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Abstract

We show how coalgebras can be presented by operations and equations. This is
a special case of Linton’s approach to algebras over a general base category X ,
namely where X is taken as the dual of sets. Since the resulting equations gener-
alise coalgebraic coequations to situations without cofree coalgebras, we call them
coequations. We prove a general co-Birkhoff theorem describing covarieties of coal-
gebras by means of coequations. We argue that the resulting coequational logic
generalises modal logic.

Introduction

Let us start with recalling that universal algebras are defined as sets equipped
with operations subjected to equations. Operations can be infinitary. Given a
set X, a mapping f : AX → A is an X-ary operation on a set A. One is often
working with Y -tuples fy : AX → A, y ∈ Y , of X-ary operations on a set
A. These Y -tuples uniquely correspond to mappings f : AX → AY . Starting
with a set of operations one always has free algebras. But there are impor-
tant examples of universal algebras given by a class of operations which still
have free algebras (complete semilattices, compact Hausdorff spaces). Linton
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showed in [14] that equationally defined universal algebras are, under the ex-
istence of free algebras, precisely the monadic categories over Set. Moreover,
in [15], he generalised the result from sets to any base category X . In that
work, operations are still mappings

f : AX → AY

where A, X, and Y are objects in X and AX is the set of all morphisms
X → A. Note that, in Set, AX coincides with the X-fold product of A. In
general, however, it is important to consider AX as a set of morphisms because
the other approach would be too special for a general base category X . In
particular, it would be too special for X = Setop. Davis [7] used Linton’s
approach for introducing universal coalgebras over Set even without assuming
the existence of cofree coalgebras (i.e., free algebras over Setop). The second
author then considered Linton’s algebras over a general base category, without
the existence of free algebras, in [23].

There is another way of defining universal algebras over a general base
category. One starts with an endofunctor F : X → X and defines F -algebras
as objects A equipped with a morphism α : FA → A. These algebras are
called F -dynamics in Manes [17] and were extensively studied by Trnková
and her students in Prague (cf. [4]). Notably, Reiterman [21] compared F -
algebras with algebras given by operations and equations.

There is a revived interest in universal coalgebra motivated by its con-
nections with the theory of systems (see [24]). Coalgebras are here under-
stood as F -algebras over X = Setop, i.e., as sets A equipped with a mapping
α : A→ FA where F : Set→ Set. Our aim is to show the potential of defining
coalgebras by means of operations and equations (Section 2). Our equations
for coalgebras dualise equations for algebras and generalise previous concepts
of coalgebraic coequations (cf. [24,8,12,10]) to situations without cofree coal-
gebras. We prove a general co-Birkhoff theorem showing that covarieties of
coalgebras are always definable by coequations (Section 3) and we present a
full explanation of Davis’s characterisation of coequational categories (Sec-
tion 4). Finally, we show that the dual of operations f : AX → AY are modal
predicates, i.e., predicates that are invariant under bisimulation. This gives
rise to general notions of modal predicate and modal operator and shows that
our coequational logic is a generalised modal logic (Section 5).

We work in Gödel-Bernays set theory with the axiom of choice for classes.
It means that all proper classes are isomorphic, in particular to the class Ord of
all ordinals. Categories are assumed to be locally small, which means that they
have a class of objects and sets of morphisms between any two given objects.
Occasionally we encounter categories which do not satisfy this requirement
and we call them illegitimate.
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1 Preliminaries

Given an endofunctor F : X → X , a F -coalgebra A = (A,α) consists of
an object A ∈ X and an arrow α : A → FA. F -coalgebras form a category
Coalg(F ) where a F -morphism f : (A,α)→ (B, β) is an arrow f : A→ B ∈ X
such that Ff ◦ α = β ◦ f :

A
α✲ FA

B

f
❄

β
✲ FB

Ff
❄

The forgetful functor U : Coalg(F )→ X maps a coalgebra (A,α) to A and a
morphism f : (A,α) → (B, β) to the arrow f : A → B in X . U creates and
hence preserves colimits.

Set denotes the category of sets and functions and P : Set → Set the
covariant powerset functor. 5 We also use the convention 2 = {0, 1} and call
the elements of 2 truth values.

Given A,X ∈ X , the set of arrows A → X is denoted by XA. For f :
X → Y , the function fA : XA → Y A is defined as fA(g : A → X) = f ◦ g.
For f : A→ B, the function Xf : XB → XA is defined as Xf (g : B → X) =
g ◦ f . 6 The assignment − 
→ X− gives rise to a functor X− : X op → Set. We
write XU for the functor Aop → Set obtained from composing U : A → X
and X− : X op → Set.

A concrete category is a faithful functor U : K → Set. A functor F :
K → K′ is a concrete functor between the concrete categories U : K → Set
and U : K′ → Set iff U ′F = U . Concrete categories are isomorphic if the
isomorphisms are concrete functors. In case that K has coproducts, a covariety
in K is a full subcategory which is closed under coproducts, subobjects and
quotients. 7

A measurable cardinal κ is a cardinal on which a non-principal κ-complete
ultrafilter exists. An ultrafilter is κ-complete if it is closed under intersections
of cardinality < κ and it is non-principal if it does not contain a singleton-set.

