely many processes. Then, we show
that under these conditions there is a run in which two processes p and q are in the critical section, i.e. are owning theWT&S
object at the same time.

(1) We construct a run prefix α s.t., the state at the end of α is transparent with respect to p, and every MWMR register that
pwrites in its pseudo-solo run starting at α is covered. As in [5] we construct this cover inductively.

(2) Let solop be the pseudo-solo run segment of process p starting after α. Hence, p owns the WT&S object in α · solop. Let
{r1, . . . , ri′} be the set of MWMR registers written by p in solop, where i′ ≤ i.

(3) We now enable the covering writes and wait until no process accesses or owns the WT&S object anymore. This is
guaranteed by the fact that we are dealing with a uniformly wait-free WT&S implementation.

(4) We ensure that processes that are active do not detect each other by selecting them in such a way that they do not read
each others SWMR registers. (This also follows from the protocol being uniformly wait-free.We show later in detail that
this is possible.)

(5) We select a process q that does not read the SWMR register of p. This process will enter the critical section together with
p, a contradiction.

3.2. Main inductive proof

The proof is based on [5]. We construct α by first, for explanatory reasons, making strong assumptions. We then remove
these assumptions to obtain the claimed result.
We use the following notations. For an infinite set RMW of MWMR registers, we consider W to be an i-solo-memory-

adaptive implementation of WT&S in the Read/Write shared memory model. Note that by the definition of memory-
adaptiveness imust be a constant.

Phase 1:

Assumption A. There are no write operations to SWMR registers in all legal runs. That is, we assume for the moment that
there is a uniformly wait-free WT&S protocol that is i-solo-memory-adaptive to interval contention and uses no SWMR
registers.

Assumption B. If G is a set of processes and s is a state that is transparent with respect to G, then during their pseudo-solo
runs starting at s all processes in Gwrite in the same MWMR registers in the same order.

These assumptions will later be removed. We will be able to remove Assumption B because of the i-solo-memory-
adaptiveness of the algorithm, that is processes can only write to a fixed number of MWMR registers in pseudo-solo runs
and the fact that our protocol is uniformly wait-free. Hence, using a Ramsey theoretic argument we can find a large enough
set of processes that will write in the same order into these registers.
In the following lemma α is denoted by s · β and satisfies the properties of α: Property 1: the state at the end of s · β

is transparent with respect to some set of processes called Ge, and property 2: there is a cover on all the MWMR registers
written by processes in Ge in their pseudo-solo run segments, starting after s · β . The size of the set Ge is a parameter and is
determined in the proof of the theorem.

Lemma 1.1. Let W be a long-lived, uniformly wait-free, i-solo-memory- adaptive WT&S algorithm satisfying Assumptions A and
B. Then, for any constant e and for any set of infinitely many processes G, |G| = ∞ and for any state s transparent with respect to
G, there is a run segment β and a set of processes Ge ⊆ G s.t., the following holds: (1) |Ge| ≥ e, (2) the state at the end of s · β is
transparent with respect to Ge, and (3) all the MWMR registers written in the pseudo-solo run segments of processes in Ge, after
s · β , are covered in s · β .

Proof of Lemma. The proof is by induction on j, the inductive claim is:

Lemma 1.2. Let W be a long-lived, uniformly wait-free, i-solo-memory- adaptive WT&S algorithm satisfying Assumptions A and
B. Then for every j, 0 ≤ j ≤ i and for every constant e and for any set of infinitely many processes G, |G| = ∞ and for any state
s transparent with respect to G, there is a run segment βj and a set of processes Gj ⊆ G s.t., the following holds: (1) |Gj| ≥ e,
(2) the state at the end of run s ·βj is transparent with respect to Gj, and (3) there exists a set Rj = {r1, . . . , rj} of MWMR registers
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that are covered in s · βj and r1, . . . , rj are the first j MWMR registers written (in this order) in the pseudo-solo run segments of
processes in Gj, after s · βj, or, the pseudo solo runs starting at s · βj have less than j writes to a set Rj′ ⊂ Rj (in the same order) of
MWMR registers, where R′j = {r1, . . . , rj′}, 1 ≤ j

′ < j and all these writes are covered in s · βj.

