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A Howell design of side s and order 2n, or more briefly an H(s, 2n), is an s x s 
array in which each cell is either empty or contains an unordered pair of elements 
from some (2n)-set V such that (1) every element of V occurs in precisely one cell 
of each row and each column, and (2) every unordered pair of elements from V is 
in at most one cell of the array. It follows immediately from the definition of an 
H(s, 2n) that n ~<s~< 2 n - 1 .  The two boundary cases are well known designs: an 
H(2n- 1, 2n) is a Room square of side 2 n -  1 and the existence of a pair of 
mutually orthogonal Latin squares of order n implies the existence of an H(n, 2n). 
We are interested in the existence of Howell designs which contain as a subarray 
another Howell design. The existence of Room squares with Room square sub- 
designs and a pair of mutually orthogonal Latin squares with Latin square 
sub-designs has been investigated. In this paper, we consider the general problem 
of constructing H(s, 2n) which contain as sub-designs H(t, 2m). We describe some 
bounds on the parameters and several constructions for the general case, then we 
concentrate on determining the spectrum for Howell designs where t=m or 
t = 2m -- 1. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

A Howell  design o f  s i d e  s a n d  o r d e r  2n ,  o r  m o r e  b r i e f l y  a n  H(s, 2n), is 

a n  s x s a r r a y  in  w h i c h  e a c h  cel l  is e i t h e r  e m p t y  o r  c o n t a i n s  a n  u n o r d e r e d  

p a i r  o f  e l e m e n t s  f r o m  s o m e  ( 2 n ) - s e t  V s u c h  t h a t  
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(1) every element of V occurs in precisely one cell of each row and 
each column, and 

(2) every unordered pair of elements from V is in at most one cell of 
the array. 

It follows immediately from the definition of an H(s, 2n) that n ~< s ~< 2n - 1. 
An H(2n- l ,  2n) is also called a Room square of order 2 n - 1  or 

a RS(2n-  1). The spectrum of Room squares was completed in [26] :  there 
exists a RS(2n-1)  for all positive integers n, n 5 2  or 3. There is an 
extensive literature available on Room squares, see [26] and a recent 
survey 1-14]. At the other boundary, the existence of a pair of mutually 
orthogonal Latin squares of order n implies the existence of an H(n, 2n). 
Thus, there is an H(n, 2n) for n a positive integer, n # 2  or 6 [-3]. (An 
H(6, 12) is displayed in [17].) 

Several other special cases of H(s, 2n)s were investigated and a summary 
of these results can be found in [27, 2]. The spectrum for H(s, 2n) was 
completed in two papers, [27] and [2].  

THEOREM 1.1. [27, 2] There exists an H(s, 2n) for aIl positive integers s 
and n except when (s, 2n)6 {(2, 4), (3, 4), (5, 6), (5, 8)). 

An H*(s, 2n) is an H(s, 2n) in which there is a subset W of V, 
1 W I  = 2 n  - s, such that no pair of elements from W appears in the design. 
*-designs are useful in recursive constructions. We note that there exist 
H*(s, 2n) for s even with two exceptions : there is no H*(2, 4) and there is 
no H*(6, 12) [2].  Informatibn on *-designs for s odd can be found in 
[27]. Many of the recursive constructions also use Howell designs in 
standard form. Suppose H is an H*(s, 2n) defined on Z s u W. H is said to 
be in standard form if there is an element of W, say 0% so that {i, oo } 
occurs in cell (i, i) for i = 0, 1 .... , s -  1. 

Suppose that H is an H(s, 2n) defined on the symbol set V. A t x t 
subarray G of H is said to be a Howell sub-design H(t, 2m) if it is itself 
a Howell design of side t defined on a symbol set U ~ V of size 2m. In 
view of Theorem 1.1, no Howell design can contain a Howell sub-design 
H(t, 2m) when (t, 2m)~ {(2, 4), (3, 4), (5, 6), (5, 8)}. However, we can 
construct Howell designs which are missing sub-designs of these orders. In 
this case we can still speak of the pairs of elements which would occur in 
such sub-designs (if they existed). We give the following formal definition. 

Let V be a set of 2n symbols and let U be a subset of V of cardinality 
2m. An incomplete Howell design H(s, 2 n ) -  H(t, 2m) is an s x s array H 
which satisfies the following conditions. 

(1) Every cell in H is either empty or contains an unordered pair of 
elements of V. 
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(2) Every unordered pair of elements from V is in at most one cell 
of the array. 

(3) There is an empty t by t subarray G of H. 

(4) Every element of V -  U occurs in precisely one cell of each row 
and each column of H. 

(5) Every element of U occurs once in each row and column not 
meeting G, but not in any row or column meeting G. 

(6) The pairs of elements in H - G  plus the pairs of elements 
occurring in some H(t, 2m) (defined on the elements of U) are the pairs 
which occur in an H(s, 2n) defined on the elements of V. 

The empty subarray G is often referred to as the hole. Observe that G can 
be filled in with an appropriate H(t, 2m) defined on the elements of U 
(provided such a design exists), thereby constructing an H(s, 2n). By 
appropriate, we mean that there is no pair of elements occurring together 
in the H(t, 2m) which already appears together in the large array H. We 
must therefore be careful at times to note the pairs which are thought to 
be contained in the subarray. 

We also refer to an H(s, 2 n ) -  H(t, 2m) incomplete Howell design as an 
H(s, 2n) which contains an H(t, 2m) sub-design or as an H(s, 2n) which is 
missing an H(t, 2m) sub-design if the H(t, 2m) does not exist. An example 
of an incomplete Howell design with the sub-design filled in is the 

1,4 2,5 3,6 9,14 7,8 10, 13, 

3,5 1,6 2,4 7,14 9,10 S,11 12~13 

2,6 3,4 1,5 12,14 8,13 9,11 7,10 

10,14 7,12 5,13 3,8 4,6 2,11 1,9 

9,12 7,11 4,8 6,10 5,14 2,3 

8,12 5,10 4,9 1,11 3,7 6,13 

11, t3 1,2 8,9 4,14 6,12 3,10 

9,13 

11,14 

8, 14 

7, 13 I0, 12 

8,10 

FIG. i. 

3,13 

7,9 

6,11 

2,12 5,11 1,10 

1,12 

1,3 13,14 

2,10 5,9 

3,11 

4,11 6,7 2,13 

3,14 

2,7 6,9 

5,6 2,8 4,12 10,11 

3,12 1,7 4,13 

4,5 2,9 1,8 6,14 

1,14 I 5,12 

An H(13, 14) design with an H*(3, 6) sub-design. 

11,12 

1,13 

2, 14 

5,7 

4,7 6,8 

5,8 4,10 

3,9 
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H(13, 14) displayed in Fig. 1 which contains an H(3, 6) in the upper left 
hand corner. 

There has been much interest in two special cases of the problem of 
finding Howell designs with sub-designs. The cases where the large square 
and the subsquare are both Room squares or are both orthogonal Latin 
squares have been studied. The following are the best results in these cases. 
They are stated in terms of Howell designs. 

THEOREM 1.2 (Room Squares with Room Subsquares). 

(1) [5] I f t h e r e e x i s t s a n H ( v , v + l ) - H ( w , w + l ) ,  thenv>~3w+2. 

(2) [9,10] For w=3,5 ,7 ,9 ,11 ,13 ,15 ,  and for all odd v>~3w+2, 
there is an H(v, v+ 1 ) - H ( w ,  w+ 1). 

(3) [9] For all odd w >1 37 and for all odd v >>. (7w-  5)/2, there is an 
H(v, v+ 1 ) -  H(w, w+ 1). 

(4) [9-1 For all odd w >>. 127 and for all odd v >~ 3w + 240, there is an 
H(v, v+ 1 ) -  H(w, w+ 1). 

(5) [-33] For all odd w~>503 and all odd v>~3w+2, there is an 
H(v, v+ t ) -  H(w, w+ 1). 

THEOREM 1.3 [16] (Orthogonal Latin Squares with Orthogonal Latin 
Subsquares). An H*(v, 2 v ) - H * ( w ,  2w) exists if  and only if  v>>.3w and 
(v, w) ¢ (6, 1). 

In this paper, we investigate the existence of incomplete Howell designs, 
H(s, 2 n ) -  H(t, 2m). This is the first study of Howell designs with sub- 
designs where both of the designs are not Room squares or are not a pair 
of orthogonal Latin squares. 

The paper is organized as follows. In the next section, we provide some 
bounds on the parameters for incomplete Howell designs. In Section 3 we 
describe some useful recursive constructions for Howell designs with sub- 
designs. We concentrate on Howell designs which contain Room squares as 
sub-designs in Section 4. In addition to providing some general results, in 
this section we completely determine the spectra of H(n, n + 2 ) - R S ( 3 ) ,  
H(n, n + 2 ) - R S ( 5 )  and H(n, n + 2 )  which contain as subarrays RS(7). 
Section 5 discusses Howell designs where the sub-design is a pair of 
orthogonal Latin squares. In "this section, we determine the spectra 
completely for H(n, n+ 1 ) - H * ( m ,  2m) and H(n, n + 2 ) - H * ( m ,  2m) for 
m=2 ,  3, and 4. Some general results are also provided in Section 5. 
Finally, in Section 6 we prove a general result for H(s, s + c t ) -  H(t, s + c~) 
where ct _-- 0 (mod 2). 
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2. BOUNDS 

As we have seen from the special cases discussed in Theorems 1.2 and 
1.3, in order for an H(n, n + ~ ) -  H(m, m + ~) to exist, n must necessarily 
be greater than some lower bound which is a function of m (and 
probably ~ and /~). In this section, we will give such a general lower 
bound. We will also use this general bound to provide bounds for specific 
values of ~ a n d / L  

We begin with some notation which will be used throughout this section. 
Let M be a set of cardinality m +/~ and let N be a set of cardinality 

n + ~ - / L  Suppose H is an H(n+m ,n+rn+~)  defined on M w N  which 
contains as a subarray an H(m, m + ~) (called H I )  defined on M. We write 
H in the following form. 

H = 

H 1 A 

C B 

t m 

The number  of filled cells in H1 is ½(m + fl)m, thus the rectangles A and 
C both contain ½(n + ~ - / ~ ) m  filled cells. Therefore the square B contains 
½(n2+ n ~ -  m~ + m/~) filled cells. Now let m B denote the number  of pairs in 
B with both elements from the set M, nB denote the number of pairs in B 
with both elements from N, and p denote the number  of pairs in B with one 
element from M and one from N. We have that 

nB + mB + p = ½(n 2 + n~ - m~ + mfl). (1) 

Also, by counting occurrences of the symbols from M that occur in B we 

get 

2mB + p = (m +/~) n. (2) 

(We note that since (m +/~) is even, the equation above says that p must 
be even. Thus, in B the number of pairs where one element is from M and 
one is from N is always an even number.) 

