
Theoretical Computer Science 103 (1992) 107-135

Elsevier

107

Minimum vertex hulls for
polyhedral domains *

Gautam Das
Memphis State Unicersity, Memphis, TN 38152, USA

Deborah Joseph
University of Wisconsin, Madison, WI 53706, USA

Abstract

Das, G. and D. Joseph, Minimum vertex hulls for polyhedral domains, Theoretical Computer

Science 103 (1992) 107-135:

Given a collection of pairwise disjoint polygons on the plane, we wish to cover each polygon with an

exterior hull such that (1) the hulls are pairwise disjoint, and (2) the total number of vertices of the

hulls is minimized. This problem has applications in the area of object approximations. Various

versions of this problem (in two, and higher dimensions) are shown to be NP-hard. The paper also

describes several approximations and exact algorithms for the problem.

1. Introduction

In this paper we investigate several variations of the following problem. Suppose we

are given a collection of pairwise disjoint polygons on the plane. We are required to

cover each with a polygonal hull such that (1) the hulls are pairwise disjoint and (2) the

total number of vertices (or equivalently, edges) of the hulls is minimized.

This problem belongs to the general area of object approximations, where the goal is

to approximate complex objects by simpler shapes [l, 2,4, 12, 14, 16,201. There are

many variations possible to this problem. It can be restricted to special types of

polygons such as rectilinear polygons or convex polygons. It can also be generalized

to three dimensions, where polyhedra replace polygons. Since the surface of a poly-

hedron is usually described by vertices, edges, and faces, we may be interested in

*This work was accomplished while the first author was a graduate student at the University of

Wisconsin, Madison. It was supported in part by the National Science Foundation under NSF PYI grant

DCR-8402375. A preliminary version was presented at the Seventh Symposium on Theoretical Aspects of

Computer Science, Rouen, France, 1990.

0304-3975/92/$05.00 0 1992-Elsevier Science Publishers B.V. All rights reserved

108 G. Das, D. Joseph

finding hulls that minimize any, or all, of these three quantities. We observe that if the

polygons (polyhedra) are sufficiently far apart, minimum hulls can easily be obtained

by enclosing each object in a triangle (tetrahedron). However, if the objects are placed

closer together, then because we require that the hulls are disjoint, the problem is

nontrivial.

Our problem can be applied in many situations. There are a wide range of

geometric applications, such as circuit design, robotics, motion planning, etc., where the

input is specified as a collection of disjoint polyhedra. In many cases these problems

are computationally quite complex to solve. Consequently, it is desirable to investi-

gate them beyond worst-case complexity, and look for algorithms that exploit typical

problem instances. Our idea of replacing polyhedra by their minimum hulls, if

efficiently accomplished, can be used as a preprocessing step to speed up subsequent

processing because of the reduction in input size. During the preprocessing, care must

be taken to ensure that the hulls adequately represent the original input, in the sense

that the final output is not significantly compromised. More precise criteria will, of

course, depend upon the actual problem being considered.

Some examples of these applicatons are as follows. In circuit design, rectilinear

polygons embedded on a plane may represent circuit components, and the problem is

to lay out wires that avoid these obstacles. The objective may be to avoid wire

crossing, or reduce wire length. Similarly, in robot motion planniny, disjoint polyhedra

represent obstacles inside a workspace in which the robot has to navigate. The robot

itself may be modeled as a polyhedron. Some of the problems involve, computing the

region reachable by the robot, or computing shortest routes for the robot’s motion

[3,6, 171. Another application involves path planning between the objects based on

the link metric, which represents the number of vertices, or bends in the path [1X].

Apart from reducing the input size, our preprocessing also removes bends in the

shapes of the objects.

A problem from combinatorial geometry [16], which is related to our problem and

which arose during the study of stochastic automata, has been posed by Klee [131. The

problem is: Given two concentric convex polyhedra in three dimensions, fit a min-

imum (in vertices, edges, or faces) polyhedron that nests between them. We observe

that to be minimum, the intermediate polyhedron has to be convex. The original

formulation was for minimizing vertices for polytopes in arbitrary dimensions. Poly-

nomial-time algorithms have been found for the two-dimensional problem [I, 12,203,

but no satisfactory solutions exist for higher dimensions.

We first prove that our problems are NP-hard in both two and three dimensions.

We then describe some algorithms that solve specific variants of the problem. In more

detail, our results are as follows.

We show the two-dimensional minimum-hulls problem to be NP-hard. The proof

follows from a reduction from the Planar-3SAT problem [IS]. The problem is

NP-hard even when restricted to convex polygons, or convex rectilinear polygons. If

the number of polygons is bounded, we do not believe that the problem is intractable,

because our reduction needs an arbitrary number of polygons.

Minimum vertex hulls for polyhedral domains 109

In three dimensions the minimum-hulls problem is also NP-hard (when minimizing

vertices, edges, or faces), by trivially extending the two-dimensional proofs. Again, this

result holds for convex polyhedra and for convex rectilinear polyhedra.

We next develop algorithms for the special problem of computing minimum

rectilinear hulls on the plane. Our first result here is an efficient approximation

algorithm which constructs hulls that achieve more than half the maximum possible

reduction in vertices. In other words, if n is the number of vertices in the input, and m is

the number of vertices in the minimum hulls, then our algorithm computes a set of

hulls with at most :-(n+m) vertices. This algorithm runs in O(n logn) time. It has

applications in the computation of shortest rectilinear paths amidst polygonal

obstacles.

We also design an algorithm for constructing actual minimum rectilinear hulls

which runs in O(n2k+9) time, where k is the number of polygons. The algorithm is

based on dynamic programming. The theoretical significance of the algorithm is that

the difficulty of the problem is related more to the number of polygons than to their

shapes and positions.

Preliminary versions of some of the above results appeared in [7]. In that paper,

we also had a nontrivial three-dimensional result (which we do not reproduce here),

where we show that the problem of computing minimum hulls for only two noncon-

vex polyhedra is NP-hard. Thus, unlike the two-dimensional case, where the hard-

ness is due to the number of polygons, here the difficulty lies in the complex shapes

that three-dimensional objects can have. Very recently, we have shown that Klee’s

problem of nesting a polyhedron with minimum faces between two concentric

convex polyhedra is NP-hard (a preliminary version may be found in [S]).

