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RULES AS ACTIONS: A SITUATION CALCULUS 
SEMANTICS FOR LOGIC PROGRAMS 

F A N G Z H E N  LI N  AND RAY R E I T E R *  

I> We propose a novel semantics for logic programs with negation by viewing 
the application of a clause in a derivation as an action in the situation 
calculus. Program clauses are then identified with situation calculus effect 
axioms as they are understood in axiomatic theories of actions. We then 
solve the frame problem for these effect axioms using a recent approach of 
Reiter [21], and identify the resulting collection of axioms with the seman- 
tics of the original logic problem. An interesting consequence of this 
approach is that the logic programming negation-as-failure operator  inher- 
its its nonmonotonicity from the nonmonotonicity associated with the 
frame problem. 

One advantage of our proposal is that like Clark's completion seman- 
tics, ours is also formulated explicitly in classical logic. To illustrate the 
usefulness of our semantics, we prove sufficient conditions for two logic 
programs to be equivalent, and use this to verify the correctness of the 
well-known unfolding program transformation operator. We also discuss 
applications of this framework to formalizing search control operators in 
logic programming. © Elsevier Science Inc., 1997 

1. I N T R O D U C T I O N  

I n  this paper we propose a novel semantics for logic programs in the situation 
calculus. One of the advantages of our proposal is that like Clark's completion 
semantics, it is explicitly formulated in classical logic. For this reason, it is suitable 
for proving properties of logic programs such as the correctness of various program 
transformation operators. 
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The basic idea of our proposal is very simple. We consider the application of a 
clause in a derivation to be an action in the situation calculus (McCarthy [15]). 
Executing a clause makes the head of the clause true in the new situation 
whenever the body of the clause is true in the current situation. Program clauses 
are then identified with situation calculus effect axioms as they are understood in 
axiomatic theories of actions. We then solve the frame problem for these effect 
axioms using a recent approach of Reiter [21], and identify the resulting collection 
of axioms with the semantics of the original logic program. 

This paper is organized as follows. In the next section, we briefly review the 
situation calculus and the frame problem. Section 3 provides the necessary logical 
preliminaries, and Section 4 defines our situation calculus semantics for logic 
programs. Section 5 shows some relationships between our semantics and Wallace's 
[31], and also relates our semantics to the stable model semantics [3]. Section 6 
formulates conditions for two logic programs to be equivalent and applies this 
result to verifying the correctness of the unfolding program transformation opera- 
tor. Section 7 discusses other potential applications of our semantics, while Section 
8 provides some concluding remarks. 

2. AN INFORMAL INTRODUCTION TO THE SITUATION CALCULUS ~ 

2.1. Intuitive Ontology for the Situation Calculus 
The situation calculus (McCarthy [15]) is a first order language (with, as we shall 
see later, some second order features) specifically designed for representing dy- 
namically changing worlds. All changes to the world are the result of named 
actions. A possible world history, which is simply a sequence of actions, is repre- 
sented by a first order term called a situation. The constant S o is used to denote 
the initial situation, namely that situation in which no actions have yet occurred. 
There  is a distinguished binary function symbol do; do(a, s) denotes the successor 
situation to s resulting from performing the action ct. Actions may be parameter- 
ized. For example, put(x, y) might stand for the action of putting object x on 
object y, in which case do(put(A,B),s) denotes the situation resulting from 
placing A on B when the world is in situation s. Notice that in the situation 
calculus, actions are denoted by first order terms, and situations (world his- 
tories) are also first order terms. For example, do(putdown(A), do(walk(L), 
do( pickup( A),So))) is a situation denoting the world history consisting of the 
sequence of actions [pickup(A), walk(L), putdown(A)]. Notice that the sequence of 
actions in a history, in the order in which they occur, is obtained from a situation 
term by reading off the actions from right to left. 

Generally, the values of relations in a dynamic world will vary from one 
situation to the next. Such relations are called fluents, and are denoted by 
predicate symbols taking a situation term as one of their arguments. The conven- 
tion we shall adopt is that the situation argument of a fluent will always be its 
last argument. For example, in a mobile robot environment, we might have a rela- 

1This section is included in o rder  to make this paper  as self contained as possible. With minor  
differences, it is the same as that  of  Levesque et al. [7]. 
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tional fluent closeTo(r, x, s) meaning that in situation s the robot r is close to the 
object x. 

2.2. Axiomatiz ing Act ions  and Their Effects in the Situation Calculus 

Actions have preconditions--necessary and sufficient conditions that characterize 
when the action is physically possible. For example, in a blocks world, we might 
have: 2 

Poss( pickup( x ), s) = [(Vz) ~ holding(z, s)] A nexto( x, s) A --1 hea~(  x ) . 

World dynamics are specified by effect axioms. These describe the effects of a 
given action on the f luents- - the  causal laws of the domain. For example, a robot 
dropping a fragile object causes it to be broken: 

Poss( drop( r, x ) , s ) A fragile( x, s ) D broken( x, do( drop( r, x ) , s ) ) . (2.1) 

Exploding a bomb next to an object causes it to be broken: 

Poss( explode( b ) , s )  A nexto( b , x , s )  Dbroken( x ,do (  explode( b ) , s )  ). (2.2) 

A robot repairing an object causes it to be not broken: 

Poss( repair( r, x ) , s) ~ ~ broken(x, do(repair(r, x ) , s ) ) . (2.3) 

2.3. The Frame Problem 

As first observed by McCarthy and Hayes [17], axiomatizing a dynamic world 
requires more than just action precondition and effect axioms. So-called frame 
axioms are also necessary. These specify the action invariants of the domain, 
namely, those fluents which remain unaffected by a given action. For  example, a 
robot dropping things does not affect an object's color: 

Poss( drop( r , x ) , s )  A color( y , c , s )  Dcolor( y , c ,  do( drop( r , x ) , s )  ). 

A frame axiom describing how the fluent broken remains unaffected: 

Poss( drop( r, x ) , s ) A ~ broken( y,  s ) A [ y ~ x V ~ fragile( y, s ) ] 

D ~ broken( y, do( drop(r, x ) ,  s ) ) .  

The problem introduced by the need for such frame axioms is that we can 
expect a vast number of them. Only relatively few actions will affect the truth value 
of a given fluent; all other actions leave the fluent invariant. For example, an 
object's color is not changed by picking things up, opening a door, going for a walk, 
electing a new prime minister of Canada, etc. This is problematic for the axioma- 
t izer - -she  must think of all these axioms--and it is problematic for the theorem 
proving system-- i t  must reason efficiently in the presence of so many frame 
axioms. 

2In formulas, free variables are considered to be universally quantified from the outside. This 
convention will be followed throughout the paper. 
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2.3.1. What Counts as a Solution to the Frame Problem? Suppose the person 
responsible for axiomatizing an application domain has specified all of the causal 
laws for the world being axiomatized. More, precisely, she has succeeded in writing 
down all the effect axioms, i.e., for each fluent F and each action A which can 
cause F ' s  truth value to change, axioms of the form 

Poss( A , s )  A R ( x ' , s )  D ( - , ) F ( Z ,  do( A , s ) ) .  

Here,  R is a first order formula specifying the contextual conditions under which 
the action A will have its specified effect on F. 

A solution to the frame problem is a systematic procedure for generating, from 
these effect axioms, all the frame axioms. If possible, we also want a parsimonious 
representation for these frame axioms (because in their simplest form, there are 
too many of them). 

2.4. A Simple Solution to the Frame Problem 

By appealing to earlier ideas of Haas [5], Schubert [24] and Pednault [19], Reiter 
[21] proposes a simple solution to the frame problem, which we illustrate with an 
example. Suppose that (2.1), (2.2), and (2.3) are all the effect axioms for the fluent 
broken, i.e., they describe all the ways that an action can change the truth value of 
broken. We can rewrite (2.1) and (2.2) in the logically equivalent form: 

Poss(a, s) A [ ( 3 r ) { a  = drop(r,x) Afragile(x,s)} 

V ( 3 b ) { a  = explode(b) A nexto(b, x, s)}] (2.4) 

D broken ( x, do ( a, s) ). 

Similarly, consider the negative effect axiom (2.3) for broken; this can be rewritten 
a s :  

Poss( a, s) A (3r )a  = repair(r, x) D ~ broken( x, do(a, s) ). (2.5) 

In general, we can assume that the effect axioms for a fluent F have been written 
in the forms: 

Poss(a,s) A y [ ( ~ , a , s )  D F ( ~ , d o ( a , s ) ) ,  (2.6) 

Poss(a,s) A TF(~ ,a , s )  D ~ F ( ~ , d o ( a , s ) ) ,  (2.7) 

Here  y [ ( k  ~, a, s) is a formula describing under what conditions doing the action a 
in situation s leads the fluent F to become true in the successor situation do(a, s); 
similarly TF(Z, a, s) describes the conditions under which performing a in s results 
in F becoming false in the next situation. The solution to the frame problem of 
[21] rests on a completeness assumption, which is that the causal axioms (2.6) and 
(2.7) characterize all the conditions under which action a can lead to a fluent F (x  ~) 
becoming true (respectively, false) in the successor situation. In other words, 
axioms (2.6) and (2.7) describe all the causal laws affecting the truth values of the 
fluent F. Therefore,  if action a is possible and F(k~)'s truth value changes from 
false to true as a result of doing a, then y~-(£, a, s) must be true and similarly for a 
change from true to false. Reiter [21] shows how to derive a successor state axiom 
of the following form from the causal axioms (2.6) and (2.7) and the completeness 
assumption. 
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Successor State Axiom 

Poss( a,s)  ~ [ F( Z, do( a,s) ) =- 3,~ ( Z ,a ,s )  V ( F( Z,s) A ~'YF ( X,a ,s)  )]. 

