
NORTH - H O I L A N D

RULES AS ACTIONS: A SITUATION CALCULUS
SEMANTICS FOR LOGIC PROGRAMS

F A N G Z H E N LI N AND RAY R E I T E R *

I> We propose a novel semantics for logic programs with negation by viewing
the application of a clause in a derivation as an action in the situation
calculus. Program clauses are then identified with situation calculus effect
axioms as they are understood in axiomatic theories of actions. We then
solve the frame problem for these effect axioms using a recent approach of
Reiter [21], and identify the resulting collection of axioms with the seman-
tics of the original logic problem. An interesting consequence of this
approach is that the logic programming negation-as-failure operator inher-
its its nonmonotonicity from the nonmonotonicity associated with the
frame problem.

One advantage of our proposal is that like Clark's completion seman-
tics, ours is also formulated explicitly in classical logic. To illustrate the
usefulness of our semantics, we prove sufficient conditions for two logic
programs to be equivalent, and use this to verify the correctness of the
well-known unfolding program transformation operator. We also discuss
applications of this framework to formalizing search control operators in
logic programming. © Elsevier Science Inc., 1997

1. I N T R O D U C T I O N

I n this paper we propose a novel semantics for logic programs in the situation
calculus. One of the advantages of our proposal is that like Clark's completion
semantics, it is explicitly formulated in classical logic. For this reason, it is suitable
for proving properties of logic programs such as the correctness of various program
transformation operators.

*Fellow of the Canadian Institute for Advanced Research.
Address correspondence to Department of Computer Science, University of Toronto, Toronto,

Canada M5S 1A4; Email: {fl.reiter}@ai.toronto.edu; http://www.cs.toronto.edu/~ cogrobo/.
Received September 1995; accepted October 1996.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010

0743-1066/97/$17.00
PII S0743-1066(96)00122-7

300 F. LIN AND R. REITER

The basic idea of our proposal is very simple. We consider the application of a
clause in a derivation to be an action in the situation calculus (McCarthy [15]).
Executing a clause makes the head of the clause true in the new situation
whenever the body of the clause is true in the current situation. Program clauses
are then identified with situation calculus effect axioms as they are understood in
axiomatic theories of actions. We then solve the frame problem for these effect
axioms using a recent approach of Reiter [21], and identify the resulting collection
of axioms with the semantics of the original logic program.

This paper is organized as follows. In the next section, we briefly review the
situation calculus and the frame problem. Section 3 provides the necessary logical
preliminaries, and Section 4 defines our situation calculus semantics for logic
programs. Section 5 shows some relationships between our semantics and Wallace's
[31], and also relates our semantics to the stable model semantics [3]. Section 6
formulates conditions for two logic programs to be equivalent and applies this
result to verifying the correctness of the unfolding program transformation opera-
tor. Section 7 discusses other potential applications of our semantics, while Section
8 provides some concluding remarks.

2. AN INFORMAL INTRODUCTION TO THE SITUATION CALCULUS ~

2.1. Intuitive Ontology for the Situation Calculus
The situation calculus (McCarthy [15]) is a first order language (with, as we shall
see later, some second order features) specifically designed for representing dy-
namically changing worlds. All changes to the world are the result of named
actions. A possible world history, which is simply a sequence of actions, is repre-
sented by a first order term called a situation. The constant S o is used to denote
the initial situation, namely that situation in which no actions have yet occurred.
There is a distinguished binary function symbol do; do(a, s) denotes the successor
situation to s resulting from performing the action ct. Actions may be parameter-
ized. For example, put(x, y) might stand for the action of putting object x on
object y, in which case do(put(A,B),s) denotes the situation resulting from
placing A on B when the world is in situation s. Notice that in the situation
calculus, actions are denoted by first order terms, and situations (world his-
tories) are also first order terms. For example, do(putdown(A), do(walk(L),
do(pickup(A),So))) is a situation denoting the world history consisting of the
sequence of actions [pickup(A), walk(L), putdown(A)]. Notice that the sequence of
actions in a history, in the order in which they occur, is obtained from a situation
term by reading off the actions from right to left.

Generally, the values of relations in a dynamic world will vary from one
situation to the next. Such relations are called fluents, and are denoted by
predicate symbols taking a situation term as one of their arguments. The conven-
tion we shall adopt is that the situation argument of a fluent will always be its
last argument. For example, in a mobile robot environment, we might have a rela-

1This section is included in o rder to make this paper as self contained as possible. With minor
differences, it is the same as that of Levesque et al. [7].

SITUATION CALCULUS SEMANTICS 301

tional fluent closeTo(r, x, s) meaning that in situation s the robot r is close to the
object x.

2.2. Axiomatiz ing Act ions and Their Effects in the Situation Calculus

Actions have preconditions--necessary and sufficient conditions that characterize
when the action is physically possible. For example, in a blocks world, we might
have: 2

Poss(pickup(x), s) = [(Vz) ~ holding(z, s)] A nexto(x, s) A --1 hea~(x) .

World dynamics are specified by effect axioms. These describe the effects of a
given action on the f luents- - the causal laws of the domain. For example, a robot
dropping a fragile object causes it to be broken:

Poss(drop(r, x) , s) A fragile(x, s) D broken(x, do(drop(r, x) , s)) . (2.1)

Exploding a bomb next to an object causes it to be broken:

Poss(explode(b) , s) A nexto(b , x , s) Dbroken(x ,do (explode(b) , s)). (2.2)

A robot repairing an object causes it to be not broken:

Poss(repair(r, x) , s) ~ ~ broken(x, do(repair(r, x) , s)) . (2.3)

2.3. The Frame Problem

As first observed by McCarthy and Hayes [17], axiomatizing a dynamic world
requires more than just action precondition and effect axioms. So-called frame
axioms are also necessary. These specify the action invariants of the domain,
namely, those fluents which remain unaffected by a given action. For example, a
robot dropping things does not affect an object's color:

Poss(drop(r , x) , s) A color(y , c , s) Dcolor(y , c , do(drop(r , x) , s)).

A frame axiom describing how the fluent broken remains unaffected:

Poss(drop(r, x) , s) A ~ broken(y, s) A [y ~ x V ~ fragile(y, s)]

D ~ broken(y, do(drop(r, x) , s)) .

The problem introduced by the need for such frame axioms is that we can
expect a vast number of them. Only relatively few actions will affect the truth value
of a given fluent; all other actions leave the fluent invariant. For example, an
object's color is not changed by picking things up, opening a door, going for a walk,
electing a new prime minister of Canada, etc. This is problematic for the axioma-
t izer - -she must think of all these axioms--and it is problematic for the theorem
proving system-- i t must reason efficiently in the presence of so many frame
axioms.

2In formulas, free variables are considered to be universally quantified from the outside. This
convention will be followed throughout the paper.

302 F. LIN AND R. R E I T E R

2.3.1. What Counts as a Solution to the Frame Problem? Suppose the person
responsible for axiomatizing an application domain has specified all of the causal
laws for the world being axiomatized. More, precisely, she has succeeded in writing
down all the effect axioms, i.e., for each fluent F and each action A which can
cause F ' s truth value to change, axioms of the form

Poss(A , s) A R (x ' , s) D (- ,) F (Z , do(A , s)) .

Here, R is a first order formula specifying the contextual conditions under which
the action A will have its specified effect on F.

A solution to the frame problem is a systematic procedure for generating, from
these effect axioms, all the frame axioms. If possible, we also want a parsimonious
representation for these frame axioms (because in their simplest form, there are
too many of them).

2.4. A Simple Solution to the Frame Problem

By appealing to earlier ideas of Haas [5], Schubert [24] and Pednault [19], Reiter
[21] proposes a simple solution to the frame problem, which we illustrate with an
example. Suppose that (2.1), (2.2), and (2.3) are all the effect axioms for the fluent
broken, i.e., they describe all the ways that an action can change the truth value of
broken. We can rewrite (2.1) and (2.2) in the logically equivalent form:

Poss(a, s) A [(3 r) { a = drop(r,x) Afragile(x,s)}

V (3 b) { a = explode(b) A nexto(b, x, s)}] (2.4)

D broken (x, do (a, s)).

Similarly, consider the negative effect axiom (2.3) for broken; this can be rewritten
a s :

Poss(a, s) A (3r)a = repair(r, x) D ~ broken(x, do(a, s)). (2.5)

In general, we can assume that the effect axioms for a fluent F have been written
in the forms:

Poss(a,s) A y [(~ , a , s) D F (~ , d o (a , s)) , (2.6)

Poss(a,s) A TF(~ ,a , s) D ~ F (~ , d o (a , s)) , (2.7)

Here y [(k ~, a, s) is a formula describing under what conditions doing the action a
in situation s leads the fluent F to become true in the successor situation do(a, s);
similarly TF(Z, a, s) describes the conditions under which performing a in s results
in F becoming false in the next situation. The solution to the frame problem of
[21] rests on a completeness assumption, which is that the causal axioms (2.6) and
(2.7) characterize all the conditions under which action a can lead to a fluent F (x ~)
becoming true (respectively, false) in the successor situation. In other words,
axioms (2.6) and (2.7) describe all the causal laws affecting the truth values of the
fluent F. Therefore, if action a is possible and F(k~)'s truth value changes from
false to true as a result of doing a, then y~-(£, a, s) must be true and similarly for a
change from true to false. Reiter [21] shows how to derive a successor state axiom
of the following form from the causal axioms (2.6) and (2.7) and the completeness
assumption.

SITUATION CALCULUS SEMANTICS 303

Successor State Axiom

Poss(a,s) ~ [F(Z, do(a,s)) =- 3,~ (Z ,a ,s) V (F(Z,s) A ~'YF (X,a ,s))].