Now since H 1 and B are the only cells which contain pairs where both 
- ~ ~< ~m+¢~ This simplifies elements are from M, we get that ½(m +/~) m + ,,,B --~ t 2 )- 

to 

m~ ~< ½ (m + 13)(/~ - 1 ). (3)  
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After solving Eqs. (1) and (2) for p and setting them equal, we have 

½(n 2 + na - mc~ + mfi )  - m B - nB = (rn + fi) n -- 2m  B 

o r  

n~= ½(n 2 + n a - m ~ + m f i ) -  ( m + f i )  n + m s .  

Now use the bound for m e from Eq. (3) to get 

O ~ nB <~ ½(nZ + nc~-- m a  + mfi)  -- (m + fi) n +  ½(m + f l ) ( f i - -  1) 

After solving this inequality for m we get the following general bound for 
incomplete Howell designs. 

THEOREM 2.1. I f  there exis ts  an H ( n + m , n + m + a ) - - H ( m , m + f l ) ,  

then 

n 2 + n~ -- 2nil + f12 _ fl 
m <~ (4) 

2 n + a - 2 f l + l  

The next bound on the parameters comes from comparing the number 
of empty cells in a row of the sub-design to that of the full Howell design. 
Clearly, there must be at least as many empty cells in a row of the full 
Howell design as in a row of the sub-design. Thus, rn + n - l ( m  + n + c~)~> 
m -  ½(rn + fi), which gives the next theorem. 

THEOREM 2.2. I f  there exis ts  an H ( n  + m, n + m + c~) - H ( m ,  m + fi), 

then n >~ c~ - ft. 

We remark that Theorem 2.1 gives a much better bound when ~ is small 
while the bound from Theorem 2.2 may be better for large values of c~. 

Another easy bound to prove is the following: 

LEMMA 2.3. I f  there exis ts  an H ( n  + m, n + m + ~) - H ( m ,  m + fi), then 
n >~ rn. 

P r o o f  A symbol from the set N must occur in every row of A and every 
column of C. Thus, the total number of occurrences m + n must be at least 
2mandn~>rn .  | 

We now proceed to determine more specific bounds for special classes of 
Howell designs with sub-designs. We will give bounds for the classes which 
are discussed in Sections 4, 5, and 6 of this paper. 

In Section 4, we will look at the case of a Howell design with a Room 
square sub-design (an H ( n + m ,  n + m + ~ ) - H ( m , m +  1)). The next 
theorem provides a lower bound for n + m in this case. 
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THEOREM 2.4. I f  there exists  an H(n  + m, n + m + 0{ ) -  H ( m , m  + 1), then 
n + m >~ 3m - 0{ + 2 whenever 0{ <~ m + l, and n + m >l m + a - 1  whenever 
a ~ > m + 2 .  

Proof. Fi rs t  assume tha t  ~ < 2 m .  Plug  f l =  1 in to  Eq. (4) and  write 
the resul t ing inequal i ty  as 0 ~< n 2 q-  (0{ - -  2 - 2m) n + m(1 - a). A p p l y  the 
quad ra t i c  fo rmula  and take  the posi t ive  roo t  to ob ta in  

1 2 0{ + ~ x / 4 m  +0{ 2 n>>.m+ 1 - ~  - 4 a + 4 + 4 m  

1 2 
0{ + ~ x / 4 m  - 4ma + 0{2  _ _  40{ + 4 + 4m + 4ma = m + l - ~  

1 
_ 0{ + 2 x/(Zrn _ 0{)2. > m + l  

Thus  n ~> 2m + 2 - 0{ and  so it follows tha t  n + m/> 3m - 0{ + 2 when 0{ ~< 2m. 
F r o m  Theo rem 2.2 we see tha t  we mus t  also have m + n ~> m + a - 1. The 

result  now follows since 3m - 0{ + 2 ~> m + a - 1 whenever  0{ ~< m + 1. ] 

In  Sect ion 5, we will concern  ourselves with the case o f H ( n  + m, n + m + 0{) 
- H ( m ,  2m) where a = 1 or  2. The  next  theorem gives a lower  b o u n d  for 

n + m in this case. 

THEOREM 2.5. I f  there exists  an H(n  + m, n + m + 0{) - H(m,  2m), then 
n + m >~ max  { 4m - 0{ + 2, 2m }. 

Proof. This p r o o f  is s imilar  to tha t  of  the previous  theorem.  F i r s t  use 
fl = m in Eq. (4) and  write the resul t ing inequal i ty  as 0 ~< n 2 - (4m - 0{) n + 
3rn 2 -  m(0{ + 2). A p p l y  the quadra t i c  fo rmula  and take  the posi t ive  roo t  to 
ob ta in  

]m n > ~ 2 m - - 2 +  2--  re(o{-  2) + ~-. 

The express ion under  the radica l  sign can be simplif ied to 
(m - (0{ - 2)/2)  2 + ~ - 1. So if ~/> 1 we get 

n > 2 m - ~ +  m -  

Therefore  n > ~ 3 m - 0 { + 2 ,  if 1 ~<e~<2m+2 .  If  0{= 1, then we have tha t  
n >/2m - ½ + (m + ½) = 3m. This  says tha t  m + n ~> 4m. But since e = 1, we 
are in the R o o m  square case and  m + n mus t  be odd.  Thus  n + m >~ 4m + 1. 

If  0{/> 2m + 2 the result  follows f rom Theo rem 2.3. | 
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One other bound is for the specific case when e =/?. This case will be 
discussed in Section 6. We have the following theorem. 

THEOREM 2.6. I f  there exists an H(n + m, n + m 4, ~) - H(m, m + ~), 
then n 4- m >/3m 4- 2. 

Proof Let 3 = e in Theorem 2.1 and proceed as in Theorem 2.4 to get 

0~ 1 4 4 m 2  _ 30~2 + 4 e  + 4 m  n>~m+~+-~ 

= m  +-~+ x /mZ--3  o~2 +~ + m  (5) 

It  is not difficult to show that since m ~> e >~ 1, then m 2 - -  (3/4) e2 + e + m 
> (m - (c(2 - 1)) 2. Therefore, from Eq. (5) we have tha t  n >/m + e/2 + m - 
( ~ / 2 - 1 )  or m + n > ~ 3 m +  1. Now, if c~ is even, then n and m + n  are both 
even and therefore m + n >~ 3m + 2. If  e is odd, then n and m + n are both 
odd and again we have that m + n ~ >  3 m + 2 .  Note that if e =  1, this is 
Theorem 1.2. | 

3. CONSTRUCTIONS 

In this section, we describe several constructions, both direct and recur- 
sire, for Howell designs with sub-designs. The main recursive techniques 
for constructing Howell designs with sub-designs use frames. All of the 
frames described in this paper are a special type of frame with block size 
2, called Room frames, and we restrict our definitions and results to these 
frames. We refer the interested reader to [22] for more general definitions 
and results on frames. 

Let V be a set of v elements. Let V1, V2,..., Vn be a partition of V. 
A { V1, V2 ..... Vn }-Room frame F is a square array of side v which satisfies 
the properties listed below. We index the rows and columns of F by the 
elements of V. 

(1) Each cell is either empty or contains an unordered pair of 
symbols of V. 

(2) The subarrays indexed by V~x Vi are empty for i =  1, 2 ..... n. 
(These subsquares are often referred to as the holes of  F). 

(3) Row (or column) x contains each element of V -  Vi for x ~  Vf. 

(4) The pairs occurring in F are precisely those {u, v}, where 
{., v} (vx v ) -  (vi× v,). 
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A { V1, /I2 ..... Vn}-Room frame F is said to be skew if at most one of the 
cells (i, j )  and (j, i) ( i C j )  is nonempty. 

The type of a {V1, V2 ..... Vn}-Room frame is the multiset 
ul u2 uk if {] VI[, r V2J, ..., [Vn[ }. We will say that a Room frame has type t I t 2 . . . t  k 

there are u i Vj's of cardinality ti, 1 ~ i ~< k. The term frame was originally 
used for Room frames, see for example [9, 12, 29] ; for convenience, in this 
paper we will use the terms frame and Room frame interchangeably. 

The basic frame construction for Howell designs is stated below. It is 
often referred to as the "filling in the holes" construction. 

THEOREM 3.1 [29]. I f  there exists  a {G1, G2 , . . . ,Gm}- f rame  and 
H*([G;], [Gi[ + ~ )  f o r  i = 1 , 2  ..... m, then there exists an H*(~]m=l ]G~[, 
2 m i=1 [Gi[+e)  which contains an H * ( ] G i l , [ G i ] + ~ )  sub-design fo r  all 
i = 1, 2, ..., n. 

COROLLARY 3.2. I f  there exists a {G1, G2 ..... Gm}- frame and 
H*([Gi[ + w. [Gi[ + w + ~) - H*(w ,  w + c~) f o r  i = 1, 2, ..., n, then there exists 
an H*(•m= 1 [Gi] + W, •im_ l ]Gi[ + w + ~) - -  H*(w ,  w + c~). 

It is clear that this construction will always produce H(n, n + a) which 
contains as subarrays H(m,  m + c~) for some m and n. There are also two 
ways to use the basic frame construction to produce H(n, n + c~) which 
contain as sub-designs H(m,  m + fl) for ~ # ft. The first method is to use a 
sub-design H([Gi[, [Gi] + ~) which contains as a sub-design an H(m,  m + fl) 
in one of the holes. The second method is to construct frames which 
already contain as subarrays the desired sub-design (an H(m,  m + fl) or an 
H(rn, m + fi) in standard form with the main diagonal deleted). 

We describe several constructions for Room frames. The constructions 
are applied in later sections to construct Howell designs with sub-designs. 
The following construction provides some of the most useful Room frames; 
it was originally used to determine the spectrum of skew Room squares in 
[29, 31]. We will use it by filling in the holes with at least one sub-design 
which contains the desired sub-design. 

THEOREM 3.3 [29, 31]. Let  O<~t<~3m. I f  there exists a TD(5, m), then 
there is a skew f rame  o f  type (4m) 4 (2t). 

It is easy to see how this theorem can be used to produce incomplete 
Howell designs and Howell designs with Howell sub-designs. 