Each category of coalgebras comes equipped with a notion of bisimula-
tion or, as we prefer to call it, behavioural equivalence. There are different
but equivalent ways to define this notion, the following one seems to be ap-

5 PX = {Y | Y ⊆ X} and P(f : X → X ′) : PX → PX ′, X ⊇ Y 
→ {f(y) | y ∈ Y }.
6 For instance, with X = Set, 2A is the set of subsets of A and 2f : 2B → 2A is the
inverse-image-map of f : A→ B.
7 We say that B is a subobject of A if there is f : B → A such that Uf is injective; B is a
quotient of A if there is f : A→ B such that Uf is surjective.
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propriate in our setting (in the case X = Set). It formalises the idea that
behavioural equivalence is the smallest equivalence relation that is invariant
under coalgebra morphisms, see [13]. We define two notions, the second one
taking ‘colourings’ into account: Given C, a colouring v for a coalgebra A is
an arrow UA→ C. Instead of U : Coalg(F )→ Set, we only require a functor
U : A → Set in our definition of behavioural equivalence.

Definition 1.1 (Behavioural Equivalence) Consider a functor U : A →
Set and C ∈ Set. In the following A,B range over A, v, w over valuations
UA → C, UB → C, respectively, and a, b over elements of UA, UB, respec-
tively, and f over morphisms A→ B.

(i) ∼ is the equivalence relation generated by all

(A, a) ∼ (B, Uf(a)).

(ii) ∼C is the equivalence relation generated by all

(A, w ◦ Uf, a) ∼C (B, w, Uf(a)).

If (A, a) ∼ (B, b) we say that a and b are behaviourally equivalent. If
(A, v, a) ∼C (B, w, b) we say that a and b are C-behaviourally equivalent.

Remark 1.2

(i) In case that A = Coalg(F ) and F preserves weak pullbacks, (A, a) ∼
(B, b) iff a and b are related by a bisimulation in the sense of Aczel and
Mendler [1].

(ii) In particular, in case of Coalg(P), behavioural equivalence is the familiar
bisimulation between (unlabelled) transition systems.

The following gives an alternative characterisation of behavioural equivalence.

Proposition 1.3 Suppose U : A → Set creates colimits. (A1, v1, a1) ∼C

(A2, v2, a2) iff there are B, w and morphisms fi : Ai → B such that

C

UA1
Uf1

✲

v 1
✲

UB

w
✻

✛
Uf2

UA2

✛
v
2

(1)

commutes and (Uf1)(a1) = (Uf2)(a2).

Proof Let ≈ denote the relation defined by condition (1). ≈ ⊆ ∼ is im-
mediate. For the converse, note that ≈ contains the generating pairs of ∼
and is reflexive and symmetric. ≈ is transitive, since A has pushouts and U
preserves these. ✷
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2 Coequational Categories

As we have explained in the introduction, coalgebras can be introduced as sets
A equipped with operations

f : XA → Y A

where X, Y are sets and XA denotes the set of all mappings A→ X (because
XA in Set is AX in Setop).

Definition 2.1 (Coalgebras for a signature) A signature Σ is a class of
operation symbols σ each equipped with a pair (X,Y ) of sets. We call σ a
(X,Y )-ary operation symbol. A Σ-coalgebra A is a set A together with map-
pings

σA : XA → Y A

for each (X,Y )-ary operation symbol σ ∈ Σ. A homomorphism of Σ-coalgebras
is defined as a mapping h : A→ B such that the following square commutes

XA σA ✲ Y A

XB

Xh

✻

σB ✲ Y B

Y h

✻

for all σ in Σ. The resulting (illegitimate) category of coalgebras is denoted by
Coalg(Σ).

Remark 2.2 If Σ consists of a single (X,Y )-ary operation symbol σ then
Coalg(Σ) ∼= Coalg(Y (X−)). (It generalises the presentation of topological
spaces together with open continuous maps as coalgebras, see [9].) Hence,
for a set Σ of operation symbols, Coalg(Σ) ∼= Coalg(F ) for some functor
F : Set→ Set (by taking a coproduct of (Y X−

)’s).

As usual, a signature Σ gives rise to terms. Terms are also equipped with
arities and defined as follows:

(i) every (X,Y )-ary operation symbol is an (X,Y )-ary term,

(ii) every mapping f : X → Y determines an (X,Y )-ary term xf ,

(iii) having an (X,Y )-ary term t1 and an (Y, Z)-ary term t2, we get an (X,Z)-
ary term t2 · t1.

For each (X,Y )-ary term t and a Σ-coalgebra A we get the mapping

tA : XA → Y A

as follows:

(ii) (xf )A(v) = f ◦ v for v : A→ X,
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(iii) (t2 · t1)A = (t2)A ◦ (t1)A.
We can now define coequations:

Definition 2.3 (Coequations) A coequation is a pair (t1, t2) of (X,Y )-ary
terms. We write t1 = t2. A Σ-coalgebra A satisfies this coequation iff (t1)A =
(t2)A.