As a corollary, our problem for constructing minimum-faced hulls for only two

disjoint polyhedra, of which one is conuex, is NP-hard. From a theoretical

standpoint, this is one of the few known intractable results in three-dimensional

computational geometry that involves the simplest (and fewest) objects, namely

three convex polyhedra. These intractability results will formally appear in a future

paper.

Our research differs from most previous research works on object approximations

in two important ways. First, previous goals of approximations have usually

been to minimize continuous measures (for instance, minimizing the area of

the hull [14], or minimizing the symmetric difSerence between the area of the

hull and the object [2]), while ours is combinatorial, as in [l]. Second, complex

objects have usually been considered in isolation, while we have a more restrictive

environment where a number of neighboring objects can hinder the approximation

process.

The rest of the paper is organized as follows. Sections 2 and 3 describe the

NP-hardness proofs of our two-dimensional and three-dimensional problems, re-

spectively. Sections 4 and 5 describe the approximation algorithm for constructing

rectilinear hulls on the plane, while Section 6 describes the exact algorithm

for constructing rectilinear minimum hulls. We conclude with a list of open problems.

110 G. Das, D. Joseph

2. NP-hardness of two-dimensional minimum hulls

A polygon is a piecewise linear simple curve on the plane, where the linear fragments

of the boundary are edges, and edges meet at points, or vertices. A convex polygon is

one whose enclosed region is convex. A rectilinear polygon is one where each edge is

either horizontal or vertical. A convex rectilinear polygon is a rectilinear polygon such

that, if the two endpoints of any vertical (or horizontal) line segment are inside the

polygon, then the rest of the line segment is also inside the polygon.

In this section we will show that computing minimum hulls for a set of disjoint

polygons on the plane is NP-hard, even when the polygons are convex, or convex

rectilinear. We shall first prove it for convex rectilinear polygons, and then apply very

similar ideas to prove it for convex polygons.

Theorem 2.1. Computing minimum rectilinear hulls for convex rectilinear polygons is
NP-hard.

Proof. Throughout the proof, a polygon will refer to a convex rectilinear polygon,

unless otherwise mentioned. We first introduce some definitions and notations. Let

p={Pl,..‘, pm} be a set of pairwise disjoint simple polygons on the plane. Let

H=jht,..., h,} be another such disjoint set of polygons.

Define Valid-Hull(H, P) = true if

(1) hi contains pi, for all i,
(2) for any edge e of hi, there exists a parallel edgefof pi such that e andfoverlap,

and false otherwise.

Condition (2) is a more complicated way of saying that the hull hi is tight, that is,

each edge has been pushed inwards until it encounters an edge of pi.

Let MinHull be a valid (under the above criteria) set of hulls of P with the minimum

number of vertices. Note that MinHull may not be unique. We will prove that, given

P, computing a MinHull is NP-hard. Suppose the Valid-Hull predicate was redefined

by eliminating condition (2) that is, edges of hi need not touch the boundary of pi. If

we are given a MinHull under these relaxed conditions, it is then quite easy to convert

it to a tight MinHull by pushing each edge towards the interior of the hull until it

touches the polygon. In the process we may be lengthening or shortening adjacent

edges but otherwise retaining the same shapes of the hulls. Thus, adding condition (2)

does not make the computation of MinHull polynomially harder. In the proof,

MinHull will be always tight, unless otherwise stated. Condition (2) has simply been

included so as to make the proof easier.

We next prove the following graph-theoretic lemma, which will be useful in the

construction of the polynomial reduction. The lemma describes a particular way of

drawing a planar graph on a plane.

Lemma 2.2. Given any planar graph G (Fig. l), it may be drawn on a plane in
polynomial time such that

Minimum vertex hulls for polyhedral domains 111

d

Fig. 1

Fig. 2.

(1) all vertices are aligned on a straight line tilted at some angle with the horizontal,

and

(2) each edge is a staircase, composed of a polynomial number of alternating vertical

and horizontal line segments, where each segment intersects the tilted line (Fig. 2). Thus,

if several horizontal (or vertical) line segments are incident at a vertex, we may imagine

that they are drawn in parallel, separated by infinitesimal distances.

Proof of Lemma 2.2. First draw a Fary embedding of G (Fig. 3), using the polynomial-

time algorithm given in [lo]. A Fary embedding is a planar drawing where the edges

are straight line segments. It is known that every planar graph can be drawn this way.

C

Fig. 3.

112 G. Das, D. Joseph

Fig. 4

We now assume that each edge is a stretched rubber band. Draw a tilted line on the

plane, and move each vertex towards the line, in a direction perpendicular to it. We

eventually obtain a drawing shown in Fig. 4. Observe that each rubber band wriggles

along the tilted line, and the number of wriggles is no more than the number of

vertices in the graph. Now each edge can be redrawn by replacing the sequence of

wriggles with a sequence of alternating vertical and horizontal line segments, resulting

in the drawing in Fig. 2. It is easy to see that the total number of such segments is

polynomial in the size of the entire graph. 0

Proof of Theorem 2.1 (conclusion). We are now ready to prove the theorem. We shall

prove that the equivalent decision problem is NP-complete. Let #(P) denote the

number of vertices in a set of polygons P. The decision problem is formally stated as

follows. Given a set of pairwise disjoint convex polygons P, and an integer k, is there

a valid set of hulls H, such that # (P)- # (H)>, k? Clearly, the problem is in NP

because a nondeterministically constructed H can be verified in polynomial time. For

proving NP-completeness, the reduction shall be from Planar-3SAT [15], which we

define below.

A variable-clause graph of a 3SAT instance (with n variables and m clauses) is

defined as a bipartite graph where vertices are variables and clauses, and edges are

between variable vertices and clause vertices. If a clause C has a literal of a variable V,

then [C, I’] is an edge. Thus, the graph has 3m edges. Also, the edges are marked + if

a positive literal is used, - if a negative literal is used. Planar-3SAT may now be

formally stated as follows. Given a planar variable-clause graph for a 3SAT formula, is

there a satisfying truth assignment? The reduction will proceed in a series of steps.

Step 1: For the given variable-clause graph, construct a planar drawing as in

Lemma 2.2.

In the remaining steps, we shall construct components for variables, clauses, and

edges of the planar drawing of Step 1. Each component will in turn be a collection of

convex polygons. Finally, all components will be “superimposed” upon the planar

hfinimum vertex hulls for polyhedral domains 113

Fig. 5.

blocks

Fig. 6.

drawing of Step 1, so as to have a global collection of convex polygons. The planarity

of the drawing will ensure that these polygons remain pairwise disjoint. The following

definitions will be useful in describing the remaining steps.

