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Abstract

The paper surveys problems, results and methods concerning the coloring of Steiner triple and
quadruple systems viewed as mixed hypergraphs. In this setting, two types of conditions are
considered: each block of the Steiner system in question has to contain (i) a monochromatic
pair of vertices, or, more, restrictively, (ii) a triple of vertices that meets precisely two color
classes. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

1.1. Mixed hypergraphs

The concept of mixed hypergraph was introduced in 1993 [30,31]. A mixed hyper-
graph is a triple H= (X;C;D), where X is a <nite set of vertices, |X |= n¿1, and
C and D are two arbitrary families of subsets of X . The elements of D are called
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D-edges, while those of C are called C-edges. The size of every C-edge and every
D-edge is at least 2.

A proper k-coloring of a mixed hypergraph is a mapping from X into a set of k
colors, {1; 2; : : : ; k}, so that each C-edge has at least two vertices with a Common color
and each D-edge has at least two vertices with Distinct colors. A mixed hypergraph
is colorable if it has at least one proper coloring, and is k-colorable if it has a proper
coloring with at most k colors. A mixed hypergraph is called uncolorable if it admits
no proper coloring. A strict k-coloring is a proper k-coloring using all the k colors. In
a colorable mixed hypergraph H, the minimum number of colors in a proper coloring
is its lower chromatic number �(H); and the maximum number of colors in a strict
coloring is its upper chromatic number I�(H).

The “classical” weak coloring of the vertices of a hypergraph introduced by ErdLos
and Hajnal in 1966 [1,7] can be seen as a proper coloring of a mixed hypergraph
in which there are only D-edges. In the language of mixed hypergraphs, classical
hypergraphs are called D-hypergraphs, while mixed hypergraphs with only C-edges
are called C-hypergraphs.

In a D-hypergraph, the lower chromatic number coincides with the (weak) chromatic
number [1,7] and the upper chromatic number trivially equals n. In a C-hypergraph, the
lower chromatic number trivially equals 1 but the upper chromatic number represents
a value that is hard to determine. As one can see, in mixed hypergraphs, the upper
chromatic number (in contrast to the lower chromatic number) becomes well-de<ned
only if strict colorings are considered.

Mixed hypergraphs with D=C are called bi-hypergraphs, and the subsets of X in
consideration are called bi-edges. In any proper coloring of bi-hypergraphs, each bi-
edge is neither monochromatic (because it is a D-edge) nor polychromatic (because
it is a C-edge).

Another important concept referring to the colorings of mixed hypergraphs is that of
uncolorability. Uncolorable mixed hypergraphs may easily be constructed. For example,
a complete D-graph Kn; n¿3 of D-edges contained in a C-edge of size n, or any
mixed hypergraph having a bi-edge of cardinality 2 are uncolorable. The structure of
uncolorable mixed hypergraphs is very general. The <rst paper on this topic is [29].
The problem of uncolorability did not originally exist in the theory of hypergraph
coloring [1], as it arises only because of the interaction between D-edges and C-edges
when a proper coloring is sought.

For each k, let rk be the number of partitions of the vertex set into k nonempty
parts (color classes) such that the coloring constraint is satis<ed on each C- and each
D-edge. Such partitions are called feasible. This means that in any feasible partition
each C-edge has at least two vertices in some Common class of partition, and each
D-edge has at least two vertices which fall into two Distinct classes of a partition. In
fact rk coincides with the number of strict k-colorings if we do not count permutations
of the colors.

The integer vector

R(H) = (r1; : : : ; rn) = (0; : : : ; 0; r�; : : : ; r I�; 0; : : : ; 0)

is the chromatic spectrum of H.
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The set of values k for which H has a strict k-coloring is the feasible set of H,
written as S(H); this is the set of indices i such that ri¿0.