A coequational theory E is a class of coequations. The category of
all Σ-coalgebras satisfying all coequations from E is denoted by Coalg(E).
It might be an illegitimate category. We are interested in legitimate cat-
egories Coalg(E). Each such category is equipped with a forgetful functor
U : Coalg(Σ)→ Set and thus it is a concrete category.

Definition 2.4 (Coequational category) A concrete category will be
called coequational if it is isomorphic to Coalg(E) for some coequational theory
E.

We show that Coalg(F ) is always coequational. This result is due to Re-
iterman. His paper [21], p. 62, formulates it, without proof, over Setop only
(i.e. for algebras over Set) and thus we present Reiterman’s proof sent to the
second author in the late 70s.

Proposition 2.5 (Reiterman) Let F : Set → Set be a functor. Then
Coalg(F ) is coequational.

Proof Let Σ be a signature consisting of (X,FX)-ary operation symbols σX

for every set X and let E consist of coequations

σY · xf = xFf · σX (2)

for every mapping f : X → Y . There is a functor G : Coalg(F ) → Coalg(E)
given as follows: For A = (A,α), G(A) is the E-coalgebra (A, σX

GA) where

σX
GA(v) = Fv ◦ α

for v : A→ X. On the other hand there is a functor H : Coalg(E)→ Coalg(F )
sending an E-coalgebra A = (A, σX

A ) to the F -coalgebra (A, σA
A (idA)).

We have HG = Id because, for each F -coalgebra A = (A,α) we have
σA

GA(idA) = F idA◦α = α. Conversely, GH = Id because, for each E-coalgebra
A = (A, σX

A ), we have GHA = G(A, σA
A (idA)) = (A,F (−) ◦ σA

A (idA)) which
equals (A, σX

A ) because for all v : A→ X

AA σA
A✲ (FA)A

XA

(xv)A

❄ σX
A✲ (FA)A

(xFv)A

❄
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commutes (due to the coequation σX ·xv = xFv ·σA) and thus Fv ◦σA
A (idA) =

σX
A (v ◦ idA) = σX

A (v). ✷

A disadvantage of the just described procedure is that one needs a proper
class of operation symbols. Let (M) denote the following set-theoretic state-
ment (see [3]).

(M) There do not exist arbitrarily large measurable cardinals.

Proposition 2.6 Assume (M) and let F : Set→ Set be a functor preserving
cofiltered limits. Then Coalg(F ) is coequational in a signature consisting of a
single operation symbol.

Proof Let P be an infinite set whose cardinality is greater than any measur-
able cardinal. Then the full subcategory P of Set having a single object P is
codense in Set (see [3] A.5). Let Σ consist of a single (P, FP )-ary operation
symbol σ and E consist of coequations (2) for f : P → P (where σ = σP ).
Analogously to Proposition 2.5 , we get a functor G : Coalg(F ) → Coalg(E)
and our task is to define H : Coalg(E) → Coalg(F ). Let (A, σA) ∈ Coalg(E).
Since P is infinite, the comma-category (A↓P) is cofiltered (〈u, v〉 serves as a
lower bound for u, v : A → P ). The codensity of P means that f : A → P
forms a limit cone to the projection Q : (A↓P) → Set. Since F preserves
cofiltered limits, Ff : FA → FP forms a limit cone to FQ. Coequations
in E say that σA(f) : A → FP is a cone to FQ. Thus there is a unique
mapping α : A→ FA such that Ff ◦ α = σA(f) for each f : A→ P . We put
HA = (A,α). The rest is analogous to Proposition 2.5. ✷

Remark 2.7

(i) We can assume that there are no measurable cardinals. If V is a model
of ZFC in which measurable cardinals exist, let κ be the smallest such.
Then Vκ, the restriction of V to sets of rank < κ, is a model of ZFC that
contains no measurable cardinals.

(ii) If there are no measurable cardinals, we can take a countable set for P .

(iii) Since cofiltered limits are connected, Proposition 2.6 applies to polyno-
mial functors F : Set→ Set.

We have seen that categories of coalgebras for a functor are coequational.
But often, one is more interested in covarieties of these categories.

Problem 2.8 Is every covariety in Coalg(F ), where F : Set → Set, coequa-
tional? More generally, is every covariety of a coequational category coequa-
tional?
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Let U : K → Set be a functor. A U-split equaliser is an equaliser in K

A
e ✲ B

f ✲

g
✲ C

such that its U -image splits, i.e., it is equipped with t : UC → UB and
s : UB→ UA such that s ◦ Ue = idUA, t ◦ Uf = idUB, and t ◦ Ug = Ue ◦ s. U
creates U-split equalisers if it creates equalisers of pairs f, g for which Uf, Ug
has a split equaliser in Set. Beck’s theorem [16] says that U is comonadic iff it
has a right-adjoint and creates U -split equalisers. We will say that a concrete
category K is co-Beck if U creates colimits and U -split equalisers.

