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Abstract

We present a parallel Alternating Direction Implicit (ADI) solver on GPUs. Our implementation significantly improves ex-

isting implementations in two aspects. First, we address the scalability issue of existing Parallel Cyclic Reduction (PCR)

implementations by eliminating their hardware resource constraints. As a result, our parallel ADI, which is based on PCR,

no longer has the maximum domain size limitation. Second, we optimize inefficient data accesses of parallel ADI solver by

leveraging hardware texture memory and matrix transpose techniques. These memory optimizations further make already

parallelized ADI solver twice faster, achieving overall more than 100 times speedup over a highly optimized CPU version. We

also present the analysis of numerical accuracy of the proposed parallel ADI solver.
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1. Introduction

Fast simulation of a large volume of data is becoming increasingly important in modern scientific and engi-

neering researches and developments. Time integration is normally categorized into explicit and implicit methods.

On the question of whether one of these methods is preferable the last word has not yet been said. In general,

an explicit method requires impractically small time steps to keep the error in the result bounded and an implicit

method takes much less computational time with larger time steps by solving the equations of the state of the

system in time domain. From the parallel computation point of view, an implicit method is more difficult to par-

allelize than an explicit method because the solution at a point is dependent on those in the entire domain. In this

study, we parallelize one of the most important implicit methods, Alternating Direction Implicit (ADI) method [1],

on modern Graphics Processing Units(GPUs).

ADI is a finite difference numerical analysis method for solving parabolic, hyperbolic, and elliptic partial

differential equations in multiple dimensions, and it has been widely used in scientific and engineering fields [2,

3, 4, 5]. In ADI method, each numerical step is split into several sub-steps based on the spatial dimension of the

problem, and the linear equation system is solved implicitly in one direction while treating information in the other

direction(s) explicitly. With this alternating calculations, ADI method is unconditionally stable and second order

in time and space [6]. Another favorable property of the ADI method is that in each sub-step the equations to be

solved have a tridiagonal structure and can be solved efficiently with Tri-Diagonal Matrix Algorithm (TDMA) [7].

As solution of tridiagonal equation systems is found in many disciplines, several parallel alternatives of serial
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TDMA have been developed. Cyclic Reduction (CR) [8], Recursive Doubling (RD) [9], Parallel Cyclic Reduction

(PCR) [10] are popular parallel choices.

General-Purpose computing on GPUs (GPGPU) provides an excellent platform to accelerate such parallel al-

ternatives. Its data-parallel execution model perfectly fits into these algorithms where data sharing is localized

into blocks and loop-carried dependencies are elegantly eliminated. GPU achieves its high performance by exe-

cuting more than thousands of threads simultaneously and each of them processes different sets of data. Multiple

programming languages are available to program GPUs such as CUDA C, CUDA FORTRAN, Direct-Compute,

OpenCL and OpenACC [11, 12]. There have been many successful GPU applications reported in several re-

search areas, such as medical imaging analysis [13] and computational fluid dynamics [14, 15]. Well optimized

application presents several orders of magnitude speedup over its highly optimized serial version on high-end

CPUs.

In this paper, we parallelize ADI solver using PCR on modern GPUs and demonstrate its efficiency with a

two-dimensional heat conduction simulation example. Our implementation significantly improves existing GPU-

based PCR solvers by addressing their limitations. First, we propose thread mapping schemes that remove the

dependency of the amount of shared memory used. This shared memory limitation restricts existing solvers to

increase the domain sizes up to only 1024 × 1024 which is too small to model real world phenomena [16, 17].

Our implementation no longer has this domain size limitation. Second, our implementation optimizes the usage

of limited yet performance-critical hardware resources for better hardware utilizations. Third, our proposed ADI

solver also improves the memory accesses efficiency of sweep directions by using hardware texture memory, and

its performance is compared with an existing matrix transpose approach. Finally, the performance of our four

different versions of ADI solver are evaluated using a heat conduction simulation with large domain sizes. The

results show that the proposed ADI solver is very efficient and suitable for real-world scientific simulations.

2. Related Work

With GPU becoming a viable alternative to CPU for parallel
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j

Fig. 1. Discretized two-dimensional computa-

tion domain.

computing, aforementioned parallel tridiagonal solvers and other

hybrid methods have been implemented on GPUs [16, 17, 18, 19,

20, 21, 22, 23]. Zhang et al. [16] first implemented PCR and then

proposed a CR-PCR hybrid algorithm. A hybrid of PCR-Thomas

method was proposed by Sakharnykh [22], and it was also stud-

ied by Zhang et al. [16]. Although they demonstrated the benefit of

using GPUs, their implementations can solve only small size sys-

tems as they store entire input system in shared memory which is

a small limited memory space. This observation motivates us to

address the shared memory limitation of previous PCR implemen-

tation and to redesign it scalable up to realistic large systems. Sev-

eral researchers have also worked on hybrid PCR methods to handle

large input sizes [18, 21].