This single axiom embodies a solution to the frame problem. Notice that this axiom
universally quantifies over actions a. In fact, this is one way in which a parsimo-
nious solution to the frame problem is obtained.

Applying this to our example about breaking things, we obtain the following
successor state axiom:

Poss(a, s) D [broken(x, do(a, s)) =

(3 r) { a = drop(r, x) A fragile(x, s)} V

(=lb){a = explode(b) v nexto(b, x, s)} v

broken(x, s) A ~ (3r)a = repair(r, x)] .

It is important to note that the above solution to the frame problem presup-
poses that there are no state constraints, as for example in the blocks world
constraint: (Vs).on(x, y, s) D -~ on(y, x, s). Such constraints sometimes implicitly
contain effect axioms (so-called indirect effects), in which case the above complete-
ness assumption will not be true.

In what follows, we shall provide a semantics for logic programs, with negation,
by treating the application of a rule (clause) in a derivation as an action in the
situation calculus. Program clauses will then be identified with effect axioms. By
solving the frame problem exactly as just described, we shall obtain a situation
calculus representation of the program which will serve as the program's logical
semantics.

As is well known, solutions to the frame problem are nonmonotonic, in the
sense that the above completeness assumption (the given effect axioms are all and
only the effect axioms) is a kind of closed world assumption. The addition of a new
effect axiom to an earlier axiomatization for some domain may invalidate any
solution to the frame problem obtained with the earlier axioms. This intuition has
led to a large body of research on nonmonotonic solutions to the frame problem
(e.g., [16, 26, 8, 9, 13]). In view of our situation calculus semantics for logic
programming, it will follow that negation-as-failure inherits its nonmonotonicity
from the nonmonotonicity associated with the frame problem.

3. LOGICAL PRELIMINARIES

3.1. The Language of the Situation Calculus

The language . ~ of the situation calculus is many-sorted, second-order, with
equality. We assume the following sorts: situation for situations, action for actions,
and object for everything else. We also assume the following domain independent
predicates and functions:

* A constant S o of sort situation denoting the initial situation.

* A binary function do - do(a, s) denotes the situation resulting from perform-
ing action a in situation s .

304 F. LIN AND R. REITER

• A binary predicate Poss - Poss(a, s) means that action a is possible (executa-
ble) in situation s. In this paper we shall assume that actions are always
executable, i.e., (Va, s)Poss(a, s). So technically, there is no real need for this
predicate in this paper. We keep it, however, in order to be consistent with
the general f ramework of (Reiter [21] and Lin and Reiter [11]).

• A binary predicate < over situations. We shall follow convention, and write
< in infix form. By s < s ' we mean that s ' can be obtained from s by a
sequence of executable actions. As usual, s < s ' will be a shorthand for
S < s r V s = s r.

We assume a finite number of fluents, which are predicate symbols of arity
object n ×situation, n > O, and are domain dependent. We also assume a finite
number of function symbols of arity object ~ ~ object, n > O.

3.2. Ax iomat iz ing the Situation Calculus

We shall need the following foundation axioms (Lin and Reiter [11]) for the
situation calculus:

So ao(a, s),
d o (a l , s l) =do(a2 , s2) D (a a = a 2 As I =s2) ,

(vP)[P(So) ^ (Va,s)(P(s) do(a,s))) ~ (Vs)e(s)],
~ s < S o ,

s < d o (a , s ') -~ (P o s s (a , s ') As < s ') .

Intuitively, the first two axioms are unique names assumptions. They eliminate
cycles, and merging. The third axiom is second order induction. It amounts to the
domain closure axiom that every situation is obtained from the initial one by
repeatedly apply the function do. 3 As we shall see, induction will play an important
role in this paper. The last two axioms define < inductively.

Notice the similarity between these axioms and the Peano foundational axioms
for number theory. However, unlike Peano arithmetic which has a unique succes-
sor function, we have a class of successor functions here represented by the
function do. In the following, we shall denote by E the set of the above axioms.

3.3. Logic Programs

An atom p is an expression of the form F(tj tn), where F is a fluent of arity
object ~ × situation, and t 1 t, are terms of sort object. Notice that an a tom is
not a formula in the situation calculus. It is an expression obtained from an atomic
situation calculus formula by suppressing its situation argument.

A literal is either an atom, or an expression of the form not p, where p is an
atom. In addition, an equality formula of the form t = t ' is a literal, where t and t '
are terms of sort object. Again, notice that, except for equality literals, literals are
not formulas in the language of the situation calculus.

3For a detailed discussion of the use of induction in the situation calculus, see (Reiter [22]).

SITUATION CALCULUS SEMANTICS 305

A goal G is an expression of the form

l 1 & " '" & 1,

where n >_ 0, and l 1 l n are literals. A clause is an expression of the form

F(x ') :- G,

where F is a fluent symbol, £ is a tuple of distinct variables of length n, n > 0, and
G is a goal. Notice that according to this definition, the head of a clause must not
mention constants and compound terms. This, however, does not restrict the
generality of our notion of clauses. For any terms t 1 t n of sort object , we can
take an expression of the form

F (t 1 , t n) :- G

to be a shorthand for the following clause:

r (~ ') :- Y ' = / ' & G,

where £ = (X l , . . . , x ,) is a tuple of fresh variables not mentioned in G or in i.
Generally, for any vectors i = (t 1 t k) and i ' = 0'1 t~) of terms of the same
length, if i = i ' appears in a goal, then it stands for

t~ = t ' 1 & . . . & t k = t ' k ,

and if i = {' appears in a situation calculus formula, then it stands for

t 1 = t ' 1A --" A t k =t 'k .

Finally, a normal program is a finite set of clauses. In the following, normal
programs will simply be called programs. The definition of a fluent symbol F in a
program P is the set of clauses in P that mention F in their head.

Since we will be interpreting clauses as formulas of the situation calculus, we
need a way to interpret literals in the situation calculus. Given a literal l, and a
situation term st , we define l is t] as follows:

1. I f l is an a tom of the form F (t 1 tn) , then l i s t] is F (t 1 , t , , s t) , i.e., it is
the formula obtained from l by putting st back as its last argument.

2. If 1 is a negated a tom of the form not F (t 1 . . . tn), then l[st] is the formula
- 7 (3 s) F (t 1 tn, S). Notice that in this case, the truth value of the formula

l[st] is independent of the situation st. This is our interpretation of the
negation-as-failure operator "not" in the situation calculus.

3. If l is an equality formula of the form t = t ' , then l[st] is l.

Now if G is a goal of the form l l& . - . &l n, and st a situation term, then we
define G[st] to be the formula

t , [s t] ^ -. . A t . [s t] .

3.4. C l a r k ' s C o m p l e t i o n

Since we shall often refer to Clark's completion [1] in this paper, we briefly review
it here.

3 0 6 F. LIN AND R. REITER

A clause of the form

F (~) :- l l & " ' & l n

stands for the following implication about F:

(3~')(I ' 1 A--. A l'n) DF(~ ') , (3.1)

where ~' is the tuple of variables that appear in some l i, 1 <_ i < n, but are distinct
from variables in ~', and if l is an atom then l ' is l, and if 1 is not p, then l ' is ~ p.

Given a logic program P, if

F(~') :- G 1

F(~') :- G m

is the definition of F, then the Clark completion of F in P is the following
sentence:

F(x')--[(: ly ' l)G' 1A ".-A (3y'rn)G'],
where (3~/)G~, 1 < i < m, is as the left hand side of the implication (3.1). Notice
that if m = 0, i.e., there are no clauses in P about F, then the Clark completion of
F is F(Y')=false.

The Clark completion of a program P is then the set consisting of the following
axioms:

1. For each predicate F in P, the Clark completion of F in P.
2. Unique names axioms for the function symbols appearing in P.

Clark's completion is perhaps the simplest semantics for logic programs. It
replaces rules in a logic program by logical axioms in first-order logic. The main
problem with it is that it is too weak for logic programs with cycles and recursion
(see, for example, [14]).

Our proposed semantics will be very much in the same style as Clark's comple-
tion, but it will also handle cycles and recursion correctly.

4. A SITUATION CALCULUS SEMANTICS FOR LOGIC PROGRAMS

On our intuition about logic programs, clauses are treated as rules, so that the
application of such a rule in the process of obtaining a derivation is like performing
an action. So a clause of the form

r (~) :- C

is like the specification of the effects of an action; if G holds currently, then F(x')
will hold after the action is performed. Taking this intuition seriously, suppose that
we name this clause by the action A(£) in our situation calculus language. Then we
have the following axiom (an effect axiom) describing the effect of A:

Poss(A (~) , s) D (G[s I ~ F (Z, do(A (~) , s)) .

Recall from section 3.1 that we have assumed that actions are always possible:

Poss(a, s) =- true.

S I T U A T I O N C A L C U L U S SEMANTICS 307

Thus the above effect axiom is equivalent to

G[s] DF(Z, do(A(Z),s)).

Let y' be the tuple of variables in G which are not in £'; then we can rewrite the
above axiom as

(3~ ')G[s] A a = A (Z) DF(Z, do(a, s)). (4.1)

Notice the similarity, but not the formal identity, between this transformation and
that leading up to the formation of the Clark completion of a predicate.

Example 4.1. Suppose that gf(x, y) is the action naming the following clause:

grandfather(x,y) :- parent(x,z) & parent(z,y) & not female(x).

Then we have the following effect axiom:

(3z) [parent(x, z, s) A parent(z, y, s)] A ~ (3s') female(x, s') Aa = gf(x, y)

D grandfather(x, y, do(a, s)).