COROLLARY 3.4. Suppose m >1 4, m # 6, 10, 0 ~< t ~< 3m, and c~ - 0 
(rood 2). Then there exists an H*(16m + 2t, 16m + 2t + c~) -- H*(2t,  2t + ~) 
and an H*(16m + 2t, 16m + 2t + a) which contains an H*(4m, 4m + a). 
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Proof. We apply Theorems 3.1 and 3.3. TD(5, m) exist for all m>~4, 
m ¢ 6, 10, see [18, 4]. We use H*(4m, 4m + c~) to fill in the holes of the 
frames in Theorem 3.3; these designs exist by Theorem 1.1 (see [2]).  | 

The next two frame constructions are standard constructions for frames. 
The first is a direct product construction and the second is a special case 
of Wilson's Fundamental Construction [35] applied to frames. Both of 
these constructions can be used to construct skew frames by using skew 
frames as input designs. 

THEOREM 3.5 (Direct Product)  [30]. I f  there exists a frame of type 
tlu~t2u2.., t~ "~ and a pair of mutually orthogonal Latin squares of side m, then 
there is a frame of type (mtl) "1 (mt2) u2-.. (mt,) u". 

The Fundamental Construction is stated in terms of group divisible 
designs. A group divisible design (or GDD)  is a triple (X, ~, ~4) where (i) 
X is a set (called points), (ii) ~ is a partition of X into subsets (called 
groups), (iii) d is a family of subsets of X (called blocks) such that a group 
and a block contain at most one common point, and (iv) every pair of 
points from distinct groups occurs in exactly one block. The group-type 
(or type) of a G D D  is the multiset { ] G [ : G ~ } .  Usually an "exponential 
notation" is used to describe the type of a G D D :  a G D D  of type 
tl, lt2,2 ... tnu" is a G D D  where there are ui groups of size t~ for 1 ~< i~< k. 
A transversal design TD(k, n) is a G D D  of type n k where every block has 
cardinality k. (We note that the pairs in a Room frame form a G D D  with 
block size 2 and groups V1, V2 ..... V..) 

THEOREM 3.6 (Fundamental Construction) [35, 303. Let (X, ~, ~¢) be 
a GDD, and let w:X--*Z+w{O} (w is called a weighting). For every 
A ~ ~¢, suppose there is a Room frame of type {w(x): x ~ A  }, then there is 
a Room frame of type {Zx~c w(x): Gefq}.  

It is clear that the frame produced by the direct product construction 
contains as a subarray an H*(m, 2m). A frame of type 1 n exists if and only 
if there exists a RS(n). If we use frames of type 1" in either of these two 
constructions and fill in the holes of the frames with designs in standard 
form, then the resulting design contains as a subarray a RS(n). 

In order to describe the next construction, we need some definitions. Let 
V be a finite set of size n and let K be a subset of V of size n. An incomplete 
orthogonal array IA(n, k, s) is an (n 2 -  k 2) x s array written on the symbol 
set V such that every ordered pair of (Vx V) - (Kx  K) occurs in every pair 
of columns of the array. An IA(n, k, s) is equivalent to a set of s - 2  
mutually orthogonal Latin squares of order n which are missing a 
subsquare of order k. We need not be able to fill in the k x k missing 
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subsquares with Latin squares of order k. Note that an IA(n, k, 4) can be 
used to construct an H(n, 2 n ) -  H(k, 2k). 

Let F be a Room frame of type (2t) n defined on V u  W where I WI = 2t. 
F has a set S of l ordered partitionable transversals of the IV[ x I gl array 
indexed by the elements of V if the transversals in S satisfy the following 
properties. Let S =  {S 1, S 2 .... , SZ}. 

(1) S j contains 2t (n-1)  pairs which can be partitioned into two 
sets S~ and S{,  rS~l = IS~I = t ( n - 1 ) ,  where every element of V occurs 
precisely once in S~, i =  1, 2. 

(2) The pairs in F can be ordered so that every element in V occurs 
precisely once as a first coordinate and precisely once as a second 
coordinate in the pairs of S j. 

The next two constructions for frames first appeared in [21] and 
were used to construct skew frames. They can be generalized and, for 
completeness, we include the proof of one of the more general construc- 
tions. 

THEOREM 3.7. Suppose there exists 

(1) a frame of type (2t) n with a set S of l ordered partitionable 
transversals, S= { S'  , S 2 ..... St}, 

(2) a pair of orthogonal Latin squares of side m, and 

(3) IA(m+kj ,  kj, 4) where Z~=lkj=k.  

Then there exists a frame of type (2tm) n 1 (2tin +2k).  

Proof. Let V= U7 -1  Vi where I g, I = 2t for all i. Let M =  {1, 2 ..... m}. 
Let fij={c~,k]Ii=l, 2,...,kj} and let 7j={oei, kjl i=l,  2,...,kj}. Let 
fl = U~=l fij and let ~ = U~=I 7j. 

Let N1 and N2 be a pair of orthogonal Latin squares of side rn defined 
on M. N will be the array of pairs formed by the superposition of N1 and 
N2, N= N 1 oN2. Nxy is the array of pairs formed by replacing each pair 
(a, b) in N with the pair ((a, x), (b, y)). 

We use an IA(m+kj ,  kj, 4) to construct a pair of orthogonal Latin 
squares of side m + kj which is missing a pair of orthogonal Latin squares 
of side kj. (The smaller Latin squares need not exist.) Let I denote the 
m + kj square array of pairs formed by superimposing the pair of Latin 
squares. Uxy will denote I defined on the symbols ( M x  {x, y } ) u  (/~ju 7j)- 
More precisely, if (x, y) is an ordered pair, then the pair of Latin squares 
used to construct I~y will be defined on (M x {x } ) u  flj and (M x { y } ) u  7j 
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respectively, where the missing subarrays are defined on fij and 7j. Iaxy can 
be written in the following form. 

A ~y B Jxy 
I Jxy = 

DJxy E 

Let F be a frame of type (2t) n defined on V w  W where I W] = 2t and F 
has a set S of l ordered partitionable transversals, S =  {S 1, S 2, ..., St}. We 
construct a frame of type (2tm) n-1 (2tm+2k)  from F as follows. We first 
construct a 2tmn x 2tmn array from F. If (x, y) is a pair in F - S ,  replace 
(x, y) by the m x m array Nxy. If (x, y) is a pair in S j, replace (x, y) by the 
rn x m array A J~y. All empty cells of F are replaced by m x m empty arrays. 
The resulting array F1 has a diagonal of empty square arrays of side 2tin. 

We add 2k news rows and 2k new columns to F1. Suppose S{ contains 
the pair (x, y) in row r of F. Then we place (x, y) in row r of a column 
vector C{. C{ will contain t ( n - 1 )  pairs; the other entries will be zero. 
Next suppose S{ will contain the pair (x, y) in column r of F. Then we 
place (x, y) in column r of a row vector R{. We now expand these vectors. 
Replace each pair (x, y) in C{ with the m x kj array B~y and replace 
each pair (x, y) in R{ with the k j x m  array DJx. Label the resulting 

• l* C~*] and let arrays C{.* and R{*, respectively. Let cg = [Cl* ' C~* ..... C 1 , 
1" l* l* T = [RI*, R 2 .... , R1,  R2 ] . cg is a 2tmnx2k  array and ~ is a 2kx2 tmn  

array. 
We add the arrays cg and N to F, as follows. 

F 1 

F:= 
E 

The resulting array Fa is a 2tnm + 2k square array. E is an empty array of 
side 2k. F2 is a frame of type (2tm) n-1 (2tm+2k). The hole of size 
2tin + 2k is defined on ( M x  W)w (fl w 7); the other holes of the frame are 
defined on M x  Vi for i =  1, 2 ..... n -  1. | 

The next theorem shows that this construction can also be used with 
frames which contain a set of complete ordered partitionable transversals, 
See [21] for the proof. 
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THEOREM 3.8 [21]. Suppose there exists 

(1) a frame of type (2t) n with a set S of  1 complete ordered parti- 
tionable transversals, S =  { S ~, S 2 .... , SI}, 

(2) a pair of  orthogonal Latin squares of side m, and 

(3) IA(m+ks ,  kj, 4 ) where 52~=lkj=k. 

Then there exists a frame of type (2tm)" (2k). 

Again, it is clear that these frames contain as subarrays H*(m, 2m). 
We recall that the existence question for Room squares with sub-Room 

squares has been almost completely settled, and that the spectrum of 
IA(n, k, 4)s  is known. The next case to consider is H(n, n + 2 )  with 
H ( m ; m + 2 )  sub-designs, and we describe a special construction for this 
case. 

This construction is a generalization of a construction for Room squares 
which uses houses to construct Room squares containing Latin square and 
Room square sub-designs. (It was first used to construct Room squares 
with sub-Room squares [32].) Let V be a set of 2n elements, and let F be 
a partition of V into n pairs. A house of order n is a 2n x 2n array H which 
satisfies the properties listed below. 

(1) Each cell of H is either empty or contains a pair of distinct 
elements of V. 

(2) Each element of V occurs once in each row and once in each 
column of H. 

(3) Each pair in F occurs twice in H, once in the first row of H and 
once in the second row of H. Ever other (unordered) pair of distinct 
elements of V occurs once in H. 

(4) Each column of H contains one pair from F. 

The spectrum of houses is known: there exists a house of order n for n a 
positive integer and n ¢ 2 [32]. 

THEOREM 3.9 [32]. Suppose there exists a house of order n, a RS(r), 
a R S ( 2 n -  1), and a pair of  mutually orthogonal Latin squares of order 
(r + 1)/2. Then there exists a RS(nr + n -  1) which contains as subarrays a 
RS(r), a R S ( 2 n -  1), and an H*((r + 1)/2, r +  1). 

We modify this construction to produce H(2n, 2n + 2 )  which contain 
Latin square and H(m, m + 2) sub-designs. 
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T~EOREN 3.10. I f  there exists an H ( 2 n - 2 ,  2n), an H(2m, 2 m + 2 ) ,  a 
house of  order m + 1, and a pair of  orthogonal Latin squares of  order n, then 
there exists an H(2mn + 2 n -  2, 2mn + 2n) which contains as subarrays an 
H(2m, 2m + 2) and an H(2n - 2, 2n), as well as an H(n, 2n). 

Proof. Let  V = { x ; , y ,  l i = l , Z , . . . , m + l }  and l e t N = { 1 , 2  .... ,n} .  
Let  H~ be a house of order  m + 1 defined on V where the repeated pairs 

are {xi, yi} for i = 1, 2 .... , m + 1. Let  H2 be an H(2m, 2m + 2) defined on V. 
The  missing pairs for H2 are {xl, y~} for i = 1, 2, ..., m + 1. 