As each step of ADI method combines solution of tridiagonal

equation systems, GPU tridiagonal solvers allow entire ADI solver to be straightforwardly implemented on

GPUs [15, 23]. With multi-dimensional data in the same application, an usual strategy is to map them to one-

dimensional array and store them linearly in memory space. In this way, memory access is coalesced in one

direction but not for the rest directions. To improve the code performance in uncoalesced directions, an exist-

ing solution is to first transpose the uncoalesced tridiagonal input array to be coalesced, and then solve it with

tridiagonal solver, finally the results are transposed back to original directions [23]. In this scheme, all directions

are solved by the same solver and the performance is highly dependent on the amount and efficiency of matrix

transpose, and the shape of multi-dimensional arrays.
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3. Alternating Direction Implicit Method

In this section, we show how ADI method is used to solve a two-dimensional heat conduction equation. We

also introduce TDMA and PCR algorithms which are underlying building blocks of ADI method.

3.1. Heat Conduction Equation Discretization

Heat conduction equation is a special and simplified case of a mass transport equation or Navier-Stokes Equa-

tions in computational fluid dynamics [7]. Given the same numerical methods, the discretized heat conduction

equation has the same algebraic equation structure with other more advanced equations. In this way, our proposed

ADI solver tested by the heat conduction simulation can be easily adopted for solving other equation systems.

In heat conduction equation, the computation domain is discretized in multiple dimensions. Fig. 1 shows a

two-dimensional discretization where i and j are nodal indices in horizontal and vertical directions, respectively,

and M and N are the total number of nodes (i.e., domain size) in horizontal and vertical directions, respectively.

A two-dimensional unsteady heat conduction equation [24] is expressed as

ρc
∂T
∂t
= k(
∂2T
∂x2
+
∂2T
∂y2

) (1)

where T is temperature, ρ is the density of conduction media, c is specific heat and k is diffusion coefficient. For

the sake of simplicity, k
ρc = 1 is assumed and the above equation is rewritten as

∂T
∂t
=
∂2T
∂x2
+
∂2T
∂y2

(2)

Dirichlet boundary condition is specified along the domain boundaries, Equation (2) is implicitly discretized by

finite difference method in the rectangular domain and, at a typical node (i, j), an algebraic equation is formed as

APT n+1
i, j + AET n+1

i+1, j + AWT n+1
i−1, j + ANT n+1

i, j+1 + AS T n+1
i, j−1 = T n

i, j (3)

with coefficients at internal nodes expressed as

AP = (1 + 2
Δt
Δx2
+ 2
Δt
Δy2

), AW = AE = − Δt
Δx2
, AN = AS = − Δt

Δy2

where n is time level, Δt is time step, Δx and Δy are mesh sizes in horizontal and vertical directions, respectively.

Since the temperature value is constant at boundary, coefficients are given as

AP = 1, AW = AE = AN = AS = 0

3.2. Heat Conduction Solution by ADI

Equation (3) then can be efficiently solved by ADI method [1] in two sub-steps. At the first sub-step, Equa-

tion (3) is solved in i direction:

aiT
n+1/2
i−1, j + biT

n+1/2
i, j + ciT

n+1/2
i+1, j = di (4)

where ai = AW , bi = AP, ci = AE and di = T n
i, j − ANT n

i, j+1
− AS T n

i, j−1
. For the next sub-step, Equation (3) is solved

in j direction:

a jT n+1
i, j−1 + b jT n+1

i, j + c jT n+1
i, j+1 = d j (5)

where a j = AS , b j = AP, c j = AN and d j = T n+1/2
i, j − AET n+1/2

i+1, j − AWT n+1/2
i−1, j .