This single axiom embodies a solution to the frame problem. Notice that this axiom 
universally quantifies over actions a. In fact, this is one way in which a parsimo- 
nious solution to the frame problem is obtained. 

Applying this to our example about breaking things, we obtain the following 
successor state axiom: 

Poss( a, s) D [ broken( x, do( a, s) ) = 

( 3 r ) { a  = drop(r, x) A fragile(x, s)} V 

(=lb){a = explode(b) v nexto( b, x, s)} v 

broken(x, s) A ~ (3r)a  = repair(r, x ) ] .  

It is important to note that the above solution to the frame problem presup- 
poses that there are no state constraints, as for example in the blocks world 
constraint: (Vs).on(x, y, s) D -~ on(y, x, s). Such constraints sometimes implicitly 
contain effect axioms (so-called indirect effects), in which case the above complete- 
ness assumption will not be true. 

In what follows, we shall provide a semantics for logic programs, with negation, 
by treating the application of a rule (clause) in a derivation as an action in the 
situation calculus. Program clauses will then be identified with effect axioms. By 
solving the frame problem exactly as just described, we shall obtain a situation 
calculus representation of the program which will serve as the program's logical 
semantics. 

As is well known, solutions to the frame problem are nonmonotonic,  in the 
sense that the above completeness assumption (the given effect axioms are all and 
only the effect axioms) is a kind of closed world assumption. The addition of a new 
effect axiom to an earlier axiomatization for some domain may invalidate any 
solution to the frame problem obtained with the earlier axioms. This intuition has 
led to a large body of research on nonmonotonic solutions to the frame problem 
(e.g., [16, 26, 8, 9, 13]). In view of our situation calculus semantics for logic 
programming, it will follow that negation-as-failure inherits its nonmonotonicity 
from the nonmonotonicity associated with the frame problem. 

3. LOGICAL PRELIMINARIES 

3.1. The Language of  the Situation Calculus 

The language . ~  of the situation calculus is many-sorted, second-order, with 
equality. We assume the following sorts: situation for situations, action for actions, 
and object for everything else. We also assume the following domain independent 
predicates and functions: 

* A constant S o of sort situation denoting the initial situation. 

* A binary function do - do(a, s) denotes the situation resulting from perform- 
ing action a in situation s .  
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• A binary predicate Poss - Poss(a, s) means that action a is possible (executa- 
ble) in situation s. In this paper  we shall assume that actions are always 
executable, i.e., (Va, s)Poss(a, s). So technically, there is no real need for this 
predicate in this paper. We keep it, however, in order to be consistent with 
the general f ramework of (Reiter  [21] and Lin and Reiter  [11]). 

• A binary predicate < over situations. We shall follow convention, and write 
< in infix form. By s < s '  we mean that s '  can be obtained from s by a 
sequence of executable actions. As usual, s < s '  will be a shorthand for 
S < s r V s = s  r. 

We assume a finite number  of  fluents, which are predicate symbols of arity 
object n ×situation, n > O, and are domain dependent.  We also assume a finite 
number  of function symbols of arity object ~ ~ object, n > O. 

3.2. Ax iomat iz ing  the Situation Calculus 

We shall need the following foundation axioms (Lin and Reiter  [11]) for the 
situation calculus: 

So ao(a, s), 
d o ( a l , s l )  =do(a2 , s2 )  D ( a  a = a  2 As I =s2 )  , 

(vP)[ P( So) ^ (Va,s)( P( s) do( a,s) ) ) ~ (Vs)e(  s)], 
~ s  < S o ,  

s < d o ( a , s ' )  -~ ( P o s s ( a , s ' )  As  < s ' ) .  

Intuitively, the first two axioms are unique names assumptions. They eliminate 
cycles, and merging. The third axiom is second order induction. It  amounts to the 
domain closure axiom that every situation is obtained from the initial one by 
repeatedly apply the function do. 3 As we shall see, induction will play an important 
role in this paper.  The last two axioms define < inductively. 

Notice the similarity between these axioms and the Peano foundational axioms 
for number  theory. However,  unlike Peano arithmetic which has a unique succes- 
sor function, we have a class of successor functions here represented by the 
function do. In the following, we shall denote by E the set of the above axioms. 

3.3. Logic Programs 

An atom p is an expression of the form F(tj . . . . .  tn), where F is a fluent of arity 
object ~ × situation, and t 1 . . . . .  t,  are terms of sort object. Notice that an a tom is 
not a formula in the situation calculus. It is an expression obtained from an atomic 
situation calculus formula by suppressing its situation argument.  

A literal is either an atom, or an expression of the form not p, where p is an 
atom. In addition, an equality formula of the form t = t '  is a literal, where t and t '  
are terms of sort object. Again, notice that, except for equality literals, literals are 
not formulas in the language of the situation calculus. 

3For a detailed discussion of the use of induction in the situation calculus, see (Reiter [22]). 
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A goal G is an expression of the form 

l 1 & " '"  & 1, 

where n >_ 0, and l 1 . . . . .  l n are literals. A clause is an expression of the form 

F(x ' )  :- G,  

where F is a fluent symbol, £ is a tuple of distinct variables of length n, n > 0, and 
G is a goal. Notice that according to this definition, the head of a clause must not 
mention constants and compound terms. This, however, does not restrict the 
generality of our notion of clauses. For  any terms t 1 . . . . .  t n of sort object ,  we can 
take an expression of the form 

F ( t  1 . . . .  , t n )  :- G 

to be a shorthand for the following clause: 

r ( ~ ' )  :- Y ' = / ' &  G,  

where £ =  ( X l , . . . , x , )  is a tuple of fresh variables not mentioned in G or in i. 
Generally, for any vectors i =  (t 1 . . . . .  t k)  and i '  = 0'1 . . . . .  t~) of  terms of the same 
length, if i =  i '  appears  in a goal, then it stands for 

t~ = t '  1 & . . .  & t  k = t '  k ,  

and if i =  {' appears  in a situation calculus formula, then it stands for 

t 1 = t '  1A --" A t  k =t 'k .  

Finally, a normal program is a finite set of  clauses. In the following, normal 
programs will simply be called programs. The definition of a fluent symbol F in a 
program P is the set of  clauses in P that mention F in their head. 

Since we will be interpreting clauses as formulas of  the situation calculus, we 
need a way to interpret literals in the situation calculus. Given a literal l, and a 
situation term st ,  we define l is t]  as follows: 

1. I f  l is an a tom of the form F ( t  1 . . . . .  tn) , then l i s t]  is F ( t  1 . . . .  , t , ,  s t) ,  i.e., it is 
the formula obtained from l by putting st  back as its last argument.  

2. If  1 is a negated a tom of the form not F ( t  1 . . .  tn), then l[st] is the formula 
- 7 ( 3 s ) F ( t  1 . . . . .  tn, S). Notice that in this case, the truth value of the formula 

l[st] is independent  of the situation st. This is our interpretation of the 
negation-as-failure operator  "not"  in the situation calculus. 

3. If  l is an equality formula of  the form t = t ' ,  then l[st] is l. 

Now if G is a goal of  the form l l& . - .  &l  n, and st  a situation term, then we 
define G[st]  to be the formula 

t , [ s t ]  ^ -. .  A t . [ s t ] .  

3.4.  C l a r k ' s  C o m p l e t i o n  

Since we shall often refer to Clark's completion [1] in this paper, we briefly review 
it here. 
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A clause of the form 

F ( ~ )  :- l l & " ' & l n  

stands for the following implication about F: 

(3~')(I '  1 A--.  A l'n) DF(~ ' ) ,  (3.1) 

where ~' is the tuple of variables that appear in some l i, 1 <_ i < n, but are distinct 
from variables in ~', and if l is an atom then l '  is l, and if 1 is not p, then l '  is ~ p. 

Given a logic program P, if 

F(~') :- G 1 

F(~') :- G m 

is the definition of F, then the Clark completion of F in P is the following 
sentence: 

F(x')--[( : ly ' l )G' 1A ".-A (3y'rn)G'], 
where (3~/)G~, 1 < i < m, is as the left hand side of the implication (3.1). Notice 
that if m = 0, i.e., there are no clauses in P about F, then the Clark completion of 
F is F(Y')=false. 

The Clark completion of a program P is then the set consisting of the following 
axioms: 

1. For each predicate F in P, the Clark completion of F in P. 
2. Unique names axioms for the function symbols appearing in P. 

Clark's completion is perhaps the simplest semantics for logic programs. It 
replaces rules in a logic program by logical axioms in first-order logic. The main 
problem with it is that it is too weak for logic programs with cycles and recursion 
(see, for example, [14]). 

Our  proposed semantics will be very much in the same style as Clark's comple- 
tion, but it will also handle cycles and recursion correctly. 

4. A SITUATION CALCULUS SEMANTICS FOR LOGIC PROGRAMS 

On our intuition about logic programs, clauses are treated as rules, so that the 
application of such a rule in the process of obtaining a derivation is like performing 
an action. So a clause of the form 

r ( ~ )  :- C 

is like the specification of the effects of an action; if G holds currently, then F(x') 
will hold after the action is performed. Taking this intuition seriously, suppose that 
we name this clause by the action A(£) in our situation calculus language. Then we 
have the following axiom (an effect axiom) describing the effect of A: 

Poss( A ( ~ ) , s )  D (G[  s I ~ F (  Z, do(  A ( ~ ) , s ) ) .  