Let  A, be an H ( 2 n - 2 ,  2n) defined on N x  {xi, Yi}. Note  that  A~ is a 
square ar ray  of side 2 n - 2 .  

Let  L1 and L2 be a pair  of o r thogona l  Lat in squares of order  n defined 
on N. L will be the a r ray  of pairs formed by the superposi t ion of L ,  and 
L2,  L = L 1 o L2.  We can write L so that  the last co lumn contains the pairs 
(i, i) for i =  1, 2, ..., n. Lxy will denote  the a r ray  of pairs formed by replacing 
every pair  (a, b) in L with the pair  ((a, x), (b, y)). Lxy can be writ ten in the 
following form. 

Lxy = Bxy  Cxy 

(Note  tha t  Cxy contains the pairs ((i, x), (i, y ) )  for i =  1, 2 ..... m +  1.) 
We first use H1 and H 2 to construct  a (2m + 2) x (4m + 2) a r ray  F. 

F =  

X ly  I . . .  g 
x l y  , ... 

H1 H2 

g is an emp ty  a r ray  of size 2 x 2m. Next  replace every pair  (u, v) which 
is not  a repeated pair  in H I of F with the n x n -  1 ar ray  B,v. Replace 
every pair  (u, v) in H 2 of F with the n x 1 column Cu~. Finally, replace 
the 2 x 2 a r ray  which contains the pair  (xi, Yi) on its diagonal  with the 
2n - 2 x 2n - 2 a r ray  Ai. (Empty  cells in H 1 are replaced by n x n - 1 empty  
arrays  and empty  cells in H 2 or C are replaced by n x 1 empty  arrays.)  Call 
the resulting a r ray  H. 

H is a 2ran + 2 n -  2 square a r ray  defined on N x V. Every element of 
N x V occurs once in each co lumn of H and once in each row of H. 
There  are n(m + 1) pairs which do not  occur  in H ;  these are of the form 
{(j, x~), (j, yi)} for j =  1, 2 ..... n and i =  1, 2, ..., rn + 1. I t  is s t ra ightforward 
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to verify that every other distinct unordered pair in N x V occurs precisely 
once in H. This verifies that H is an H(2mn + 2n - 2, 2mn + 2n). H contains 
as subarrays an H(2n - 2, 2n) and an H(2m, 2m + 2) (as a copy of//2).  | 

COROLLARY 3.11. I f  n ~ 2, 6 and m >~ 2, then there exists an 
H(2mn + 2n - 2, 2mn + 2n) which contains as subarrays an H(2m, 2m + 2) 
and an H ( 2 n -  2, 2n), as well as an H(n, 2n). 

Starters and adders can be used to construct Room squares with sub- 
Room squares and H(n, n + e )  with sub-H(m, rn+c  0. The Room square 
constructions are described in [19] in terms of balanced tournament 
designs. Intransitive starters and adders were used in [21] to construct 
skew H(n, n + 2). We describe the generalization of this construction for 
H ( n , n +  2k), k>~ l. 

An intransitive starter over 7/2n_Zm for an H(2n, 2n + 2k) written on the 
symbol set 2_2,_2mW {ooil i =  1, 2 ..... 2m} u {eel i =  1, 2 ..... 2k} is defined to 
be a triple (S, R, C) where 

S =  {u;, v~li= 1, 2,..., n - 3 m - k }  u {oo~,zili= 1, ..., 2m} 

u {~i, w i l i=  1, ..., 2k} 

C = { { x e ,  y i } l i = l ,  2 ..... m} 

R = { { x ; , y ; } l i = l ' , 2 , . . . , m }  

satisfying the following properties. 

(1) S u C = 7 / 2 , _ 2 m w { o o ~ [ i = l , . . . , Z m } u { c ~ e l i = l  ..... 2k} 

(2) No element of Y - 2 , _ Z m - { O , n - m }  occurs more than once 
in {+_(ue -ve ) l i= l ,  2 , . . . , n - 3 m - k }  u { + _ ( x e - y e ) l i = l ,  2, . . . ,m} u 
{ +_(x~- y~) l i= l, 2 ..... m} 

(3) Ixe- Yel - 1 (rood 2) and Ix~- Y;I - 1 (mod 2) for i =  1, 2, ..., m. 

A corresponding adder A is a set {cl, c2 ..... cn-2, ,-k,  bl, b2, ..., b2m, 
al, a2 ..... a2k} where ai, be, cesY-2n_2,~ such that no element of Z2n 2m 
occurs more than once in A and {ue+ ce, vi+ cil i= 1, 2 ..... n -  3 m - k }  
u {z; + be l i=  l, 2,..., 2m} w {we+ai l i - -  1, 2 ..... 2k} u {x j, y~l i= 1, 2 ..... m} 

7~2n 2m" 
Since the proof of the intransitive starter-adder construction is an 

immediate generalization of the proof for the skew case in [21], we 
omit it. 

THEOREM 3.12 [21, 36"1. I f  there is an intransitive starter (& C, R)  
over Z2n_ 2m for an H(2n, 2n + 2k) and a corresponding adder A, and i f  there 
is an H(2m, 2m + 2k), then there is an H(2n, 2n + 2k) which contains as a 
subarray an H(2m, 2m + 2k). 
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In order to apply the recursive constructions, we need to construct a 
number of designs of "small" order. Theorem3.12 can be used for 
H(n, n + c~) - H(m, m + ~) when c~ =/L Examples of this construction 
appear in Section 5. 

We also need to be able to find some of the more general 
H(s, 2n) - -H( t ,  2m) to be used in the recursive constructions. Our main 
technique for constructing these designs is to use a hill-climbing algorithm 
on the computer. This algorithm is a modification of the algorithm which 
has been used successfully to find Room squares, Room squares with sub- 
squares, and frames. We refer the reader to the following papers for discus- 
sions of this algorithm: Room squares and Room squares with subsquares 
[13], frames [10]. In fact, a discussion of the underlying graphs of frames 
is given in [10] and only minor modifications are needed if the sub-designs 
are Howell designs of different types. This program is particularly useful in 
finding Howell designs where the sides are not too large. The existence of 
many of these designs is stated in this paper; however for reasons of space, 
we include only three examples. A complete listing of these Howell designs 
is contained in [7].  

4. ROOM SQUARE SUB-DESIGNS 

In this section, we investigate the existence of Howell designs which 
contain Room squares as sub-designs. 

We first construct frames which contain as subarrays frames of type In 
for n = 1 (mod 2), n >~ 7. This construction uses pairwise balanced designs 
(PBDs) and a more general definition of group divisible designs (GDDs);  
for definitions and results on these designs, see [35, 34, 15]. Suppose there 
exists a non-trivial PBD(v;K) ,  D, where k---1 (rood2), k~>7 for each 
k eK.  If we delete one element from D, the resulting design is a 
GDD(v - 1 ; K; G; 0, 1) where I Gi[ ~> 6, I Gi[ - 0 (mod 2) for each G~ ~ G. We 
apply the Fundamental Construction (Theorem 3.6) to construct a frame of 
type {]GII, IG2I ..... IGm] }. If there exist H*(IG~I, ]Gil + ~) for i =  1, 2 ..... m, 
then there is an H * ( v - 1 ,  v - 1  + ~) which contains as sub-designs RS(k)  
for k e K .  

Let P7 be the set of odd prime powers greater than or equal to 7. Mullin 
and Stinson have shown that there exists a PBD(v; P7) for v -  1 (mod 2), 
v~> 7 with at most 104 possible exceptions [25]. The existence of these 
PBDs together with the existence of H*(2n, 2n + 2~) for n >t 3, 1 ~< ~ ~< 3 
gives us the following result. 

LEMMA 4.1. I f  there exists a non-trivial PBD(v; P7), then there exists an 
H*(v -- 1, v - 1 + 2~), 1 ~< c~ ~< 3, which contains as a sub-design a Room square. 

582a/65/2-8 
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In general, it is difficult to use this construction if we want to construct 
an H(n, n + ~) with a sub-RS(m) for a particular value of m. However, we 
can use the direct product to construct infinite classes of H(n, n + ~) with 
RS(m) sub-designs. 

LEMMA 4.2. Let n - 0 (mod 2), n ¢ 2 or 6, and let k be a positive integer, 
k <<. n/2. Let q -  1 (mod 2), q ~> 7. There exists an H*(nq, nq + 2k) which 
contains as a sub-design a RS(q). 

Proof Since there exists a RS(q), there exists a frame of type 1 q. We 
apply the direct product (Theorem 3.5) to construct a frame of type n q. If 
we use a pair of mutually orthogonal Latin squares of side n with the pair 
(1, 1) in the upper left hand corner and fill in the holes of the resulting 
design with an H*(n, n + 2k) in standard form, then the H*(nq, nq + 2k) 
contains as a sub-design a RS(q) (in the cells which are in the upper left 
corner of the n x n subarrays). | 

These designs can be used to fill in the holes of the frames constructed 
using Theorem 3.3. 

THEOREM 4.3. Let q- -1  (mod2),  q~>7, and let k and l be positive 
integers which satisfy the inequalities 1 <~ k <~ 21 and 3ql >~ 8q + k. Then there 
exists an H*(n, n + 2 k )  which contains as a sub-design a RS(q) for 
n >~ 16ql + max{4, 2k}. 

Proof We apply Theorem 3.3 with m = q j, j >>. l, and k ~< t ~< 8q + k. The 
holes of size 4m = 4qj are filled in with the H*(4qj, 4qj + 2k) constructed 
in Lemma4.2. These designs contain as subarrays RS(q). Since j>~l, 
the bound on k from Lemma 4.2 is 1 ~< k ~< 2/. The inequality t ~< 3m in 
Theorem 3.3 gives us the other bound on the parameters, 8q+k<<.3ql. 
The remaining hole is filled in with an H*(2t, 2 t+2k )  (Theorem 1.1). 
The resulting design is an H*(16qj + 2t, 16qj + 2t + 2k) where 2k ~< 2t < 
16q + 2k, j >~ l which contains a RS( q ). | 

We note that for 1 ~< k ~< 5, we have I = 3, and the construction produces 
H*(n, n + 2k) which contain RS(q)s for n ~> 48q + max{4, 2k}. We show in 
Section 6 that if the product kq is large, these bounds can be improved. 

The lower bound for n can be improved considerably in special cases. In 
particular, we will now determine the complete spectrum for H(n, n + 2) 
with sub-RS(m) for m = 3, 5 and 7. In these cases, we will use Theorem 3.3, 
but instead of placing the sub-design in the holes of size 4m, we construct 
H*(2t,  2t + 2) -- RS(q) for at least eight consecutive values of t. Thus, we 
only need to construct a small number of designs with the desired subarray 
in order to establish the existence of the H*(n, n+ 2) for n ~> no. 
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LEMMA 4.4. (i) There exists an H(n, n + 2 )  which is missing as a 

subarray a "RS(3)" for  n even, 10 ~< n ~< 46. 