Consider a convex polygon pi. Its boundary has at most four staircases, as shown in

Fig. 5. Each staircase is composed of a sequence of adjacent steps. Thus, each step

consists of a vertical edge and an adjacent horizontal edge. Each step defines

a rectangular region outside the polygon called a block. A block is selected if a hull hi

completely encloses it. Consider a staircase of pi. Suppose we place small, square

obstacles along its length, as shown in Fig. 6. Because a valid hull hi has to be tight,

this will ensure that adjacent blocks cannot be simultaneously selected. In all our

constructions we will assume that such small obstacles are placed near each staircase

to force the above condition, so they will not be explicitly depicted any further. We

observe that a valid hull hi is basically the union of pi with possibly some selected

blocks of pi such that no two selected blocks are adjacent. It can be seen that no two

blocks belonging to the same polygon intersect. But two blocks belonging to different

polygons can, as shown in Fig. 7. Thus, if hi and hj are valid hulls of pi and pj, and

block b is enclosed within hi, then block c cannot be within hj. We can see that, given

a set of polygons P of the type described above (that is, with small obstacles placed

114 G. Das, D. Joseph

Fig. 7

near staircases, etc.), a valid set of hulls H is the union of P together with a selection of

blocks such that no two selected blocks intersect, or are adjacent. To construct

a MinHull, it is to our advantage to select as many such blocks as possible.

Another way of expressing this idea is by using graph-theoretic techniques. Define

a block-graph where (1) blocks are vertices, and (2) [a, b] is an edge if blocks a and

b are either adjacent, or intersect with each other. Thus, a valid set H of hulls contains

blocks that form an independent set in the block-graph. To obtain MinHull, it is

sufficient to compute a maximum independent set of the block-graph.

Step 2 (variable component): We shall illustrate this component by an example.

There is one such component per variable, and each component is dependent in its

design on the total number of clauses. Suppose there are 4 clauses in the Planar-3SAT

instance. Figure 8 illustrates a variable component. There is a main polygon with two

staircases, and a pair of connecting polygons at either end. All blocks in this compon-

ent are classified as posit@ negutioe or connecting (see Fig. 9 for the block-graph). In

this example there are four positive blocks and four negative blocks on either staircase

of the main polygon. There are totally 6 + 6 + 4 - 4 = 28 blocks in the component. In

the general case, if m is the number of clauses, there are 6 + 6 + 4m blocks. Clearly, as

Figs. 10 and 11 indicate, there are two ways of selecting maximum independent sets in

the block-graph, one in which all positive vertices are selected and the other in which

Positive literal block
/

Negative literal block

Connecting block

Fig. 8.

Minimum vertex hulls for polyhedral domains 115

+
+

+
+

+
+

+
+

Fig. 9.

Positive blocks selected

variable set false

Fig. 10.

Negative blocks selected

Variable set true

Fig. 11.

all negative vertices are selected. This also corresponds to the two best ways of

designing hulls for this component; see Figs. 12 and 13.

In one case, when the positive blocks are selected, the variable is setfalse and in the

other case, true. In either case, for this component only, # (P) - # (H) = 2 * 14 = 28. In

116 G. Das, D. Joseph

Fig. 12.

I

T?We

Fig. 13.

the general case, # (P)- # (H) = 2(6 + 2m). We should note that we could also have

valid hulls where positive and negative blocks are both selected, but in these cases we

would not achieve the same reduction in the number of vertices. Finally, we can

imagine each variable component as a macro vertex in the planar drawing which was

constructed in Step 1.

Step 3 (clause component): We shall describe this component by first describing its

block-graph; see Fig. 14. There are three literal blocks and 24 connecting blocks such

Fig. 14

Minimum vertex hulls for polyhedral domains 117

that the graph is a cycle, with 8 connecting blocks in between any two literal blocks.

By inspection, we can see that any maximum independent set of the block-graph has

to select at least one literal block. To realize this block-graph by polygons, we notice

that in the planar drawing of Step 1, a clause vertex has either all three incident edges

in one half plane, or two in one half plane and the third in the other. These two cases

are realized in Figs. 15 and 16.

Since the maximum independent set has size 13 in the block-graph, for this

component only, # (P)- # (H)= 26 for the best hulls. We provide some motivation

for such a design. Each clause component will be a macrovertex of the planar drawing

of Step 1, just like the variable components. These components will be connected via

edge components, which will be described later. A clause is satisfied if a maximum

independent set can be constructed for its block-graph. This can happen only if we are

allowed to select at least one of the literal blocks.

Step 4 (edge component): We shall illustrate this component by an example. Consider

an edge of the planar drawing of Step 1, as shown in Fig. 17. The edge connects

a clause with a variable. The label on the edge indicates that the clause contains

a negative literal of the variable. The edge component is realized in Fig. 18, and has

symmetric ca.9e.9 ezist

Fig. 15.

Fig. 16.

118 G. Das, D. Joseph

Negative label

Fig. 17.

_:

Fig. 18.

-_

Edge blocks
+

+

Fig. 19.

altogether 6 blocks. If we consider its block-graph (Fig. 19), the blocks are linked

as a chain. The block at the upper (lower) end of the chain is positioned to intersect

with a negative literal block of the variable component (literal block of the clause

component).

In the general case, an edge component has an even number of blocks linked as

a chain, with the end blocks intersecting with appropriate blocks of the variable and

clause components. The actual number of blocks is determined by the number of

vertical and horizontal line segments that form the edge in the planar drawing. Since

an edge component has an even number of blocks, its best hull has to select at least

one of the end blocks. In that case, the block that intersects it (which may belong to

either the variable or the clause component) will not be selected. Thus, an edge

component propagates the true or j&e state of a variable component to a clause

component.

Minimum vertex hulls for polyhedral domains 119

We can imagine each edge component being laid out along its corresponding edge

in the planar drawing of Step 1. Since there are enough positive and negative blocks

on either side of the main polygon in any variable component, all edge components

may be laid out without encountering polygon crossover situations. We observe that

the edge components provide a means of linking up the block-graphs of the variable

and clause components. Thus, finding a MinHull for the entire set of components is

equivalent to finding a maximum independent set for the entire block-graph.