Proof. (1) For j = 0 the claim holds trivially by setting G0 = G and β0 to be the empty sequence.
(2) Assume that the claim holds for j = k. We will show that it holds for j = k + 1. Recall that |G| = ∞ and let s be a
system state transparent with respect to G. By the induction hypothesis, there exists Gk,1 and βk,1 such that at the end
of s · βk,1 writes to the first k MWMR registers in Rj that are written in the pseudo-solo run segments of processes in
Gk,1 are enabled and s · βk,1 is transparent with respect to Gk,1. By Assumption B, let (r1, . . . , rk) be the first k MWMR
registers written in the pseudo-solo run segments of processes in Gk,1.

(3) Select any process p1 ∈ Gk,1 and a pseudo-solo run segment ~ solop1 starting at s · βk,1.
(4) If there are less than k+ 1 write operations to MWMR registers in ~ solop1 (until p1 owns theWT&S object), then we are
done and βj = βk,1 for j = k, k+1, . . . , i (i.e. if p1 does not havemore than kwrite operations to MWMR registers, none
of the processes in Gk,1 does, since by Assumption B they all write to the same MWMR registers in the same order).

(5) Otherwise, p1 has at least k + 1 write operations to MWMR registers in ~ solop1 , before owning the WT&S object. Let
Wp1,k+1 be the k+ 1st write to a MWMR register by p1. Let rk+1 be the register that process p1 writes inWp1,k+1, and let
~ solop1(k+ 1) be the longest prefix of ~ solop1 that does not includeWp1,k+1. Any pseudo-solo run segment that starts
after s · βk,1·~ solop1(k+ 1) can read p1’s write operations to r1, . . . , rk and therefore the state is not transparent.

(6) We now erase all the traces of p1: we enable each of the processes q1, . . . , qk covering r1, . . . , rk respectively to write
in r1, . . . , rk and to run until they do not access the WT&S object anymore. This run segment is denoted as clean(k).
Such an extension to s · βk,1·~ solop1(k + 1) exists, sinceW is uniformly wait-free WT&S implementation. Hence each
process q1, . . . , qk reaches this state after a finite number of steps. (Note that at this stage processes q1, . . . , qk do not
necessarily write to only the first i registers of shared memory anymore, that is to MWMR registers with an index of
at most i. However this will not affect the remaining construction since we will let them run until they terminate their
executions.) Let αk+1,1 = βk,1· ~ solop1(k+ 1)· clean(k). By the end of run s · αk+1,1 the state is transparent with respect
to Gk,1 − {p1}. We need to use Assumption A here, that writes are only enabled to MWMR registers but not to SWMR
registers. At the end of run s · αk+1,1 only one process p1 is enabled to write in rk+1 while the registers r1, . . . , rk are not
necessarily covered anymore.

(7) Since the state at s · αk+1,1 is transparent with respect to Gk,1 − {p1}, we can again activate the induction hypothesis.
Hence, a cover of a sequence of kMWMR registers r1, . . . , rk is constructed by activating a run segment βk,2 s.t., the state
at the end of s · αk+1,1 · βk,2 is transparent to a set of processes Gk,2 ⊆ Gk,1 − {p1}.

(8) Let r ′1, . . . , r
′

k, r
′

k+1 be the first k+ 1 registers written in the pseudo-solo segments of the processes in Gk,2. Assume that
r ′k+1 = rk+1. In this case, we are done — we have a cover on the first k+ 1 registers processes in Gk,2 will write to.

(9) If r ′k+1 6= rk+1 we construct the required cover on r
′

k+1 by repeating the construction above but starting at s ·αk+1,1 ·βk,2.
We now have a cover on rk+1 and r ′k+1 by two different processes. We continue this construction until either we finish
in step 4 or step 8 or until all i registers at the beginning of shared memory are covered.

Note that G0 = G and hence |G0| = |G| = ∞. Since at each step of this inductive construction at most finitely many
processes are removed from Gk,l it follows trivially that |Gk,l| = ∞ and |Gk+1| = ∞ > e. Hence, the inductive claim
follows. �

Phase 2:
Wenow relax Assumption A. To do this we use techniques developed in [5]. The run constructed in the previous lemmamay
no longer be valid, as processes are allowed to write to their SWMR registers. The argument presented above may collapse
in one of the following two ways:

(1) The participating processes in any clean run segment may read the SWMR registers of other active processes. In
particular, they may read the SWMR register of the processes whose traces their writes are supposed to eliminate. They
would then leave the system in a non-transparent state by writing about the value they read.