(ii) There exists an H(n, n + 2 )  which is missing as a subarray a 
"RS(5)"  for  n even, 16~<n<~54, and for  n 6  {58, 60, 62, 66}. 

Proo f  These designs were constructed on the computer using hill 
climbing and are given in [7]. | 

LEMMA 4.5. There exists an H(n, n + 2) which is missing as a subarray a 
R S ( 3 ) f o r  n~  {48, 50, 52, 54, 56, 58, 60, 62, 64, 66}. 

Proo f  These cases are described in Table I. | 

THEOREM 4.6. There exists an H(n, n + 2) which is missing as a subarray 
a "RS(3)" if  and only i f  n =- 0 (rood 2), n ~> 10. 

Proo f  Necessity follows from Theorem 2.4. 
Lemmas 4.4 and 4.5 provide H(n, n + 2) which are missing RS(3)s for n 

even, 10 ~< n ~< 66. If 68 ~< n ~< 86, we write n = 16-4 + 2t, 2 ~< t ~< 11. Since 
there is an H(16, 18) which is missing a RS(3), we apply Corollary 3.4 
with m = 4 and ~ = 2. If 88 ~< n ~< 110, we apply Corollary 3.4 with m = 5, 
using an H(20, 22) which is missing a RS(3) in one of the holes. For 
n=112,116,118,120,  we write n = 1 6 . 7 + 2 t  where t ~ { 0 , 2 , 3 , 4 }  and 
apply Corollary3.4 with m = 7  using an H( 28, 30 ) -- RS (  3 ). The case 
n = l 1 4  is done separately. There exists a GDD(57;  {5,6}; {2, 11};0, 1) 
(constructed from a TD(5, 11), see [15]) and there exist frames of type 25 
a n d  2 6 [123. Using Theorem 3.6, we construct a frame of type 2254. If we 
fill in one of the holes with an H(22, 24) missing a RS(3) and the other 

TABLE I 

H(n, n+2)--RS(3) for n e  {n-=0 (mod 2)148 ~ n ~ 6 6 }  

n Construction Comments 

48 12.4 
50 10.5 
52 13.4 
54 1 2 . 4 + 6  
56 8 . 5 + 1 6  
58 8 . 7 + 2  
60 12.5 
62 S-A 
64 16.4 
66 1 2 . 5 + 6  

Theorem 3.5, 44 frame, m = 3, use H(12, 1 4 ) -  RS(3) 
Theorem 3.5, 25 frame, m =  5, use H(10, 1 2 ) - R S ( 3 )  
Theorem 3.5, 113 frame, m = 4, use RS(13)--  RS(3) 
Theorem 3.5, 442 frame, m = 3, use H(12, 1 4 ) -  RS(3) 
Theorem 3.5, 254 frame, m =4,  use H(16, 18)--RS(3) 
Theorem 3.7, n = 7 ,  m = 4 ,  k =  1 use H(10, 12)--RS(3) 
Theorem 3.5, 3 s frame, m = 4, use H(12, 1 4 ) -  RS(3) 
[21], use H(12, 1 4 ) -  RS(3) 
Theorem 3.5, 44 frame, m = 4, use H(16, 1 8 ) -  RS(3) 
Theorem 3.5, 452 frame, m = 3, use H(12, 1 4 ) -  RS(3) 
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holes with an H(22, 24) or an H(4, 6), we have an H(114, 116) missing a 
RS(3). 

For n~>122, we write n = 1 6 . m + 2 t .  There exist H(2t, 2 t + 2 ) - R S ( 3 )  
for 5~<t~<18. We apply Theorem3.3 with m~>7, m = l  (rnod2) and 
5 ~< t~< 18 to construct an H(n, n + 2 )  which is missing as a subarray a 
RS(3). I 

THEOREM 4.7. There ex&ts an H(n, n + 2) which & missing as a subarray 
a "RS(5)" i f  and only if  n - 0  (mod 2), n ~> 16. 

Proof Necessity follows from Theorem 2.4. 
Lemma4.4 takes care of H ( n , n + 2 )  missing RS(5)s  for n even, 

16~<n~<54, and for n e  {58, 60, 62, 66}. An H(56, 58) missing a RS(5) 
can be constructed by using a frame of type 2541 [10] in Theorem 3.5 
with m = 4 .  We use an H(16, 18 ) -RS(5 )  in the hole of size 16 and 
H(8, 10) in the other holes. Similarly, a frame of type 44 can be used for 
an H(64, 66) - RS(5). 

For 68~<n~<86, we write n = 1 6 . 4 + 2 t ,  2~<t~<12, and apply 
Corollary3.4 using an H(16,18 ) -  RS( 5). For 88~<n~<110, we write 
n = 16.5 + 2t, 4 ~< t ~< 15, and apply Corollary 3.4 using an H(20, 22) - RS(5). 
The H(114, 116) -RS(5)  is constructed using the frame of type 2254 
constructed above and an H(22, 24) -RS(5) .  For n = 112, 116 ..... 128, we 
write n = 16.7 + 2t, t~ {0, 2, 3 ..... 8}, and apply Corollary 3.4. 

For n ~> 130, we write n = 16. m + 2t, where m/> 7, m ~ 10 and 8 ~< t ~< 15. 
To take care of the case m = 10, we use m = 9 and 16 ~< t ~< 23. Since there 
exist H(2t, 2 t + 2 ) - R S ( 5 )  for 8 ~< t~<23, we can apply Corollary 3.4 to 
construct an H(n, n + 2) which is missing a RS(5). | 

LEMMA 4.8. There exists an H(n, n + 2) which contains as a subarray a 
RS(7) for n ~ {22, 24, 26, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 58, 
60, 64,'66, 68, 72, 78, 80, 82 }. 

Proof These designs were constructed on the computer using hill 
climbing [7]. | 

We note that several of these large designs can also be easily done using 
recursive techniques. 

LEMMA 4.9. There exists an H(n, n + 2) which contains as a subarray a 
R S ( 7 ) fo r  n~ {28, 56, 62, 70, 74, 76, 84 ..... 132}. 

Proof The cases for n e {28, 56, 62, 70, 74, 76, 84, 86, 88, 90, 92} are 
listed in Table II. 
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T A B L E  II  

H(n, n+2)--RS(7) for n ~  {28, 56, 62, 70, 74, 76, 84, 86, 88, 90, 92} 
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n Cons t ruc t i on  C o m m e n t s  

28 7 • 4 Theorem 4.2, q = 7, n = 4 

56 7 . 8  Theo rem 4.2, q = 7, n = 8 

62 7 . 9 -  1 Theo rem 4.1, 63 ~P7  wi th  a b lock  of size 7 

70 7- 10 Theorem 4.2, q = 7, n = 10 

74 7- 10 + 4 Coro l l a ry  3.2, Theo rem 3.5, us ing an  H(14, 16) - -H(4 ,  6) 

76 7 -11  - 1  Theorem 4.1, 77 E P  7 wi th  a b lock  of size 7 

84 7 . 1 2  Theorem 4.2, q = 7, n = 12 

86 2 . 8  • 5 + 6 Theorem 3.7, n = 5, rn = 8, k = 3, use H(22, 24) - RS(7)  

88 2 . 8 . 5  + 8 Theorem 3.7, n = 5, m = 8, k = 4, use H(24, 26) - RS(7)  

90 7 . 1 3 -  1 Theorem 4.1, 91 ~ P7 wi th  a b lock  of size 7 

92 2 3 . 4  Theo rem 3.5, n = 23, m = 4 ,  then  use a R S ( 2 3 ) -  RS(7)  

If 94 ~<n <~ 132, we use a transversal design TD(6, 7). Give all of the 
points weights 2 and 4 in such a way that the sum of the weights of the 
points in group G1 is 22 and the sum of the other points is n - 22. Now use 
Theorem 3.6 and fill in the blocks with frames of types 2a46-a [-11]. The 
resulting frame has holes of size 22 and size s; for i =  2, ..., 7, where 
12 ~< si ~< 24. We apply Theorem 3.1 filling in the groups for i = 2, ..., 7 with 
H(si, si+2) where s i = Z x ~ w ( x )  and filling in the group G1 with the 
H(22, 2 4 ) - H ( 7 ,  8). | 

THEOREM 4.10. There exists an H(n, n + 2) which contains as a subarray 
a RS(7) if and only ifn==-O (rood 2), n~>22. 

Proof Again necessity follows from Theorem 2.4. 
If 22~<n~< 132, we use Lemmas4.8  and 4.9. Let n>~ 132. We write 

n=-16.m+2t  where m~>7, m ¢ 1 0  and 11~<t~<18. To take care of the 
case m = 10, we use m = 9 and 19 ~< t ~< 26. Then there exist H(2t, 2t + 2) 
which contain as subarrays RS(7). We apply Corollary 3.4 to construct 
H(n, n + 2) which contain as subarrays RS(7). I 

5. L A T I N  SQUARE S U B - D E S I G N S  

In Section 3, we noted that several of the constructions can be used to 
produce frames (and Howell designs) which contain as sub-arrays 
H*(m, 2m) or a pair of mutually orthogonal Latin squares of side m. In 
this section, we concentrate on two particular cases, H(n, n + 2 )  and 
H ( n , n + l )  (or RS(n)). We recall from Theorem2.5 that a necessary 
condition for the existence of a RS(n) which contains an H*(m, 2m) is 
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5,7 

9,10 

5,8 

8,9 

6,10 

7, 9 8,10 5, 6 

6,8 7,10 5,9 

4,10 6,9 1,2 3,8 

3,6 2,5 1,8 4,7 

4,9 2,5 1,10 3,5 

1,7 3,9 4,6 2,10 

5,10 2,7 1,6 3,4 

1,5 4,8 3,7 2,9 

6,7 2,8 3,10 4,5 1,9 

FIG. 2. An/ / (9 ,  10 ) -H(2 ,  4). 

n/> 4m + 5 while the necessary condition for the existence of an H(n, n + 2) 
which contains an H*(m, 2m) is n ~> 4m. 

We first show that we can determine the spectrum completely for 
RS(2n + 1) and H(2n, 2 n + 2 )  missing an H(2, 4) and for RS(2n + 1) and 
H(2n, 2n + 2) containing H*(m, 2m) sub-designs for m = 3 and 4. 