Clearly, the whole reduction requires only polynomial time. Suppose the Planar-

3SAT instance had n variables and m clauses. Let P be the set of polygons of all

components. Let the total number of blocks of all edge components be r. Let

k=(12 +4m)n+26m +r. Note that the first term corresponds to the reduction in

vertices if all variable components had their best hulls. Similarly, the second and third

terms correspond to clause and edge components, respectively.

We pose the following problem. Is there an H such that Valid-Hull(H, P)= true and

#(P)- # (H)> k? From the reduction, we can conclude that this is true if and only if

the instance of Planar-3SAT is satisfiable. Thus, constructing a MinHull for a set of

convex rectilinear polygons is NP-hard, and the theorem is proved. q

We will now prove that obtaining minimum hulls for convex (nonrectilinear)

polygons is also NP-hard. We shall do this by a very similar reduction from

Planar-3SAT.

Theorem 2.3. Computing minimum hulls for convex polygons is NP-hard.

Proof. Consider the decision version of our problem, which may be stated as follows.

Given a convex polygon set P, and an integer k, is there a set H of hulls such that

#(P)- #(H)>k?
For proving NP-completeness, the reduction will be from Planar-3SAT. We will

design components for variables, clauses, and edges of a given planar variable-clause

graph of some Planar-3SAT instance. Each component will be a collection of convex

polygons. All components will be superimposed on the planar graph, so that we have

a global collection of convex polygons. The planarity of the drawing will ensure that

these polygons remain pairwise disjoint.

The following definitions will be useful in describing the remaining steps. Consider

the two groups of convex polygons shown in Fig. 20. The central quadrilateral of each

group defines an empty triangular region called a block, which would be filled if the

quadrilateral was extended into a triangle. Thus, a minimum hull for the quadrilateral

either selects the block, or excludes it. Two blocks belonging to different groups can

intersect as the figure shows. If the minimum hulls of one group selects its block,

clearly, the hulls of the other group will have to exclude the intersecting block.

Throughout our construction we place only such groups on the plane so that

120 G. Das, D. Joseph

Fig. 20.

appropriate blocks intersect. To construct minimum hulls, it is to our advantage to

select as many such blocks as possible.

We are now ready to describe our reduction. It first proceeds exactly as in Theorem

2.1. The reduction of Theorem 2.3 will be complete if we can replace the rectilinear

polygons by nonrectilinear polygons. This is done by replacing the rectangle blocks by

triangle blocks (defined by polygon groups as described above), such that pairs of

adjacent or intersecting rectangle blocks are replaced by pairs of intersecting triangle

blocks.

We shall illustrate that this is possible, by an example. Consider Fig. 21, which

shows a portion of the final arrangement of rectilinear polygons in the reduction of

Theorem 2.1. The corresponding portion of the block-graph is shown in Fig. 22. We

Fig. 21

Fig. 22.

Minimum vertex hulls for polyhedral domains 121

Fig. 23

replace the rectilinear polygons by nonrectilinear polygon groups whose blocks

appropriately intersect, as in Fig. 23. It is easy to see that this kind of replacement can

be accomplished for the whole graph.

The reduction clearly shows that the problem of finding minimum hulls for convex

polygons is NP-hard. q

3. NP-hardness of three-dimensional minimum hulls

In this section we shall prove NP-hardness for some variants of our problem in

three dimensions.

A polyhedron is a piecewise linear closed surface in three-dimensional space, where

the pieces of the surface arefaces. Faces meet at edges and edges meet at oertices. All

definitions we have encountered for two-dimensional polygons easily generalize to

three-dimensional polyhedra.

How hard is it to compute minimum rectilinear hulls (in number of vertices, edges,

or faces) for a set of convex rectilinear polyhedra in space? This is easily seen to be

NP-hard, by trivially extending the proof of Theorem 2.1 as follows. Assume that all

polygons resulting from the reduction are made thick by one unit along the z axis.

Clearly, this shows that Theorem 2.1 holds even for rectilinear polyhedra. We can

even extend Theorem 2.3 to prove NP-hardness of computing minimum hulls for

convex polyhedra in a similar manner.

These reductions are not very interesting, because they require an arbitrary number

of polyhedra in the input. In a future paper we shall show that computing minimum

hulls is NP-hard even for only two polyhedra, of which one may even be convex.

A preliminary version of this result may be found in [S].

4. Approximation algorithm

In the following sections we describe various algorithms for the two-dimensional

rectilinear version of the problem. Unfortunately, we have not yet designed efficient

122 G. Das, D. Joseph

algorithms for the nonrectilinear case. To start with, in this section we describe

a polynomial algorithm which constructs valid hulls that closely approximate mini-

mum rectilinear hulls, in a sense described below. In the next section we provide an

efficient implementation, and also describe some applications. In Section 6 we de-

scribe an exact algorithm for the problem which runs in time exponential in the

number of polygons.

The approximation algorithm we describe here is essentially greedy in nature. It

iteratively performs local modifications to the shapes of the obstacles, such that each

iteration reduces the number of vertices. Let P be a set of pairwise disjoint polygons.

For notational convenience, henceforth MinHufl(P) will denote a MinHull of P.

A formal input and output specification of the algorithm is as follows:

Input: P, a set of pairwise disjoint polygons.

Output: A valid hull set H as defined by the Valid-Hull predicate, such that,

We now describe the operations that locally modify the shapes of obstacles. There

are two such operations, and both are the major iterative operations of the algorithm.

P’:= Fill- Well(P): Consider any polygon pi of P. Suppose the boundary of pi has

a shape similar to Fig. 24. By this we mean that there should be two points a and

b along the polygon’s boundary sharing the same x (or, alternatively, y) coordinate

such that either a or b is a vertex of the polygon and the segment [a, b] is outside the

polygon. The polygonal region enclosed by p;s boundary between a and b and the

segment [a, b] is called a well. Fill-Well identifies a well that does not intersect with

any other polygon, and$lls it by replacing the fragment of the polygon’s boundary

between a and b by the straight line [a, b]. Clearly, if a well does get filled, then

#(Fill-Well(P))< # (P).
P’:= Fill-Corner(P): Consider any polygon pi of P. Suppose the boundary Of pi has

a shape similar to Fig. 25. By this we mean that there should be two vertices a and

b along the polygon’s boundary and a third point d exterior to the polygon such that

the segments [a, d] and [b, d] are outside the polygon and perpendicular to each

other. The polygonal region enclosed by p;s boundary between a and b and the

segments [a, d] and [b, d] is called a corner. Note that a corner is a generalization of

the block, used in the proof of Theorem 2.1. Fill-Corner identifies a corner that does

not intersect with any other polygon, and fills it by replacing the fragment of the

Fig. 24

Minimum vertex hulls for polyhedral domains 123

Fig. 25.

polygon’s boundary between a and b by the two lines [a, d] and [b, d]. If a corner does

get filled, then it is easy to see that # (Fill-Corner(P))< # (I’).