Equations (4) and (5) are linear equation systems of the form [A]{T } = {d} as shown in Equation (6). The

readers should be advised that the coefficients a, b and c are constant for all internal nodes in this specific case

and, therefore, Equation (6) can be further simplified and solved easily. However, these coefficients may vary at
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each time step for more complex applications. From solver parallelization point of view, we keep the original

system for generality. ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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=
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d0

d1

d2

...
dM−2

dM−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

3.3. Thomas Algorithm
Thomas Algorithm (TDMA) is an efficient tridiagonal matrix solver for Equation (6) and it has two sweeps:

forward elimination and backward substitution. In the first sweep, the lower diagonal is eliminated by

c
′
0 =

c0

b0

, c
′
i =

ci

bi − c′i−1
ai
, i = 1, 2, · · · ,M − 1 (7)

d
′
0 =

d0

b0

, d
′
i =

di − d
′
i−1ai

bi − c′i−1
ai
, i = 1, 2, · · · ,M − 1 (8)

The second sweep solves unknowns from the last point of the domain to the first as

TM−1 = d
′
M−1,Ti = d

′
i − c

′
iTi+1, i = M − 2,M − 3, · · · , 0 (9)

This algorithm is serial in nature. In order to calculate c
′
i , d

′
i and Ti, their immediately preceding terms c

′
i−1,

d
′
i−1 and Ti+1 have to be calculated ahead.

3.4. Parallel Cyclic Reduction Algorithm
Parallel Cyclic Reduction (PCR) method [10] is one of the most powerful parallel alternatives of TDMA

algorithm for the tridiagonal linear equation system. PCR only has forward reduction calculation and, in each

step, it reduces the current system into two systems with half size, and finally it solves M (domain size) one-

equation systems simultaneously. PCR requires log2(M) algorithmic steps and M units of work per step [17]. The

data flow process has been explained in detail in references [16, 21].

4. Parallel ADI Method

This section discusses the parallelization of ADI solver on GPUs using NVIDIA CUDA. We begin with an

existing GPU implementation of PCR solver which is a key component of our proposed ADI solver. We then

present our improved implementation that addresses the limitations of existing implementations. We detail several

optimization techniques to further improve the performance. For all implementations, we copy data once from

CPU to GPU and keep all data in GPU memory until we copy the final result back to CPU.

4.1. Existing PCR Implementation
In Zhang’s GPU implementations [16, 17], PCR kernel is used to solve hundreds of tridiagonal systems simul-

taneously. Each equation system is mapped to one thread block, and then each thread inside the block solves one

equation. This kernel is divided into three components as follows.

1. Data is preloaded into shared memory. In their implementations, there are five arrays (three for the matrix

diagonals, one for right-hand-side term, and one for solution vector).

2. From the first reduction step to step log2(M/2), the coefficients for calculating the M one-equation systems

are updated.

3. In step log2(M), one-equation systems are solved concurrently. Results are temporarily stored in shared

memory, and finally copied to global memory.

In this design, a system size more than 512 would exceed the size of shared memory on current hardware as

pointed out in [16]. Zhang later implemented hybrid PCR solvers that support system sizes up to 1024×1024 [17],

but the restriction of shared memory size is still unsolved.
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4.2. Improved PCR Implementation
In this section, we present our approach to eliminate the domain size limitation of the existing PCR implemen-

tation. We also present how we reduce the amount of shared memory used.

4.2.1. Mapping strategy
To make the kernel independent of limited hardware resources on GPUs, the scalable two-level thread mapping

model should be fully utilized. In Zhang’s implementations [16, 17], the whole system is mapped to one thread

block as shown in Fig. 2(a). Because of limited shared memory size, this mapping method can not handle a large

domain size. To address this issue, we propose two flexible mapping methods as follows.

The first proposed mapping method [15] still maps the whole system to one thread block. Unlike previ-

ous, however, this mapping method solves the whole system by iterating equally-chunked sections as shown in

Fig. 2(b). Since the thread block satisfies the shared memory size requirement by reusing the shared memory,

large system sizes can be solved. Although this mapping method can be applied to massive data computation, one

potential limitation would be that the total number of thread blocks may be too small to fully utilize the hardware.

For example, given the domain sizes in Fig. 1 and the current sub-step of ADI solver sweeps horizontally, the total

number of thread blocks would be N. Unless N is big, the kernel wouldn’t be able to fully utilize the hardware

pipelines and resources.

A more flexible and scalable mapping method is to map the whole system to multiple blocks as Fig. 2(c). In

this way, the thread block size and the amount of shared memory used is not affected by the system size. As a

result, the system size can be increased as long as the graphics memory size allows. This scheme allows GPU

resources to be equally well utilized at all times.

0 M-1

......

Block 0

......

(a) One thread block.

0 M-1

......

......

Block 0 Block 0......

(b) One thread block with k iterations.

0 M-1

......