Recall from section 3.1 that we have assumed that actions are always possible: 

Poss( a, s )  =- true. 
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Thus the above effect axiom is equivalent to 

G[s] DF(Z, do( A( Z),s)).  

Let y' be the tuple of variables in G which are not in £'; then we can rewrite the 
above axiom as 

(3~ ' )G[s ]  A a = A ( Z )  DF(Z, do(a, s)). (4.1) 

Notice the similarity, but not the formal identity, between this transformation and 
that leading up to the formation of the Clark completion of a predicate. 

Example 4.1. Suppose that gf(x, y) is the action naming the following clause: 

grandfather(x,y) :- parent(x,z) & parent(z,y) & not female(x). 

Then we have the following effect axiom: 

( 3z ) [ parent(x, z, s) A parent( z, y, s)] A ~ ( 3s') female( x, s') Aa = gf( x, y) 

D grandfather( x, y, do( a, s) ). 

Now suppose that P is a program and F a fluent. Suppose the following are the 
corresponding effect axioms of the form (4.1) for the clauses in the definition of F 
in P: 

(3y*l)Gl[s  ] Aa =Al(X" ) DF(~,do(a,s)) ,  

Aa  F(Z, dof., 

Then, by solving the frame problem for fluent F as described in Section 2.4, we 
obtain the following successor state axiom for F: 

F (  ~ , d o (  a , s )  ) =- { ( 3 ~ l ) G l [ S ]  A a = A l (  ~) v ... v 

(3y.)G.[s] Aa = A . ( x ' )  V (4.2) 

F(£ ' ,  s)} 

Intuitively, the successor state axiom for F says that the fluent is true in a 
successor situation iff either it is true in the current situation, or the action names 
one of the clauses in the definition of F and the body of that clause is true in the 
current situation. In particular, if the definition of F in the program P is empty, 
then (4.2) becomes 

F(Z, do(a,s)) =-F(Z,s). 

In the following, we call (4.2) the successor state axiom for F with respect to P. 
Notice the similarity between this axiom and the Clark completion of F. 

We can now define the "meaning" of logic programs in the situation calculus. 
We assume that for each clause there is a unique action symbol that names the 
clause, and has the same number of arguments as that of the predicate in the head 
of the clause. 
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Definition 4.1. Let P be a program. The action theory _~ for P is 

_~ = E U ~ s  U-~u,,,~ u.-~So 

where 

• E is the set of foundational axioms given in Section 3.2. 

• -~s is the set of successor state axioms for the fluents with respect to P. 

• "~una is the set consisting of the following unique names axioms: 

f ( ~ )  ~ g(y ')  (4.3) 

for every pair f ,  g of distinct function symbols, and 

f(Y') = f ( f )  Dx~=y * (4.4) 

for every function symbol f.  Notice that constants are considered to be 
0-ary functions. We remark that for the function do, (4.4) is the same as 
one of our foundational axioms in E. We also remark that -~una includes 
unique names axioms for the actions introduced to name the program 
clauses. 

• ~s0 is: 

{F(Z, S0) =false IF is a fluent}. 

In other words, in the initial situation, all fluents are false. 

Notice that only the set 2ss of successor state axioms is dependent  on the 
clauses in P. All other sets in the above definition either are domain independent 
or depend only on the vocabulary of P. 

Proposition 4.1. Suppose, as in (4.2), that fluent F's successor state axiom has the form 

F(Z,  do(a , s ) )  - ch(£,a,s) V F(k~, s) ,  

where ck(£, a, s) is any first order formula whose free uariables are among 3, a, s. 
Suppose further that F(£, S o) -false. Then the foundational and unique names 
axioms for the situation calculus, together with these two sentences entail: 

F (~ , s )  =- (3a ' , s ' ) [do (a ' , s ' )  < s  A qS(k',a', s ' ) ] .  

PROOF. The proof is by induction. The case s = S O is immediate. So, assume the 
results for situation s. We must prove 

F( Z, do(a, s) ) =- ( 3 a ' ,  s')[ do( a', s') < do(a, s) A qb( Z, a', s ' ) ] .  

Assume F(~, do(a, s)). We must prove 

(3a ' , s ' ) [do (a ' , s ' )  <_do(a,s) A ~b(k~,a' ,s ')] .  (4.5) 

By F 's  successor state axiom, we have ~b(k ~, a, s) v F(x', s). 
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Case 1. ch(£, a, s). Then take a '  = a and s '  = s in (4.5) and we are done. 

Case 2. F(x~,s). By induction hypothesis, we know that for some a and o-, 
d o ( a , o - ) < s  and th(x', a ,o-) .  So take a ' = c t  and s ' = o -  in (4.5), leaving us to 
prove do(a ,  o-) < do(a, s); this follows immediately from do(a ,  o-) < s and the 
foundational axioms for the situation calculus. 
¢:= 

Assume, for some ct and o- that do(a ,  o-) < d o ( a , s )  and that th(x', a,  o-). We must 
prove F(x  ~, do(a, s)), or equivalently, by F ' s  successor state axiom, that th(U, a, s) v 
F(~', s). 

Case 1. do(a ,  o-) = do(a, s). Then by the unique names axiom for situations, a = a 
and o- = s, and we are done. 

Case 2. do(a ,  o-) < do(a, s). Then by the foundational axioms, do(a ,  o-) < s, so by 
the induction hypothesis, we have F(x,  s). 

Corollary 4.1. Let P be a program, and ~ its action theory. Then, for any fluent F, 

~ ( V Z ) ( V s , s ' ) . [ F ( ~ , s )  A s  <_s'] D F ( ~ , s ' ) .  

This informs us that if a fluent ever becomes true, it will never again become 
false. 

Corollary 4.2. Let P be a program, ~r its action theory, and F a fluent. Suppose the 
successor state axiom for F in ~ is of  the form (4.2). Then ~ entails the following 
closed form solution for F: 

F(  ~ , s )  = - { ( 3 s ' ) ( d o ( Z l ( ~ ) , s '  ) <_s A (3y q )G , [ s ' ] )  V ... V 

( 3 s ' ) ( d o ( A , ( ~ ) , s ' ) < s A ( 3 ~ , ) G , [ s ' ] )  }. (4.6) 

Intuitively, this closed form solution (4.6) for F says that F holds in some 
situation s iff there is an earlier situation s '  in which an action occurs that causes 
F to be true. 

Definition 4.2. Let P be a program, and G a goal. A substitution or, not necessarily 
ground, is an answer for G iff 

(w')(3s)Co-[s], 
where Go- is the result of simultaneously substituting for variables in G 
according to o-, and £ are all the free variables mentioned in Go-. 

Therefore query answering in logic programs literally becomes planning in the 
style of (Green [4]) in the situation calculus. 

As we can see from this definition of an answer, we are primarily interested in 
consequences of the form (3s)G[s]. One nice property about these consequences 
of action theories is that they commute over conjunctions: 

Proposition 4.2. Let P be a program, and ~ its action theory. For any goals G 1 and 
G2, whose free variables together are 3, 

 c2)[s] =- (3S)Cl[S] A (3s)C2[s]}.  
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PROOF. First, define a function f as follows: 

f ( s ,  So) =s, 

f (  s, do(a, s')) = do( a,f(  s, s')). 

Intuitively, f(s, s') is that situation reached by performing those actions which took 
you from S O to s, followed by those actions which took you from S O to s'. Next, we 
prove two lemmas: 

Lemma 4.1. For every fluent F, 

_~ ~ (VZ, s,s ') .F(Y,s) DF(~,f(s ,s ' )) .  

PROOF OF LEMMA. The proof is by induction on s' ,  using the induction axiom in 
the foundational axioms of the situation calculus. The case s ' =  S O is trivial. 
Assume the induction hypothesis for s ';  we prove, for each fluent F, that 

(V~', s ) . F ( £ ,  s ) . F ( £ ,  s) D (Va)F(£,f(s,  do(a, s'))). 

By the definition of f ,  is equivalent to proving 

(V#', s).F(~, s) D (Va)F(~, do(a,f(s,  s'))). 

By (4.2), F ' s  successor state axiom has the form F(Z, do(a, s)) - F(k', s) V ¢(2,  a, s). 
Using this and the induction hypothesis, the result follows. 

Lemma 4.2. For every fluent F, 

~ (VZ, s,s ') .F(Z,s) DF(£, f (s ' , s ) ) .  

PROOF OF LEMMA. The proof  is by induction on s. As induction hypothesis we take: 

('¢s). A [(VZ, s') .F(£,s) DF(~,f(s ' ,s))] ,  

where the conjunction is over the finitely many fluents F of our situation calculus 
language. When s = So, we must prove: (Vx ~, s').F(x-', So) zF(x-', s'). This follows 
from Corollary 4.1. Assume the induction hypothesis for s; we prove, for each 
fluent F, that 

(V~,a,s').F( Z, do( a,s) ) D F( Z, f(  s',do( a,s) ) ). 

By the definition of f ,  this is equivalent to proving 

(V~,a,s').F( ~,do( a,s) ) D F( ~,do( a, f(  s',s) ) ). 

By F 's  successor state axiom (4.2), F(~, do(a, s)) - F (k  ~, s) V ¢(2,  a, s), where ¢ is 
a disjunction of formulas of the form (3~)G[s]  A a =A(Y'). So we must prove 

(VZ, a,s') .F(~,s) v ¢ ( Z , a , s )  DF(£, f (s ' , s ) )  V ¢(Z,a , f (s ' , s ) ) .  