It is easy to see that a MinHull can be constructed by applying a particular sequence

of these operations. Unfortunately, it is unlikely that the exact sequence can be

determined by polynomial time. However, the polynomial-time algorithm we develop

applies these operations in a sequence that guarantees the error bound claimed above

in the approximate solution. Later in this section, we describe an efficient implementa-

tion of this algorithm which runs in O(n log n) time, where n is the number of vertices

in the input.

We are now ready to describe the algorithm, which has two major steps. In the first

step wells are filled, and in the second step corners are filled.

Step 1: In this step, Fill- Well operations are applied exhaustively on P, converting

it to P,. At any stage, the selection of the well to be filled is arbitrary. Thus, P, should

have no further wells that can be filled. We claim that Fill- Well operations are

harmless, that is, # (MinHull(P))= # (MinHull(P1)). To see that this is true, let the

sequence of polygon sets produced during Step 1 be P=Q”, Q’, Q2, . . . , Qb= PI.

Consider MinHull(Q’) of a set of polygons Q’. In the worst case it is conceivable that it

intersects the next well to be filled as shown in Fig. 26. However, we can construct

a new MinHull(Qif ‘) with the same number of vertices which avoids the well, as in

Fig. 27.

Step 2: In this step, Fill-Corner operations are applied exhaustively on P, , convert-

ing it to P2. It is easy to see that P2 should have neither wells nor corners that can be

filled. Unlike Step 1, however, at any stage the selection of the corner to be tilled is nor

Fig. 26.

124 G. Das, D. Joseph

Fig. 27.

arbitrary. The selection procedure is the key idea of the algorithm, and we describe it

after the following definitions and facts.

We recall that a staircase is a fragment of a polygon’s boundary, composed of

a sequence of steps. Unlike convex polygons, a general simple polygon may have more

than four staircases. Let us call those fragments of a polygon’s boundary that are not

staircases,$xed fvagments, a name we will justify later. Thus, a polygon’s boundary

consists of alternating staircases and fixed fragments. Consider a polygon with no

wells to be filled, such as the one belonging to P, . Suppose the polygon has a corner

that can be filled. Then the common boundary between the corner and the polygon

has to be a sequence of adjacent steps of some staircase. This fact has the following

important consequence. Consider a set of polygons with no wells to be filled, such as

PI. Then all its fixed fragments will be portions of the boundary of any of its tight

minimum hulls. Thus, the algorithm has to only examine and modify staircases.

Define the size of a staircase as the number of steps it contains. Also, a step at either

end of a staircase is called a head. Clearly, a head is adjacent to some fixed fragment.

Figure 28 is an illustration of some of the above notions.

Step 2 of the algorithm starts off as follows. First, a set of fixed fragments is

initialized by collecting those fragments of the polygon boundaries that are not

staircases. Second, a set of staircases is also initialized by collecting all staircases of the

polygons. After this, a corner is selected to be filled, as described below. This will result

Edges of ataircaaea

(>$ Wva of fixed fwmenta

Fig. 28.

Minimum uertex hulls for polyhedral domains 125

Fig. 29.

Fig. 30.

in staircases shrinking and fixed fragments growing. The iterations terminate when all

staircases have vanished.

The selection procedure in Step 2 can now be described. A head of any staircase is

examined to determine if the corner that it defines can be filled. (In the terminology of

the proof of Theorem 1, this is equivalent to asking whether the block defined by the

head step intersects with any other polygon). Two cases arise.

Case 1: The corner cannot be filled. Then the head is clearly a part of the final hull,

and is thus removed from the staircase (Fig. 29) and added to the adjacent fixed

fragment.

Case 2: The corner can be filled. Then the corner is filled, and the updates made to

the staircase and adjacent fixed fragment are indicated in Fig. 30.

We observe the following facts. In either case the size of a staircase is decreased;

thus, the iteration of the selection procedure will terminate. Second, one can think of

the fixed fragments as portions of partially constructed hulls. At every iteration we

add to this partial hulls, until all the staircases vanish. The nameJixed is now justified

because once an edge is added to a fixed fragment, it becomes a part of the final hulls.

The result of the iteration, P2, may have to be finally tightened to form H, which is

the output of the algorithm.

Clearly, the whole process takes polynomial time. The following lemma proves that

H indeed satisfies the claimed error bound.

Lemma 4.1. # (P)- # (H)B+.[# (P)- # (iw~~ffdz(~))].

126 G. Das, D. Joseph

Proof. From Step 1, we know that

(1) #(P)> #(PI)>

(2) # (MinHull(P))= # (MinIfull(P

Since P, does not have any wells and corners to be filled,

(3) # (PJ = # (MirlHUll(P~)).

At the end of Step 2, we also get

(4) #(IT)= #(P2).

Now, let the total number of Fill-Corner operations be c. Let the sequence of

polygon sets produced during Step 2 be PI = R”, R’, . . . , Rc=P2. Consider

MinIfull of a set of polygons R’. In the worst case it is conceivable that it intersects

the next corner to be filled as shown in Fig. 31. However, we can construct a valid new

hull for Rif ’ which has at most 2 more vertices than MinHull(R’), by “bending” the

intersecting portions of MinIfull outwards to avoid the corner, as shown in

Fig. 32. But after filling the corner, the new set of polygons R” ’ has at least 2 vertices

less than R’. We, thus, get two more conditions,

(5) # (MinHull(P2)) < # (Midfull(+ 2c,

(6) #(P,)< # (PI)_2c.

MinHnll intersects
co7neT

Fig. 31.

New MinHull

Fig. 32.

Minimum vertex hulls for polyhedral domains 127

In the six conditions above, there are 8 quantities, 3 of which appear in the

statement of the lemma. If we eliminate the other 5 quantities, the lemma follows. 0

5. Implementation and applications

In this section we provide an efficient implementation of the approximation

algorithm outlined in the previous section.