The chromatic spectrum was introduced in [30]. In [11,12] it was shown that it may
be broken (may have gaps), i.e. it may happen that ri = 0 even for some �¡i¡ I�. The
existence of gaps in a chromatic spectrum is a peculiarity of strict colorings of mixed
hypergraphs that was never encountered before. Note that gaps are not possible if we
consider proper colorings. In [11,12] it was shown that the minimum number of the
vertices of a mixed hypergraph with broken chromatic spectrum is 6. Current research
is trying to de<ne classes of mixed hypergraphs with the presence (or absence) of gaps
in their chromatic spectrum.

“Classical” coloring theory also deals with subsets of X called stable (or, indepen-
dent) sets which, by de<nition, contain no edges. The parameter �, called the stability
(independence) number, is the maximum cardinality of a stable set.

In mixed-hypergraph coloring theory, it is possible to de<ne three diOerent types of
subsets of X , called D-stable sets, C-stable sets and bi-stable sets, which character-
ize subsets of vertices of H that contain no D-edges (corresponding to stable sets),
subsets containing no C-edges, and subsets containing neither D-edges nor C-edges.
The parameters �D, �C and �bi refer to these subsets and indicate those with maximum
cardinality, called D-stability, C-stability and bi-stability numbers, respectively. Al-
though, when considered separately, these subsets all are stable, in colorings of mixed
hypergraphs they play diOerent roles.

In [30] the following relation was presented between the upper chromatic number I�
and �C for any mixed hypergraph H:

I�(H)6�C(H):

It is clear that in bi-hypergraphs the three diOerent families of stable sets coincide, as
do the three parameters �C; �D and �bi.

1.2. Steiner triple and quadruple systems

In this paper, we present the most signi<cant results obtained in the study of the
strict colorings of particular Steiner systems: Steiner triple systems, also written as
STSs for short, and Steiner quadruple systems, or SQSs.

A Steiner system S(t; k; v) is a pair (X;B), where X is a <nite set of vertices and
B is a family of subsets of X whose elements are called blocks and which has the
following two properties: each block in B has a cardinality k and each subset of t
vertices of X is contained in precisely one block of B. Systems of the type S(2; 3; v)
are Steiner triple systems, often denoted STS(v), where v is the number of vertices in
X , and it is known that v ≡ 1 or 3 (mod 6) is necessary and suQcient for an STS(v) to
exist. Systems of the type S(3; 4; v) represent Steiner quadruple systems, or SQS(v),
where the condition for existence is v ≡ 2 or 4 (mod 6) [10]. An S(t; k; v) is therefore
a particular hypergraph and it can also be viewed as a mixed hypergraph.

When coloring an S(t; k; v) in which each block is considered just as a C-edge, we
have a C-hypergraph; in the case of STS we denote it by CSTS(v). In the case of SQS
we denote it by CSQS(v). If, on the other hand, each block is assumed to be both a
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C-edge and a D-edge, we have a bi-hypergraph, or a BSTS(v) for triple systems and
a BSQS(v) for quadruple systems [19,16,20,17,5].

The paper is divided into four sections. In the second section we survey the most
signi<cant results obtained for BSTSs and CSTSs, and in the third those obtained for
CSQSs and BSQSs. In the fourth section we present the parameter mb that characterizes
particular strict colorings of CSTSs and CSQSs [18].

2. BSTSs and CSTSs

Let us consider a triple system STS(v). If it is viewed as a CSTS(v), then evidently,
it is colorable, and each one of its blocks can be colored either with one color, or with
two colors. If it is viewed as a BSTS(v), then the problem of colorability arises. In a
colorable BSTS(v), in every proper coloring each of the blocks will be colored with
precisely two colors.

It is clear that if each block of an STS(v) is a D-edge, the system will be colored
according to “classical” (or weak) coloring; the most signi<cant results obtained on
such colorings can be found in [4,23,24,25,27].