By the induction hypothesis, this simplifies to proving 

(VZ, a,s ' ) .¢(Z,a,s)  DF(~, f (s ' , s ) )  V ¢(Z,a , f (s ' , s ) ) .  
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Now ~b(~, a, s) is a disjunction of formulas of the form (3~')G[s] A a = A(~'), where 
G is a goal. Hence, by the induction hypothesis, 

( V ~ , a , s ' ) . t b ( ~ , a , s )  D c b ( Z , a , f ( s ' , s ) ) .  

This completes the proof of the lemma. 
Now, to prove the proposition, notice first that by the properties of first order 

logic, the following is valid: 

( V f ) { ( 3 s ) ( G a & G 2 ) [ s  ] D (3S)Gl[S  ] A (3s)Gz[s]} .  

To prove that 

m (V~){ (3s )Gl [ s ]  A (3 s )C2[ s ]  ~ ( 3 s ) ( C l e ,  G2)[s]  }, 

it is sufficient, with no loss of generality, to show that for any two fluents F and F ' ,  

. ~m (Vf,  ~ '){(: ls)r(k~,s)  A ( 3 s ) F ' ( f , s )  m (3s ) [F (Y ' , s )  A F ' (~ ,  s)] }. 

To prove this, assume (3s)F(.~, s) and (3s)F'(17, s) for vectors X and Y of Skolem 
constants. Then for constants tr and tr ', we have F()( ,  (r) and F ' ( ]  7, tr '). We must 
prove 

( 3 s ) [ F ( . ~ , s )  A F'(IT, s)] .  (4.7) 

By Lemma 1, we have F ( X , f ( o ' ,  o")). By Lemma 2, we have F ' (Y , f ( t r ,  o" ')). By 
taking s = f ( t r ,  tr ') we have proved (4.7). 

By Corollary 4.2 and Proposition 4.2, we see that for every program P, the 
action theory for P entails the Clark completion of P with every atom F(/ ') 
replaced by (3s)F(i ,  s): 

Theorem 4.1. Let P be a program, B¢ its action theory, and F a fluent. Suppose the 
successor state axiom for F in ~ is (4.2), and G i is l n &. . .  & lik' for 1 < i < n. 
Then ~ entails the Clark completion for F: 

(as)F(f,s) -= ((3~1){(3s)/n[ s] A ... A (3s)llk,[s]} V ... V 

,x . . . / ,  (3s)Znds]}). 

Example 4.2. Consider the logic program P1 with the single rule 

F :- not F 

By Theorem 4.1, Pl's action theory entails 

( 3 s ) F (  s) =- -1 ( 3 s ) F (  s),  

an inconsistent sentence. Thus the basic action theory for P1 is inconsistent. 
Consider the logic program P2 with the following two rules: 

F :- not Q 

Q:- not F. 

Theorem 4.1 yields the following entailment of P2's action theory: 

( 3 s ) F (  s) - ~ ( 3 s ) Q (  s). 
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Thus we can distinguish two classes of models of  the action theory f o r / ' 2 ,  one in 
which ~ (3s)Q(s) holds so the first rule is applicable b u t  not the second, and the 
other in which ~(3s )F( s )  holds so the second rule is applicable, but not the first. 

Now consider the following logic program: 4 

F :- not Q 

Q :- not F. 

R:- F 

R:- Q. 

We prove that R is an answer to this program, which is to say, that (3s)R(s)  is an 
entailment of our situation calculus semantics. By Theorem 4.1, this program's  
action theory entails the following Clark completion: 

( 3 s ) F (  s) - ~ ( 3 s ' ) Q(  s ') ,  

( 3 s ) Q (  s) = -~ ( 3 s ' ) F (  s ' ) ,  

( 3 s ) R ( s )  =- ( 3 s ) F ( s )  V ( 3 s ) Q ( s ) .  

These first order sentences entail (3s)R(s),  so that R is an answer to this program. 
When there is recursion, our action theory may be stronger than Clark's 

completion, as the following example shows. 

Example 4.3. Consider the definite program PI with the following clauses: 

ancestor(x, y) :- parent(x, y) 

ancestor(x, y):- ancestor(x, z) ~ ancestor(z, y) 

parent(x, y) :- x=John & y=Joe 

parent(x, y) :- x=Joe & y=Bill 

parent(x, y) :- x=Joe & y-Susan. 

Let Al(X, y), A2(x , y), Bl(X , y), B2(x , y), B3(x , y), be the actions naming these five 
clauses, respectively. For the fluent ancestor, we have the following two effect 
axioms: 

parent(x,  y, s) A a = A 1( x, y)  D ancestor( x, y, do( a, s ) ) , 

( 3 z ) [  ancestor( x , z , s )  A ancestor( z, y , s )]  A a = A z (  x, y)  D 

ancestor( x, y, do( a, s) ). 

Thus we have the following successor state axiom for ancestor: 

ancestor( x, y, do( a, s ) ) 

=-{a = A l ( x , y  ) A p a r e n t ( x , y , s )  V 

a = A 2 ( x ,  y )  A (3z) .ancestor(x ,  z, s) A ancestor(z ,y ,s)  

V ancestor( x, y ,s)  }. 

4Thanks to Vladimir Lifschitz for suggesting this example. 
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Similarly, we obtain the following successor state axiom for parent: 

parent(  x ,  y , d o (  a , s )  ) - {x = J o h n  A y =Joe  A a = Bl(  x ,  y ) v 

x = Joe A y = Bill A a = B2( x ,  y ) v 

x = Joe A y = Susan A a = B3( x, y) v 

p a r e n t ( x ,  y ,  s)}. 

Let -~1 be the action theory for P1- By Theorem 4.1, we have: 

~1  ~ ( V x ,  y ) { ( 3 s ) p a r e n t (  x ,  y , s )  =-- [(x = J o h n  A y = J o e )  V 

( x =Joe  A y =Bi l l )  v 

( x =Joe  A y = Susan)]}. 
For ancestor, Theorem 4.1 yields 

~1  ~ ( V x ,  y ) { ( 3 s ) a n c e s t o r (  x ,  y , s )  = [ ( 3 s ) p a r e n t (  x ,  y , s )  v 

(3z )  . ( 3 s )ances tor (  x ,  z ,  s)  A 

(3 s )ances to r (  z ,  y ,  s)]}. 

This is too weak to give a solution for ancestor (because of the recursion). 
However, by the successor state axioms in ~1, using induction on situations 
(Section 2.2), we can show that 

~1 ~ ( V x ,  y )  { ( 3 s )  ancestor ( x ,  y ,  s )  

-= [(x = J o h n  A = J o e )  V 

( x =Joe  A y =Bi l l )  v ( x =Joe  A y = Susan)  v 

( x = John A y = Bill)  v ( x = John A y = Susan)] }. 

This shows that our semantics is strictly stronger than Clark's completion. 
Now consider the program P2 which is P1 together with the following clauses: 

childless(x) :- not haschild(x) 

haschild(x) :- parent(x, y) 

Let  C ( x )  and D ( x )  be the corresponding two actions. The successor state axioms 
for parent  and ancestor with respect to P2 are the same as those with respect to 
P r  The successor state axioms for childless and haschild are: 

childless( x ,  do(  a, s ) ) =-[a = C ( x ) A ~ ( 3 s '  ) haschild( x ,  s '  ) v 

childless( x ,  s )  ], 

haschild( x ,  do(  a, s ) ) =- [ a = D ( x )  A ( 3 y  ) parent(  x ,  y ,  s )  V 

haschild( x ,  s)] .  

Let ~2 be the action theory for P2. By Theorem 4.1, we have 

:~2 ~ (Vx).(3s)childless(x,  s)  =- -, ( 3 s  ) haschild( x ,  s )  

=- ~ ( 3 s ) ( 3 y ) p a r e n t (  x ,  y ,  s )  

= ~ ( x  =John  V x  = J o e ) .  
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In the next section, we shall show that our action theory semantics for logic 
programs is closely related to a recent semantics proposed by Wallace [31], and is 
essentially the same as the stable model semantics [3] when we consider only 
Herbrand models. 

5. WALLACE'S SEMANTICS 

Wallace's basic idea [31] can be summarized as follows: Given a logic program P, 
first obtain from P another program P ' ,  then consider the semantics of P to be 
the Clark completion of P ' .  Wallace proposes several ways for obtaining the new 
program P '  from P. We shall consider the one that is most closely related to our 
semantics, and that will in turn relate our semantics to the stable model semantics 
of [31. 

The following definition is adapted from [31]. Let  P be a logic program. The 
tightened program P '  of P contains precisely the following clauses: 

1. For each clause 

F ( k  ~) :- l l & - . . & l  n 

in P, P' contains the clause 

F ( Z , s ( n ) )  :- l' l & . . . & l '  k 

where s(n) denotes the successor of the natural number n, and if I i = G(7) is 
an atom, then l I is G(i, n); if I i is a negative atom, then 1~ = l i. 

2. For each predicate F(k  ~) in P, P '  contains the clause: 

F( ~) :- F( Z,n). 

For example, consider the following program adapted from [31]: 

F ( x )  :- Q ( x ) & n o t  R(x)  

Q(a) :- 

R ( x )  :- R (x ) .  