Without loss of generality, we assume that horizontal and vertical edges of the input

have distinct y and x coordinates, respectively. We first enclose the set of polygons in

a rectangular room. A valid boundary for this room can be easily determined in linear

time. The obstacle-free space is the bounded region within the room which excludes

the polygons. The algorithm will try to fill wells and corners, thus fattening the

obstacles and shrinking the free space.

The most time-consuming procedure required by the algorithm is to organize the

free space into a convenient data structure. The procedure is called a horizontal (or

vertical) rectangulation of the free space. Horizontal rectangulation involves breaking

up the free space into rectangles by extending each horizontal polygon edge within the

free space, possibly in both directions, until it hits a vertical edge of some polygon or

the room boundary. Clearly, O(n) rectangles will be created by this process. Rect-

angles are classified as domestic if the two vertical sides belong to the same polygon,

and alien otherwise. The rectangles are then organized as a planar free-space graph,

where vertices are rectangles, and an edge exists between two vertices if the corres-

ponding rectangles are adjacent. Clearly, the number of edges in this graph is also

O(n). Vertical rectangulation is similarly defined. Figure 33 is an illustration of the

above notions. Rectangulation is closely related to trapezoidization of polygons with

holes [IS], and can be achieved in O(n log n) time by a plane sweep. It is easy to

implement because it uses elementary data structures such as balanced binary search

trees. Except for a few rectangulations, our algorithm runs in linear time.

Free space Tectangles

_ Free space graph edge

Alien vertex

Domestic vertex

Room

Fig. 33.

128 G. Das, D. Joseph

Implementation of Step 1: We distinguish between two types of wells that are filled.

The wells in Fig. 23 are horizontal because they are filled by replacing a portion of the

boundary with a horizontal line. Vertical wells are similarly defined. We first fill all

horizontal wells, then fill all vertical wells. To fill horizontal wells, first perform

a horizontal rectangulation and construct the free-space graph. We then traverse the

graph as follows, and remove rectangles that correspond to horizontal wells.

The graph traversal performs a procedure called Visit at each vertex. Consider any

vertex u. The procedure checks whether u is domestic and has degree one. If so, then

u is removed from the graph, and Visit is invoked recursively at the vertex adjacent to

o prior to removal. After this, the procedure is invoked at one of the remaining

unvisited vertices, and so on. This traversal ensures that rectangles are removed first

from the bottom of wells.

Clearly, the total number of visits is linear in the size of the graph, which is O(n). At

this stage all horizontal wells have been filled. The shrunken free space is then

vertically rectangulated and all vertical wells filled. Thus, Step 1 takes O(n log n) time,

dominated by the two rectangulations.

Implementation of Step 2: The staircases and fixed fragments are maintained as

linked lists. We perform a horizontal rectangulation of the free space. The free-space

graph will not be necessary here. Instead, each vertical edge of a staircase contains

a pointer to the list of rectangles that lie along its side. Recall that in the earlier outline

of Step 2, any corner that got filled was defined by the head step of some staircase. The

actual implementation is more optimized, and we illustrate by an example. Let the

iteration procedure select some staircase, as the one in Fig 34. Instead of just the head

step, we run down the staircase from the head and determine the maximum number of

adjacent steps defining a corner that can be filled, as in Fig. 35. To do this, in our

Fig. 34.

Fig. 35.

Minimum vertex hulls for polyhedral domains 129

example, we keep track of the minimum x coordinate of the right-hand sides of all the

rectangles encountered while running down the staircase. We stop just before the

x coordinate of the staircase becomes greater. The corner then gets filled, and the

updates are straightforward except that some rectangles may become shorter. Since

each rectangle is shared by at most two staircases, the time taken for filling all corners

excluding the rectangulation is O(n).

Finally, we have to tighten the hulls. We first push the vertical edges of the hulls

inwards. To do this, we horizontally rectangulate the region between each original

obstacle and its enclosing hull. Clearly, the amount by which any vertical edge of

a hull needs to be pushed is the minimum length of all rectangles that lie along its side.

A similar procedure is adopted for pushing horizontal edges of hulls. Again, the time is

dominated by rectangulations, which is O(n log n). (Actually, the rectangulations here

can be accomplished in O(n log log n) time using the algorithm given in [19], or even

in O(n) time using a recent algorithm given in [S], because the regions to be

rectangulated are polygons with single holes.)

Thus, the whole algorithm runs in O(n log n) time.

We describe an application of the above algorithm. Consider the problem of

computing the shortest rectilinear path between two given points s and t which avoids

a set of rectilinear polygonal obstacles. This problem appears in circuit design (wire

routing) as well as robot motion planning. We will show that our algorithm may speed

up the process of computing such paths. First, we will establish that the lengths of

rectilinear shortest paths are preserved, even if we replace obstacles with valid hulls.

Lemma 5.1. Let E be a plane which contains a set of disjoint rectilinear polygons, P. Let

H be a valid set of hulls of P. Let s and t be two points within E-H. Then the shortest

rectilinear distance between them within E-H is equal to the shortest rectilinear

distance between them within E-P.

Proof. For any i, consider the shapes of the fragments of the region hi-pi. Because all

edges of hi touch the boundary of pi, these fragments will assume shapes similar to the

ones shown in Figs. 36 and 37. Now consider a shortest path between s and t within

E-P. It, clearly, cannot intersect a fragment of the Fig. 36 type, unless it lies along the

boundary of hi. It can, however, intersect a fragment of the Fig. 37 type. But as the

figure shows, the intersecting portion can be replaced by nonintersecting portion of

hi - Pi

Fig. 36

130 G. Das, D. Joseph

Fig. 37.

the same length. Thus, we can replace all intersecting portions of the shortest path

with nonintersecting portions such that the new path lies wholly within E-H, and its

length is the same as that of the original shortest path. 0

Now consider the problem of computing the shortest rectilinear path between s

and t, amidst the rectilinear obstacles P. We first regard s and t as additional point

obstacles, and use our approximation algorithm to construct approximate minimum

hulls of the obstacles, in time O(n log n). After this preprocessing, any shortest-path

algorithm can be employed, such as the one in [6], which runs in O(N(log IV)‘) time,

where N is the reduced number of vertices.

6. Exact algorithm

Given a rectilinear polygon set with k polygons and a total of n vertices, we describe

an algorithm that computes their actual minimum hulls with O(Q*~+~) running time.