Proposition 2.9 Each covariety of a coequational category is co-Beck.

Proof Straightforward, cf. [23]. ✷

Remark 2.10

(i) Propositions 2.5 and 2.9 also hold if we replace Set by an arbitrary cate-
gory.

(ii) We can now give an easy proof of Linton’s theorem [15], § 9, which says
that coequational categories with cofree coalgebras (i.e., U has a right
adjoint) coincide with comonadic categories. A proof that comonadic
categories are coequational follows from Proposition 2.5. If F : Set→ Set
is a comonad with a counit ε : F → Id and a comultiplication δ : F →
FF , we get comonad coalgebras by imposing the following additional
coequations to (2):

xεX
· σX = xidX

,

σFX · σX = xδX
· σX .

The converse statement that coequational categories with cofree coalge-
bras are comonadic follows from Beck’s theorem and Proposition 2.9.

3 Implicit Operations

If Σ is a signature and U : Coalg(Σ) → Set the forgetful functor then each
(X,Y )-ary operation symbol σ ∈ Σ determines a natural transformation

σ : XU → Y U

So does each (X,Y )-ary term. It leads us to define (X,Y )-ary implicit op-
erations, for every concrete category U : K → Set as natural transformations

XU → Y U .

If the functor U has a right adjoint R then (X,Y )-ary implicit operations
correspond to natural transformations

hom(−, RX)→ hom(−, RY ),
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i.e., to morphisms RX → RY .

Definition 3.1 (Coequations in Implicit Operations) Let U : K → Set
be a functor and X,Y ∈ Set. Having two (X,Y )-ary implicit operations σ1

and σ2 in K, we say that an object K ∈ K satisfies the coequation σ1 = σ2 and
write K |= σ1 = σ2 iff (σ1)K = (σ2)K.

Remark 3.2

(i) For a collection E of coequations in implicit operations, the full subcate-
gory of all objects satisfying each coequation from E is a covariety in K
(assuming that K has coproducts and that U : K → Set preserves them).

(ii) If U has a right adjoint and σ1, σ2 are represented by s1, s2 : RX → RY ,
respectively, then an object K satisfies the coequation σ1 = σ2 iff every
morphism h : K → RX is coequalised by σ1 and σ2, i.e., iff h factors
through an equaliser

S ✲ RX
s1✲

s2

✲ RY

This notion of a coequation as a subobject S of a cofree object RX is
a special case of Manes [17], Theorem 3.4, page 227. It was further
investigated in [24,8,22,12,10]. Conversely, for any subobject S → RX,
take the cokernel pair f, g : RX → A and compose it with ηA : A→ RUA
given by the unit η of the adjunction U � R. Then the pair ηA ◦ f, ηA ◦ g
produces the pair of natural transformations XU → Y U in our sense.
Thus, in the presence of cofree coalgebras, our approach is equivalent to
the coequations-as-subobjects-of-cofree-objects approach.

(iii) Without cofree coalgebras, there are related concepts of a coequation in
[2] and [21]. They are subsumed by coequations in implicit operations.

We already mentioned that a class definable by coequations in implicit op-
erations is a covariety. We now show the converse which is a co-Birkhoff the-
orem not relying on the existence of cofree coalgebras. The proof uses certain
implicit operations defined in terms of the behavioural equivalence relations
∼X (Definition 1.1). The following proposition shows that transformations
XU → 2U that are invariant under ∼X are implicit operations.

Proposition 3.3 Consider U : K → Set. A transformation ϕ : XU → 2U is
natural if for all Ai ∈ K, vi : UAi → X, ai ∈ UAi, (i = 1, 2)

(A1, v1, a1) ∼X (A2, v2, a2) ⇒ ϕA1(v1)(a1) = ϕA2(v2)(a2)

Proof By definition, ϕ is natural if ϕA1(v2◦Uf)(a1) = ϕA2(v2)(Uf(a1)) for all
f : A1 → A2 in K, v2 : UA2 → X, a1 ∈ UA1. Now use that (A1, v2 ◦Uf, a1) ∼X

(A2, v2, Uf(a1)). ✷
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Theorem 3.4 Let E be a coequational theory. Then every covariety C in
Coalg(E) is definable by coequations in implicit operations.

Proof For a set X and a E-coalgebra A, define

ϕX
A : XUA → 2UA

as follows: for v : UA→ X and a ∈ UA, let ϕX
A (v)(a) = 1 iff there are C ∈ C,

u : UC → X, c ∈ UC, such that (A, v, a) ∼X (C, u, c), see Definition 1.1. ϕX

is an implicit operation by Proposition 3.3.