Now suppose that P is a program and F a fluent. Suppose the following are the
corresponding effect axioms of the form (4.1) for the clauses in the definition of F
in P:

(3y*l)Gl[s] Aa =Al(X") DF(~,do(a,s)) ,

Aa F(Z, dof.,

Then, by solving the frame problem for fluent F as described in Section 2.4, we
obtain the following successor state axiom for F:

F (~ , d o (a , s)) =- { (3 ~ l) G l [S] A a = A l (~) v ... v

(3y.)G.[s] Aa = A . (x ') V (4.2)

F(£ ' , s)}

Intuitively, the successor state axiom for F says that the fluent is true in a
successor situation iff either it is true in the current situation, or the action names
one of the clauses in the definition of F and the body of that clause is true in the
current situation. In particular, if the definition of F in the program P is empty,
then (4.2) becomes

F(Z, do(a,s)) =-F(Z,s).

In the following, we call (4.2) the successor state axiom for F with respect to P.
Notice the similarity between this axiom and the Clark completion of F.

We can now define the "meaning" of logic programs in the situation calculus.
We assume that for each clause there is a unique action symbol that names the
clause, and has the same number of arguments as that of the predicate in the head
of the clause.

3 0 8 F. LIN AND R. REITER

Definition 4.1. Let P be a program. The action theory _~ for P is

_~ = E U ~ s U-~u,,,~ u.-~So

where

• E is the set of foundational axioms given in Section 3.2.

• -~s is the set of successor state axioms for the fluents with respect to P.

• "~una is the set consisting of the following unique names axioms:

f (~) ~ g(y ') (4.3)

for every pair f , g of distinct function symbols, and

f(Y') = f (f) Dx~=y * (4.4)

for every function symbol f. Notice that constants are considered to be
0-ary functions. We remark that for the function do, (4.4) is the same as
one of our foundational axioms in E. We also remark that -~una includes
unique names axioms for the actions introduced to name the program
clauses.

• ~s0 is:

{F(Z, S0) =false IF is a fluent}.

In other words, in the initial situation, all fluents are false.

Notice that only the set 2ss of successor state axioms is dependent on the
clauses in P. All other sets in the above definition either are domain independent
or depend only on the vocabulary of P.

Proposition 4.1. Suppose, as in (4.2), that fluent F's successor state axiom has the form

F(Z, do(a , s)) - ch(£,a,s) V F(k~, s) ,

where ck(£, a, s) is any first order formula whose free uariables are among 3, a, s.
Suppose further that F(£, S o) -false. Then the foundational and unique names
axioms for the situation calculus, together with these two sentences entail:

F (~ , s) =- (3a ' , s ') [do (a ' , s ') < s A qS(k',a', s ')] .

PROOF. The proof is by induction. The case s = S O is immediate. So, assume the
results for situation s. We must prove

F(Z, do(a, s)) =- (3 a ' , s')[do(a', s') < do(a, s) A qb(Z, a', s ')] .

Assume F(~, do(a, s)). We must prove

(3a ' , s ') [do (a ' , s ') <_do(a,s) A ~b(k~,a' ,s ')] . (4.5)

By F 's successor state axiom, we have ~b(k ~, a, s) v F(x', s).

S I T U A T I O N C A L C U L U S S E M A N T I C S 309

Case 1. ch(£, a, s). Then take a ' = a and s ' = s in (4.5) and we are done.

Case 2. F(x~,s). By induction hypothesis, we know that for some a and o-,
d o (a , o -) < s and th(x', a ,o-) . So take a ' = c t and s ' = o - in (4.5), leaving us to
prove do(a , o-) < do(a, s); this follows immediately from do(a , o-) < s and the
foundational axioms for the situation calculus.
¢:=

Assume, for some ct and o- that do(a , o-) < d o (a , s) and that th(x', a, o-). We must
prove F(x ~, do(a, s)), or equivalently, by F ' s successor state axiom, that th(U, a, s) v
F(~', s).

Case 1. do(a , o-) = do(a, s). Then by the unique names axiom for situations, a = a
and o- = s, and we are done.

Case 2. do(a , o-) < do(a, s). Then by the foundational axioms, do(a , o-) < s, so by
the induction hypothesis, we have F(x, s).

Corollary 4.1. Let P be a program, and ~ its action theory. Then, for any fluent F,

~ (V Z) (V s , s ') . [F (~ , s) A s <_s'] D F (~ , s ') .

This informs us that if a fluent ever becomes true, it will never again become
false.

Corollary 4.2. Let P be a program, ~r its action theory, and F a fluent. Suppose the
successor state axiom for F in ~ is of the form (4.2). Then ~ entails the following
closed form solution for F:

F(~ , s) = - { (3 s ') (d o (Z l (~) , s ') <_s A (3y q)G , [s ']) V ... V

(3 s ') (d o (A , (~) , s ') < s A (3 ~ ,) G , [s ']) }. (4.6)

Intuitively, this closed form solution (4.6) for F says that F holds in some
situation s iff there is an earlier situation s ' in which an action occurs that causes
F to be true.

Definition 4.2. Let P be a program, and G a goal. A substitution or, not necessarily
ground, is an answer for G iff

(w')(3s)Co-[s],
where Go- is the result of simultaneously substituting for variables in G
according to o-, and £ are all the free variables mentioned in Go-.

Therefore query answering in logic programs literally becomes planning in the
style of (Green [4]) in the situation calculus.

As we can see from this definition of an answer, we are primarily interested in
consequences of the form (3s)G[s]. One nice property about these consequences
of action theories is that they commute over conjunctions:

Proposition 4.2. Let P be a program, and ~ its action theory. For any goals G 1 and
G2, whose free variables together are 3,

 c2)[s] =- (3S)Cl[S] A (3s)C2[s]}.

3 1 0 F. LIN AND R. REITER

PROOF. First, define a function f as follows:

f (s , So) =s,

f (s, do(a, s')) = do(a,f(s, s')).

Intuitively, f(s, s') is that situation reached by performing those actions which took
you from S O to s, followed by those actions which took you from S O to s'. Next, we
prove two lemmas:

Lemma 4.1. For every fluent F,

_~ ~ (VZ, s,s ') .F(Y,s) DF(~,f(s ,s ')) .

PROOF OF LEMMA. The proof is by induction on s' , using the induction axiom in
the foundational axioms of the situation calculus. The case s ' = S O is trivial.
Assume the induction hypothesis for s '; we prove, for each fluent F, that

(V~', s) . F (£ , s) . F (£ , s) D (Va)F(£,f(s, do(a, s'))).

By the definition of f , is equivalent to proving

(V#', s).F(~, s) D (Va)F(~, do(a,f(s, s'))).

By (4.2), F ' s successor state axiom has the form F(Z, do(a, s)) - F(k', s) V ¢(2, a, s).
Using this and the induction hypothesis, the result follows.

Lemma 4.2. For every fluent F,

~ (VZ, s,s ') .F(Z,s) DF(£, f (s ' , s)) .

PROOF OF LEMMA. The proof is by induction on s. As induction hypothesis we take:

('¢s). A [(VZ, s') .F(£,s) DF(~,f(s ' ,s))] ,

where the conjunction is over the finitely many fluents F of our situation calculus
language. When s = So, we must prove: (Vx ~, s').F(x-', So) zF(x-', s'). This follows
from Corollary 4.1. Assume the induction hypothesis for s; we prove, for each
fluent F, that

(V~,a,s').F(Z, do(a,s)) D F(Z, f(s',do(a,s))).

By the definition of f , this is equivalent to proving

(V~,a,s').F(~,do(a,s)) D F(~,do(a, f(s',s))).

By F 's successor state axiom (4.2), F(~, do(a, s)) - F (k ~, s) V ¢(2, a, s), where ¢ is
a disjunction of formulas of the form (3~)G[s] A a =A(Y'). So we must prove

(VZ, a,s') .F(~,s) v ¢ (Z , a , s) DF(£, f (s ' , s)) V ¢(Z,a , f (s ' , s)) .

By the induction hypothesis, this simplifies to proving

(VZ, a,s ') .¢(Z,a,s) DF(~, f (s ' , s)) V ¢(Z,a , f (s ' , s)) .

SITUATION CALCULUS SEMANTICS 311

Now ~b(~, a, s) is a disjunction of formulas of the form (3~')G[s] A a = A(~'), where
G is a goal. Hence, by the induction hypothesis,

(V ~ , a , s ') . t b (~ , a , s) D c b (Z , a , f (s ' , s)) .

This completes the proof of the lemma.
Now, to prove the proposition, notice first that by the properties of first order

logic, the following is valid:

(V f) { (3 s) (G a & G 2) [s] D (3S)Gl[S] A (3s)Gz[s]} .

To prove that

m (V~){ (3s)Gl [s] A (3 s)C2[s] ~ (3 s) (C l e , G2)[s] },

it is sufficient, with no loss of generality, to show that for any two fluents F and F ' ,

. ~m (Vf, ~ '){(: ls)r(k~,s) A (3 s) F ' (f , s) m (3s) [F (Y ' , s) A F ' (~ , s)] }.

To prove this, assume (3s)F(.~, s) and (3s)F'(17, s) for vectors X and Y of Skolem
constants. Then for constants tr and tr ', we have F()(, (r) and F ' (] 7, tr '). We must
prove

(3 s) [F (. ~ , s) A F'(IT, s)] . (4.7)

By Lemma 1, we have F (X , f (o ' , o")). By Lemma 2, we have F ' (Y , f (t r , o" ')). By
taking s = f (t r , tr ') we have proved (4.7).