BSTSs and CSTSs were recently studied in [5,3,14,15,16,17,18,19,20]. Suppose that
a BSTS(v) or a CSTS(v) is colorable with a strict coloring P using h colors, and
let the Xi, with 16i6h, be the color classes of P, i.e. the set of vertices colored
with the color i. In addition, let ni = |Xi|. For the sake of convenience we can re-order
the labels i of Xi in such a way that the cardinalities of the color classes form a
non-decreasing sequence, i.e. that n16n26 · · ·6nh. Henceforward, given a triple or
quadruple system H, we will use the integer vector c= (n1; n2; : : : ; nh) to indicate the
set of strict colorings of H which use h colors and whose color classes have the same
cardinality as the components of the vector c.

In [5,14,18,19] the following necessary conditions for the existence of
a strict coloring of a BSTS or a CSTS were proven, for any subset I of the set
{1; 2; 3; : : : ; h}.

Theorem 1 (Milazzo [18], Milazzo and Tuza [19]). Let P be a strict coloring of a
BSTS or CSTS and Sk =

⋃
j∈I Xj be the union of k = |I | color classes of P with

respective cardinalities |Xj|= nj for all j∈ I . Denoting sk = |Sk |, the inequalities

sk(sk − 1)63
∑
j∈I

nj(nj − 1) (k)

hold whenever 26|I |6h.

Proof. For the number bk of blocks containing more than one element of Sk we
have bk¿sk(sk − 1)=6. Since each of these blocks must contain a monochromatic pair
inside Sk (for otherwise the block would be 3-colored), and each monochromatic
pair is contained in just one block, the upper bound bk6

∑
j∈I nj(nj− 1)=2 also holds,

yielding (k).
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Other necessary conditions for the existence of a strict coloring of a BSTS or CSTS
can be found in [5,14,16,19,17,20]. The theory of strict coloring in Steiner systems
is mainly based on the cardinalities of the classes of colors, which will be dealt with
in greater detail in Section 3. The following theorem gives an indication of the color
class parity in a strict coloring of a BSTS or a CSTS.

Theorem 2 (Colbourn et al. [5], Lo Faro et al. [14]). If P is a strict coloring of a
BSTS or CSTS, then there is only one color class with an odd cardinality.

In [19] Zs. Tuza achieved an important technical result related to number theory,
which made it possible to determine the best upper bound of I� for any CSTS or BSTS
that is “strictly” colorable. Using Lemma 2 of [19], Theorem 1 yields the following
result.

Theorem 3. If P is a strict coloring of a BSTS or CSTS using h colors, then ni¿2i−1

for all 16i6h.

From historical point of view it can be mentioned that the idea to look at Steiner
systems as mixed hypergraphs was <rst formulated by the third author in 1993 in
Catania at the research seminar of Mario Gionfriddo. The next theorem is the <rst
result obtained in the study of strict colorings in Steiner systems. It was obtained
by Zs. Tuza in 1993, following a series of discussions between M. Gionfriddo, Zs.
Tuza and V. Voloshin concerning the possible existence of strict colorings in triple
and quadruple systems. The result initially referred to CSTSs and was later applied to
BSTSs, after Milazzo and Voloshin de<ned them in ChiSsinTau in 1994. The theorem
gives the best upper bound for the upper chromatic number of any colorable BSTS or
CSTS.

Theorem 4 (Milazzo and Tuza [19]). For any CSTS(v), and any colorable BSTS(v),
if v62h − 1, then I�6h.

Proof. Let P be a strict coloring of a BSTS(v) or CSTS(v), which uses the maximum
number of colors. Both Theorems 1 and 3 are valid, and a comparison between the
<rst and last term in the following sequence proves the theorem:

2h − 1¿v=
I�∑

i=1

ni¿
I�∑

i=1

2i−1 = 2h − 1 = 2 I� − 1:

Corollary 1 (Milazzo and Tuza [19]). If H is a BSTS(v) or CSTS(v) with v62h−1
and I�(H) = h, then

1. v= 2h − 1;
2. the h color classes of H have the following cardinalities:

20; 21; 22; : : : ; 2h−1

and they are all bi-stable sets if H= BSTS or C-stable sets if H= CSTS;
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Table 1