Consider coequations
ϕX = true (3)

where true = xf is given by the constant function f : X → 2, x 
→ 1. Each
C ∈ C satisfies (3). Conversely, assume that A satisfies all coequations (3).
Then, due to Proposition 1.3, for each a ∈ UA, there are Ba ∈ Coalg(E),
Ca ∈ C, and homomorphisms fa, ga and mappings wa, ua such that

UA

UA
Ufa

✲

id U
A ✲

UBa

wa

✻

✛
Uga

UCa

✛
u
a

commutes and (Ufa)(a) ∈ (Uga)(UCa). Using a multiple pushout of the fa

B UA

we get

A
fa

✲

f

✲

Ba

f ′
a

✻

UA
Uf

✲

id U
A ✲

UB

w
✻

✛
U(f ′

a ◦ ga)
UCa

✛
u
a

with (Uf)(UA) ⊆ ⋃{U(f ′
a ◦ ga)(UCa) : a ∈ UA}. Note that

⋃{U(f ′
a ◦

ga)(UCa) : a ∈ UA} is the carrier of an E-coalgebra which is in C due to
closure under coproducts and quotients. Since f is injective and C is closed
under subobjects, it follows A ∈ C. ✷

Remark 3.5

(i) If Coalg(E) has cofree coalgebras, the implicit operation ϕX is induced
by a morphism h : RX → R2, U � R, or, equivalently, by a mapping
h̃ : URX → 2. Then, for v : UA→ X,

ϕX
A (v) = h̃ ◦ Uv�

with v� : A→ RX being the transpose of v.

(ii) Our proof works in the universe of finite sets, i.e., every covariety of
finite coalgebras is given by coequations in implicit operations. This is
the “Reiterman Theorem” [20] for coalgebras.
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(iii) The just proved theorem does not mean that C is coequational. It may
happen that the interpretation of the implicit operations ϕX are not
forced to be the given ones. Hence the theorem does not solve Prob-
lem 2.8.

4 Davis’s Theorem

We may allow signatures with (X,Y )-ary operation symbols where X and
Y are classes. It leads to meta-coequational categories. Every meta-
coequational category is co-Beck. Davis [7] proved the converse. He overstated
his result by claiming that every co-Beck category is coequational, which is
not true as Example 4.3 shows. The second author observed Davis’s mistake
in [23]; here we give a full explanation. First, we sketch an argument proving
Davis’s theorem.

Theorem 4.1 (Davis) A concrete category is meta-coequational iff it is co-
Beck.

Proof Let U : C → Set create colimits and U -split equalisers. Let R : Class→
Class be the density comonad of

Ū : C U−→ Set ↪→ Class.

It means that RX is the colimit of the canonical diagram (Ū↓X)→ Class

ŪA
v ✲ X

RX
εX

✲

c
v ✲

where εX is induced by the cone given by v’s. Since Ū creates colimits, (Ū↓X)
is ∞-filtered (= every small subcategory of (Ū↓X) has an upper bound).
Since the (illegitimate) category Coalg(R) of coalgebras for the comonad R is
coequational over Class, it suffices to prove that the image of the comparison
functor

C ✲ Coalg(R)

Class

✛ V
Ū ✲
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consists precisely of the R-coalgebras (X, ξ) with X a set. Any such coalgebra
is given by a V -split equaliser

UBi
✛✛ UAi

✛ UCi

RRX
❄

✛Rξ
✛
δX

RX
❄

✛ ξ
X

ci

❄

where δ is the comultiplication. Since RRX and RX are given by ∞-filtered
colimits, this equaliser is an ∞-filtered colimit of U -split equalisers in C (we
are also using that U creates U -split equalisers). Since X is a set, some R-
coalgebra homomorphism ci : Ci → (X, ξ) splits, i.e., ci ◦ s = idX for some
s : (X, ξ)→ Ci. Hence (X, ξ) is isomorphic to some C-object. ✷

Remark 4.2 Let C be a concrete category and σ : XU → Y U an implicit
operation where X,Y are classes. Take mappings f : X1 → X and g : Y → Y1

where X1, Y1 are sets. We get an implicit operation gU ◦ σ ◦ fU where arities
are sets. If sets are codense in classes then Y is a canonical limit of the
canonical diagram (Y ↓Set) → Class consisting of g : Y → Y1 where Y1 is a
set. Hence, the implicit operation σ ◦ fU is determined by implicit operations
gU ◦σ◦fU . Moreover, since UC are sets, σ is determined by implicit operations
gU ◦ σ ◦ fU . This is what Davis claimed. However, it does not mean that
coequations of implicit operations whose arities are classes can be replaced by
coequations of implicit operations whose arities are sets. There is a problem
with compositions XU σ1−→ ZU σ2−→ Y U where Z is a proper class. The precise
result is Proposition 5.5 in [23].

As before, sets are codense in classes iff Ord is not measurable, i.e., iff each
Ord -complete ultrafilter is principal. A model of such a set theory is Vα where
α is inaccessible but not measurable. On the other hand, in the theory of
finite sets, i.e., in Vω, is Ord = ω measurable.

Example 4.3 Let Σ consist of a single (1,Ord)-ary operation symbol σ. Then
Σ-coalgebras A are sets A equipped with an operation σA : 1A → OrdA, i.e.,
with a mapping α : A → Ord . Homomorphisms h : (A,α) → (B, β) are
mappings h : A → B such that β ◦ h = α. Coalg(Σ) is a (legitimate) meta-
coequational category. It cannot be isomorphic to any full subcategory of
Coalg(F ) for any functor F : Set → Set because it contains a proper class of
one-element coalgebras.