By Corollary 4.2 and Proposition 4.2, we see that for every program P, the
action theory for P entails the Clark completion of P with every atom F(/ ')
replaced by (3s)F(i , s):

Theorem 4.1. Let P be a program, B¢ its action theory, and F a fluent. Suppose the
successor state axiom for F in ~ is (4.2), and G i is l n &. . . & lik' for 1 < i < n.
Then ~ entails the Clark completion for F:

(as)F(f,s) -= ((3~1){(3s)/n[s] A ... A (3s)llk,[s]} V ... V

,x . . . / , (3s)Znds]}).

Example 4.2. Consider the logic program P1 with the single rule

F :- not F

By Theorem 4.1, Pl's action theory entails

(3 s) F (s) =- -1 (3 s) F (s),

an inconsistent sentence. Thus the basic action theory for P1 is inconsistent.
Consider the logic program P2 with the following two rules:

F :- not Q

Q:- not F.

Theorem 4.1 yields the following entailment of P2's action theory:

(3 s) F (s) - ~ (3 s) Q (s).

312 F. LIN AND R. REITER

Thus we can distinguish two classes of models of the action theory f o r / ' 2 , one in
which ~ (3s)Q(s) holds so the first rule is applicable b u t not the second, and the
other in which ~(3s)F(s) holds so the second rule is applicable, but not the first.

Now consider the following logic program: 4

F :- not Q

Q :- not F.

R:- F

R:- Q.

We prove that R is an answer to this program, which is to say, that (3s)R(s) is an
entailment of our situation calculus semantics. By Theorem 4.1, this program's
action theory entails the following Clark completion:

(3 s) F (s) - ~ (3 s ') Q(s ') ,

(3 s) Q (s) = -~ (3 s ') F (s ') ,

(3 s) R (s) =- (3 s) F (s) V (3 s) Q (s) .

These first order sentences entail (3s)R(s), so that R is an answer to this program.
When there is recursion, our action theory may be stronger than Clark's

completion, as the following example shows.

Example 4.3. Consider the definite program PI with the following clauses:

ancestor(x, y) :- parent(x, y)

ancestor(x, y):- ancestor(x, z) ~ ancestor(z, y)

parent(x, y) :- x=John & y=Joe

parent(x, y) :- x=Joe & y=Bill

parent(x, y) :- x=Joe & y-Susan.

Let Al(X, y), A2(x , y), Bl(X , y), B2(x , y), B3(x , y), be the actions naming these five
clauses, respectively. For the fluent ancestor, we have the following two effect
axioms:

parent(x, y, s) A a = A 1(x, y) D ancestor(x, y, do(a, s)) ,

(3 z) [ancestor(x , z , s) A ancestor(z, y , s)] A a = A z (x, y) D

ancestor(x, y, do(a, s)).

Thus we have the following successor state axiom for ancestor:

ancestor(x, y, do(a, s))

=-{a = A l (x , y) A p a r e n t (x , y , s) V

a = A 2 (x , y) A (3z) .ancestor(x , z, s) A ancestor(z ,y ,s)

V ancestor(x, y ,s) }.

4Thanks to Vladimir Lifschitz for suggesting this example.

S I T U A T I O N C A L C U L U S S E M A N T I C S 313

Similarly, we obtain the following successor state axiom for parent:

parent(x , y , d o (a , s)) - {x = J o h n A y =Joe A a = Bl(x , y) v

x = Joe A y = Bill A a = B2(x , y) v

x = Joe A y = Susan A a = B3(x, y) v

p a r e n t (x , y , s)}.

Let -~1 be the action theory for P1- By Theorem 4.1, we have:

~1 ~ (V x , y) { (3 s) p a r e n t (x , y , s) =-- [(x = J o h n A y = J o e) V

(x =Joe A y =Bi l l) v

(x =Joe A y = Susan)]}.
For ancestor, Theorem 4.1 yields

~1 ~ (V x , y) { (3 s) a n c e s t o r (x , y , s) = [(3 s) p a r e n t (x , y , s) v

(3z) . (3 s)ances tor (x , z , s) A

(3 s)ances to r (z , y , s)]}.

This is too weak to give a solution for ancestor (because of the recursion).
However, by the successor state axioms in ~1, using induction on situations
(Section 2.2), we can show that

~1 ~ (V x , y) { (3 s) ancestor (x , y , s)

-= [(x = J o h n A = J o e) V

(x =Joe A y =Bi l l) v (x =Joe A y = Susan) v

(x = John A y = Bill) v (x = John A y = Susan)] }.

This shows that our semantics is strictly stronger than Clark's completion.
Now consider the program P2 which is P1 together with the following clauses:

childless(x) :- not haschild(x)

haschild(x) :- parent(x, y)

Let C (x) and D (x) be the corresponding two actions. The successor state axioms
for parent and ancestor with respect to P2 are the same as those with respect to
P r The successor state axioms for childless and haschild are:

childless(x , do(a, s)) =-[a = C (x) A ~ (3 s ') haschild(x , s ') v

childless(x , s)],

haschild(x , do(a, s)) =- [a = D (x) A (3 y) parent(x , y , s) V

haschild(x , s)] .

Let ~2 be the action theory for P2. By Theorem 4.1, we have

:~2 ~ (Vx).(3s)childless(x, s) =- -, (3 s) haschild(x , s)

=- ~ (3 s) (3 y) p a r e n t (x , y , s)

= ~ (x =John V x = J o e) .

3 1 4 F. LIN AND R. REITER

In the next section, we shall show that our action theory semantics for logic
programs is closely related to a recent semantics proposed by Wallace [31], and is
essentially the same as the stable model semantics [3] when we consider only
Herbrand models.

5. WALLACE'S SEMANTICS

Wallace's basic idea [31] can be summarized as follows: Given a logic program P,
first obtain from P another program P ' , then consider the semantics of P to be
the Clark completion of P ' . Wallace proposes several ways for obtaining the new
program P ' from P. We shall consider the one that is most closely related to our
semantics, and that will in turn relate our semantics to the stable model semantics
of [31.

The following definition is adapted from [31]. Let P be a logic program. The
tightened program P ' of P contains precisely the following clauses:

1. For each clause

F (k ~) :- l l & - . . & l n

in P, P' contains the clause

F (Z , s (n)) :- l' l & . . . & l ' k

where s(n) denotes the successor of the natural number n, and if I i = G(7) is
an atom, then l I is G(i, n); if I i is a negative atom, then 1~ = l i.

2. For each predicate F(k ~) in P, P ' contains the clause:

F(~) :- F(Z,n).

For example, consider the following program adapted from [31]:

F (x) :- Q (x) & n o t R(x)

Q(a) :-

R (x) :- R (x) .

The tightened version of this program is:

F (x , s (n)) :- Q (x , n) & n o t R (x)

Q (a , s (n)) :-

R (x , s (n)) :- R (x , n)

F (x) :- F (x , n)

Q(x) :- Q(x ,n)

R (x) :- R (x , n) .

Notice that the Clark completion of the tightened program yields, for example, the
following completion axiom for F(x) :

(Vx)(F(x) - (::ln)F(x ,n)),

and the following completion axiom for F(x, n):

(Vx, n) (F (x , n) = (3 n ') (n = s (n ') A Q (x , n ')) A -1R(x)) .

S I T U A T I O N C A L C U L U S S E M A N T I C S 315

Notice the similarity between this axiom and our successor state axiom for the
fluent F, in particular, when R(x) in the above axiom is replaced by (3n')R(x, n')
according to the completion of R(x). The differences are that instead of situations,
Wallace uses natural numbers, and instead of actions and the function do, Wallace
uses the successor function.

We assume that 0 is a constant symbol denoting the number zero. So the
Herbrand models of the Clark completion of tightened programs contains precisely
the following terms about numbers:

0,s(0),s(s(0))

Theorem 5.1. Let P be a logic program, ~ its action theory, and ~ the Clark
completion of the tightened version of P. Then,

1. I f M is a Herbrand model of ~ , then there is a Herbrand model M' of 2 such
that for any predicate F in P, and any tuple of Herbrand terms i,

M ~ (3 n) F (i , n) ¢~ M' ~ (3 s) F (i , s) .

2. I f M is a Herbrand model of ~ , then there is a Herbrand model M' of ~ such
that for any predicate F in P, and any tuple of Herbrand terms i,

M ~ (3 s) F (i , s) ¢~ M' ~ (3 n) F (r , n) .

PROOF. First, notice that the Herbrand domain for situations is

{So, do(So), do(So) do(do(So)), do(%, do(So)) } .

So any Herbrand interpretation will satisfy the foundational axioms ~ of the
situation calculus (Section 3.2).

Let M be a Herbrand model of ~ . Construct a Herbrand interpretation M'
with respect to ~ as follows. For any fluent F, let

1. M' ~ (V2') -~ F(2', So).
2. Inductively, for any situation term do(a,S), and any tuple of Herbrand terms

i, if a does not name any clause with F as its head in P, then

M' ~ F(i , do(a , S)) ¢~ M' ~ F (i , S) ,

and if a names a clause with F as its head, say

F (1) :- F l (t ~) & n o t Fz(t2)

in P, then M' ~ F(i, do(a, S)) iff for some tuple ~' of Herbrand terms of the
same length as f , the tuple of variables in the above clause, but not in 3,
M ' ~ F1(~, S)(2', i / i , Y) and M ~ ~ (3 n) F 2 (~ , n)(2', f / i , if), where
FI(~ 1, S)(£, y / i , if) is obtained from F~(~, S) by replacing xi in 2 '= (x, x ,)
by the corresponding term t~ in i, and y~ in] by the corresponding term in
Y. Similarly for F2(i2, n)(2', f / i , ~').

It remains to show that

1. M' is a model of .~.
2. For any fluent F, and any tuples of Herbrands terms i,

M ~ (3 n) F (i , n) ¢~ M' ~ (3 s) F (i , s) .