(2) After a clean run segment, a process qmight start its q-segment execution and may read the SWMR register of another
concurrently active process p. Hence, q will not perform a pseudo-solo run anymore, that is it may write to a MWMR
register with an index greater than i and it may stopwithout covering theMWMR registers. Moreover, qmay decide ‘‘on
the spot’’ to write into MWMR registers different from what the ‘‘original’’ construction (Proof of Lemma 1.2) required
and from what we had assummed.

As in [5] or [12], we will avoid the two dangerous situations by not allowing processes, whose SWMR registers are later
read to take part in the constructed run. So, if in any given state in the run, if process q reads the SWMR register of process p
and p is active, we construct another run inwhich p is replaced by another process p′. Process qwill still read the same SWMR
registers. The behavior of p and p′ is in some sense ‘‘equivalent’’. They both write and cover the same MWMR registers. All
we need to do is to show that a process like p′ always exists since (1): there is a large enough set of processes to select p′
from s.t., p′ did not participate in the run before and has the same general properties as p. We can do this since at any give
point in time at most finitely many processes participate in the execution while infinitely many processes are available.
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(2): Process q can perform only a constant number of read operations, since the number of concurrently active processes in
the run is a function of i and since the algorithm is uniformly wait-free.
We maintain a large enough set of ‘equivalent’ runs, which allows us to replace at any point in time at which we fail to

reach a transparent state. This set will shrink as the construction progresses.

Definition 1.1. Two runs β and β ′ are equivalent with respect to a set of processes G if (1) the state at the end of both runs
β and β ′ is transparent with respect to G, (2) the sets of MWMR registers covered in β and β ′ are the same, and (3) if process
p participates in both β and β ′ then p cannot distinguish between the two runs.

In our construction,whenever a process p thatwas previously selected to participate in the run is discovered by a covering
process, we need to replace it with some other process p′ that cannot be discovered. We achieve this by considering an
equivalent run in which p′ takes steps instead of p.
Note that we also need to modify the proof of the Main Theorem, Theorem 1 in the same way as the proof of the Main

Lemma 1.2. Given the proof of the modified lemma this modification is straightforward and we leave the details to the
reader.
We now restate the central inductive lemma as follows:

Lemma 1.3. Let W be a long-lived, uniformly wait-free, i-solo-memory- adaptive WT&S algorithm. Then, for every j, 0 ≤ j ≤ i
and for every constant e and for any set of processes G, |G| = ∞ and for any state s transparent with respect to G, there is a run
segment βj and a set of processes Gj ⊆ G s.t., the following holds: (1) |Gj| ≥ e, (2) the state at the end of run s · βj is transparent
with respect to Gj, and (3) there exists a set Ri = {r1, . . . , rj} of MWMR registers that are covered in s · βj and r1, . . . , rj are the
first j MWMR registers written (in this order) in the pseudo-solo run segments of processes in Gj, after s · β , or, the pseudo solo
runs starting at s · βj have less than j writes to a set Rj′ ⊂ Rj (in the same order) of MWMR registers, where R′j = {r1, . . . , rj′},
1 ≤ j′ < j and all these writes are covered in s ·βj. And in addition, there is a large enough set of runs equivalent to βj with respect
to a large enough set G′j ⊆ Gj.

Proof. The new proof closely follows the Proof of Lemma 1.2.
We now, however, need to construct a set of runs equivalent to βj+1 s.t., each run is equivalent with respect to a sub-set

of the set of processes Gj+1. Unless stated otherwise, we use the same notations and symbols as before.
As explained above, we need to address the following two cases:

(1) After the run s · βk,1· solop1(k+ 1)· clean(k), if any of the processes participating in clean(k) (q1, . . . , qk) reads from the
SWMR register RSWp1 , which p1wrote, then the state is not transparentwith respect toGk,1. The algorithmW , however, is
uniformly wait-free and hence the number of steps in clean(k) is a constant. Hence, the total number of SWMR registers
that may be read by q1, . . . , qk during any clean(k) segment is bounded by some constant, say l. Therefore, because of
the one-to-one correspondence between SWMR registers and processes, at most l processes may be discovered during a
clean(k) segment. So removing these processes fromGk,1 leaves uswith a large enough setGinvis,k,1 ⊆ Gk,1, whereGinvis,k,1
is the subset of processes in Gk,1 whose SWMR register is not read throughout the construction. Clearly |Ginvis,k,1| = ∞.
Note that, based on the construction this step may repeat f (i) (where f (i) < ∞) many times (whenever a cover is
released), each time removing atmost finitelymany processes from Ginvis,k,l. Hence, even after removing these processes
from the construction, infinitely many unused processes from which we may choose remain.
We note that q1, . . . , qk are allowed to read each others SWMR registers, but that the state at the end of the run is