Block 0 Block k-1......

......

(c) k thread blocks.

Fig. 2. Three different thread mapping techniques. A whole system is mapped to (a) one thread block, (b) one thread block with

multiple iterations, (c) multiple thread blocks.

4.2.2. Shared memory reduction
On-chip shared memory provides a lot higher bandwidth and lower latency than global memory and, therefore,

any opportunity to preload data from global memory to this memory space should be exploited. At the same time,

as the usage of shared memory influences the hardware occupancy, one should not overuse. In general, low shared

memory usage gives higher occupancy and better performance by allowing more threads launch when the shared

memory is a limiting factor.

We observed that Zhang’s implementations [16, 17] allocate one extra array in shared memory to store tem-

porary solution. However, this array is just a temporary buffer which is not associated with any computation in

later part of the kernel but just copied to global memory. In our implementation, following the proposal by Zhang

and Jia [15] we remove this unnecessary shared memory allocation and directly write solution to global memory.

With this, the total amount of shared memory used is reduced by 20% over time. We label our proposed PCR

solvers as shown in Table 1, which summarizes the configurations of four possible combinations between this

shared memory reduction and newly proposed thread mappings described in Section 4.2.1.

4.3. Data Access Analysis
Data access pattern is one of the most important performance factors on data-parallel GPUs and we briefly

discuss the memory access patterns of both serial and parallel ADI solvers in this section.
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Table 1. Four improved PCR solver configurations.

Configurations Descriptions

C1 Large shared memory is used (5 arrays) and the whole system is mapped to one block.

C2 Large shared memory is used (5 arrays) and the whole system is mapped to multiple blocks.

C3 Small shared memory is used (4 arrays) and the whole system is mapped to one block.

C4 Small shared memory is used (4 arrays) and the whole system is mapped to multiple blocks.

TDMA

Solution xh

Map toxh T

TDMA

Solution xv

Map toxv T

Calculate , ,a b cj j j

Calculate , ,a b ci i i

Update dj

Update di

(a) Serial ADI solver.

Calculate , ,a b cj j j

Update di

Update dj

Solution Th

Solution Tv

PCRh

PCRv

Calculate , ,a b ci i i

(b) Parallel ADI solver.

Update dj

Solution Tv

PCRv

Transpose dj

Transpose Th

PCRh

(c) Matrix transpose approach.

Fig. 3. Data flow diagrams.

4.3.1. Data access in serial solver
The overall data flow of the serial ADI solver is shown in Fig. 3(a). All arrays are linearly stored in physical

memory space in both horizontal and vertical ADI sweeps. The solution variable T is updated in each sweep and it

is immediately used to calculate the new linearly stored right-hand-side term in the other sweep (See Equations (4)

and (5)), so the linear solution result x from TDMA is mapped back to the two-dimensional array T for simplicity.

Since arrays are stored in row-major order in C/C++ program, this strategy fits well into the calculation of vertical

right-hand-side term, but not so well for that in the horizontal direction.

4.3.2. Data access in parallel solver
On GPU-accelerated platforms where computation intensive portions of application are offloaded onto GPU

over PCI express bus, application should minimize data transfer between the host (CPU) and the device (GPU) [11].

Therefore, the best scenario is that the data is only copied to the device once at the beginning, and it is kept until

the end of simulation. More importantly, coalesced memory access should be always desired, as accessing off-chip

DRAM is very expensive. Initially, the computation flow shown in Fig. 3(a) was implemented on GPU with just

TDMA replaced with PCR but it gave poor performance because of the slow data copies between one-dimensional

and two-dimensional arrays. Therefore, a new computation flow shown in Fig. 3(b) is adopted, in which all arrays

are linearly defined horizontally for both sweeps. For the horizontal sweep, although the discrete global memory

access for solution variable T still exists for calculation of right-hand-side term di (See Equation (4)), the global

memory access in kernel PCRh and memory access for calculation of vertical right-hand-side term d j are fully

coalesced (See Equation (5)). However, in the vertical sweep, global memory prefetching at the beginning of the
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kernel PCRv is still not coalesced. After prefetched, shared memory is used for the rest of calculation and the

performance penalty from uncoalesced access has been alleviated. This initial parallelized ADI solver is named

as baseline implementation compared with two optimized versions, hereafter.

4.4. ADI Memory Access Optimizations

As mentioned in previous section, the baseline implementation suffers from uncoalesced memory access in one

of two sweeps. As a result, there is a significant performance unbalance between two sweeps (this is clearly shown

in Section 5.1). To address this performance bottleneck, we propose and experiment two techniques: leveraging

texture memory and matrix transpose.