316 F. L I N A N D R. R E I T E R

Notice that by our construction of M' , (1) follows straightforwardly from (2). To
prove the "=* " part of (2), suppose that for some natural number N, M ~ F(i , N).
We show by induction on N that there is a situation S such that M ' ~ F(i , S). The
case for N = 0 is vacuous because M ~ ~ F(i , 0). Inductively, suppose this is true
for any predicate F ' , and any N < K. Suppose now M ~ F(t], K). Then since M is a
model of the Clark completion of the tightened version of P, there must be a
clause with F as its head, say

F(Y') :- F l (t l) & n o t Fz(t2)

in P such that for some tuple ff of Herbrand terms of the same length as y', the
tuple of variables in the above clause, but different from those in ~',

M ~ F 1 (~ , K - 1)(x', f/t~,ff) A ~ (~ n) F 2 (t ' 2 , n) (f , y/t~,ff).

By the inductive assumption, there is a situation S 1 such that M ' ~
Fl(~, $1)(£', f / i , if). Now let A (f) be the action naming the above clause for F. By
the construction of M' , we have that M' ~ F(i, do(A(i) , $1)). This completes the
inductive step, thus the " ~ " part of (2). The " = " part of (2) can be proved
similarly by doing induction on situations.

This completes the proof for the first half of the theorem. The proof of the
second half is similar.

From this theorem and Theorem 8 in [31] that relates Wallace's semantics to the
stable model semantics, we have:

Corollary 5.1. Let P be a program, and ~ its action theory. A set ~ of ground atoms
is a stable model of P iff there is a Herbrand model M o l D such that for any ground
atom F(t), F(t) ~ 5 p iff m ~ (3s)F(i , s).

For any logic program P, Wallace also defines the full completion of P to be the
Clark completion of the tightened version of P together with appropriate induc-
tion axioms for natural numbers, and shows that for any ground atom p, p is
entailed by the full completion iff it is in the success set of the tight tree semantics
of P as defined in (van Gelder [28]), and ~ p is entailed by the full completion iff
p is in the finite failure set of P. Since our foundational axioms in ~ already include
an induction axiom, this result carries over to our semantics as well.

Wallace [31] also relates his semantics to some other well-known ones such as
(Fitting [2], Kunen [6], Przymusinski [20], and van Gelder and Ross and Schlipf
[29]). Many of the results there can be inherited here. Wallace also argues the
advantages of having a semantics in first-order logic. The same arguments apply to
our semantics as well.

Admittedly, compared to Wallace's elegant approach, ours seems complicated.
However, there are some important reasons for appealing to actions and their
axiomatization within the situation calculus.

1. Appealing to theories of actions as they are normally understood in artificial
intelligence reveals the connection between the classical frame problem and
the semantics for negation-as-failure.

2. By treating rule applications as first-order objects, we can formally reason
about them within the situation calculus. This becomes important when we
come to formalize search control operators in logic programming. Because

SITUATION CALCULUS SEMANTICS 317

actions and situations are first order terms, and because a situation denotes
the sequence of actions (history) that have occurred thus far, a situation in
our logic programming semantics is a record of all the derivations that have
been performed thus far, in the order in which they have been performed. To
date, most formal analyses of logic programming have ignored their "dirty
aspects" like the cut operator. In essence, these operators place certain
constraints on reachable situations, i.e., on the permitted derivation histories.
These conditions are normally rather complicated and require the ability to
talk formally about derivation histories, which our situation calculus-based
semantics does provide. We shall say more about this issue in Section 7
below.

Technically, this paper also goes beyond that of (Wallace [31]) in defining an
equivalence relation on logic programs, and proving conditions for two logic
programs to be equivalent. This is the goal of the next section.

6. PROGRAM TRANSFORMATIONS

One reason for a formal semantics of a programming language is to study sound
program transformation techniques. To this end, we first need a notion of equiva-
lence between two logic programs.

6.1. An Equivalence Relation

Let P and P ' be two programs, and _~ and -~ ' their respective action theories.
Normally _~ and .~ ' will not be compatible. For example, any action in P but not
in P ' will have no effect according to .~ ' . Given our definition of answers to
queries, it is not natural then to say that P and P ' are equivalent iff they give the
same answer to every query, i.e., for any goal G, _~ ~ (3s)G[s] iff .~ ' ~ (3s)G[s].
However, this definition does not seem to be fine-grained enough. For example, the
following program

F :- not Q

Q :- not F

R:- F

gives the same answer to every query as the following one:

F :- not Q

Q:- not F.

R:- Q.

But intuitively, we don't want them to be equivalent because there is a model of
the action theory of the first program in which

-~(3s)O(s) A (3s)F(s) A (3s)R(s)

holds, but there is no model of the action theory of the second program that
satisfies this sentence, s This suggests that we should define program equivalence
model -theoretically.

5Notice that the set of stable models for the first program is {{F,R}, {Q}}, but for the second
program it is {{Q, R}, {F}}. So these two programs are not equivalent in terms of their stable model
semantics. Later we shall show that in the propositional case, our notion of equivalence coincides with
that under the stable model semantics.

318 F. LIN AND R. REITER

Let P be a logic program, _~ its action theory. We call a theory T an answer
theory of P iff for every structure M, M is a model of T iff there is a model M' of

such that M and M' agree on (3s)G[s], for any goal G. In the following, we
write this agreement relation as M ~ M' . Formally, M ~ M' iff

1. M and M' have the same domain for sort object. Recall that this is the sort
for entities other than actions and situations.

2. For any goal G, and any variable assignment cr,6

M, (3s)C[s] iff M', (3s)C[s].

It is clear that if both T and T ' are answer theories of P, then T and T ' are
logically equivalent. So if T is an answer theory of P, then we can say that T is the
answer theory.

Notice that by Proposition 4.2, condition 2 holds for arbitrary (3s)G[s] iff it
holds for any (3s)F(£, s), where F is a fluent:

Proposition 6.1. M ~ M' iff

1. M and M' have the same domain for sort object.
2. For any fluent F, and any variable assignment or,

M, cr~ (3s)F(~,s) iff M', o'~ (3s)F(~,s) .

It turns out that the answer theory of P can be considered to be the result of
remembering only (3s)F(Z, s), for every fluent F in ~ (Lin and Reiter [12]).
Moreover, according to the results in (Lin and Reiter [12]), the answer theory of P
always exists, and can be expressed as a finite second-order theory, but that in
general, no first-order answer theory need exist.

We now have the following definition: 7

Definition 6.1. Two logic programs P and P ' are equivalent iff their answer
theories are logically equivalent.

Example 6.1. Consider again the two programs given earlier in this section. The
answer theories for these two programs happen to be their respective Clark
completions. The first answer theory is

(3 s) F (s) = ~ (3 s) Q (s) A

(3s)R(s) =- (3s)F(s).

The second answer theory is

(3 s)F (s) = ~ (3 s) Q (s) A

(3s)R(s) =- (3s)O(s).

These two theories are not equivalent.

6M, o'~ (3s)G[s] means that the formula (3s)G[s] is true under the variable assignment cr in M.
7We remark here that eqivalence between two programs under Wallace's semantics [31] can be

similarly defined.

S I T U A T I O N C A L C U L U S S E M A N T I C S 319

According to Corollary 5.1 that relates our semantics to the stable model
semantics, we see, by virtue of Proposition 6.1, that a stable model of a logic
program P is a Herbrand model (In the sense of Corollary 5.1) of its answer
theory. In particular, in the propositional case, the answer theory of a logic
program is simply the disjunction of its stable model; and two programs P and P '
are equivalent iff their stable models are the same:

Proposition 6.2. Let P and P' be two propositional logic programs.

1. A theory T is the answer theory of P iff the set of models of T equals the set of
stable models of P.

2. P and P' are equivalent iff the set of stable models of P equals the set of stable
models of P'.

The following proposition is straightforward:

Proposition 6.3. Let P and P' be two logic programs, and ~ and ~ ' their respective
action theories. The answer theory of P entails that of P' iff for any model M of ~ ,
there is a model of M' of ~ ' such that M ~ M'.

6.2. Equivalence o f Definite Logic Programs

A logic program is definite if it does not mention any negative atoms in any of its
clauses. The conditions for two definite programs to be equivalent are just as one
would expect: P and P ' are equivalent iff P entails each clause in P' and vice
versa. In our language, we have:

Theorem 6.1. Let P and P' be two definite logic programs, and ~ and ~ ' their action
theories. P and P' are equivalent if and only if the following two conditions hold:

1. For every clause F(~) :- G in P',

s)C[s] = s) (6.1)

where y is the tuple of those variables in G but not in ~.
2. Symmetrically, for every clause F(~) :- G in P,

_~' ~ (V~') . (3y, s)G[s] D (3 s) F (~, s) . (6.2)

PROOF. The "only if" follows directly from the definition. We show the "if" part.
Given any definite logic program P1, and any model M of E W~un a, there is a

"unique" way of transforming M into a model of the action theory of P r Briefly,
this is done as follows. Let M' agree with M on everything except possibly on their
interpretations of fluents. (So in particular, M and M' share the same domain for
every sort.) Then M ' is also a model of ~ m~un a.

For any fluent F(~', s) let M ' ~ (Vx)~ F(Y', So). Inductively, if the successor
state axiom for F w.r.t. P1 is:

(vz, a, s)F(Z, do(a, s)) =- $ (a, s),

3 2 0 F. LIN AND R. REITER

then let

M' ~ (VZ, a,s)F(~,do(a, s)) = ¢ (a , Z , s) .

This is well-defined, because P1 is a definite program, so ~ (a , 2',s) can be
evaluated using the truth values of fluents in the situation s. In particular, it does
not contain formulas like (Vs')F(s'). Now it follows directly from the construction
that M' is a model of the action theory for P1.