BSTS(7) I�= 3
BSTS(9) I�= 3
BSTS(13) I�= 3
BSTS(15)∗ I�= 3
BSTS(19)∗ I�= 3; 4
BSTS(21)∗ I�= 3

3. H is obtained by means of a sequence of “double-plus-one” constructions, starting
from the STS(3).

Corollary 1 gives the possibility to determine an in<nite class of colorable BSTSs and
CSTSs, both having order 2h − 1 and upper chromatic number I�(H) = h. In addition,
this result allows us to state that the upper bound for I� determined in Theorem 4 is
the best possible.

In general, it is possible to obtain in<nite classes of BSTSs or CSTSs by exploiting
the following theorem, presented in [20].

Theorem 5 (Milazzo and Tuza [20]). If P is a strict coloring of a BSTS(v) or
a CSTS(v) of the type (n1; n2; : : : ; nh; nh+1; : : : ; nk), and if the coloring P′ of type
(n1; n2; : : : ; nh) is a strict coloring of a BSTS(v′), then ni¿2i−h−1 · (v′ + 1) for all
i¿h.

In [17,20], by exploiting Theorem 5, four in<nite classes of BSTS(v) and CSTS(v)
of orders v= 10×2h−1 and v= 14×2h−1 were determined, obtained from sequences
of double-plus-one constructions starting from the system BSTS(9) and the two non-
isomorphic systems BSTS(13), all with I�(H) = h+ 3.

In [14,17,20] and [8,26] (for BSTS(15)) all the upper chromatic numbers for the
following “small” colorable BSTSs were determined:

In Table 1 the asterisks indicate that there exist some uncolorable BSTS(v). Similar
results were obtained for “small” CSTSs [14,17,20]; it is recalled that for these systems
�= 1.

Since mixed hypergraphs may have gaps in their chromatic spectra, the problem of
<nding a BSTS or a BSQS with broken chromatic spectrum naturally arose. Obviously,
the problem of identifying triple or quadruple systems of this type is highly signi<cant
and up to now no Steiner system with these features has been determined. (The only
known designs with gaps in the chromatic spectrum are the so-called BP3-designs,
found recently by L. Gionfriddo [9].) In [3,14] the authors studied the value of the
lower chromatic number and the spectra of “small” BSTSs.

The following theorem determines the <rst of the BSTSs belonging to the class
identi<ed by Corollary 1 whose upper and lower chromatic numbers coincide.

Theorem 6 (Buratti et al. [3]). For BSTS(v), with v= 2h − 1, obtained from a
sequence of double-plus-one constructions starting from STS(3), if h¡10, then
I�= �= h.
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M. Buratti proved in [3] that for any h, a BSTS(2h − 1) with I�= �= h does exist.
The problem of whether Theorem 6 holds for any value of h or whether there exists

a particular Ih for which a BSTS(2Ih − 1) with � 	= I�= Ih exists, remains open.
In [14] other “small” BSTSs in which the upper chromatic number is equal to the

lower chromatic number were studied, and the lowest order with which � 	= I� was
determined.

Theorem 7 (Lo Faro et al. [14]). For all BSTS(v) of order v¡19; �= I� holds, while
with v= 19 there exist some BSTS(19) with �= 3 and I�= 4.

A deep investigation of coloring properties of BSTS (termed as bicoloring of STS)
was undertaken in [5]. Colbourn et al. presented particular constructions determining
BSTSs that have a strict coloring with three colors.

Theorem 8 (Colbourn et al. [5]). If there exists a BSTS(u) that can be colored with
a strict coloring (a; b; c), where c= max {a; b; c} and c6a+ b, and there also exists
a BSTS(v) that can be colored with a strict coloring (x; y; z), then there exists a
BSTS(u · v) that can be colored with a strict coloring using three colors,

(ax + by + cz; ay + bz + cx; az + bx + cy):

In [5] other similar constructions are presented, determining BSTSs that can be
colored with strict colorings using four and <ve colors.