The tightened version of this program is: 

F ( x , s ( n ) )  :- Q ( x , n ) & n o t R ( x )  

Q ( a , s ( n ) )  :- 

R ( x , s ( n ) )  :- R ( x , n )  

F (x )  :- F ( x , n )  

Q(x)  :- Q(x ,n )  

R (x )  :- R ( x , n ) .  

Notice that the Clark completion of the tightened program yields, for example, the 
following completion axiom for F(x) :  

(Vx)(  F( x) - (::ln)F( x ,n )  ), 

and the following completion axiom for F(x, n): 

(Vx,  n ) ( F ( x , n )  = ( 3 n ' ) ( n  = s ( n ' )  A Q ( x , n ' ) )  A -1R(x ) ) .  
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Notice the similarity between this axiom and our successor state axiom for the 
fluent F, in particular, when R(x) in the above axiom is replaced by (3n')R(x, n') 
according to the completion of R(x). The differences are that instead of situations, 
Wallace uses natural numbers, and instead of actions and the function do, Wallace 
uses the successor function. 

We assume that 0 is a constant symbol denoting the number zero. So the 
Herbrand models of the Clark completion of tightened programs contains precisely 
the following terms about numbers: 

0,s(0),s(s(0)) . . . . .  

Theorem 5.1. Let P be a logic program, ~ its action theory, and ~ the Clark 
completion of the tightened version of P. Then, 

1. I f  M is a Herbrand model of ~ ,  then there is a Herbrand model M' of 2 such 
that for any predicate F in P, and any tuple of Herbrand terms i, 

M ~  ( 3 n ) F ( i , n )  ¢~ M' ~ ( 3 s ) F ( i , s ) .  

2. I f  M is a Herbrand model of ~ ,  then there is a Herbrand model M' of ~ such 
that for any predicate F in P, and any tuple of Herbrand terms i, 

M ~  ( 3 s ) F ( i , s )  ¢~ M' ~ ( 3 n ) F ( r , n ) .  

PROOF. First, notice that the Herbrand domain for situations is 

{So, do( So), do( So) ..... do( do( So)), do(%, do( So)) . . . .  } .  

So any Herbrand interpretation will satisfy the foundational axioms ~ of the 
situation calculus (Section 3.2). 

Let M be a Herbrand model of ~ .  Construct a Herbrand interpretation M'  
with respect to ~ as follows. For any fluent F, let 

1. M'  ~ (V2') -~ F(2', So). 
2. Inductively, for any situation term do(a,S), and any tuple of Herbrand terms 

i, if a does not name any clause with F as its head in P, then 

M' ~ F(i ,  do( a , S ) )  ¢~ M' ~ F ( i , S ) ,  

and if a names a clause with F as its head, say 

F ( 1 )  :- F l ( t ~ ) & n o t  Fz(t2) 

in P, then M' ~ F(i, do(a, S)) iff for some tuple ~' of Herbrand terms of the 
same length as f ,  the tuple of variables in the above clause, but not in 3, 
M '  ~ F1(~, S)(2', i / i ,  Y) and M ~ ~ ( 3 n ) F 2 ( ~ ,  n)(2', f / i ,  if), where 
FI(~ 1, S)(£, y / i ,  if) is obtained from F~(~, S) by replacing xi in 2 '= (x, . . . . .  x , )  
by the corresponding term t~ in i, and y~ in ] by the corresponding term in 
Y. Similarly for F2(i2, n)(2', f / i ,  ~'). 

It remains to show that 

1. M'  is a model of .~. 
2. For any fluent F, and any tuples of Herbrands terms i, 

M ~ ( 3 n ) F ( i ,  n) ¢~ M'  ~ ( 3 s ) F ( i ,  s) .  
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Notice that by our construction of M' ,  (1) follows straightforwardly from (2). To 
prove the "=* " part of (2), suppose that for some natural number N, M ~ F(i ,  N).  
We show by induction on N that there is a situation S such that M '  ~ F(i ,  S). The 
case for N = 0 is vacuous because M ~ ~ F(i ,  0). Inductively, suppose this is true 
for any predicate F ' ,  and any N < K. Suppose now M ~ F(t], K).  Then since M is a 
model of the Clark completion of the tightened version of P, there must be a 
clause with F as its head, say 

F(Y') :- F l ( t l ) & n o t  Fz(t2) 

in P such that for some tuple ff of Herbrand terms of the same length as y', the 
tuple of variables in the above clause, but different from those in ~', 

M ~  F 1 ( ~ , K -  1)(x', f/t~,ff) A ~ ( ~ n ) F 2 ( t ' 2 , n ) ( f ,  y/t~,ff). 

By the inductive assumption, there is a situation S 1 such that M ' ~  
Fl(~,  $1)(£', f / i ,  if). Now let A ( f )  be the action naming the above clause for F. By 
the construction of M' ,  we have that M' ~ F(i, do(A( i ) ,  $1)). This completes the 
inductive step, thus the " ~  " part of (2). The " = "  part of (2) can be proved 
similarly by doing induction on situations. 

This completes the proof for the first half of the theorem. The proof of the 
second half is similar. 

From this theorem and Theorem 8 in [31] that relates Wallace's semantics to the 
stable model semantics, we have: 

Corollary 5.1. Let P be a program, and ~ its action theory. A set ~ of  ground atoms 
is a stable model of  P iff there is a Herbrand model M o l D  such that for any ground 
atom F(t), F(t)  ~ 5  p iff m ~ (3s)F(i ,  s). 

For any logic program P, Wallace also defines the full completion of P to be the 
Clark completion of the tightened version of P together with appropriate induc- 
tion axioms for natural numbers, and shows that for any ground atom p, p is 
entailed by the full completion iff it is in the success set of the tight tree semantics 
of P as defined in (van Gelder  [28]), and ~ p is entailed by the full completion iff 
p is in the finite failure set of P. Since our foundational axioms in ~ already include 
an induction axiom, this result carries over to our semantics as well. 

Wallace [31] also relates his semantics to some other well-known ones such as 
(Fitting [2], Kunen [6], Przymusinski [20], and van Gelder and Ross and Schlipf 
[29]). Many of the results there can be inherited here. Wallace also argues the 
advantages of having a semantics in first-order logic. The same arguments apply to 
our semantics as well. 

Admittedly, compared to Wallace's elegant approach, ours seems complicated. 
However, there are some important reasons for appealing to actions and their 
axiomatization within the situation calculus. 

1. Appealing to theories of actions as they are normally understood in artificial 
intelligence reveals the connection between the classical frame problem and 
the semantics for negation-as-failure. 

2. By treating rule applications as first-order objects, we can formally reason 
about them within the situation calculus. This becomes important when we 
come to formalize search control operators in logic programming. Because 
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actions and situations are first order terms, and because a situation denotes 
the sequence of actions (history) that have occurred thus far, a situation in 
our logic programming semantics is a record of all the derivations that have 
been performed thus far, in the order in which they have been performed. To 
date, most formal analyses of logic programming have ignored their "dirty 
aspects" like the cut operator.  In essence, these operators place certain 
constraints on reachable situations, i.e., on the permitted derivation histories. 
These conditions are normally rather complicated and require the ability to 
talk formally about derivation histories, which our situation calculus-based 
semantics does provide. We shall say more about this issue in Section 7 
below. 

Technically, this paper also goes beyond that of (Wallace [31]) in defining an 
equivalence relation on logic programs, and proving conditions for two logic 
programs to be equivalent. This is the goal of the next section. 

6. PROGRAM TRANSFORMATIONS 

One reason for a formal semantics of a programming language is to study sound 
program transformation techniques. To this end, we first need a notion of equiva- 
lence between two logic programs. 

6.1. An  Equivalence Relation 

Let P and P '  be two programs, and _~ and -~ '  their respective action theories. 
Normally _~ and .~ '  will not be compatible. For example, any action in P but not 
in P '  will have no effect according to .~ ' .  Given our definition of answers to 
queries, it is not natural then to say that P and P '  are equivalent iff they give the 
same answer to every query, i.e., for any goal G, _~ ~ (3s)G[s] iff .~ '  ~ (3s)G[s]. 
However, this definition does not seem to be fine-grained enough. For example, the 
following program 

F :- not Q 

Q :- not F 

R:- F 

gives the same answer to every query as the following one: 

F :- not Q 

Q:- not F. 

R:- Q. 

But intuitively, we don't  want them to be equivalent because there is a model of 
the action theory of the first program in which 

-~(3s)O(s) A (3s)F(s)  A (3s)R(s)  

holds, but there is no model of the action theory of the second program that 
satisfies this sentence, s This suggests that we should define program equivalence 
model -theoretically. 

5Notice that the set of  stable models  for the first program is {{F,R}, {Q}}, but for the second 
program it is {{Q, R}, {F}}. So these two programs are not equivalent in terms of their stable model 
semantics. Later we shall show that in the propositional case, our notion of equivalence coincides with 
that under  the stable model semantics. 
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Let P be a logic program, _~ its action theory. We call a theory T an answer 
theory of P iff for every structure M, M is a model of T iff there is a model M'  of 

such that M and M'  agree on (3s)G[s], for any goal G. In the following, we 
write this agreement relation as M ~ M' .  Formally, M ~ M' iff 

1. M and M'  have the same domain for sort object. Recall that this is the sort 
for entities other than actions and situations. 

2. For  any goal G, and any variable assignment cr,6 

M, (3s)C[s] iff M', (3s)C[s].  

It is clear that if both T and T '  are answer theories of P, then T and T '  are 
logically equivalent. So if T is an answer theory of P, then we can say that T is the 
answer theory. 