4.4.1. Texture memory
Designed around graphics processing, GPUs have a special hardware block called texture unit to efficiently

access two-dimensional texture images. Off-chip memory access via this texture unit is referred to as texture

memory access, which offers several benefits such as hardware address calculation, filtering, and higher uncoa-

lesced memory access performance insensitivity. In our case, we take advantage of higher uncoalesced memory

access performance insensitivity which is, when memory access pattern is uncoalesced, texture memory gives

better performance than default global memory.

In the vertical sweep of ADI solver, two neighbor threads in the same warp access global memory addresses

with stride of domain size in the horizontal direction. This memory access pattern results in multiple not-fully-

utilized memory transactions as opposed to one large fully-utilized transaction in coalesced case. Texture memory

provides better cache efficiency as its two-dimensional spatial locality aware access works better in this strided

case, resulting in better overall performance. In our implementation, coefficient arrays a, b, c, d, and solution T
are bound with texture memory, and all accesses to these arrays go through texture unit. Once properly bound,

kernel requires only small modifications yet its performance return is not trivial.

4.4.2. Matrix transpose
One of the widely used techniques to handle strided access patterns on GPUs is to change data layout. A down-

side of this approach is an inevitable overhead associated with data transformation. In parallel ADI solver, simple

matrix transpose between vertical and horizontal directions is sufficient to resolve inefficient (i.e., uncoalesced)

memory accesses. Specifically, four input coefficient arrays a j, b j, c j and d j are firstly transposed to ai, bi, ci and di

horizontally. Then the same solver PCRh as indicated in Fig. 3(b) will solve the tridiagonal linear equation system

for vertical direction instead of PCRv with coalesced memory access. Finally the solution Th is transposed back

to the original Tv. In general, there are five times matrix transpose operations for two-dimensional application,

however, in our specific testcase with uniform mesh size as presented in Section 5, coefficient arrays a j and ai

have same values in memory space (See Equations (4) and (5)), this relation is also observed between b j (c j) and

bi (ci). Therefore, a data flow as shown in Fig. 3(c) with twice matrix transpose operations is implemented in this

research.

The performance of this approach significantly depends on the degree of matrix transpose optimization. Ma-

trix transpose is not a GPU-friendly algorithm in nature. NVIDIA CUDA SDK provides matrix transpose ex-

amples [25] which are highly tuned for their underlying hardware architecture. We use their final version that

implements the highest level of optimizations which includes memory coalescing, shared memory bank conflict,

partition camping, and tiling.

5. Performance Analysis

In this section, we evaluate our proposed parallel ADI solver using a two-dimensional heat conduction simula-

tion with large domain sizes. Our test machine is configured with an Intel Core i7-3770K CPU running at 3.5GHz,

16GB system memory, a NVIDIA GTX 680 GPU with 2GB graphics memory and 48KB per-multiprocessor

shared memory (Kepler architecture), CUDA 4.2, and Ubuntu 11.10 operation system.

Simulation parameters are configured as follows. Mesh size is uniform in both directions with Δx = Δy =
0.01 m and numerical time step Δt is 0.01 s, and heat conduction time is 1.0 s, therefore the total numerical time
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Table 2. Speedup comparison of parallel ADI solver over serial solver for four domain sizes with thread block size of 128.

Sizes
Baseline Texture memory Matrix transpose

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

10242 33.3 77.2 33.4 78.8 45.0 103.1 45.8 103.0 112.3 118.0 109.6 119.6

20482 21.3 59.4 21.4 60.4 24.9 58.9 25.8 58.4 97.1 100.1 96.1 102.2

40962 15.7 51.0 15.7 51.9 18.0 63.4 18.3 63.2 78.9 80.1 77.8 82.8

81922 12.2 43.8 12.1 44.3 13.8 52.2 14.1 51.4 68.7 69.4 67.4 71.5

step is 100. To present more realistic data which was not possible with other existing parallel solvers, we tested

four cases with large domain sizes of 1024×1024, 2048×2048, 4096×4096, and 8192×8192 with five different

thread block configurations (32, 64, 128, 256, and 512). Thread block configuration plays an important role in

determining hardware occupancy/utilization and memory performance. In all implementations, single-precision

floating point data type was used.