The algorithm works even for nonconvex rectlinear polygons. This result shows that

the difficulty of the problem is related more to the number ofpolygons than to their

shapes and spatial positions.

Without loss of generality, let us assume that in the input, no two horizontal

(vertical) edges share the same y coordinate (X coordinate). Suppose we grid the area

exterior to the polygons by extending vertical and horizontal lines through each

vertex in both directions until they either extend to infinity, or terminate at some

polygon’s boundary. It is not hard to see that there exists a set of minimum hulls

whose edges lie along the grid. One obvious algorithm to compute minimum hulls is

to perform a brute force search on this grid. However, the time will be exponential in

n. To achieve the claimed time bound, we need to do better.

The algorithm is as follows. Let P = { pl, . . . , pk} be the set of polygons. First fill all

vertical and horizontal wells. Then confine the resulting polygons in a rectangular

room. Next, compute the midpoint of the leftmost vertical edge of every polygon pi.

From every such point, draw a horizontal line segment called li through the free space

to the left, until it terminates at a vertical edge of some polygon or the room. These

segments are called partition edges.

Minimum vertex hulls for polyhedral domains 131

If we superimpose our grid on these edges, we observe that each partition edge is

intersected by possibly O(n) vertical grid lines. If we are constructing tight hulls, then

only two of the O(n) grid points on each partition edge are actually intersected by the

hulls. Let us fix an arbitrary pair of these grid points for each partition edge, thus

fixing 2k points altogether. Suppose the problem now is to compute minimum hulls

subject to the constraint that they are required to intersect these 2k points. As we shall

shortly show, this subproblem can be solved in 0(n9) time. Now our original problem

is easily solved. For each combination of 2k grid points, we solve the constrained

problem and, finally, output the hulls with minimum vertices. Since every combina-

tion has k pairs of points, with each pair being selected from at most O(n) points, there

are at most O((n’)“) combinations. Thus, the running time of our algorithm is

0(n2k - n9)=0(n2k+9). Clearly, the most time-consuming process in our algorithm

involves going through all the combinations of 2k points each.

We now show that the constrained subproblem can be done in polynomial time,

which is the main idea of this section. Our algorithm for this is based on dynamic

porgramming. We first build up a discrete structure for the algorithm to search.

Consider the free space with the partition edges drawn. Let us assume that each

partition edge is actually drawn as a pair of closely spaced parallel lines. Then they

may be imagined as narrow channels connecting the interiors of pairs of polygons (or

the interiors of polygons with the exterior of the room). Clearly, the free space will

then resemble a single polygon (Fig. 38). Horizontally rectangulate this polygon, and

build up a free-space graph exactly as in the previous section. Thus, rectangles are

vertices, and edges are between adjacent rectangles. Since the free space is a simple

polygon, the graph is clearly a tree. Let us root the tree at some vertex. We observe

that the leaves are those rectangles which have one of the partition edges as a side.

Note that the horizontal edges of the rectangles may be composed of portions that

are polygon edges, and portions that are extensions of polygon edges in the free space.

The latter portions have been constructed by the rectangulation process, and are

known as free edges. As Fig. 39 shows, a rectangle may have two, three, or even four

Fig. 38.

132 G. Das, D. Joseph

To oot

GL
Two free edges

Three free edges

Fig. 39.

free edges. For rectangle r (other than the root), let e, denote the free edge between

r and its parent rectangle in the free-space free.

If we superimpose the grid on the rectangulation, we observe the following. There is

a set of minimum hulls whose horizontal edges run along the horizontal edges of the

rectangulation. However, we will follow the convention that these edges do not run

directly along the rectangle edges, rather they run in parallel, with a slight gap. This

ensures that the vertices of the hulls are formed within the rectangles, rather than on

their boundaries. As with the partition edges, each free edge is intersected by possibly

O(n) vertical grid lines. Furthermore, of the O(n) grid points, only two are actually

intersected by the hulls. Our convention also ensures that the vertical hull edges do

not terminate at these points, rather they pass through them.

We are now ready to describe the polynomial-time algorithm for solving the

constrained-minimum-hulls subproblem. Assume that a pair of grid points has been

fixed for each partition edge. The overall idea is to explore the tree bottom up, and at

any stage, compute all possible minimum-hull fragments within the region visited thus

far. The algorithm is based on dynamic programming, because previous computations

further down the tree are stored and later used in computations up the tree. When the

root is reached, the final minimum hulls are computed.

In more detail, the algorithm visits a rectangle only if all its children have been

visited. The purpose of visiting rectangle r (other than the root) is to compute an

O(n) x O(n) matrix M,, which is described as follows. Let R, refer to the polygonal

region formed by the union of r and all its children. The entry M,[i, j] (where i <j)

contains the fragments of the hulls with minimum vertices within the region R, such that

(1) these hulls intersect e, at its ith and jth points, and

(2) for each partition edge at the leaves of R,, these hulls intersect at the corre-

sponding pair of fixed grid points.

We shall now show how to compute this matrix while visiting a vertex r. Clearly,

r has one, two, or at most three children, and their respective matrices have already

been computed. We describe only the case where r has three children. The other cases

are even simpler; therefore, we do not describe them here.

Minimum vertex hulls for polyhedral domains 133

Extensions of
fragments

through r

Fig. 40

Consider Fig. 40, where the children of I are rl, r2 and r3, and e, = CD, e,, = AB, and

so on. Suppose we are trying to compute the entry M,[i,j]. Let the ith and jth grid

points of e, be I and J, respectively. Select three pairs of integers, (i,,j,), (iz, j,), and

(i3, j,). Let the il th and j, th grid points of e,., be II and J1, respectively. Similarly, let

the izth and j,th grid points of er2 be I2 and J2, respectively. Finally, let the i3th and

j,th grid points of er3 be I3 and J3, respectively.

Suppose we are to extend the hull fragments in M,, [il, jJ, M,2[iZ, j,], and

M,, [i3, j,] through the rectangle r such that they intersect e, at I and J. The way to do

this involving the least number of additional vertices is as follows. Because we are

dealing with tight hulls, it is clear that J1 (J2) has to be connected to I (I,). This

involves four additional vertices. Similarly, I1 has to be connected to I*. If they do not

have the same x coordinate, this involves two additional vertices. Finally, J3 has to be

connected to J. If they (fortunately) have the same x coordinate, this can be done

without any additional vertices. Thus, in this situation, six additional vertices are

required.