Notice that by Proposition 4.2, condition 2 holds for arbitrary (3s)G[s] iff it 
holds for any (3s)F(£, s), where F is a fluent: 

Proposition 6.1. M ~  M' iff 

1. M and M' have the same domain for sort object. 
2. For any fluent F, and any variable assignment or, 

M, cr~ (3s )F(  ~,s) iff M', o'~ (3s )F(  ~,s) .  

It turns out that the answer theory of P can be considered to be the result of 
remembering only (3s)F(Z,  s), for every fluent F in ~ (Lin and Reiter [12]). 
Moreover,  according to the results in (Lin and Reiter [12]), the answer theory of P 
always exists, and can be expressed as a finite second-order theory, but that in 
general, no first-order answer theory need exist. 

We now have the following definition: 7 

Definition 6.1. Two logic programs P and P '  are equivalent iff their answer 
theories are logically equivalent. 

Example 6.1. Consider again the two programs given earlier in this section. The 
answer theories for these two programs happen to be their respective Clark 
completions. The first answer theory is 

( 3 s ) F ( s )  = ~ ( 3 s ) Q ( s )  A 

(3s )R(  s) =- (3s )F(  s). 

The second answer theory is 

(3 s )F ( s )  = ~ ( 3 s ) Q ( s )  A 

(3s )R(  s) =- (3s)O( s). 

These two theories are not equivalent. 

6M, o'~ (3s)G[s] means  that the formula (3s)G[s] is true under  the variable assignment cr in M. 
7We remark here  that  eqivalence between two programs under  Wallace's  semantics [31] can be 

similarly defined. 
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According to Corollary 5.1 that relates our semantics to the stable model 
semantics, we see, by virtue of Proposition 6.1, that a stable model of a logic 
program P is a Herbrand model (In the sense of Corollary 5.1) of its answer 
theory. In particular, in the propositional case, the answer theory of a logic 
program is simply the disjunction of its stable model; and two programs P and P '  
are equivalent iff their stable models are the same: 

Proposition 6.2. Let P and P'  be two propositional logic programs. 

1. A theory T is the answer theory of P iff the set of models of T equals the set of 
stable models of P. 

2. P and P'  are equivalent iff the set of stable models of P equals the set of stable 
models of P'. 

The following proposition is straightforward: 

Proposition 6.3. Let P and P' be two logic programs, and ~ and ~ '  their respective 
action theories. The answer theory of P entails that of P' iff for any model M of ~ ,  
there is a model of M' of  ~ '  such that M ~ M'.  

6.2. Equivalence o f  Definite Logic Programs 

A logic program is definite if it does not mention any negative atoms in any of its 
clauses. The conditions for two definite programs to be equivalent are just as one 
would expect: P and P '  are equivalent iff P entails each clause in P' and vice 
versa. In our language, we have: 

Theorem 6.1. Let P and P'  be two definite logic programs, and ~ and ~ '  their action 
theories. P and P'  are equivalent if and only if the following two conditions hold: 

1. For every clause F(~) :- G in P', 

s )C[s]  = s) (6.1) 

where y is the tuple of those variables in G but not in ~. 
2. Symmetrically, for every clause F(~) :- G in P, 

_~' ~ (V~') . (3y,  s)G[s] D ( 3 s ) F (  ~, s) .  (6.2) 

PROOF. The "only if" follows directly from the definition. We show the "if" part. 
Given any definite logic program P1, and any model M of E W~un a, there is a 

"unique"  way of transforming M into a model of the action theory of P r  Briefly, 
this is done as follows. Let M'  agree with M on everything except possibly on their 
interpretations of fluents. (So in particular, M and M'  share the same domain for 
every sort.) Then M '  is also a model of ~ m~un a. 

For any fluent F(~', s) let M '  ~ (Vx)~  F(Y', So). Inductively, if the successor 
state axiom for F w.r.t. P1 is: 

(vz, a, s)F(Z, do(a, s) ) =- $ (  a, s), 
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then let 

M' ~ (VZ, a,s)F(~,do(a, s)) = ¢ ( a , Z , s ) .  

This is well-defined, because P1 is a definite program, so ~ (a ,  2',s) can be 
evaluated using the truth values of fluents in the situation s. In particular, it does 
not contain formulas like (Vs')F(s'). Now it follows directly from the construction 
that M'  is a model of the action theory for P1. 

Now we show the "if" part using Proposition 6.3. Suppose M is a model of .~. 
Let M'  be the model of _~' constructed from M as above. We show M ~ M ' ,  i.e., 
by Proposition 6.1, for any fluent F and any variable assignment o-, 

M,o '~(3s )F(Z , s )  iff M' ,cr~(3s)F(Z ,s ) .  

Suppose 

M,o'~F(~,s ) .  

We show by induction on s that M', ~ ~ (3s)F(Z, s). 
The case for s = S O is trivial. Inductively, suppose that for any fluent, this is true 

for s*. We show that for any action a,  this is true for do(a, s*) as well. Since M is 
a model of .~, by the form of successor state axioms, there are two cases: 

1. M,~r~F(~,s*). 
2. a names one of the clauses in the definition of F in P, say 

F ( d )  : - F I ( i a ) & F 2 ( F 2 )  

and 

M, o '~  (::ly').Fl(~, s* ) A F2(r2, s*), 

where ~' is the tuple of variables mentioned in ~ or ~ ,  but not in 2'. 

In the first case, the result follows from our inductive assumption. Suppose it is the 
latter case. By the inductive assumption, we have 

M', o'~ (3~)[(:Is')FI(~,s') A (3s')Fz(['z,S')]. 

But M'  is a model of .~ ' .  So, by the assumption (6.2), instantiated to the above 
clause in P, we have: 

M',o '~ (3~)[(=Is')F,(~,s ') A (=Is')Fz(t2,s')] D(3s')F( e,s).  

Therefore  

M',cr~ (3s)F( Z,s). 

This proves the inductive step. Therefore  whenever M, cr~ (3s)F(x' ,  s), we have 
M' ,  o- ~ (3s)F(2' ,  s). The converse can be proved similarly. Thus M ~ M' .  

Symmetrically, if M ~ .~ ' ,  then there is a model M'  of .~ such that M ~ M' .  
This proves that P and P '  are equivalent. 
In principle, checking conditions (6.1) and (5.2) requires induction. However, 

there are some sufficient ways to do this that may be useful in practice. To 
illustrate the ideas, suppose the program P '  contains the following clause: 

F(x) :- x = f ( y ) & F ' ( x , g , ( y ) )  
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and we want to verify (6.1) for it. Let a be a fresh constant symbol not already 
mentioned in P and P ' .  Then one way to do this is to first add F'(f(a), g(a)) to P, 
and then query the new program with F(f(a)). If the query succeeds, then the 
condition holds. However, if the query fails, this does not mean that the condition 
is false. For  instance, this condition holds trivially when P is the empty program 
but G in (6.1) has at least one atom, because when P is empty, its action theory 
entails ~(3s)F(s) for any fluent F. This strategy was first used by Sagiv [23] for 
proving the equivalence of two deductive databases. 

Yet another way to prove condition (6.1) say, is to query the program P with the 
goal G, and then query P again with the goal F(2) for those bindings returned by 
the first query. If the goal F(Y') succeeds for all these bindings, then condition (6.1) 
holds. The problem with this strategy is that it may not work when there are 
infinitely many bindings for the first query. 

Finally, we remark that if condition (6.1) holds, then 2 '  m (3s)F( i ,  s) implies 
~.~ ~ (3s)F({,, s), i.e., the set of ground atoms provable from P '  is a subset of that 
from P. However, this does not mean that the answer theory of P will entail that 
of P ' .  For  the latter to be true, the set of negative ground atoms provable from P '  
would have to be a subset of that from P as well. In fact, if the answer theory of a 
positive program entails that of another positive program, then these two positive 
programs must be equivalent. This is because for any positive program P, the 
models of the answer theory _~ of P must be unique in the sense that if two 
models of _~ share the same domains, then they must be the same. That in turn is 
because of the closed world assumption made in logic programs. 

6.3. Normal Logic Programs 

Unfortunately, Theorem 6.1 fails for logic programs with negation: Suppose the 
program P consists of the following single clause: 

F : -  

and the program P '  consists of the following single clause: 

F :- not F. 

Clearly, P and P '  are not equivalent. But condition (6.1), which in this case is 

~ -~(3s)F(s) D(3s )F(s ) ,  

holds since _~ ~ (3s)F(s), and condition (6.2) holds trivially because _~' in this 
case is an inconsistent theory. 

Intuitively, the reason Theorem 6.1 works for definite programs is that if F(s) is 
provable from a definition program, then there must be a situation s '  such that s '  
is earlier than s (s '  < s), and a goal G such that G[s'] is provable and does not 
quantify over situations, i.e. G[s'] is a statement whose truth value can be 
determined by looking at the situation s '  alone. This will ensure that there are no 
cycles, and thus induction on situation will work. This property is lost on normal 
logic programs because if G mentions negation, then G[s] will quantify over 
situations, and its truth value will depend on the entire space of situations. To 
overcome this, the trick is then to introduce some new situation independent 
predicates, and replace formulas of the form (3s')F(s') in G[s] by atoms made of 
such new predicates. This will make the resulting formula "look" like a statement 
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whose truth value depends only on the situation s. This is exactly the intuition 
behind the following definitions which will be used to formulate some sufficient 
conditions for two normal logic programs to be equivalent. 