Modifying Stinson’s [28] “hill-climbing” algorithm with v61000; v6157 and v
6105, Colbourn et al. [5] determined BSTS(v) that can be colored with three, four
and <ve colors, respectively, and also presented three conjectures on the existence of
BSTSs that are three-, four- and <ve-colorable in the strict sense [5].

Obviously, all CSTSs are colorable, but there are uncolorable BSTSs. Historically,
the <rst result in this sense can be found in [19], where an in<nite family of uncolorable
BSTS(v) is proved to exist.

Theorem 9 (Milazzo and Tuza [19]). All BSTS(v) that do not contain bi-stable sets
of cardinality at least v=
log2(v+ 1)� are uncolorable.

De Brandes and RLodl [2] proved that there exist in<nitely many values of v admitting
STS(v) of order v that do not possess stable sets with a cardinality of c

√
v ln v. (Here

any c¿4 is a suitable choice.) For these systems, �¿
√
v=(c ln v), but according to

Theorem 4, I� is upper-bounded by 
log2(v+ 1)�, hence for large enough v we obtain
the contradiction I�¡�. This implies the existence of an in<nite uncolorable family of
BSTSs.

The <rst explicitly described uncolorable BSTS(15) was found by Ganter in 1997 [8].
Since the inequality I�(H)6�C(H) is valid for any mixed hypergraph H, and in bi-

hypergraphs the C-stable sets are the same as the stable sets in the corresponding (D-)
hypergraphs, the STSs with stable sets of bounded size deserve a special attention with
respect to the uncolorability of BSTS. More detailed analysis showed the following:
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Theorem 10 (Colbourn and Rosa [6]). If �C(BSTS(v))6v=3; then BSTS(v) is
uncolorable.

Proof. Let �C(BSTS(v))6v=3 and suppose there exists a strict k-coloring of BSTS(v)
in which the color classes have the sizes n1; n2; : : : ; nk where k¿3; �ki=1ni = v, and
ni6v=3 for all i. Since each block contains precisely two vertices with the same color,
the number of blocks equals �ki=1

(ni
2

)
: Let v= 6t+ 3. The maximum value of �ki= 1

(ni
2

)
is attained when k = 3 and n1 = n2 = n3 = 2t + 1: But then

�ki= 1

(
ni
2

)
= 3

(
2t + 1

2

)
¡(3t + 1)(2t + 1);

which is the number of blocks in BSTS(6t+3), a contradiction. The case when v= 6t+1
is handled similarly.

There are uncolorable BSTSs of all orders ¿15. Namely, further simple calcula-
tions based on [2] (Rosa, private communication, 1998) give that any BSTS(15) with
�C67 is uncolorable. This implies that a BSTS(15) is colorable if and only if it
contains BSTS(7) as a subsystem, and hence is obtained by the double-plus-one con-
struction. Furthermore, any BSTS(19) with �C = 7, any BSTS(21) with �C68, any
BSTS(25) with �C69, any BSTS(27) with �C611; any BSTS(31) with �C613 and
any BSTS(33) with �C613 are uncolorable. As one can see, Theorem 10 provides a
necessary but not suQcient condition of colorability, so the criteria of (un)colorability
in the general case are yet to be found.

3. BSQS and CSQS

3.1. BSQS

In this section we will use the same notation as in the previous one.
A BSQS(v) is a quadruple system in which each block is a C-edge and a D-edge

at the same time. The following result exhibits a necessary condition for the existence
of strict colorings.