Each mapping f : Ord → m gives a (1,m)-ary term (i.e., a (1,m)-ary implicit
operation) xf · σ). In fact, every implicit operation ϕ : 1U → mU is of that
kind. It suffices to take f : Ord → m given as f(p) = ϕP(id1) where P is the
one-element Σ-coalgebra with σP taking the value p (see [23]7.2 for the easy
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calculation that ϕ = xf · σ.)
Let Σ1 be the collection of all (1,m)-ary operation symbols σf , f : Ord → m.
Σ1 is not a signature because it is larger than a class. If Ord is not measurable
then, following [23]5.5, Coalg(Σ) is described in Σ1 by coequations xg · σf =
σg◦f , for f : Ord → m and g : m→ k. In fact, having a Σ1-coalgebra (A, (σf )A)
satisfying these equations, we get a cone (σf )A : A → m of the canonical
diagram (Ord↓Set) and, therefore, the induced mapping α : A→ Ord . (A,α)
is the Σ-coalgebra determined by (A, (σf )A).

If Ord is measurable, then Coalg(Σ) is not coequational. In fact, it is shown
in [23]7.2 that Ord -complete ultrafilters provide one-element coalgebras living
in all coequational categories containing Coalg(Σ).

5 Modal Predicates

This section presents an explanation of implicit operations and coequations
from the point of view of modal logic. For more details on modal logic and
universal coalgebra see e.g. [6,24,11,13].

We show that a predicate on Kripke frames, or more generally on coalge-
bras, is invariant under bisimulation iff it depends naturally on Kripke frames,
i.e., iff it is an implicit operation in the sense of Section 3 (Section 5.1 and 5.2).
This leads us to a general notion of modal operator as a natural operator on
predicates. The coequational logic considered in Sections 2–4 then coincides
with the modal logic induced by modal predicates and operators (Section 5.3).

5.1 Kripke frames

A Kripke frame A = (A,α) consists of a carrier set A and a function α :
A → PA. 8 We think of α(a) as the set of successors of a. Given a set
I of atomic propositions, a Kripke model (A, v) consists of a frame A and a
valuation of atomic propositions v : A → ∏

I 2. The notion of a bisimulation
between Kripke frames (or Kripke models) is defined in the usual way. The
category KF consists of Kripke frames as objects and has as morphisms those
functions whose graphs are bisimulations (also known as bounded morphisms
or p-morphisms). We writeML for the set of modal formulae, formulae being
built from atomic propositions using boolean operators and a unary modal
operator ✷. The semantics of a modal formula ϕ ∈ ML is given w.r.t. to a
Kripke frame A, a valuation v, and a state a ∈ A, via

A, v, a |= p iff (v(a))p = 1 for p ∈ I
A, v, a |= ✷ϕ iff ∀a′ ∈ A . a′ ∈ α(a) ⇒ A, v, a′ |= ϕ,

and for boolean operators in the obvious way. One says ϕ holds in (A, v),
written A, v |= ϕ, iff A, v, a |= ϕ for all a ∈ A; ϕ holds in A if it holds in all

8 PX = {Y | Y ⊆ X}.
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(A, v). ϕ is valid, written |= ϕ, iff ϕ holds in all Kripke frames.

We now rephrase the semantics of modal logic in terms of natural trans-
formations. For this, let U : KF→ Set be the functor mapping Kripke frames
to their carriers and morphisms to the underlying functions. The semantics
[[ϕ]] of a modal formula ϕ can then be understood as a KF-indexed class of
operations

[[ϕ]]A : (
∏

I

2)UA → 2UA, A ∈ KF,

that is, each [[ϕ]]A maps valuations v ∈ (
∏

I 2)
UA and elements a ∈ UA to truth

values [[ϕ]]A(v, a) ∈ 2 = {0, 1}.
A central feature of modal logic is that formulae are invariant under bisim-

ulation. That is, for a modal formula ϕ and two Kripke models (A,α, v),
(B, β, w), and a ∈ A, b ∈ B, it holds

a, b bisimilar ⇒ [[ϕ]](A,α)(v, a) = [[ϕ]](B,β)(w, b).

This property can be expressed equivalently by saying that [[ϕ]] is a natural
transformation:

Proposition 5.1 Consider a family ([[ϕ]]A : (
∏

I 2)
UA → 2UA)A∈KF. Then ϕ

is invariant under bisimulation iff [[ϕ]]A is natural in A.

A proof of the proposition is given in the next subsection in a more general
setting.

5.2 Modal Predicates

We now generalise the semantics of modal formulae from the previous subsec-
tion. A and PA(v, a) below replace KF and [[ϕ]]A(v, a). And the behavioural
equivalences ∼C (Definition 1.1) replace bisimulation.