Suppose P is a logic program. For any predicate F(#') in P, suppose if(k) is a 
new predicate symbol with the same arity as F. We define the loosened action 
theory ~ of P to be that obtained from P's action theory _~ by replacing in .~'s 
successor state axioms every subformula of the form (: ls ' )F(~ s') by F( i ) ,  for every 
fluent F. For example, if the successor state axiom for F is 

F(~,  do(a , s ) )  -- (3y) [  a = A(~') A F l ( i  1, s) A ~(3s ' )Fa( iz ,S ' ) ]  v F(3 ,  s), 

then the new axiom, called the loosened successor state axiom of F, is 

F ( ~ , d o ( a , s ) ) - - ( 3 ~ ) [ a  =A(~')  A Fa(~, s ) A -~/~2(~2)] V F ( ~ , s ) .  

Loosened action theories are like action theories for definite logic programs. 
The propositions and theorems in Section 4 can be extended to them as well. For 
instance, corresponding to Theorem 4.1, we have: If (Vff').(3s)F(~', s) - dp(~') is the 
Clark completion of the fluent F in the program P, then 

_~ ~ (V£) . (3s )F(# ' ,  s) -- ~ ' ( £ ) ,  (6.3) 

where ~ is the loosened action theory of P, and ~ '  is the result of replacing in 
every subformula of the form ~ ( 3 s ) F ' ( i ,  s) by ff ' ( i ) ,  for every fluent F'. 

In the following, we call a formula ~(£ ,  s) a simple state formula if: 

1. Its free variables are among £, s. 
2. It does not mention the initial situation S O . 
3. It does not quantify over situations. 
4. It does not mention do, Poss, or < .  

Informally, ~(#', s) is a simple state formula when its truth value can be deter- 
mined by the truth values of fluents in the situation s, and the truth values of 
situation independent predicates like ff and equality. 

In the following, we let 3- be: 

~gr= { (V£)[ (3s )F(  £ ,s )  - l~( Z)] l f is a fluent}. (6.4) 

Theorem 6.2. Let P1 and P2 be two logic programs and let ~.7.~ 1 and ~-~2 be their 
respective action theories. In addition, let ~2 be the loosened action theory of  P2. 
Finally, suppose 

1. For every clause F(£) :- G in P2, 

~1 ~ (VZ).(7~Y,s)G[ S ] ~ (3s )F(  £ , s ) ,  (6.5) 

where ~" is the tuple of  variables mentioned in G but not in £. 
2. For every fluent F(£, s), there is a simple state formula We(SO, s) such that: 

( a) In this formula, every fluent appears positively; 

(b) ~1 UJr~(V£) 'F(£,  s) D(3s')(s'  < s  A XtrF(X', S')); (6.6) 

(c) --~2 ~ (V~' ) .~(£)  ~ (3s)F(£,  s), (6.7) 

where ~ ( ~ )  is the result of replacing every atomic formula of  the form 
F'(~, s) in ~F(~', S) by (3s)F '(~, s), for every fluent F'. 
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Then the answer theory of P1 entails that of  P2- 

Let us briefly comment  on the theorem before proving it. Condition (6.6) means 
that if F(s) holds, then there must be a situation s' earlier than s such that qtF(S') 
holds. Since ~F is a simple state formula, its truth value depends only on s ' ,  so 
induction on situations will go through. Compared  to Theorem 6.1, xtt F is like G. 
But since F :- G is a clause in P, condition (6.6) always holds for positive logic 
programs. Now condition (6.7) is like condition (6.2) in Theorem 6.1, with . ~ '  
replaced by -~2, and G by ~ .  

PROOF. We need to show that for any model M 1 of .t~l, there is a model M 2 of 2 2 
such that M 1 ~ M 2. 

Suppose that M~ is a model of -~1- Since for any fluent F, F does not appear  in 
.~1, we can assume that M 1 satisfies J as well. 

Construct a first-order structure M 2 as follows: 

1. It shares with M 1 the domain for every sort. 
2. Except possibly on fluents, it shares with M 1 the interpretation of all function 

and predicate symbols. In particular, they agree on the new predicates. 
3. For every fluent F, M 2 ~ (VY') ~ F(x', So), and inductively, if 

F(~, do(a, s)) =- dPF(~, a, s), 

is the loosened successor state axiom of F f o r / 2 ,  then let 

M 2 ~ (VY', a,  s ) [  F(£,do(a,s) )  =- *F( ~,a,s)].  

Again (cf. the proof  of Theorem 6.1), this is well defined because ~F is a 
simple state formula. 

Clearly, M 2 is a model o f  ~2 ,  the loosened action theory of P2" 
We now show M 1 ~ M2, i.e., for any fluent F, and any variable assignment tr, 

M l , o ~  (3s )F(£ , s )  iff M2,o-~ (3s)F(~,s ) .  

Suppose 

M2,tr~ F( ~,s). 

We show by induction on s that M 1, o" ~ (3s)F(~, s). 
The case for s = S O is trivial. Inductively, suppose that for any fluent, this is true 

for s*. We show that for any action a ,  this is true for do(a, s*) as well. By the 
construction of M 2, and the form of successor state axioms, there are two cases: 

1. M2, o-~F(~,s*). 
2. a names one of the clauses in the definition of F in P ' ,  say 

F ( x  ~) :- F I ( ~ )  & n O t F E ( t  2) 
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and 

M2,0"~ (3y).F1(~,s* ) A ~/~2(Q) ,  

where f is the tuple of variables in i a or i 2, but not in x'. 

In the first case, the result follows from our inductive assumption. So consider the 
latter case. By the inductive assumption, we have 

M,, 0g)[(3s')F,(r,s')A 

But M 1 is a model of  the set Y(6.4) ,  thus 

- , ,  A 

But the assumption (6.5), when instantiated to the above clause, yields: 

(3,')F(e,s'). 

So we have 

M1, o- ~ ( 3 s )  F (  2 ~, s ) .  

This proves the inductive step. Therefore  whenever M 2, o-~ (3s )F(£ ,  s), we have 
M1, o- ~ (3s)F(2' ,  s). 

Now suppose M 1, o- ~ F(2', s). We show that M2, o- ~ (3s )F(£ ,  s). Again, we do 
induction on s. The case S O is vacuous because the assumption is false. Inductively, 
assume that the result holds for any fluent, for any situation s < s*. We show that 
it is true for s* as well. Suppose M~, cr ~ F(2', s*). Since M 1 is a model of 2~ and 
the set (6.4), by the assumption (6.6), we have 

MI,  o ' ~  (3s)(s < s *  A * F ( Z ,  S)). 

NOW by the inductive assumption, the fact that M~ and M 2 agree on everything 
else except possibly on fluents, and the assumption that every fluent appears 
positively in ~F, we have that 

M2, o- ~ ~tt~(Z) 

where ~ ( ~ )  is as in (6.7). Therefore,  by the assumption (6.7), we have 

This completes the inductive proof. So we have proved that M 1 ~ M 2. Using this, 
the fact that M~ i s  a model of the set ~,, and the fact that M 1 and M 2 agree on all 
new predicates F, we conclude that M 2 is a model of 9 r (6.4) as well. Thus, by the 
definition of the loosened action theory, M 2 is a model of -~z. This concludes the 
proof  of  the theorem. 

To use Theorem 6.2, one needs to select the appropriate formula ~F, for every 
fluent F. The following are some candidates. 

Let 

( 3 s ) F ( 2 ' ,  s) - ¢P(x') 

be the Clark completion of F (see Theorem 4.1) in /2 .  
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• Let PF(~', S) be the result of replacing in qb every positive subformula of the 
form (3s)F'({,, s) by F'({, s), and every negative subformula of the form 
(3s)F ' ( i ,  s) by/6,( i ) .  Then qr v satisfies the required syntactic conditions: it is 
a simple state formula, and every fluent in it appears positively. By (6.3), it 
also satisfied the condition (6.7). So condition (6.6) is the only one left to be 
checked. 

• If @ has a positive occurrence of (3s)Fl(i,  s), and 

( 3 s ) F , ( x ;  s )  - 

is the Clark completion of F 1, then first let ~ '  be the result of replacing in qb 
this positive occurrence of (3S)Fl(~ s) by qbl(i), and let Pe(2') be obtained 
from @' the same way as it is obtained from qb above. Then q~e again is a 
simple state formula, every fluent in it appears positively, and satisfies 
condition (6.7). 

• The above procedure of obtaining PF can be iterated. Notice that this 
procedure is closely related to unfolding (see below), and also regression [30, 
18, 21] in planning. 

For example, given the following Clark completion for F: 

( 3 s ) F ( s )  - { ( 3 x ,  s)F~(x,s)  v [ (3s )F2(s  ) A ~(3s)F3(s)]  } 

we obtain the following possible xIre: 

(71X)Fl(X,S) V [F2(s ) A ~P3]  

Now suppose 

(3s)F,(  x , s )  - ( 3 s ) F 4 ( x , s  ) V (3y) ( (3s)F2(  s) A -~(3s')Fs( x, y , s ' )  ) 

is the Clark completion of F 1. First eliminate (3s)F~(x, s) in the Clark completion 
of F: 

(3s )F(  s) =- { ( 3 x ) [ (  gs)F4( x , s  ) V (3y) ( (3s)F2(  s) A ~ (3s ' )Fs (  x, y , s ' )  ) ] V 

(3s )r2(s )  A ~(3s)F3(s)}  

From this, we get another possible Xtrr: 

(3x)[F4(x , s )  V (3y ) (Fz ( s )  A -~ F s ( x , y ) ) ]  V [Fz(s ) A mF3],  

which is logically equivalent to 

(3x)tr4(x,s) Are(s)] v (3x , y ) [F4(x , s )  A -~ e s ( x , y ) ]  V [Fz(s ) A ~/~3]. 