Theorem 11 (Milazzo [16]). If P is a strict coloring for BSQS(v) with h colors, then

h∑
i=1

(
ni
2

)
(v− ni)¿1

2

(
v
3

)
+

h∑
i=1

(
ni
3

)
:

In a strict coloring of a BSQS each block can only be colored with two or three
colors, and in three diOerent ways. The numbers of the blocks colored in these three
diOerent ways have been determined and only depend on the cardinality of the color
classes.
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Table 2

BSQS(8) I�= 3
BSQS(10) I�= 4
BSQS(16) I�= 3

Theorem 12 (Milazzo [16]). If P is a strict coloring for a BSQS(v), then:

1.
∑h

i=1(
ni
3 ) blocks are colored with two colors unequally; more speci>cally, three

vertices in each of these blocks are colored with the same color;
2. (c′h=2) blocks are colored with three colors, where c′h is the number of all the

di?erent trichromatic triples in X colored with the colors of P;
3. |B|−c′h=2−

∑h
i=1(

ni
3 ) blocks are colored with two colors equally; more speci>cally,

there are two monochromatic pairs of vertices in each of these blocks.

In [14,16,19,17] the following results were obtained for “small” BSQSs:
The systems in Table 2 are all colorable, and it seems to us that the case of v= 14

has not yet been investigated, despite it would be very natural, and it does not look
like a very hard problem. Proof of the colorability of all the BSQS(16) is of a greater
signi<cance as it proves the colorability of a very large number of systems (in the
range of thousands). It is also interesting that the intermediate value of v= 10 yields
a larger upper chromatic number.

Theorem 13 (Lo Faro et al. [15]). Each BSQS(16) is colorable and I�= 3.

This result also gives us information about the chromatic spectrum of the quadruple
systems BSQS(16). For systems containing blocking sets, in fact, �= 2 holds, while
for the others we have I�= �= 3 and |S(H)|= 1.

No uncolorable BSQS has been found yet, and this problem seems to be linked to
the determination of SQS(v) with particular independent sets.

3.2. CSQS

A CSQS is a quadruple system in which each block is a C-edge. If P is a strict
coloring of such a system, then each block can be colored with one, two or three
colors. In [16] the following necessary conditions for the existence of a strict coloring
of any CSQS were determined.

Theorem 14. If P is a strict coloring of a CSQS, then

i∑
j=1

(
nj
3

)
+ 2

i∑
j=1

(
nj
2

)
(si − nj)¿

(
si
3

)
(i)

for all 16i6h.
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Theorem 15. If P is a strict coloring of a CSQS(v) = (X;B), then

|B|6
h∑
i= 1

(
ni
2

)
v− 2

2
−

h∑
i= 1

5
4

(
ni
3

)
:

For an in<nite class of CSQS(2k), obtained by means of a sequence of “double-
construction” [13] starting from the trivial system SQS(4), it can easily be proved that
there always exists a strict coloring using k + 1 colors, so we have that I�¿k + 1 for
this class of CSQSs.

The following two theorems summarize results obtained in [17,18].

Theorem 16. For any CSQS(2k) with k = 2; 3; 4 or 5, I�6k + 1.

In the systems considered in Theorem 16, it is possible to determine a characteri-
zation of the strict colorings, that use k + 1 colors, by means of the cardinalities of
the color classes. This result is similar to the one in part 2 of Corollary 1, but is only
obtained for a <nite number of values k.

Theorem 17. A coloring of a CSQS(2k), where k = 2; 3; 4, using k+1 colors is of the
type (20; 20; 21; 22; : : : ; 2k−1).

The problem of determining an upper bound for the upper chromatic number when k¿5
remains an open issue. More speci<cally, if there exists some colorable CSQS(2k) with
more than k + 1 colors, then the following result holds.

Theorem 18 (Milazzo and Tuza [19]). If a CSQS(2k) is colored by a strict coloring
using more than k + 1 colors, then each color class has a cardinality greater than
one.

Nevertheless, it may happen to be the case that no such colorings exist, and the pre-
ceding two theorems are valid for all k.

In general, for Steiner systems of the type S(t; t + 1; v) in which all the blocks are
C-edges, it has been proved that the asymptotic behavior of the upper chromatic number
of S(t; t+ 1; v) is at most logarithmic with respect to the order of the system [21]. We
do not know whether this upper bound is tight—apart from a multiplicative constant—
for each (or, any) t¿4. This problem seems to be hopelessly hard at present, because
so far only <nitely many S(t; t + 1; v) are known with block size t + 1 = 5 and 6, and
none with larger than 6.