Definition 5.2 (Modal and Behavioural Predicates) Consider a func-
tor U : A → Set. A predicate P in colours from C ∈ Set is an operation
which determines for each A ∈ A, v : UA→ C, a ∈ UA a truth value

PA(v, a) ∈ {0, 1}. (4)

P is called a modal predicate iff

(A, v, a) ∼C (B, w, b) ⇒ PA(v, a) = PB(w, b) (5)

for all w : UB → C and a ∈ UA. We also write A, v, a |= P or a ∈ PA(v)
for PA(v, a) = 1. As usual, we let A, v |= P iff A, v, a |= P for all a ∈ UA
and A |= P iff A, v |= P for all v : UA → C. In case that C = 1 we call P a
behavioural predicate and drop the v as e.g. in A, a |= P or PA(a) = 1.

The following is immediate from the respective definitions.
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Lemma 5.3 An operation P which determines for each A ∈ A, v : UA →
C, a ∈ UA a truth value PA(v, a) ∈ {0, 1} is a modal predicate iff for all
morphisms f : A → B, all valuations w for B, and all elements a of A, it
holds

PA(w ◦ Uf, a) = PB(w,Uf(a)). (6)

We now show that invariance of a predicate CU → 2U under C-behavioural
equivalence is equivalent to the naturality of CU → 2U . Recall the definition
of the functor XU from Section 1. In terms of modal logic (i.e., A = KF,
X = Set, C =

∏
I 2), C

U maps a frame A to the set of valuations UA → C
and a morphism f : A → B to the function CUf : CUB → CUA which takes a
valuation w for B and transforms it into a valuation w ◦ Uf for A. Also note
that 2Uf : 2UB → 2UA is the inverse image of Uf mapping subsets Y ⊆ UB to
(Uf)−1(Y ).

Theorem 5.4 Consider a functor U : A → Set. An operation P which
determines for each A ∈ A, v : UA → C, a ∈ UA a truth value PA(v, a) ∈
{0, 1} is a modal predicate iff

PA : CUA −→ {0, 1}UA

is a natural transformation.

Proof Naturality of P means that for any morphism f : A→ B

CUA PA ✲ 2UA

CUB

CUf

✻

PB ✲ 2UB

2Uf

✻

commutes. Given w : UB → C and spelling out the definition of the vertical
arrows we obtain PA(w ◦Uf) = PB(w)◦Uf , i.e., PA(w ◦Uf, a) = PB(w,Uf(a))
for all a ∈ UA, yielding condition (6) in Lemma 5.3. ✷

Remark 5.5 It follows that behavioural predicates are natural transforma-
tions PA : 1 −→ {0, 1}UA or also PA : UA −→ {0, 1}.

5.3 Modal Operators and the Logic of Modal Predicates

We introduce a general notion of modal operator and discuss the corresponding
basic modal logic. In particular, for modal predicates in propositional variables
a notion of substitution is available.

Definition 5.6 (Modal Operator) Let U : A → Set be a functor and I a
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set. An I-ary modal operator is a natural transformation

µ : (
∏

I

2)U −→ 2U .

Given modal predicates Qi : C
U → 2U , we define

✷µ((Qi)i∈I) = CU 〈Qi〉i∈I ✲
∏

I

(2U) ∼= (
∏

I

2)U
µ ✲ 2U .

We list some examples and further definitions:

(i) An I-ary boolean operator is a modal operator

fU : (
∏

I

2)U −→ 2U

given by a function f :
∏

I 2 → 2. Examples include the constant true :
1→ 2 and the ‘truth-tables’ ¬ : 2→ 2, → : 2× 2→ 2.

(ii) Boolean operators also include infinitary operators. For example, con-
junctions over an index set I are given by

∧U
I : (

∏
I 2)

U −→ 2U where∧
I((bi)i∈I) = 1 ⇔ ∀i ∈ I . bi = 1.

(iii) A 0-ary modal operator is called an atomic proposition and is given
by a natural transformation 1→ 2U (or also U → 2).

(iv) In case A = Coalg(P), an example of a unary modal operator is given
by ✷ as in Section 5.1. The corresponding natural transformation µ is 9

µA(X, a) = 1 ⇔ α(a) ⊆ X where A = (A,α), X ⊆ A, a ∈ A. In case of
✸ = ¬✷¬ the corresponding natural transformation is µA(X, a) = 1 ⇔
α(a) ∩X "= ∅.

(v) More generally, Pattinson’s modal operators given by natural rela-
tions [18] or predicate liftings [19] are further examples.

(vi) A unary modal operator ✷µ is called normal iff, for X,Y ⊆ UA, µA(X ∩
Y ) = µA(X) ∩ µA(Y ) and µA(UA) = UA. For example, in (iv), ✷ is a
normal modal operator and ✸ is not.