Now we show the "if" part using Proposition 6.3. Suppose M is a model of .~.
Let M' be the model of _~' constructed from M as above. We show M ~ M ' , i.e.,
by Proposition 6.1, for any fluent F and any variable assignment o-,

M,o '~(3s)F(Z , s) iff M' ,cr~(3s)F(Z ,s) .

Suppose

M,o'~F(~,s) .

We show by induction on s that M', ~ ~ (3s)F(Z, s).
The case for s = S O is trivial. Inductively, suppose that for any fluent, this is true

for s*. We show that for any action a, this is true for do(a, s*) as well. Since M is
a model of .~, by the form of successor state axioms, there are two cases:

1. M,~r~F(~,s*).
2. a names one of the clauses in the definition of F in P, say

F (d) : - F I (i a) & F 2 (F 2)

and

M, o '~ (::ly').Fl(~, s*) A F2(r2, s*),

where ~' is the tuple of variables mentioned in ~ or ~ , but not in 2'.

In the first case, the result follows from our inductive assumption. Suppose it is the
latter case. By the inductive assumption, we have

M', o'~ (3~)[(:Is')FI(~,s') A (3s')Fz(['z,S')].

But M' is a model of .~ ' . So, by the assumption (6.2), instantiated to the above
clause in P, we have:

M',o '~ (3~)[(=Is')F,(~,s ') A (=Is')Fz(t2,s')] D(3s')F(e,s).

Therefore

M',cr~ (3s)F(Z,s).

This proves the inductive step. Therefore whenever M, cr~ (3s)F(x' , s), we have
M' , o- ~ (3s)F(2' , s). The converse can be proved similarly. Thus M ~ M' .

Symmetrically, if M ~ .~ ' , then there is a model M' of .~ such that M ~ M' .
This proves that P and P ' are equivalent.
In principle, checking conditions (6.1) and (5.2) requires induction. However,

there are some sufficient ways to do this that may be useful in practice. To
illustrate the ideas, suppose the program P ' contains the following clause:

F(x) :- x = f (y) & F ' (x , g , (y))

SITUATION CALCULUS SEMANTICS 321

and we want to verify (6.1) for it. Let a be a fresh constant symbol not already
mentioned in P and P ' . Then one way to do this is to first add F'(f(a), g(a)) to P,
and then query the new program with F(f(a)). If the query succeeds, then the
condition holds. However, if the query fails, this does not mean that the condition
is false. For instance, this condition holds trivially when P is the empty program
but G in (6.1) has at least one atom, because when P is empty, its action theory
entails ~(3s)F(s) for any fluent F. This strategy was first used by Sagiv [23] for
proving the equivalence of two deductive databases.

Yet another way to prove condition (6.1) say, is to query the program P with the
goal G, and then query P again with the goal F(2) for those bindings returned by
the first query. If the goal F(Y') succeeds for all these bindings, then condition (6.1)
holds. The problem with this strategy is that it may not work when there are
infinitely many bindings for the first query.

Finally, we remark that if condition (6.1) holds, then 2 ' m (3s)F(i , s) implies
~.~ ~ (3s)F({,, s), i.e., the set of ground atoms provable from P ' is a subset of that
from P. However, this does not mean that the answer theory of P will entail that
of P ' . For the latter to be true, the set of negative ground atoms provable from P '
would have to be a subset of that from P as well. In fact, if the answer theory of a
positive program entails that of another positive program, then these two positive
programs must be equivalent. This is because for any positive program P, the
models of the answer theory _~ of P must be unique in the sense that if two
models of _~ share the same domains, then they must be the same. That in turn is
because of the closed world assumption made in logic programs.

6.3. Normal Logic Programs

Unfortunately, Theorem 6.1 fails for logic programs with negation: Suppose the
program P consists of the following single clause:

F : -

and the program P ' consists of the following single clause:

F :- not F.

Clearly, P and P ' are not equivalent. But condition (6.1), which in this case is

~ -~(3s)F(s) D(3s)F(s) ,

holds since _~ ~ (3s)F(s), and condition (6.2) holds trivially because _~' in this
case is an inconsistent theory.

Intuitively, the reason Theorem 6.1 works for definite programs is that if F(s) is
provable from a definition program, then there must be a situation s ' such that s '
is earlier than s (s ' < s), and a goal G such that G[s'] is provable and does not
quantify over situations, i.e. G[s'] is a statement whose truth value can be
determined by looking at the situation s ' alone. This will ensure that there are no
cycles, and thus induction on situation will work. This property is lost on normal
logic programs because if G mentions negation, then G[s] will quantify over
situations, and its truth value will depend on the entire space of situations. To
overcome this, the trick is then to introduce some new situation independent
predicates, and replace formulas of the form (3s')F(s') in G[s] by atoms made of
such new predicates. This will make the resulting formula "look" like a statement

3 2 2 F. LIN AND R. REITER

whose truth value depends only on the situation s. This is exactly the intuition
behind the following definitions which will be used to formulate some sufficient
conditions for two normal logic programs to be equivalent.

Suppose P is a logic program. For any predicate F(#') in P, suppose if(k) is a
new predicate symbol with the same arity as F. We define the loosened action
theory ~ of P to be that obtained from P's action theory _~ by replacing in .~'s
successor state axioms every subformula of the form (: ls ')F(~ s') by F(i) , for every
fluent F. For example, if the successor state axiom for F is

F(~, do(a , s)) -- (3y) [a = A(~') A F l (i 1, s) A ~(3s ')Fa(iz ,S ')] v F(3 , s),

then the new axiom, called the loosened successor state axiom of F, is

F (~ , d o (a , s)) - - (3 ~) [a =A(~') A Fa(~, s) A -~/~2(~2)] V F (~ , s) .

Loosened action theories are like action theories for definite logic programs.
The propositions and theorems in Section 4 can be extended to them as well. For
instance, corresponding to Theorem 4.1, we have: If (Vff').(3s)F(~', s) - dp(~') is the
Clark completion of the fluent F in the program P, then

_~ ~ (V£) . (3s)F(# ' , s) -- ~ ' (£) , (6.3)

where ~ is the loosened action theory of P, and ~ ' is the result of replacing in
every subformula of the form ~ (3 s) F ' (i , s) by ff ' (i) , for every fluent F'.

In the following, we call a formula ~(£ , s) a simple state formula if:

1. Its free variables are among £, s.
2. It does not mention the initial situation S O .
3. It does not quantify over situations.
4. It does not mention do, Poss, or < .

Informally, ~(#', s) is a simple state formula when its truth value can be deter-
mined by the truth values of fluents in the situation s, and the truth values of
situation independent predicates like ff and equality.

In the following, we let 3- be:

~gr= { (V£)[(3s)F(£ ,s) - l~(Z)] l f is a fluent}. (6.4)

Theorem 6.2. Let P1 and P2 be two logic programs and let ~.7.~ 1 and ~-~2 be their
respective action theories. In addition, let ~2 be the loosened action theory of P2.
Finally, suppose

1. For every clause F(£) :- G in P2,

~1 ~ (VZ).(7~Y,s)G[S] ~ (3s)F(£ , s) , (6.5)

where ~" is the tuple of variables mentioned in G but not in £.
2. For every fluent F(£, s), there is a simple state formula We(SO, s) such that:

(a) In this formula, every fluent appears positively;

(b) ~1 UJr~(V£) 'F(£, s) D(3s')(s' < s A XtrF(X', S')); (6.6)

(c) --~2 ~ (V~') .~(£) ~ (3s)F(£, s), (6.7)

where ~ (~) is the result of replacing every atomic formula of the form
F'(~, s) in ~F(~', S) by (3s)F '(~, s), for every fluent F'.

SITUATION CALCULUS SEMANTICS 323

Then the answer theory of P1 entails that of P2-

Let us briefly comment on the theorem before proving it. Condition (6.6) means
that if F(s) holds, then there must be a situation s' earlier than s such that qtF(S')
holds. Since ~F is a simple state formula, its truth value depends only on s ' , so
induction on situations will go through. Compared to Theorem 6.1, xtt F is like G.
But since F :- G is a clause in P, condition (6.6) always holds for positive logic
programs. Now condition (6.7) is like condition (6.2) in Theorem 6.1, with . ~ '
replaced by -~2, and G by ~ .

PROOF. We need to show that for any model M 1 of .t~l, there is a model M 2 of 2 2
such that M 1 ~ M 2.

Suppose that M~ is a model of -~1- Since for any fluent F, F does not appear in
.~1, we can assume that M 1 satisfies J as well.

Construct a first-order structure M 2 as follows:

1. It shares with M 1 the domain for every sort.
2. Except possibly on fluents, it shares with M 1 the interpretation of all function

and predicate symbols. In particular, they agree on the new predicates.
3. For every fluent F, M 2 ~ (VY') ~ F(x', So), and inductively, if

F(~, do(a, s)) =- dPF(~, a, s),

is the loosened successor state axiom of F f o r / 2 , then let

M 2 ~ (VY', a, s) [F(£,do(a,s)) =- *F(~,a,s)].

Again (cf. the proof of Theorem 6.1), this is well defined because ~F is a
simple state formula.

Clearly, M 2 is a model o f ~2 , the loosened action theory of P2"
We now show M 1 ~ M2, i.e., for any fluent F, and any variable assignment tr,

M l , o ~ (3s)F(£ , s) iff M2,o-~ (3s)F(~,s) .

Suppose

M2,tr~ F(~,s).