THEOREM 5.5. (i) There exists a RS(n) which is missing as a subarray 
an H(2, 4) if and only t fn - 5 (mod 2), n i> 9. (ii) There exists an H(n, n + 2) 
which is missing as a subarray an H(2, 4) if and only if n _~ 0 (mod 2), n ~> 8. 

Proof (i) Necessity follows from Theorem 2.5. 

A RS(9) missing an H(2, 4) (which was found by the hill-climbing algo- 
rithm) is displayed in Fig. 2. RS(n) missing H(2, 4) for ne  {51, 13 ..... 27} 
were found using the hill-climbing algorithm and are given in [7]. Now for 
all n-= 1 (mod 2), n ~>29, there exists a R S ( n ) -  RS(9) [50, 11]. We can fill 
in the RS(9) with a R S ( 9 ) -  H(2, 4) to construct a R S ( n ) -  H(2, 4). 

(ii) Necessity follows from Theorem 2.5. 

An H(8, 10) which is missing as a subarray an H(2, 4) was found by 
hill-climbing and is given in [-7]. For 50~<n~<24 with n = 0  (mod2), 
starter-adders for H(n,n+2)  which contain H(2,4) are given in 
Appendix 1. Orders n = 26, 30, 34, and 36 were done by hill-climbing and 
are given in [7]. Constructions for the remaining orders of n ~< 62 are listed 
in Table III. 

For 50 ~< n ~< 60 we first start with a TD(6, 5) and give every point weight 
2 except for 5 -  i (0 ~< i~< 5) points in one group which get weight 0. Since 
there exist frames of type 25 and 2 6 we apply Theorem 3.6 to get frames of 
type 105(2i) 1. Now insert the appropriate Howell designs in the holes 
including one H(10, 52 ) -H(2 ,  4) (except when i =  5). 
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T A B L E  III 

H(n, n + 2) - H(2,  4) for Some 8 ~< n ~< 62 
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n Construction Comments 

28 2 . 3 ( 4 + 1 ) - - 2  
32 2.3.5+2 
38 (2.6) 3 + 2 
40 2.4- 5 
42 2.4.5+2 
44 2.4.5+4 
46 2-3(7+1)-2 
48 (2-6)4 
62 S-A 

Corol la ry  3.11, m = 4 ,  n =  3, use H(8, 1 0 ) - H ( 2 ,  4) 
T h e o r e m  3.7, m =  3, n =  5, k =  1, use H(8,  1 0 ) - H ( 2 ,  4) 
Corol la ry  3.2, T h e o r e m  3.5, n = 6, m = 3, use H(8,  10) - H(2,  4) 
T h e o r e m  3.5, m = 4 ,  n = 5, use H(8,  1 0 ) - / / ( 2 ,  4) 
Corol lary  3.2, T h e o r e m  3.5, m = 4, n = 5, use H(10,  1 2 ) - H ( 2 ,  4) 
T h e o r e m  3.7, m = 4 ,  n = 5, k =  2, use H(8,  1 0 ) -  H(2,  4) 
Corol lary  3.11, m = 7, n = 3, use H(14,  1 6 ) - H ( 2 ,  4) 
T h e o r e m  3.5, n = 6, m = 4 
T h e o r e m  3.12, [21] ,  use H(12,  1 4 ) - H ( 2 ,  4) 

Let n>~64. We write n = 1 6 m + 2 t ,  mt>4, m # 6 ,  10. For  m = 4 ,  let 
0 ~< t ~ 8. We can apply Theorems 3.3 and 3.1 (using an H(16, 1 8 ) -  H(2, 4) 
for t #  1 and an H(16, 18) for t =  1) to construct an H(n, n + 2 )  which is 
missing as a subarray an H(2, 4) for 64 ~< n ~< 80. For  m = 5, let 0 ~< t ~< 15. 
Since there is an H(20, 2 2 ) - H ( 2 ,  4), we can construct an H(n, n + 2 )  
which is missing an H(2, 4) for 80 ~<n~< 110 using Theorem 3.3. (For the 
case t = 1, we use an H(20, 22).) For  m >~ 7, m # 10, let 4 ~< t <~ 20. We use 
Corollary 3.4 to construct an H(16m + 2t, 16m + 2t + 2) which contains as 
a subarray an H(2t, 2 t +  2). Since there exist H(2t, 2 t + 2 ) - H ( 2 ,  4) for 
4 ~< t <~ 20, there is an H(n, n + 2) which is missing as a subarray an H(2, 4) 
for n~> 112. I 

THEOREM 5.2. (i) There exists a RS(n) which is missing as a subarray 
an H*(3, 6) i f  and only i f  n -  1 (mod 2), n~> 13. 

(ii) There exists an H(n, n + 2) which is missing as a subarray an 
H*(3, 6) i f  and only i f n - 0  (mod 2), n >~ 12. 

Proof. For both cases, necessity follows from Theorem 2.5. 

(i) A RS(13) missing an H*(3, 6) was found by the hill-climbing 
algorithm and is displayed in Fig. 1. RS(n) missing H*(3 ,6 )  for 
n ~ {15, ..., 39 } were found using the hill-climbing algorithm and are given 
in I-7]. Now for all n = 1 (rood 2), n i>41, there exists a R S ( n ) - R S ( 1 3 )  
[10, 11]; we fill in the RS(13) with a RS(13) which is missing an H*(3, 6) 
to construct R S ( n ) -  H*(3, 6). 

(ii) For  all n = 4  (rood6), 16~<n~<82, there exists an H ( n , n + 2 )  
which contains an H*(3, 6) by Corollary 3.11. Since there exist frames of 
type 2 ~ for l~> 5 1-29, 12], we can use the direct product (Theorem 3.5) with 
m = 3  and the basic frame construction (Theorem 3.1) to construct 
H(61,6l+2) which contain H*(3 ,6 )  for 1~>5. The three smallest 
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H(n, n + 2) for n - 0 (mod 6), n = 12, 18, and 24 are all constructed using 
hill-climbing in [7].  For  n -  2 (rood 6), we first construct H(n, n + 2) for 
14 ~< n ~< 56 using hill-climbing; these are all listed in [7].  We consider the 
four remaining cases, n = 62, 68, 74, and 80. There exists an //(62, 6 4 ) -  
H(12, 14) [21] ;  so we can fill in the H(12, 14) with an H(12, 14) which 
contains an H*(3,  6) to construct an H(62, 64) which contains an H*(3, 6). 
By (i) there exists a RS(17) which contains an H*(3, 6). We can use 
Theorem 3.5 with m = 4 and this design to construct an H(68, 70) which 
contains an H*(3, 6). To construct an H(74, 76) which contains an 
H*(3, 6), we use Theorem 3.7 with t = 1, n = 5, l = 1, and k = 2 filling in the 
holes with H(14, 16) and H(16, 18) where at least one of these designs 
contains an H*(3, 6). An H(80, 82) which contains an H*(3, 6) is easily 
constructed using Theorem 3.5 with a 25 frame and m = 8; we fill in the 
holes with an H(16, 18) which contains an H*(3, 6). We have constructed 
H(n, n + 2) which contain H*(3, 6) for n -- 0 (rood 2), 12 ~< n ~< 82. Using 
a TD(6, 7), we let w ( x ) = 2  for every x~  G~ and let w(x)= 2 or 4 for all 
other points. Then by Theorems3.6 and 3.1 we can construct an 
H(n, n + 2 ) - H ( 1 4 ,  16) for every n----0 (rood 2), 84~<n~< 154. Now use the 
H(14, 16) which contains an H*(3, 6) to get an H(n, n + 2) which contains 
an H*(3, 6) for all n --- 0 (rood 2), 84 ~< n ~< 154. 

Let n ~> 124, n ~ 0 (mod 2). Write n = 16m + 2t where m ~> 7, m ¢ 10 and 
12 ~< 2t ~< 26. To take care of the case m = 10, we use m = 9 and 28 ~< 2t ~< 
42. By Corollary 3.4, there exist H(n, n + 2 )  which contain H(2t, 2 t + 2 )  
sub-designs. Now use the H(2t, 2t + 2) containing an H*(3, 6). | 

THEOREM 5.3. (i) There exists a RS(n) which is missing as a subarray 
an H*(4, 8) /f and only t f n -  1 (mod 2), n ~> 17. 

(ii) There exists an H(n, n + 2 )  which is missing as a subarray an 
H*(4, 8) i f  and only i f n  =_ 0 (rood 2), n ~> 16. 

Proof Necessity follows from Theorem 2.5. 

(i) RS(n) missing H*(4, 8) for n~ {17 ..... 65} were found using the 
hill-climbing algorithm and are given in [7].  For  all n -= 1 (mod 2), n >~ 67, 
there exists a RS(n ) - -RS (17 )  [10]. Plug in the RS(17) missing the 
H*(4, 8) into these arrays. 

(ii) Since there exist frames of type 1 k for k -  1 (mod 2), k~>7 ]-26] 
and 2 t for l>~5 [29, 12], we can use the direct product (Theorem3.5) 
with m = 4  and the basic frame construction (Theorem 3.1) to construct 
H(4n, 4n + 2) which contain H*(4, 8) for n a positive integer, n/> 9 and n = 7. 

Let n~> 116. We write n =  1 6 . m + 2 t .  Now we apply Corollary 3.4 with 
2~<t~<17 for m = 9  a n d r e = 7  and with 2~<t~<9 for m~>11 to construct 
H(n, n + 2) which contain H*(4, 8). 
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We consider the remaining cases. If n ~> 22 and n = 6 (mod 8), then we 
can use Corollary 3.11 to construct H(n, n + 2 )  which contain H*(4, 8). If 
n - 4 (rood 8), n ~> 28 or n -= 0 (rood 8), n >~ 40, then the frame construction 
described above provides the H(n, n + 2) with H*(4, 8) sub-designs. 

The hill-climbing algorithm was used to construct H(n, n + 2) - H*(4, 8) 
for n~ {16, 18, 20, 24, 26, 32, 34, 50} [-7]. We can construct H(n, n + 2 )  
which contain H*(4, 8) for n = 4 2  and n = 5 8  by using Theorem 3.7 with 
t = 1, n = 5 or 7 [-8] respectively, m = 4 and k = t. The holes of the frames 
are filled in with H(8, 10) and H(10, 12). An H(66, 68) which contains an 
H*(4, 8) can be constructed from a frame of type 446 [-29] using 
Theorem 3.5 with m = 3 to construct a frame of type 12418 and filling in the 
holes with H(14, 16) and an H(18, 20) which contains an H*(4, 8). We 
construct a frame of type 20514 by using Theorem 3.6 with a TD(6, 7) 
where w(x)= 2 for every x ~ G1 and w(x)= 2 or 4 for all other points so 
that Z x ~ c W ( X ) = 2 0  for 2~<i~< 
H(14, 16) and H(20, 22) where 
H*(4, 8) to construct an H(114, 
struct the remaining designs, let 

6. We fill in the holes of this frame with 
at least one of these designs contains an 
116) which contains an H*(4, 8). To con- 
n =  1 6 . m + 2 t .  For  nE {74, 82}, we apply 

Corollary 3.4 with m = 4 and t--  5 and 9 respectively. For  n e {90, 98, 106}, 
we apply Corollary 3.4 with m -- 5 and t = 5, 9 and 13 respectively. 