4. The “monochromatic block number”

A frequent problem in strict colorings has been that of determining the number of
monochromatic blocks (C-edges) in the strict colorings of H that use the maximum
number of colors, or in general in strict colorings that use h colors. For Steiner systems
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it has been proved, for example, that if CSQS(8) is colored with four colors, then there
exists one and only one monochromatic block [19].

In [18], Steiner systems whose blocks are always C-edges, were studied in general
for a CS(t; k; v). The parameter mb, called “monochromatic block number” was de<ned,
representing the number of monochromatic blocks in a strict coloring P of a CS(t; k; v).

In a CSTS(v) the parameter mb has been determined for any coloring P.

Theorem 19 (Milazzo [18]). If P is a strict coloring of a CSTS(v), then

mb(P) =
1
2

∑
i

(
ni
2

)
− v(v− 1)

12
:

As an important consequence, Theorem 19 yields that the parameter mb depends
only on the cardinalities of the color classes—i.e., on the type of the coloring P—and
not on the actual positions of the classes with respect to the blocks.

A more complex problem is that of determining mb for CSQS(v) systems. In these
systems, in fact, only the following result has been obtained for the CSQS(2k) colored
with a particular strict coloring IP.

Theorem 20 (Milazzo [18]). If a CSQS(2k), where k¿3, is colored with a strict col-
oring IP using k + 1 colors and in IP there is a color class with cardinality one,
then

ck
2
6mb( IP)6

k−1∑
i=2

|B(2i)|; (1)

where the quantity |B(2i)|= 1
4(

2i

3 ) is the number of blocks in an SQS(2i) and

ck =
(

2k−1

3

)
−
[
k−2∑
i=2

(
2i

3

)
+

k−2∑
i=1

(
2i

2

)
(2k−1 − 2i)

]
:

Moreover, the inequality on the right-hand side of (1) is the best possible.

In [18] it was proved that the strict coloring IP is a very particular coloring because
it is of the type (20; 20; 21; 22; : : : ; 2k−1), already encountered in Theorem 17. In [19]
an in<nite class of the CSQS(2k), all colorable with IP, was determined.

The left-hand side inequality in (1) is best possible for CSQS(8) and CSQS(16), as
shown in [18]. The problem of determining whether this inequality is the best possible
for all or only some values of k remains an open problem.

5. Concluding remarks

In this paper, we have presented the main results obtained in the <eld of strict
colorings for BSTSs, CSTSs, BSQSs and CSQSs.
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Early research was oriented towards studying the upper chromatic number and then
problems of colorability.

Following the work of Jiang et al. [11,12], research began to focus on the lower
chromatic number and, above all, the characterization of the chromatic spectrum of
these systems.

Strict colorings of Steiner systems of the STS and SQS types have given rise to
the study of diOerent types of colorings for these systems, especially those of the type
S(2; 4; v) and SQS [22].

It is worthwhile pointing out in this section the most signi<cant problems that still
remain to be investigated.

1. Finding a criterion of colorability of BSTS.
2. Determination of uncolorable BSQSs.
3. Determination of an upper bound for the upper chromatic number of a BSQS or a

CSQS.
4. The study of BSTSs and BSQSs where the upper and lower chromatic numbers

coincide.
5. Identi<cation of the chromatic spectrum (r1; r2; : : : ; rv) of BSTSs and BSQSs, deter-

mining the values of ri.
6. Determination of BSTSs and BSQSs with a broken spectrum (or, to prove that all

BSTS (BSQS) have a continuous spectrum).
7. The monochromatic block number for CSQSs.
8. The study of constructions of STSs and SQSs that are colorable or uncolorable.
9. Determination of a colorable or uncolorable BSTS(v) or BSQS(v), for a certain

possible v.
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