still transparent with respect to Ginvis,k,1.
(2) The state after some clean(k) run segment may not be transparent with respect to processes that start their execution
after clean(k). In particular, one of the processes executing a pseudo-solo runmight read the SWMR register of a currently
active process (covering a register). Hence, this process might not run its pseudo-solo run segment after clean(k).
We again argue that a run inwhich all such ‘‘dangerous’’ processes are removed and that is equivalent to the previous

run exists. We select processes from the set of currently available processes Ginvis,k,1. We select a subset G∗k,1 of Ginvis,k,1.
This subset is constructed as follows: first, after any transparent state, the processes perform at most a constant number
m of operations when running a pseudo-solo run segment. Furthermore, the length of the run segment β∗k,1 (βk,1
previously) is bounded by m and i and it also bounds the number of processes that are writing into SWMR registers
in β∗k,1. We remove processes from Ginvis,k,1 whose SWMR register are read by other processes. We call the resulting set
G∗invis,k,1.
It remains to show that |G∗invis,k,1| = ∞. In otherwordswemust show that there exists a finite set S (of sufficient size)

of processes so that none of the remaining infinitely many processes in G∗invis,k,1 will read any of the SWMR registers of
the processes in S. We will show this by proving a combinatorial lemma.

Lemma 1.4. There exists a finite set of integers S, where |S| ≥ m for some constantm, such that for the collection of uniformly
bounded finite sets of integers {Si}1≤i≤∞, |Si| ≤ r there exists an infinite set X such that ∀x ∈ X, Sx ∩ S = ∅.

Proof. The proof is by contradiction. Assume not. Then, for all finite sets of integers S (|S| ≥ m), ∃aS ∈ S such that aS is
an element of all but finitely many Si. Hence, if there are infinitely many distinct such aS all but finitely Si are unbounded,
a contradiction. Therefore, there are at most finitely many such aS .
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We now claim that we can one-by-one replace all of these finitely many aS with a
′

S such that a
′

S is in at most finitely
many Si. So assume this is not possible, i.e. that when looking for a replacement for aS we never succeed. Then there exist
infinitely many distinct (‘‘replacements’’) such that each of them is in all but finitely many Si, making infinitely many Si
unbounded, a contradiction. �

We apply this lemma now to our construction. It shows that it is possible for us to replace processes that cover
registers and are later discovered with other, equivalent processes such that we preserve an infinite set of processes
G∗invis,k,1 for whom the state at the beginning of their pseudo-solo-runs is transparent.
With these changes applied to Step 6 of the Proof of Lemma 1.2, G∗invis,k,1 replacing Gk,1 we are able to finish the proof

of Lemma 1.3. �

Phase 3:
It remains to remove Assumption B. During a WT&SET operation processes are now allowed to write to different MWMR
registers in different orders. This means that the cover we constructed earlier might not be on the ‘‘right’’ registers anymore
since two processes p and qmay write into the MWMR registers in different orders.
To overcome this difficulty, we first recall that we are only interested in pseudo solo runs. We know, however, that

processes executing such runs are only allowed to write to the first iMWMR registers in shared memory. Hence, in pseudo-
solo runs the number ofMWMRunder consideration is a constant. Secondwe recall that our algorithm is uniformlywait-free
that is the length of every pseudo solo run is a constant. Hence we can consider the different sequences of write operations
to MWMR registers by the different pseudo-solo run segments of processes in G. The number of these sequences is bounded
by i andmwherem is the uniform bound on the length of a solo execution. Each such sequence defines an equivalence class
in G. Since G is infinite, we can always find a subset of processes that in pseudo solo runs performs the same sequence of
writes to MWMR registers starting at s.
But, since in two different states s and s′ that are transparent with respect to G the sequence of MWMR registers that

processes in G write to in pseudo-solo runs need not be the same, the required subset of processes cannot be computed in
advance. Instead it is computed iteratively in rounds as in [5].
We restate the main inductive lemma with Assumption B removed. �

Lemma 1.5. Let W be a long-lived, uniformly wait-free, i-solo-memory- adaptive WT&S algorithm. Then, for every j, 0 ≤ j ≤ i
and for every constant e, for any set of processes G, |G| = ∞ and for any state s transparent with respect to G, there is a run
segment βj and a set of processes Gj ⊆ G s.t., the following holds: (1) |Gj| ≥ e, (2) the state at the end of run s · βj is transparent
with respect to Gj, and (3) either the first j MWMR registers written in the pseudo-solo run segments of processes in Gj, after s · βj,
are the same and covered in s · βj , or the pseudo solo runs starting at s · βj have less than j writes to the same MWMR registers
and all these writes are covered in s ·βj. And in addition, there is a large enough set of runs equivalent to βj with respect to a large
enough set G′j ⊆ Gj.

Proof. The proof is similar to the proof in [5].
We will show that if a sufficiently large set of processes writes to less than k + 1 MWMR registers in their pseudo-solo

run segments then there is sufficiently large subset of this set of processes so that all processes in this subset write to the
same k covered MWMR registers in the same order. Otherwise, we will argue that a set of k + 1 covered MWMR registers
and a sufficiently large set of processes must exist such that all processes in this set write to the same k+ 1 covered MWMR
registers in the same order.
Instead of using Assumption B in the proof of the inductive lemma we will now use a new property that we call multi-

unique [5]. In step 3 of the proof we reduce the set Gk,1 to a subset G
′

k,1. G
′

k,1 is selected so that all processes in G
′

k,1 write to
the same MWMR registers in the same order when executing their pseudo-solo run segments after s · βk,1.
G
′

k,1 is constructed as follows: In each iteration of steps 3–7 the corresponding set G
′

k,1 is constructed in several rounds.
In each new round a subset of the subset selected in the previous round is selected. Let S0 = Gj,1 and let the set of processes
after round h be Sh ⊆ S0. In round h + 1 we simply observe the h + 1’st write operations of the processes in Sh and we
construct Sh+1 as follows:

(1) If infinitely many of the processes in Sh do not have an h + 1’st write to MWMR registers than let Sh+1 be this infinite
subset of the processes in Sh. Sh+1 is the set of processes that holds the multi-unique property at s · βk,1.

(2) Else we denote the (infinitely many) remaining processes (writing to h + 1 registers) by S
′

h+1 and |S
′

h+1| = ∞. Hence
there is at least one MWMR register that a set of infinitely many processes memory-adaptively is writing to.

Since there are at most i <∞ rounds, then |Si| = ∞. Now let G
′

k,1 = Si hence |G
′

k,1| = ∞. �

4. Uniformmemory-adaptive algorithms for NAD’s

Wewill now discuss what our results imply for the design of memory adaptive algorithms (e.g. store/release) for NAD’s.
Earlier in this paper, we showed that there is no uniformly wait-free, uniform store/release protocol memory-adaptive
to interval contention that uses only read/write registers. In [12] it was shown that one cannot uniformly implement a
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MWMR register on a NAD with a finite number of fail-prone base registers, even if the implementation need not be wait-
free. This implies the need for infinitely many base registers. Since this is however an unrealistic assumption, memory-
adaptive algorithms are of particular practical interest in the uniform setting on NAD’s. If uniform protocols that require
infinitely many base registers and that run on NAD are memory-adaptive they will remain practical since they will allow us
to efficiently bound the memory requirements based on the contention. Hence memory-adaptive algorithms are not only
attractive but essential for uniform algorithms on NAD’s.
In [31] we provided a uniform memory-adaptive to interval contention implementation of store/release using stronger

primitives namely an operation we called write-pluswhich is weaker than the standard read-modify-write.
The write-plus command is equivalent to specifying that the function f in the definition of read-modify-write (see the

model section) is required to be a constant independent of X (the value read).
Active Disks [36] on the other hand are capable of supporting stronger semantics that are not normally provided by

disk drives. In particular, they can provide read-modify-write operations. Our results imply that to run realistic uniform
algorithms on a NAD – that is algorithms that are memory adaptive to interval contention – read/write registers are not
sufficient. Our results justify the use of Active Disks in the uniform setting. We will now show how to implement memory
adaptive to interval contention store/release on active disks if disks and hence registers may fail.
Our protocol transfers the uniformly wait free store/release protocol [31] that uses only read, write and read-modify-