Thus, we have constructed H ( n , n + 2 )  which contain H*(4, 8) sub- 
designs for n a positive integer and n/> 16. | 

In Section 2, we showed that the necessary condition for an H(n, n + 1) 
or an H(n, n + 2 )  to contain an H(m, 2m) sub-design is that n ~>4m+ 1 
or that n/> 4m + 2, respectively. The most general lower bounds, at the 
present, are the following: 

THEOREM 5.4. (i) I f n = l  (mod2),  n~>16m+1 or lOm<.n<12m and 
rn~ 7, then there exists a skew RS(n) which contains as a subarray an 
H*(m, 2m). I f  n=- I (mod2),  n = 1 2 m + l ,  n = 1 4 m + l ,  12m+ 7 <~n<13m 
or 14m + 7 ~ n < 15m and m >i 7, then there exists a RS(n) which contains as 
a subarray an H*(m, 2rn). 

(ii) I f  n=O (rood2), lOm<~n<<,12m, 12m+4<~n<13m,  1 4 m + 4 ~  
n < 1 5 m  or n>>-16m and m>~7, then there exists an H ( n , n + 2 )  which 
contains as a subarray an H*(rn, 2m). 

Proof Let w ~> 3m and let m be an integer, m ~> 3, m ~ 6. There exists 
a skew frame of type 25 with an ordered partitonable transversal [-22]. 
For  w>~9 and k = 0 ,  1,2, 3,4, there exist I A ( w + k , k ,  4), [,16]. So we 
can use Theorem 3.7 to construct a skew frame of type (2w) 4 (2w-b 2k). 
Since w>~ 3m, there exists an IA(w, m, 4) which contains as a subarray 
an H*(m, 2m) (for m ¢ 2 , 6 )  [,-16]. If we replace at least one of the 
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IA(w, O, 4)s in this construction with an IA(w, m, 4) which contains as a 
subarray an H*(m, 2m), the resulting skew frame will contain at least one 
H*(m, 2m) as a subarray. We add two new elements, oel and oe 2, to the 
design. 

(i) If we fill in the holes of the frame with skew RS(2w+ 1) and 
RS(2w + 2k + 1) which contain { oel, o%} in the lower right hand corner 
(Corollary 3.2), we construct skew RS(IOw + 2k + 1) which contain as sub- 
arrays H*(m, 2m). This provides RS(n) which contain as subarrays 
H*(m, 2m) for n -= 1 (mod 2) and n ~> 30m + 1. 

(ii) If we fill in the holes with H(2w, 2w+2) and H(2w+2k, 
2 w + 2 k + 2 )  which are missing the pair {OOl, oe2}, then we construct an 
H(lOw+2k, 1 0 w + 2 k + 2 )  which contains an H*(m, 2m) as a subarray. 
This provides H(n, n + 2) which contain as subarrays H*(m, 2m) for n - 0 
(mod 2) and n i> 30m. 

Let m >1 7. We can improve these bounds by further use of Theorems 3.7 
and 3.8. If there exists a (skew) frame of type 2 ~ with 11 ordered 
partitionable transversals and a (skew) frame of type 2 ~ with 12 complete 
ordered partitionable transversals, then there exist (skew) frames of type 
(2m) s l ( 2 m + 2 k )  for k = 0 ,  1, ..., Ill.m~2_] and (skew) frames of type 
(2m) s (2k) for k =  0, 1 ..... 12Lm/2_J which contain as subarrays H*(m, 2m). 
There exist skew frames of type 2 s with l~ ordered partitioned transversals 
and skew frames of type 2 ~ with 12 complete ordered transversals for the 
following (S, ll, 12) triples [8]:  (5, 1, 2), (8, 1, 4), (9, 1, 4), (10, 2, 0), 
(11, 3, 0), (12, 0, 6), and (13, 1, 6). Using Theorems 3.7 and 3.8 as described 
above, we can construct skew frames on n elements where 16m~<n~< 
3 2 m -  6 with holes of sizes 2m and 2m + 2k or 2k. We fill in the holes of 
the frames with skew Room squares and Howell designs as described in 
cases (i) and (ii) above. This provides RS(n) which contain as subarrays 
H*(m, 2m) for n-~ 1 (mod2) and 1 0 m ~ n <  12m and 16m~<n< 3 2 m - 6  
and H(n, n + 2) which contain as subarrays H*(m, 2m) for n - 0  (rood 2) 
and 10m ~< n ~< 12m and 16m ~< n < 32m - 6. 

Frames of types 26 and 2 7 with one complete ordered partitioned trans- 
versal can be found in [81. Using these frames and Theorem 3.8, we can 
construct RS(n) which contain as subarrays H*(m, 2m) for n -  1 (rood 2), 
n = 1 2 m + l ,  1 4 m + l ,  12m+7<~n<13m, and 14m+7<~n<15m and 
H(n, n + 2 )  which contain as subarrays H*(m, 2m) for n = 0  (rood2), 
n=12m,  14m, 12rn+4<~n<13m, and 14m+4~n<15m. | 

These results can be improved in certain cases by using the  house 
construction (Theorems 3.9 and 3.10). We get a better result in the ease of 
H(n, n + 2). 
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THEOREM 5.5. Let n be a positive integer, n >~ 3, n v L 6. 

(i) There exists a RS(Sn+ I) which contains as a subarray an 
H*(n, 2n). 

(ii) There exists an H ( 6 n - 2 ,  6n) which contains as a subarray an 
H*(n, 2n). 

Proof (i) We apply the house construction for Room squares, 
Theorem 3.9 [32] ; the smallest order house we can use is 4. 

(ii) We apply Theorem 3.10 with m = 2  (using a house of order 3 and 
an H(4, 6)). | 

The next construction shows that in special cases, we can also produce 
Room squares of order 6m which contain as subarrays H*(m, 2m). 

THEOREM 5.6. Suppose there exist a pair of  mutually orthogonal Latin 
squares o f  side n and an IA(n, m, 4). 

(i) I f  there exists a RS(2n+ 1) which is missing as a subarray an 
H*(m, 2m), then there is a RS(14n+ 1) which contains as a subarray an 
H*(7m, 14m). 

(ii) I f  there exists an H(2n, 2n + 2) which is missing as a subarray an 
H*(m, 2m), then there is an H(14n, 14n + 2) which contains as a subarray an 
H*(7m, 14m). 

Proof Let F be a frame of type 27 which is constructed from a skew 
Room square of order 7 and a pair of orthogonal partitioned incomplete 
Latin squares (OPILS) of type 17. F can be written in the following form, 
where B contains the pair of OPILS of type 17. 

A 
F =  

B 

Suppose F is defined on V= Wx f~" where W =  {0, 1,...,6} and 
if /= {6, 1, ..., 6}. The elements associated with the ith hole of F are i -  1 
and i -  1. 

Let N =  {1, 2, ..., n}. Let L1 and L 2 be a pair of orthogonal Latin squares 
of side n defined on N. L will be the array of pairs formed by the superposi- 
tion of L1 and L2; L = L1 o L2. Lxy is the array of pairs formed by replacing 
each pair (a, b) in L with the pair ((a, x), (b, y)). 

We use an IA(n, m, 4) to construct a pair of orthogonal Latin squares of 
side n defined on N which is missing a pair of orthogonal Latin squares of 
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side m defined on M = { 1, 2 ..... m }. Let I denote the n x n array of pairs 
formed by superimposing the Latin squares. I can be written so that the 
m x m empty array is in' the lower right hand corner of the array. Ixy will 
be the array of pairs formed by replacing each pair (a, b) with the pair 
((a, x), (b, y)). 

We first construct a "frame" of type (2n) 7 as follows. Replace each pair 
(x, y) in A with Lxy and replace each pair (x, y) in B with I~y. Denote the 
resulting array by F'. 

(i) Let Ri be a RS(2n+I) which is missing as a subarray an 
H*(m, 2m). Ri is defined on N x  { i -  1, i -  1} w {e, ~ }  and the subarray is 
defined on M x { i - 1, i - 1 }. Ri can be written in the following form where 
R; is an n x n array and the H*(m, 2m) is in the lower right hand corner 
of R;. 

Ri= R; 

D~ Di 2 {a, oo) 

We fill in the ith hole of F '  with R; and add a new column [CI,  C2 ~, ..., 
C71, C~, ..., C2] T and a new row [DI,D ~, ...,D{,D~, ..., D}, {c¢, oo}] to F'.  
The resulting design R is a RS(14n + 1) which is missing a 7m x 7rn array 
K defined on M x V. 

(ii) Let H i be an H(2n, 2 n + 2 )  defined on N x  { i -  1, i -  1} w {~, oo} 
where {~, oo} does not occur in Hi. Hi is missing as a subarray 
an H*(m, 2m) which is defined on M x  { i -  1, i -  1}. Hi can be written so 
that the empty m x m array occurs in the lower right hand corner of H;. 
We fill in the /th hole of F '  with H i . The resulting design H is an 
H(14n, 14n + 2) which is missing as a subarray a 7rn × 7rn array K defined 
on M x  V. 

Since the pairs of an H*(7m, 14m) are missing from both H and R, we 
can fill K in with an H*(7rn, 14m) defined on M x  V (the mutually 
orthogonal Latin squares are defined on M x W and M x 1~ respectively). 
Thus, we have constructed a RS(14n+ 1) and an H(14n, 14n + 2) which 
contain an H*(7m, 14m) sub-design. | 

We can apply this construction using the results of Theorems 5.1, 5.2, 
and 5.3. Since necessary and sufficient conditions for the existence of an 
IA(n,m, 4) ( n ~ 6 ,  m ~ l )  is n>~3m [16],  the best we can expect from this 
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construction is RS(6m + 1) and H(6m, 6m + 2) which contain as subarrays 
H*(m, 2m). 

COROLLARY 5.7. Let n be a positive integer. 