We show by induction on s that M 1, o" ~ (3s)F(~, s).
The case for s = S O is trivial. Inductively, suppose that for any fluent, this is true

for s*. We show that for any action a , this is true for do(a, s*) as well. By the
construction of M 2, and the form of successor state axioms, there are two cases:

1. M2, o-~F(~,s*).
2. a names one of the clauses in the definition of F in P ' , say

F (x ~) :- F I (~) & n O t F E (t 2)

324 F. L IN A N D R. R E I T E R

and

M2,0"~ (3y).F1(~,s*) A ~/~2(Q) ,

where f is the tuple of variables in i a or i 2, but not in x'.

In the first case, the result follows from our inductive assumption. So consider the
latter case. By the inductive assumption, we have

M,, 0g)[(3s')F,(r,s')A

But M 1 is a model of the set Y(6.4) , thus

- , , A

But the assumption (6.5), when instantiated to the above clause, yields:

(3,')F(e,s').

So we have

M1, o- ~ (3 s) F (2 ~, s) .

This proves the inductive step. Therefore whenever M 2, o-~ (3s)F(£ , s), we have
M1, o- ~ (3s)F(2' , s).

Now suppose M 1, o- ~ F(2', s). We show that M2, o- ~ (3s)F(£ , s). Again, we do
induction on s. The case S O is vacuous because the assumption is false. Inductively,
assume that the result holds for any fluent, for any situation s < s*. We show that
it is true for s* as well. Suppose M~, cr ~ F(2', s*). Since M 1 is a model of 2~ and
the set (6.4), by the assumption (6.6), we have

MI, o ' ~ (3s)(s < s * A * F (Z , S)).

NOW by the inductive assumption, the fact that M~ and M 2 agree on everything
else except possibly on fluents, and the assumption that every fluent appears
positively in ~F, we have that

M2, o- ~ ~tt~(Z)

where ~ (~) is as in (6.7). Therefore, by the assumption (6.7), we have

This completes the inductive proof. So we have proved that M 1 ~ M 2. Using this,
the fact that M~ i s a model of the set ~,, and the fact that M 1 and M 2 agree on all
new predicates F, we conclude that M 2 is a model of 9 r (6.4) as well. Thus, by the
definition of the loosened action theory, M 2 is a model of -~z. This concludes the
proof of the theorem.

To use Theorem 6.2, one needs to select the appropriate formula ~F, for every
fluent F. The following are some candidates.

Let

(3 s) F (2 ' , s) - ¢P(x')

be the Clark completion of F (see Theorem 4.1) in /2 .

SITUATION CALCULUS SEMANTICS 325

• Let PF(~', S) be the result of replacing in qb every positive subformula of the
form (3s)F'({,, s) by F'({, s), and every negative subformula of the form
(3s)F ' (i , s) by/6,(i) . Then qr v satisfies the required syntactic conditions: it is
a simple state formula, and every fluent in it appears positively. By (6.3), it
also satisfied the condition (6.7). So condition (6.6) is the only one left to be
checked.

• If @ has a positive occurrence of (3s)Fl(i, s), and

(3 s) F , (x ; s) -

is the Clark completion of F 1, then first let ~ ' be the result of replacing in qb
this positive occurrence of (3S)Fl(~ s) by qbl(i), and let Pe(2') be obtained
from @' the same way as it is obtained from qb above. Then q~e again is a
simple state formula, every fluent in it appears positively, and satisfies
condition (6.7).

• The above procedure of obtaining PF can be iterated. Notice that this
procedure is closely related to unfolding (see below), and also regression [30,
18, 21] in planning.

For example, given the following Clark completion for F:

(3 s) F (s) - { (3 x , s)F~(x,s) v [(3s)F2(s) A ~(3s)F3(s)] }

we obtain the following possible xIre:

(71X)Fl(X,S) V [F2(s) A ~P3]

Now suppose

(3s)F,(x , s) - (3 s) F 4 (x , s) V (3y) ((3s)F2(s) A -~(3s')Fs(x, y , s '))

is the Clark completion of F 1. First eliminate (3s)F~(x, s) in the Clark completion
of F:

(3s)F(s) =- { (3 x) [(gs)F4(x , s) V (3y) ((3s)F2(s) A ~ (3s ')Fs (x, y , s '))] V

(3s)r2(s) A ~(3s)F3(s)}

From this, we get another possible Xtrr:

(3x)[F4(x , s) V (3y) (Fz (s) A -~ F s (x , y))] V [Fz(s) A mF3],

which is logically equivalent to

(3x)tr4(x,s) Are(s)] v (3x , y) [F4(x , s) A -~ e s (x , y)] V [Fz(s) A ~/~3].

We further illustrate the use of the theorem by proving the following simple
equivalence:

Proposition 6.4. Let P, be a program, F~ an atom, and G a goal. Let Pz be the union
of PI with the clause:

F 1 :- F~ & G

Then P~ and Pz are equivalent.

326 F. LIN AND R. REITER

PROOF. Suppose the Clark completion for F 1 in P1 is

(::Is)FI(S) -- dp

and P r (s) is a simple state formula obtained from @ as outlined above. Then the
Clark completion for F 1 in P2 is of the form:

(~] s) F I (S) ~ [(3 s) f , (s) A q)] V (ID (6.8)

We show that the answer theory of P2 entails that of P1. The converse is easier,
and can be similarly proved.

Condition (6.5). Trivial, since every clause in P1 is also a clause in /)2.

Conditions (6. 7) and (6. 6). For each fluent F, we use the Clark completion of F in
P1 to generate the formula Pe as outlined above. As we mentioned, in this case,
only Condition (6.6) needs to be proved. There are two cases. If F is different
from F1, then the Clark completion of F in both P1 and /)2 is the same.
Suppose it is (Bs)F(s) =- @F" By Corollary 4.2, we have

~2 ~ (Vs) .F (s) D (3s ') (s ' < s A @'F(S)),

where ~2 is the action theory of P2, and @~ is the result of replacing in @F
every positive subformula of the form (3s)F'(i , s) by F'(i,s). Now by the
construction of PF, we have

2.~2 t) ~ " ~ (V s) . F (s) D (3S ') (S ' • S A ~F(S)),

which is the condition (6.6).
For F1, we need to check:

~2 u J r ~ (Vs) .Fl(S) D (3 s ') (s ' < s / x PF,(S)). (6.9)

Using Corollary 4.2 for P2, and the Clark completion (6.8) of F 1 in P2, we
have

-~2 U~rl= (Vs) .F , (s)D (=Is') {s' <s A [(F,(s ') A G t s ']) v PF,(S')] }.
(6.10)

Now assume that -~2 U~rand Fl(S)- Since -7 FI(S0), by our foundational axioms
for the situation calculus, there is a situation of the form do(a, s') <_ s such that

F,(do(a,s')) A (Vs*)(s* < s' ::::9 m FI(S*)).

By (6.10), this means that PF(S') must hold. So we have (6.9).

6. 4. Unfold ~ F o l d

Unfold/ fo ld (Tamaki and Sato [27]) are among the best known program transfor-
mation operators. Seki [25] shows that they preserve the well-founded semantics of
(Van Gelder and Ross and Schlipf [29]). Using Theorem 6.2, we can show, rather
straightforwardly, that unfold/fold also preserve our situation calculus semantics.
We illustrate using unfolding. For ease of presentation, we consider only the
propositional case. The following definition is adapted from (Seki [25]).

S I T U A T I O N C A L C U L U S S E M A N T I C S 327

Let P be a logic program, and C a clause in P of the form:

F 1 :- F 2 & G ,

where F 1 and F z are distinct atoms. Suppose that

F2:- G1

F2:- G~

are all of the clauses in the definition of F 2 in P. Let C i, 1 < i <_ k, be the result of
replacing F 2 in C by G r Then the program P ' = (P - {C}) U {C 1 C k} is called
an unfolding of P. The clause C is called the unfolding clause.

Proposition 6.5. I f P ' is an unfolding of P, then P and P' are equivalent.

PROOF. Suppose that the Clark completion of F1 in P is of the form

(3 s) F l (s) - [((3s)F2(s) /x q~]) v @]. (6.11)

Then the Clark completion of F 1 in P ' is of the form

(3 s) F , (s) =- [(~0, A q~) V .." V (q~k A ~0) V @]. (6.12)

The Clark completion of F 2 in both programs is of the form

(3s)Fz(s) - [~ a v --. v ~o,] . (6 . 1 3)

Notice that (6.12) is a consequence of (6.11) and (6.13).
We show that the answer theory of P entails that of P ' .

Condition (6.5). We only need to show this for the new clauses Ci, 1 < i < k in P ' :

~ (3s) (Gi[s] A G [s]) D (3 s) F , (s) .

But (3sXai[s]/k a[s]) is equivalent to ~Pi A q~ (see Proposition 4.2 and Theorem
4.1). So this follows from (6.11) and (6.13).

Conditions (6. 7) and (6. 6). We only need to show these two conditions for F 1, since
the Clark completion for other fluents are the same for both programs (see the
above proof of Proposition 6.4). We take ~FI(S) to be the formula obtained from
the Clark completion (6.12) for F 1 in P ' as outlined following Theorem 6.2. We
only need to prove (6.6):

U.~ I= (Vs) .F I (s) D (3 s ') (s ' < s/X ~FI(S')).

Assume that ~ u J a n d Fa(s). By Corollary 4.2, and the Clark completion (6.11)
for F a in P, there is a s ' < s such that

(F2 (s ') /X G [s ']) V @ ' (s ') ,

where @'(s) is the result of dropping (3s) from all the positive occurrence of the
subformula (3s)F(s) in @. From F2(s'), by Corollary 4.2 for F2, there is a s* < s '

328 F. LIN AND R. REITER

such that

{ (G , [s *] v --- v C ~ [s *]) / , C [s '] } v ¢ ' (s ') .