(vii) In case of coalgebras A = (A,α), α : A → P(A × A), an example of a
binary modal operator is

A, v, a |= ✷µ(P,Q) ⇐⇒ ∃(b, c) ∈ α(a) . A, v, b |= P & A, v, c |= Q

which corresponds to the natural transformation µA(〈X,Y 〉, a) = 1 ⇔
α(a) ∩X × Y "= ∅ where X,Y ⊆ A, a ∈ A. (This binary modal operator
is not a boolean combination of unary modal operators. It plays a central
role in arrow logic [25].)

9 We take the liberty to denote a mapping v : UA → 2 by the corresponding subset
X ⊆ UA.
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(viii) Modal operators are closed under composition, i.e., for modal operators
µ : (

∏
I 2)

U −→ 2U and µi : (
∏

J 2)
U → 2U , the composition µ ◦ 〈µi〉 is a

modal operator.

(ix) Recursively defined modalities as in dynamic logic or the µ-calculus are
modal operators in our sense. Using (ii) and (viii) above, this follows
from the fact that both logics embed into infinitary modal logic.

(x) Examples of modalities which are not covered by Definition 5.6 can be
obtained by definitions that require a ‘change of structure’. For instance,
consider A = (A,α) ∈ Coalg(P) and define

A, v, a |= ✷(ϕ, ψ) =




Aϕ, vϕ, a |= ψ if A, v, a |= ϕ

false otherwise

where Aϕ = (Aϕ, αϕ) is given by Aϕ = A \ {a : A, v, a /|= ϕ} and αϕ, vϕ

are the restriction of α, v to Aϕ. Modalities of this kind arise in epistemic
logic, see [5].

The reader will have noticed that our modal operators are in fact a special
case of modal predicates. More precisely they are those modal predicates that
allow for a notion of substitution.

Definition 5.7 (Propositional Variables and Substitution)
Let U : A → Set be a functor and I a set. A modal predicate

P : (
∏

I

2)U −→ 2U

is called a modal predicate in propositional variables (from I) or an I-ary
modal predicate. Given modal predicates Qi : CU → 2U , the substitution
P [Qi/i] is the composition

CU 〈Qi〉i∈I ✲
∏

I

(2U) ∼= (
∏

I

2)U
P ✲ 2U .

Thus, in case we restrict ourselves to modal predicates in propositional vari-
ables, we have that substitution is composition. This explains why modal
logic prefers to use propositional variables rather than colours.

The logic arising from a language in which formulas and connectives are
interpreted as (our generalised) modal predicates and modal operators is fa-
miliar modal logic as shown by the following proposition.

Proposition 5.8 Let U : A → Set be a functor and µ a normal unary modal
operator. Consider a class Φ of modal predicates in propositional variables
and let Q be in the closure of Φ under propositional tautologies, modus ponens,
substitution, and
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(dist) ✷µ(P → P ′)→ ✷µP → ✷µP
′

(nec) from P derive ✷µP

Then A |= Φ ⇒ A |= Q.

Proof Straightforward. For (dist) and (nec) use that µ is normal. ✷

Remark 5.9 The basic logic of modal predicates in propositional variables
consists of (possibly infinitary) propositional tautologies, modus ponens, and
substitution. Additional axioms and rules as (dist) and (nec) above depend
on special properties of the modal operators.

Finally, we make precise the relationship between modal predicates and
the coequations of Section 3.

Proposition 5.10 Let U : A → Set be a functor. Coequations in implicit op-
erations (Definition 3.1) and modal predicates in propositional variables (Def-
inition 5.7) have the same expressive power.

Proof Each modal predicate P is logically equivalent to the coequation
P = true, 10 which is to say that A |= P (Definition 5.2) iff A |= P = true
(Definition 3.1) for all A ∈ A. Conversely, for a coequation P = Q with
P,Q : CU → DU , we find a set I and a surjective function e :

∏
I 2→ C and

a modal predicate P ◦ e ↔ Q ◦ e : (
∏

I 2)
U → 2U such that A |= P = Q ⇔

A |= P ◦ e↔ Q ◦ e for all A ∈ A. ✷
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Harrison, S. Mac Lane, and H. Röhrl, editors, Proceedings of the Conference on
Categorical Algebra, La Jolla, 1965, pages 84–91. Springer, 1966.

[15] F.E.J. Linton. An outline of functorial semantics. In B. Eckmann, editor,
Seminar on triples and categorical homology theory, volume 80 of Lecture Notes
in Mathematics, pages 7–52. Springer, 1969.

[16] Saunders Mac Lane. Category Theory for the Working Mathematician.
Springer, 1971.

[17] Ernest G. Manes. Algebraic Theories. Springer, 1976.

[18] Dirk Pattinson.
Semantical principles in the modal logic of coalgebras. In Proceedings 18th
International Symposium on Theoretical Aspects of Computer Science (STACS
2001), volume 2010 of LNCS, Berlin, 2001. Springer. Also available as technical
report at http://www.informatik.uni-muenchen.de/~pattinso/.

174

http://www.mlbook.org
http://www.cs.kun.nl/~jesseh/
http://www.informatik.uni-muenchen.de/~kurz
http://www.cwi.nl/~kurz
http://www.informatik.uni-muenchen.de/~pattinso/


Kurz and Rosický
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