Now the method of computing M,[i, j] is clear. For euery three pairs of integers,

(iI, jl), (i2, j,), and (i3, j,), consider the hull fragments present in M,, [iI, jl],
Mr2[i2, jz], and M,,[i3, j,]. Extend them through r with the least number of addi-

tional vertices, until they intersect e, at I and J. Once this is done for all possible three

pairs of integers, select the fragments (with their extensions) which have the least total

number of vertices and store them in M,[i, j]. Thus, all entries of the matrix can be

filled in this way.

This process of computing all possible minimum-hull fragments can be continued

up the tree until we come to the root rectangle. The root has at most four children. Let

us describe the case when the root has exactly four children, the other cases being even

simpler. The processing here is very similar to the extensions of hulls described earlier.

We select four pairs of integers, select the corresponding hull fragments from the

children matrices, and appropriately patch them within the root rectangle, using the

least number of additional vertices. This is carried out for every selection of four pairs

134 G. Dus, D. Joseph

of integers, and the hulls with the minimum vertices over all others are the final

constrained minimum hulls.

We show that this constrained-hulls algorithm runs in polynomial time. There are

O(n) rectangles in the tree. For rectangles that are not the root, hull fragments are

extended at most 0(n8) times, and each extension can be accomplished in constant

time. For the root, hull fragments are also patched at most O(n*) times, and each

patchwork takes constant time. So the total time taken is 0(n9).

7. Future directions

A number of interesting open problems are raised by this work. In the two-

dimensional case, is the problem NP-hard even if only a bounded number of nonrec-

tilinear polygons is allowed in the input? We think that this problem is solvable in

polynomial time. In fact, we have shown in this paper that the rectilinear problem

with a bounded number of polygons is solvable in polynomial time. However, we have

recently shown in [S] that the three-dimensional problem is NP-hard even for

a bounded number of polyhedra.

In our approximation algorithm, can we get better that a factor of half in the

number of vertices reduced? Perhaps, a more judicious selection of Fill-Corner

operations will help.

How efficient is our approximation algorithm? If any algorithm is based on

rectangulations, it will require R(nlogn) time, because that is the lower bound for

computing rectangulations [9]. However, there may exist completely different efficient

methods that avoid rectangulations, and yet achieve a factor of half in the number of

vertices reduced.

We do not have approximation algorithms for nonrectilinear polygons. Our recti-

linear algorithm cannot be generalized, because it is dependent upon the fact that at

most two corners of polygons can simultaneously intersect. In the general case,

however, any number of blocks can simultaneously intersect.

How good is our exact algorithm for computing minimum rectilinear hulls? Even

though its time complexity is exponential in k, the factor of n9 makes it impractical

even for a few polygons. We believe that the algorithm for constrained minimum hulls

can be dramatically improved to run in some low-degree polynomial time.

We do not have an exact algorithm for nonrectilinear polygons which is exponen-

tial only in the number of polygons. The major problem here seems to be in

constructing a suitable discrete search space.

In three dimensions, we need to design algorithms for all variants of the problem.

Unfortunately, most of our ideas in two dimensions do not translate there, and

radically different approaches may be required.

Finally, it seems to be necessary to define a good general measure of approximation,

rather than speciai ones such as area, number of vertices or faces, etc. Such a measure

should be investigated from a computational complexity point of view.

Minimum vertex hulls for polyhedral domains 135

References

[l] A. Aggarwal, H. Booth, J. O’Rourke, S. Suri and C.K. Yap, Finding minimal convex nested polygons,

in: Proc. ACM Symp. on Computational Geometry (1985) 296303.
[2] H. Alt, Approximation of convex figures by circles and rectangles, Manuscript, 1989, Freie Universitlt

Berlin.

133 J. Canny and J. Reif, New lower bound techniques for robot motion planning, in: Proc. IEEE FOCS
(1987) 49-60.

[4] J.S. Chang and C.K. Yap, A polynomial solution for Potato Peeling and other polygon inclusion and

enclosure problems, in: Proc. IEEE FOCS (1984) 408417.

[S] B. Chazelle, Triangulating a simple polygon in linear time, in: Proc. IEEE FOCS (1990) 220-230.

[6] K. Clarkson, S. Kapoor and P.M. Vaidya, Rectilinear shortest paths through polygonal obstacles in

O(n(logn)‘) time, in: Proc. ACM Symp. on Computational Geometry (1987) 251-257.
[7] G. Das and D. Joseph, Minimum vertex hulls for polyhedral domains, in: Proc. STACS, 1990, Lecture

Notes in Computer Science, Vol. 415 (Springer, Berlin, 1991) 126-137.

[S] G. Das and D. Joseph, The complexity of minimum convex nested polyhedra, in: Proc. Canadian Conf:

on Computational Geometry (1990) 296-301.

[9] A. Fournier and D.Y. Montuno, Triangulating simple polygons and equivalent problems, ACM
Trans. Graphics 3 (1984) 135-152.

[lo] H. Fraysseix, J. Path and R. Pollack, Small sets supporting fary embeddings of planar graphs, in:
Proc. ACM STOC (1988) 426433.

[l l] M. Carey and D. Johnson, Computers and Intractability (Freeman, New York, 1979).

[12] SK. Ghosh and A. Maheshwari, An optimal algorithm for computing a minimum nested nonconvex

polygon, Tata Institute of Fundamental Research Report TR CS-90/2, TIFR, Bombay, 1990.

1131 V. Klee, private communication with D. Joseph, 1990.

[14] V. Klee and M.C. Laskowski, Finding the smallest triangle containing a given convex polygon, J.

Algorithms 16 (1985) 359-374.
[15] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329-343.

[16] J. O’Rourke, Computational geometry column, SlGACT News 19 (1988) 22-24.
[17] M. Sharir and P. Schorr, On shortest paths in polyhedral space, in: Proc. ACM STOC (1984) 144-153.
[18] S. Suri, A polygon partitioning technique for link distance problems, Manuscript, Bell Communica-

tions Research, 1986.

[19] R.E. Tarjan and C.J. Van Wyk. An O(n log log n)-time algorithm for triangulating a simple polygon,

SIAM J. Comput. 17 (1988) 143-178.
1201 C.A. Wang, Finding a minimal chain to separate two polygons, in: Proc. Allerton Con5 on Commun-

ication, Control and Computing (1989) 574-583.