5.1. Baseline Implementation

The first large column in Table 2 shows the speedup of baseline parallel ADI solver over the serial ADI for

four domain sizes with the thread block size of 128, which gave overall best performance over other block sizes

in our experiment. We have several observations from the results. 1) there is a significant performance difference

between two thread mapping methods. Multi-block mappings (C2 and C4) outperform one-block mappings (C1

and C3) by a large margin (approximately 250%). 2) shared memory reduction (C3 and C4) does not have any

notable impact on the performance. This, however, does not mean that reducing shared memory usage is useless.

Shared memory is an important on-chip hardware resource that can limit the number of thread blocks that can

be launched simultaneously. Although shared memory is not a limiting factor in our experiment, this can be a

big issue on GPUs that have less shared memory (e.g., earlier generation or low-end GPUs). 3) ADI solver’s

performance decreases as the domain sizes increase for all configurations. This degradation is caused by the

impact/contribution of less efficient memory access patterns in the vertical sweep. PCRv accounts for nearly 70%

of total execution time (Fig. 4(a)), as a consequence, overall performance is significantly affected by this module.

PCRv loads two vertically consecutive data which are in two different horizontal lines with the stride of horizontal

domain size. As the horizontal domain size (i.e., the stride) increases, this access pattern causes more serious

performance degradation.

(a) Baseline implementation. (b) Texture memory. (c) Matrix transpose.

Fig. 4. Time breakdown of three implementations of ADI solver (domain sizes: 40962 and thread block size: 128). Time in

milliseconds.

5.2. Optimized Implementations

On top of baseline implementation, two memory optimization techniques (texture memory and matrix trans-

pose) were further implemented. The second and third large columns in Table 2 show their performance, re-

spectively. Compared with the baseline implementation, the optimization techniques improve the performance



397 Zhangping Wei et al.  /  Procedia Computer Science   18  ( 2013 )  389 – 398 

Fig. 5. Performance comparison among the proposed configurations (domain sizes: 81922 and thread block size: 128).

significantly. Comparing two techniques, matrix transpose approach shows better performance than texture mem-

ory in our experiment. However, this can change if more arrays need to be transposed (please note that our

specific experiment does not require the transpose of the rest of arrays other than two, d j and Th, see Fig. 3(c)).

Also three-dimensional domain would require more matrix transpose operations which would make this approach

less attractive. Therefore, these approaches should be carefully chosen based on the target system configuration.

Fig. 4(b) and Fig. 4(c) present the detailed time breakdown of two optimization techniques. It clearly shows

that texture fetch improves the performance of PCRv kernel in particular. On the other hand, matrix transpose

replaces the bad performing PCRv with PCRh, making their contributions the same. Note also that the approach

introduces the overhead of twice matrix transpose operations (denoted as Trans1 and Trans2 in Fig. 4(c)).

Finally, a side-by-side comparison of solver performance with large domain sizes 8192 × 8192 is shown in

Fig. 5. This result demonstrates that our proposed parallel ADI solvers (C2) and (C4) are very efficient even with

large domain sizes.

5.3. Numerical Accuracy Analysis
Scientific computation requires a certain level of numerical accuracy. We check the accuracy of our proposed

GPU solver using norm error L2 which is defined as

Error =

√∑M
i=1(TGPU(i) − TCPU(i))2∑M

i=1(TCPU(i))2
(10)

where M is total number of nodes, TCPU(i) and TGPU(i) are the temperature values computed by CPU and GPU

ADI solvers, respectively.

With single-precision floating point data type used in both versions, the truncated error is expected to be about

10−7. Table 3 shows the error analysis result of configuration C4 with thread block size of 128. As the mesh size is

kept uniform in our testcase, the norm error of our GPU ADI solver increases slightly as the domain sizes become

larger, but the norm error is still smaller than 3.0 × 10−6 with 100 time steps. We believe the accuracy of GPU

ADI solver is within the acceptable range in most scientific computation researches.

Table 3. Norm errors of configuration C4 with thread block size of 128.

Domain sizes 10242 20482 40962 91822

Errors (x10−6) 2.87 2.90 2.92 2.93
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6. Conclusion

In this paper, we presented an improved parallel ADI solver that harnesses modern GPUs for solving the

two-dimensional heat conduction equation. Our improvements include 1) new thread mappings which address the

hardware resource constraints, 2) reduced shared memory usage which helps launch more threads, 3) two memory

optimization techniques which improve the efficiency of off-chip memory accesses. With these improvements,

our proposed parallel ADI solver demonstrates a significant speedup across large computation domain sizes. Our

future work includes developing more advanced GPU optimization techniques and applying our improved ADI

solver to more complex systems.
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