(i) i f  n > 6, there exists a RS(14n + 1) and an H(14n, 14n + 2) which 
contain as subarrays an H*(14, 28). 

(ii) I f n  >~ 9, there exists a RS(14n + 1) and an H(14n, 14n + 2) which 
contain as subarrays an H*(21, 42). 

(iii) I f  n~>12, there exists a RS(14n+ I) and an H(14n, 14n+ 2) 
which contain as subarrays an H*(28, 56). 

6. H(n, n + ~) WITH H(m, m + c~) SUB-DESIGNS 

In this section we describe constructions for H* (n, n + c~) - H* (m, m +-e). 
We recall that the bound for n in this case is 3m + 2. We begin with a 
bound for the case where n and c~ are even. 

THEOREM 6.1. I f  ~=O (mod2)  and m>~90 with m==-O (mod2),  then 
there exists an H*(n, n + c~) containing an H*(m, m + cQ for all even n >~ 6m. 

Proof Since m~>90, there exists a TD(6, m/2) [-1, 4, 18] with groups 
G 1 , . . .  , G 6. Let 6m<<.n<<.llm. Write n = m + 2 a + 4 b  where a + b = 5 . m / 2 .  
Now assign w(x)= 2 for every x e G1; also let w(x)= 2 for any a elements 
and w(x) = 4 for the remaining b elements of the TD. Then since there exist 
frames of type 2t46-t for 0~<t<~6 [11], by Theorem3.6 there exists a 
frame of type {Zx~cw(x) :  Gef¢}.  Now fill in the hole corresponding to 
group Gi with H * ( ~  x~ G~ w(x), Zx~ a~ w(x) + ~) to obtain an H*(n, n + c~) 
which contains an H*(m, m + c~) for every even 6m ~< n ~< l lm. 

Now let n>~llm. Write n = 7 m + 1 2 a + 2 b  where a>~18 and 0~<b<~ 
3m + 6a. Since m/2 + a >>. 63, there exists a TD(7, m/2 + a) [4, 18] with 
groups G1 . . . . .  G 7. Let w(x)= 2 for exactly m/2 points of G 1 and w(x)= 0 
for the remaining a points of G1. In the remainder of the TD let w(x)= 4 
for any b of the points and let w(x)= 2 for the remaining 3m + 6 a -  b 
points. Now since there exist frames of type 2i4 j for i + j = 6 or 7, we can 
use Theorem3.6 to construct a frame of type {Zx~Gw(x) :G~.~} .  As 
above, we fill in the holes with Howell designs to obtain an H*(n, n + c~) 
which contains an H*(m, m + c  0 for every n~> llm. This completes the 
proof. | 

We can do better if we restrict the size of e. 



296 D I N I T Z  A N D  L A M K E N  

THEOREM 6.2. Let ~ =- 0 (mod 2). 

(a) I f  m=-O (mod4),  m~>180, and ~<~m/2, then there exists an 
H*(n, n + ~) containing an H*(m, m + a) for all even n >~ 7 m. 

(b) I f  m --- 2 (mod 4), m >/178, and ct <<. m/2, then there exists an 
H*(n, n + ~) containing an H*(m, m + ~) for all even n >1 7m + 5. 

Proof (a) Since m ~> 180 and m - 0 (rood 4), there exists a TD(6, m/4) 
[1, 4, 18] with groups G1 . . . . .  G 6. Let 7m<~n<<.6m. Write n = m + 2 a + 4 b ,  
where a + b = 5 . m / 4 .  Now assign w ( x ) = 4  for every x EG1; also let 
w(x) = 2 for any a elements and w(x)= 4 for the remaining b elements of 
the TD. Then since there exist frames of type 2t46-t for 0 ~< t ~< 6, by 
Theorem 3.6 there exists a frame of type {~x~G w(x): G~ fq}. Now fill in 
the hole corresponding to group Gi with H*(Zx~ol  w(x), Zx~Gi w ( x ) + , ) .  
Note that it is here that we use a ~< m/2 since the smallest possible size for 
a hole in this frame is m/2. We obtain an H*(n, n + ~) which contains an 
H*(m, m + ct) for every even 7m ~< n ~< 6m. Now using Theorem 6.1 finishes 
this case. 

(b) This is very similar to part (a). Since m 1> 178 and m ~- 2 (mod 4), 
there exists a TD(6, (m + 2)/4) with groups G1 . . . . .  G 6. Now assign w(x) = 4 
for every x ~ G1 except for one element x0 E GI which has W(Xo)= 2 and 
proceed as in part (a). | 

We are now in a position to improve upon Theorem 4.3 when the 
product kq is large. We wish to construct H*(n, n + 2 k )  which contain 
RS(q). We do this by embedding the RS(q) in an H*(m, m +2k)  for a 
relatively small value of m and then using Theorem 6.2 to embed the 
H*(rn, rn + 2k) into H*(n, n + 2k) for every even n ~> 7m. The next result 
gives the details of this construction. 

COROLLARY 6.3. Let q -- 1 (mod 2), q ~> 7. 

(a) I f  k - O  (mod2),  with 2kq~>180, then there exists an 
H*(n, n + 2k) which contains a RS(q) for all n - 0 (rood 2), n >~ 7kq. 

(b) I l k  - 1 (rood 2), with kq >1 178, then there exists an H*(n, n + 2k) 
which contains a RS(q) for all n = 0 (mod 2), n >1 7kq + 16. 

Proof (a) First use Lemma4.2 with n = 2 k  to construct an 
H*(2kq, 2 k q + 2 k )  which contains a RS(q). Now since 2kq~>212, we 
can use Theorem6.2(a)  to construct an H*(n, n + 2 k )  containing the 
H*(2kq, 2 k q + 2 k )  (which contains the RS(q))  for all even n~> 7(2kq)= 
7kq. 

(b) Proceed as in part (a) but use Theorem 6.2(b). | 
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We conclude this section by noting that we can improve these results for 
a few special cases. In particular, we can determine the spectrum for 
H(n, n + 2) - H(m,  m + 2) for m = 2 and m = 4. We have already given 
necessary and sufficient conditions for the case of m = 2 in Theorem 5.1(ii). 
In the next theorem we will do the same for the case m = 4. 

THEOREM 6.4. There exists an H(n, n + 2) which is missing as a subarray 
an H(4, 6) tf and only i f  n = 0 (rood 2), n ~> 14. 

Proof. All of these orders are done in [21] except for n e  {14, 18,42, 
46, 48, 50, 54, 56, 58, 62, 66, 82}. For  n s  {14, 18, 42, 46, 48, 50, 56} these 
designs are listed in [7].  We can use Corollary3.11 to construct 
H(n, n + 2 ) - H ( 4 ,  6) for n = 58 and n =  82. To construct an H(54, 5 6 ) -  
H(4, 6), we use a frame of type 25 and Theorem 3.5 with m = 5 to construct 
a frame of type 105 and then use an H(14, 1 6 ) - H ( 4 ,  6) in the holes 
(Corollary 3.2). An H(62, 64)- -H(4,  6) can be constructed using 
Theorem 3.7 with t = 2, n = 5, l =  1, m = 3, and k = 1 to construct a 12414 
frame; we then use an H(14, 1 6 ) - H ( 4 ,  6) in the hole of size 14. (A 45 
frame with 2 ordered partitionable transversals is constructed using 1-21, 
Theorem 3.3].) Finally, an H(66, 68) - H(4, 6) is easily constructed using a 
446 frame, [29], and Theorem 3.5 with m = 3. This time we fill in the hole 
of size 18 with an H(18, 20) -- H(4, 6). | 

7. CONCLUSIONS 

In this paper, we have investigated the existence of incomplete Howell 
designs, H(n, n + ~) - H(m,  m + ~). We have barely scratched the surface of 
this very large problem and a great deal of work remains to be done to 
determine the spectrum of incomplete Howell designs. Two of the problems 
we would like to concentrate on in the future include finding better bounds 
for the case where e is large (Section 2) and improving our bounds for 
constructions in the case when / / = m  (Section 5). We would also like to 
extend our results for the case c~ = fl (Section 6). For  small values of e, the 
lower bound in Theorem 6.2 can be improved considerably by using 
constructions similar to those used for the Room square with subsquare 
results in [10]. It is also possible to apply constructions similar to those 
in Theorems 6.1 and 6.2 to produce H(n, n + c~) when n is odd. 

The majority of the constructions used in this paper are based on frame 
constructions. Almost all of the constructions for Howell designs in 
the existence papers [2 ,27]  and the more specialized papers [21] 
actually produce Howell designs with sub-designs. Thus, another area of 
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investigation is to find out how much information we can get about 
incomplete Howell designs from the available constructions combined with 
more recent existence results. 

A P P E N D I X  1 : STARTER-ADDeRS FOR H(n,  n + 2) -- H(2, 4) 

001 0 00 2 3 003 5 (3o 4 7 

1 2 3 4 

1. n = 1 0 .  

S 4 6  

A 0 

C 1 2  

R 2 7  

2. n = 1 2 .  

S 6 8  0 4  oo13 

A 1 0 3 

C 1 2  

R 5 8  

3. n =  14. 

S 6 8  0 5  3 7  

A 1 0 3 

C 1 2  

R 1 4  

4. n = 1 6 .  

S 7 9  0 6  4 8  

A 1 0 5 

C 1 2  

R 1 4  

5. n = 1 8 .  

S 0 7  6 8  5 9  

A 0 2 4 

S 00111 oo 2 12 

A 8 6 

C 1 2  

R 12 15 

002 5 003 7 004 9 

8 5 2 

001 4 00 2 9 oo 3 10 00 4 11 

11 2 4 9 

5 10 001 3 002 11 00 3 12 °o4 13 

2 8 6 7 3 

4 10 3 14 

1 3 

oo 3 13 o0 4 15 

7 15 
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6. n = 2 0 .  

S 0 8  

A 0 

S oo 1 6 

A 7 

C 1 2  

R 6 9  

7. n = 22. 

S 0 9  3 1 1  

A 0 1 

S oo16  

A 17 

C 1 2  

R 2 5  

8. n = 2 4 .  

S 0 10 

A 6 

S o o 1 4  

A 8 

C 1 2  

R 17 20 

9 16 3 5 4 10 11 15 7 12 

1 2 10 4 9 

oo 2 13 00 3 14 00 4 17 

17 8 12 

12 19 7 13 5 10 4 8 14 16 

2 3 8 7 12 

oo2 15 oo3 17 0(34 18 

4 10 19 

3 12 5 13 7 14 15 21 6 11 16 20 17 19 

1 2 4 9 16 5 19 

oo2 8 003 9 (x) 4 18 

11 14 13 
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