We further illustrate the use of the theorem by proving the following simple 
equivalence: 

Proposition 6.4. Let P, be a program, F~ an atom, and G a goal. Let Pz be the union 
of PI with the clause: 

F 1 :- F~ & G 

Then P~ and Pz are equivalent. 
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PROOF. Suppose the Clark completion for F 1 in P1 is 

(::Is)FI( S) -- dp 

and P r ( s )  is a simple state formula obtained from @ as outlined above. Then the 
Clark completion for F 1 in P2 is of the form: 

( ~ ] s ) F I ( S )  ~ [ ( 3 s ) f , ( s )  A q)] V (ID (6.8) 

We show that the answer theory of P2 entails that of P1. The converse is easier, 
and can be similarly proved. 

Condition (6.5). Trivial, since every clause in P1 is also a clause in /)2. 

Conditions (6. 7) and (6. 6). For each fluent F, we use the Clark completion of F in 
P1 to generate the formula Pe as outlined above. As we mentioned, in this case, 
only Condition (6.6) needs to be proved. There are two cases. If F is different 
from F1, then the Clark completion of F in both P1 and /)2 is the same. 
Suppose it is (Bs)F(s) =- @F" By Corollary 4.2, we have 

~2 ~ (Vs ) .F ( s )  D (3s ' ) ( s '  < s A @'F( S) ), 

where ~2 is the action theory of P2, and @~ is the result of replacing in @F 
every positive subformula of the form (3s)F'( i ,  s) by F'(i,s).  Now by the 
construction of PF, we have 

2.~2 t ) ~ " ~  ( V s ) . F ( s )  D (3S ' ) (S '  • S A ~F(  S) ), 

which is the condition (6.6). 
For F1, we need to check: 

~2 u J r ~  (Vs) .Fl(S)  D (3 s ' ) ( s '  < s / x  PF,(S)). (6.9) 

Using Corollary 4.2 for P2, and the Clark completion (6.8) of F 1 in P2, we 
have 

-~2 U~rl= (Vs) .F , (s)D (=Is') {s' <s A [(F,(s ' )  A G t s ' ] ) v  PF,(S')] }. 
(6.10) 

Now assume that -~2 U~rand Fl(S)- Since -7 FI(S0), by our foundational axioms 
for the situation calculus, there is a situation of the form do(a, s') <_ s such that 

F,(do(a,s')) A (Vs*)(s* < s' ::::9 m FI(S*)). 

By (6.10), this means that PF(S') must hold. So we have (6.9). 

6. 4. Unfold ~ F o l d  

Unfold/ fo ld  (Tamaki and Sato [27]) are among the best known program transfor- 
mation operators. Seki [25] shows that they preserve the well-founded semantics of 
(Van Gelder and Ross and Schlipf [29]). Using Theorem 6.2, we can show, rather 
straightforwardly, that unfold/fold  also preserve our situation calculus semantics. 
We illustrate using unfolding. For ease of presentation, we consider only the 
propositional case. The following definition is adapted from (Seki [25]). 
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Let P be a logic program, and C a clause in P of the form: 

F 1 :- F 2 & G  , 

where F 1 and F z are distinct atoms. Suppose that 

F2:- G1 

F2:- G~ 

are all of the clauses in the definition of F 2 in P. Let C i, 1 < i <_ k, be the result of 
replacing F 2 in C by G r Then the program P '  = (P  - {C}) U {C 1 . . . . .  C k} is called 
an unfolding of P. The clause C is called the unfolding clause. 

Proposition 6.5. I f  P '  is an unfolding of  P, then P and P'  are equivalent. 

PROOF. Suppose that the Clark completion of F1 in P is of the form 

( 3 s ) F l ( s )  - [ ( (3s )F2(s  ) /x  q~]) v @]. (6.11) 

Then the Clark completion of F 1 in P '  is of the form 

( 3 s ) F , ( s )  =- [(~0, A q~) V .." V (q~k A ~0) V @]. (6.12) 

The Clark completion of F 2 in both programs is of the form 

(3s)Fz(s) - [ ~ a  v --. v ~o, ] .  ( 6 . 1 3 )  

Notice that (6.12) is a consequence of (6.11) and (6.13). 
We show that the answer theory of P entails that of P ' .  

Condition (6.5). We only need to show this for the new clauses Ci, 1 < i < k in P ' :  

~ (3s ) (Gi[s  ] A G [ s ] )  D ( 3 s ) F , ( s ) .  

But (3sXai[s]/k a[s]) is equivalent to ~Pi A q~ (see Proposition 4.2 and Theorem 
4.1). So this follows from (6.11) and (6.13). 

Conditions (6. 7) and (6. 6). We only need to show these two conditions for F 1, since 
the Clark completion for other fluents are the same for both programs (see the 
above proof  of Proposition 6.4). We take ~FI(S) to be the formula obtained from 
the Clark completion (6.12) for F 1 in P '  as outlined following Theorem 6.2. We 
only need to prove (6.6): 

U.~ I=  (Vs) .F I ( s )  D ( 3 s ' ) ( s '  < s/X ~FI(S')). 

Assume that ~ u J a n d  Fa(s). By Corollary 4.2, and the Clark completion (6.11) 
for F a in P, there is a s '  < s such that 

(F2 ( s ' )  /X G [ s ' ] )  V @ ' ( s ' ) ,  

where @'(s) is the result of dropping (3s)  from all the positive occurrence of the 
subformula (3s)F(s)  in @. From F2(s'), by Corollary 4.2 for F2, there is a s* < s '  
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such that 

{ (G , [ s * ]  v --- v C ~ [ s * ] ) / ,  C [ s ' ] }  v ¢ ' ( s ' ) .  

Now by Corollary 4.1, we have 

v . . .  v A v ® ' ( s ' ) .  

By the definition o f  ~I/FI(S) , the above formula is equivalent to  atfFl(S' ) under the 
assumption that ~ .  This proves the condition (6.6); thus the answer theory of P 
entails that of P'.  

The converse has a much easier proof, with the same formula WF(S) for 
conditions (6.7) and (6.6). We do it for condition (6.6), because this is the only 
nontrivial one. We need to show 

.~' Uo.ar~ (Vs).Fl( S) D (3s')(s '  <s  A ItF,(S')).  

Assume that ~ '  USrand  FI(S). By Corollary 4.2 for F l in P ' ,  there is a s' _< s such 
that 

(G~[s ' ]  A G [ s ' ] )  v --- v (C~[s ' ]  A C [ s ' ] )  V ¢ ' ( r ) .  

Again by the definition o f  'tI'rFI(S) , the above formula is equivalent to  ~XtFa(S') under 
the assumption that ~ This proves condition (6.6). 

This proof generalizes to the first order case; we omit the details. 

7. OTHER APPLICATIONS 

The framework of this paper is very general; it can be used to formalize many 
other aspects of logic programming languages. 

Like most work on the formal semantics of logic programs, we have ignored 
many "dirty aspects" of the language, such as the cut operator. As mentioned 
earlier, one of the advantages of treating rules as actions is that we can reason 
about them as first-order objects within the logic. This is particularly useful in 
formalizing many search control operators in logic programming. As an example, 
we have formalized the cut (!) operator  in Prolog using the basic framework 
proposed here ([10]). 

Briefly, given a definite logic program P that contains cut, we proceed as follows 
to provide a semantics for P. First, we ignore cut, and delete all occurrences of ! in 
P. This will give us a program that does not mention !, so the theory of this paper 
will be applicable, and an action theory 2 for it can be constructed. As we 
emphasized before, in ~ ,  situations are derivation histories. However, due to the 
presence of !, some situations may not be reachable. A logical characterization of 
cut is then achieved by adding to ~ a situation calculus sentence that axiomatizes 
the set of reachable situations. We show that this semantics is well-behaved when 
the logic program is properly stratified. Furthermore,  according to this semantics, 
the usual implementation of the negation-as-failure operator  using cut is provably 
correct with respect to the stable model semantics. For details see [10]. 

We are also currently exploring the possibility of formalizing the dynamic 
"assert" and "retract"  operators of Prolog within this framework. It is particularly 
interesting that once we allow "retract",  the resulting theories of actions become 
much richer in that some actions will now have negative effects on fluents, and 
issues such as goal interactions in planning become relevant. 



S I T U A T I O N  C A L C U L U S  S E M A N T I C S  329 

8. C O N C L U D I N G  R E M A R K S  

By taking seriously the idea that  rules are actions, we have formalized the 
declarative mean ing  of  logic programs in the situation calculus. Like Clark's  
complet ion,  our  situation calculus semantics is formula ted  in classical logic. Unlike 
Clark's  complet ion,  our  semantics is s trong enough  to handle  recursion. Having a 
classical logical semantics has many advantages,  one  of  which is the relative ease of  
proving propert ies  of  programs.  To  illustrate this, we have formula ted  condit ions 
for two logic programs to be equivalent, and used them to prove the correctness of  
the unfolding t ransformat ion  of  (Tamaki  and Sato [27]). 

We have also used this f ramework  to formalize various search control  operators ,  
and are working on extending it to the dynamic "assert"  and " re t rac t"  opera tors  of  
Prolog. 
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