Now by Corollary 4.1, we have

v . . . v A v ® ' (s ') .

By the definition o f ~I/FI(S) , the above formula is equivalent to atfFl(S') under the
assumption that ~ . This proves the condition (6.6); thus the answer theory of P
entails that of P'.

The converse has a much easier proof, with the same formula WF(S) for
conditions (6.7) and (6.6). We do it for condition (6.6), because this is the only
nontrivial one. We need to show

.~' Uo.ar~ (Vs).Fl(S) D (3s')(s ' <s A ItF,(S')).

Assume that ~ ' USrand FI(S). By Corollary 4.2 for F l in P ' , there is a s' _< s such
that

(G~[s '] A G [s ']) v --- v (C~[s '] A C [s ']) V ¢ ' (r) .

Again by the definition o f 'tI'rFI(S) , the above formula is equivalent to ~XtFa(S') under
the assumption that ~ This proves condition (6.6).

This proof generalizes to the first order case; we omit the details.

7. OTHER APPLICATIONS

The framework of this paper is very general; it can be used to formalize many
other aspects of logic programming languages.

Like most work on the formal semantics of logic programs, we have ignored
many "dirty aspects" of the language, such as the cut operator. As mentioned
earlier, one of the advantages of treating rules as actions is that we can reason
about them as first-order objects within the logic. This is particularly useful in
formalizing many search control operators in logic programming. As an example,
we have formalized the cut (!) operator in Prolog using the basic framework
proposed here ([10]).

Briefly, given a definite logic program P that contains cut, we proceed as follows
to provide a semantics for P. First, we ignore cut, and delete all occurrences of ! in
P. This will give us a program that does not mention !, so the theory of this paper
will be applicable, and an action theory 2 for it can be constructed. As we
emphasized before, in ~ , situations are derivation histories. However, due to the
presence of !, some situations may not be reachable. A logical characterization of
cut is then achieved by adding to ~ a situation calculus sentence that axiomatizes
the set of reachable situations. We show that this semantics is well-behaved when
the logic program is properly stratified. Furthermore, according to this semantics,
the usual implementation of the negation-as-failure operator using cut is provably
correct with respect to the stable model semantics. For details see [10].

We are also currently exploring the possibility of formalizing the dynamic
"assert" and "retract" operators of Prolog within this framework. It is particularly
interesting that once we allow "retract", the resulting theories of actions become
much richer in that some actions will now have negative effects on fluents, and
issues such as goal interactions in planning become relevant.

S I T U A T I O N C A L C U L U S S E M A N T I C S 329

8. C O N C L U D I N G R E M A R K S

By taking seriously the idea that rules are actions, we have formalized the
declarative mean ing of logic programs in the situation calculus. Like Clark's
complet ion, our situation calculus semantics is formula ted in classical logic. Unlike
Clark's complet ion, our semantics is s trong enough to handle recursion. Having a
classical logical semantics has many advantages, one of which is the relative ease of
proving propert ies of programs. To illustrate this, we have formula ted condit ions
for two logic programs to be equivalent, and used them to prove the correctness of
the unfolding t ransformat ion of (Tamaki and Sato [27]).

We have also used this f ramework to formalize various search control operators ,
and are working on extending it to the dynamic "assert" and " re t rac t" opera tors of
Prolog.

Our thanks to the other members of the University of Toronto Cognitive Robotics Group (Yves
Lesp6rance, Hector Levesque, and Daniel Marcu) for their ideas, suggestions, and comments. Thanks
also to G. Neelakantan Kartha, and Vladimir Lifschitz for helpful comments on an earlier draft of this
paper. Our special thanks to Vladimir for bringing to our attention the work of Wallace [31]. This
research was supported by grants from the National Science and Engineering Research Council of
Canada, the Institute for Robotics and Intelligent Systems of Canada, and the Information Technology
Research Center of Ontario.

REFERENCES
1. Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.) Logic and

Databases, Plenum Press, New York, 1978, pp. 293-322.
2. Fitting, M., A Kripke-Kleene Semantics for Logic Programs, Journal of Logic Program-

ming 2(4):295-312 (1985).
3. Gelfond, M. and Lifschitz, V., The Stable Model Semantics for Logic Programming, in:

Proceedings Fifth International Conference and Symposium on Logic Programming, 1988,
pp. 1070-1080.

4. Green, C. C., Application of Theorem Proving to Problem Solving, in: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI-69), 1969, pp. 219-239.

5. Haas, A. R., The Case for Domain-Specific Frame Axioms, in: F. M. Brown (ed.), The
Frame Problem in Artificial Intelligence. Proceedings of the 1987 Workshop on Reasoning
about Action, San Jose, CA, 1987, Morgan Kaufmann Publishers, Inc., pp. 343-348.

6. Kunen, K., Negation in Logic Programming, Journal of Logic Programming 4(4):289-308
(1987).

7. Levesque, H. J., Reiter, R., Lesp~rance, Y., Lin, F., and Scherl, R., GOLOG: A Logic
Programming Language for Dynamic Domains, Journal of Logic Programming 31(1-3):
59-83.

8. Lifschitz, V., Pointwise Circumscription, in: Proceedings of the Fifth National Conference
on Artificial Intelligence (AAAI-86), Philadelphia, PA, 1986, pp. 406-410.

9. Lifschitz, V., Formal Theories of Action, in: Proceedings of the Tenth International Joint
Conference on Artificial Intelligence (IJCAI-87), 1987, pp. 966-972.

10. Lin, F., A Situation Calculus Semantics for the Prolog Cut Operator, http://www.cs.
t o ron to . edu / - cogrobo/, Draft, 1995.

11. Lin, F. and Reiter, R., State Constraints Revisited, Journal of Logic and Computation,
Special Issue on Actions and Processes 4(5):655-678 (1994).

330 F. LIN AND R. REITER

12. Lin, F. and Reiter, R., Forget It!, in: R. Greiner and D. Subramanian (eds.), Working
Notes of AAAI Fall Symposium on Relevance, American Association for Artificial
Intelligence, Menlo Park, CA, Nov. 1994, pp. 154-159.

13. Lin, F. and Shoham, Y., Provably Correct Theories of Action, Journal of the ACM
42(2):293-320 (1995).

14. Lloyd, J. W., Foundations of Logic Programming, 2nd edition, Springer-Verlag, 1987.
15. McCarthy, J., Situations, Actions and Causal Laws, in: M. Minsky (ed.), Semantic

Information Processing, MIT Press, Cambridge, MA, 1968, pp. 410-417.
16. McCarthy, J., Applications of Circumscription to Formalizing Commonsense Knowl-

edge, Artificial Intelligence 28:89-118 (1986).
17. McCarthy, J. and Hayes, P., Some Philosophical Problems from the Standpoint of

Artificial Intelligence, in: B. Meltzer and D. Michie (eds.), Machine Intelligence 4,
Edinburgh University Press, Edinburgh, Scotland, 1969, pp. 463-502.

18. Pednault, E. P., Synthesizing Plans that Contain Actions with Context-Dependent
Effects, Computational Intelligence 4:356-372 (1988).

19. Pednault, E. P., ADL: Exploring the Middle Ground between STRIPS and the Situation
Calculus, in: Proceedings of the First International Conference on Principles of Knowledge
Representation and Reasoning (KR'89), Morgan Kaufmann Publishers, Inc., 1989, pp.
324-332.

20. Przymusinski, T. C., On the Declarative Semantics of Deductive Databases and Logic
Programs, in: J. Minker (ed.), Foundations of Deductive Databases and Logic Program-
ming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 193-216.

21. Reiter, R., The Frame Problem in the Situation Calculus: A Simple Solution (Some-
times) and a Completeness Result for Goal Regression, in: V. Lifschitz (ed.), Artificial
Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy,
Academic Press, San Diego, CA, 1991, pp. 359-380.

22. Reiter, R., Proving Properties of States in the Situation Calculus, Artificial Intelligence
64:337-351 (1993).

23. Sagiv, Y., Optimizing Datalog Programs, in: J. Minker (ed.), Foundations of Deductive
Databases and Logic Programming, Morgan Kaufmann Publishers, San Mateo, CA, 1988,
pp. 659-698.

24. Schubert, L. K., Monotonic Solution to the Frame Problem in the Situation Calculus:
An Efficient Method for Worlds with Fully Specified Actions, in: H. Kyberg, R. Loui,
and G. Carlson (eds.), Knowledge Representation and Defeasible Reasoning, Kluwer
Academic Press, Boston, MA, 1990, pp. 23-67.

25. Seki, H., Unfold/Fold Transformation of General Logic Programs for the Well-Founded
Semantics, Journal of Logic Programming 15:5-23 (1993).

26. Shoham, Y., Chronological Ignorance: Experiments in Nonmonotonic Temporal Rea-
soning, Artificial Intelligence 36:279-331 (1988).

27. Tamaki, H. and Sato, T., Unfold/Fold Transformation of Logic Programs, in: Proceed-
ings of the 2nd International Conference on Logic Programming, 1984, pp. 127-138.

28. Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic
Programs, Journal of Logic Programming 6(2):109-133 (1989).

29. Van Gelder, A., Ross, K. A., and Schlipf, J. S., Unfounded Sets and Well-Founded
Semantics for General Logic Programs, in: Proceedings Seventh ACM Symposium on
Principles of Database Systems, 1988, pp. 221-230.

30. Waldinger, R., Achieving Several Goals Simultaneously, in: E. Elcock and D. Michie
(eds.), Machine Intelligence, Ellis Horwood, Edinburgh, Scotland, 1977, pp. 94-136.

31. Wallace, M. G., Tight, Consistent, and Computable Completions for Unrestricted Logic
Programs, Journal of Logic Programming 15:243-273 (1993).