write operations and that is memory-adaptive to interval contention and time adaptive to total contention.
Protocol 4: We assume that memory is arranged in the form of a two-dimensional grid, this time indexed by N × N .
Whenever a process executes a read-modify-write into shared memory, it keeps a copy of what was previously written
there in its private memory space along with whatever it writes into the register. As a result, the process always has a
complete record of all of its operations starting from the beginning till the current time in its private space along with the
values that it overwrites. During each store andwith eachwrite, the process keeps track of the number of times it has stored
a value in shared memory. Each write will contain a field with this parameter. The algorithm uses splitters [42]. We assume
that splitters are able to hold values. Each process when executing the algorithm attempts to capture a splitter so that it can
store its value in this splitter.
Using these assumptions, we showed in [31] that a process has the ability to tell whether a splitter is ‘‘clean’’ or ‘‘dirty’’.

In other words, the process is able to tell whether, given a splitter, there exists another process that has previously written
into the splitter’s slot #1 and yet has not either written into slot #2 or written into some other shared register. Based on
these processes execute the following protocol: whenever a process executes a store, it begins at splitter (1, 1) = (i, j). If
the splitter is taken with a value, then the process moves to (i + 1, 1). If the splitter is dirty, it moves to (i, j + 1). If the
splitter is clean, it competes. It writes his name into slot #1 and checks slot #2. If there is a ‘‘new’’ name (i.e. a name that has
been written in the splitter after the process started competing) in slot #2, the process moves to (i+1, 1). If there is no new
name, then the process writes its name into slot #2 and checks slot #1. If there is a new name in slot #1, then the process
moves to (i, j+ 1). If the process’s name is still written in slot #1, then the process has won the splitter and the right to use
its value register. It notes this in the register and writes its value.
In order to execute a release, the process simply indicates that the splitter is now clean.
With Protocol 4 we easily obtain the following Theorem.

Theorem 2. There exists a long-lived, uniformly wait-free and uniform store/ release protocol for Active Disks using only the basic
operations read, write, and read-modify-write that is memory-adaptive to interval contention, time-adaptive to total contention.
Proof. We simply transfer Protocol 4 to Active Disks. To do sowe use Active Disks that provide Read-Modify-Write registers.
Active Disks however may fail. So to make this algorithm fault-tolerant assuming that at most t disks may fail we simply let
each process execute a store on 2t+ 1 active disks. Each process is guaranteed to receive responses from amajority of disks
so it suffices to wait for these responses when executing either store or release.
It remains to show that Protocol 4 is memory-adaptive to interval contention and time-adaptive to total contention:
We assume that the total number of processes that ever become active during the interval under consideration is k.

Consider the protocol restricted to a given column i. Assume that only at most j active processes are ever in the column
at any given time. Because all processes are required to start at position (i, 1), note that the furthest downward that any
process could ever move is (i, j). We now claim that in column i, at most k − i + 1 processes will ever exist in the column
at any given time. Clearly, this is true for i = 1. In order for a process to move to the right, another process must be ‘‘left
behind’’. Thus, there can be at most one fewer active process in a given column than in the column to the left. Inductively,
our claim is therefore proved. The processes are therefore restricted to move in the space above and to the left of the grid
points (i, k − i + 1), 1 ≤ i ≤ k. Because the processes are only allowed to move right and down, this restricts the number
of moves to at most k before an empty splitter is found. This implies a bound of O(k2) on the memory-adaptiveness of the
protocol.
For the time-adaptive claim, note that the number of reads that is necessary for a given process to determine the history

of a given splitter is proportional to the number of processes that has previously written into the splitter. �

5. Conclusion and open problems

In this paper, we showed that there are no uniform, memory-adaptive to interval contention store/release protocols that
use only read/write registers. This proves that to implement protocols that are memory-adaptive to interval contention
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in this setting we must use stronger primitives, such as read-modify-write registers, validating our uniform and memory
adaptive to interval contention protocol from [31]. We furthermore showed that Active Disks are an ideal environment for
the employment of such a protocol. It would be interesting to investigate closer the relationship between time-adaptive and
memory-adaptive protocols. What conditions must be met for a memory-adaptive protocol to be also time-adaptive? How
about the reverse? Answering these questions will allow us to better understand the true cost of distributed protocols and
if and when they can be made adaptive.
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